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Abstract

We present the results of a Bayesian search for gravitational wave (GW) memory in the NANOGrav 12.5 yr data
set. We find no convincing evidence for any gravitational wave memory signals in this data set. We find a Bayes
factor of 2.8 in favor of a model that includes a memory signal and common spatially uncorrelated red noise
(CURN) compared to a model including only a CURN. However, further investigation shows that a
disproportionate amount of support for the memory signal comes from three dubious pulsars. Using a more
flexible red-noise model in these pulsars reduces the Bayes factor to 1.3. Having found no compelling evidence, we
go on to place upper limits on the strain amplitude of GW memory events as a function of sky location and event
epoch. These upper limits are computed using a signal model that assumes the existence of a common, spatially
uncorrelated red noise in addition to a GW memory signal. The median strain upper limit as a function of sky
position is approximately 3.3× 10−14. We also find that there are some differences in the upper limits as a function
of sky position centered around PSR J0613−0200. This suggests that this pulsar has some excess noise that can be
confounded with GW memory. Finally, the upper limits as a function of burst epoch continue to improve at later
epochs. This improvement is attributable to the continued growth of the pulsar timing array.

Unified Astronomy Thesaurus concepts: Gravitational waves (678); Gravitational wave astronomy (675)

1. Introduction

Any system that radiates gravitational waves (GWs) will also

cause a permanent change in the spacetime metric. This effect,

which was first derived in Zel’dovich & Polnarev (1974), is

called gravitational wave memory. Later on, it was discovered

that the gravitational waves emitted by a system are themselves

a source of memory (Christodoulou 1991; Wiseman &

Will 1991; Blanchet & Damour 1992; Thorne 1992). This

effect is known as nonlinear memory, because it arises from

nonlinearities in the Einstein field equations. Much work has

been done to estimate the size of the effects of nonlinear GW

memory, and it has been shown that there is a reasonable

chance that the GW memory effect is significant enough to be

observed using modern GW detectors (Wiseman & Will 1991;

Arun et al. 2004; Favata 2009a, 2009b, 2010).
One such GW detector is a pulsar timing array (PTA). A

PTA is a collection of millisecond pulsars (MSPs) that have

extremely stable rotational periods (Lorimer 2008). Because of

their stability, it is expected that, by carefully observing the

times of arrival (TOAs) of radio pulses from these MSPs, it is

possible to observe timing residuals induced by the passage of

GWs (Sazhin 1978; Detweiler 1979; Hellings & Downs 1983;

Agazie et al. 2023). The combination of multiple MSPs into a
PTA also offers boosted sensitivity when trying to detect GW
signals that produce predictable correlations among multiple
pulsars (Foster & Backer 1990; Lommen 2015). Currently,
there are several PTA collaborations in operation, including the
North American Nanohertz Observatory for Gravitational
Waves (NANOGrav; McLaughlin 2013), the European Pulsar
Timing Array (EPTA; Desvignes et al. 2016), the Parkes Pulsar
Timing Array (PPTA; Manchester et al. 2013), and the Indian
Pulsar Timing Array (InPTA; Paul et al. 2019). Together, these
collaborations form the International Pulsar Timing Array
(IPTA; Verbiest et al. 2016). In addition, the Chinese Pulsar
Timing Array (CPTA; Xu et al. 2023) and the MeerTime Pulsar
Timing Array (MPTA; Miles et al. 2022b) have recently
released their first analyses.
In the absence of any exotic physics, PTAs are expected to

first detect a gravitational wave background originating from an
ensemble of supermassive black hole binary (SMBHB)
systems, followed by continuous waves from particularly
bright SMBHBs (Rosado et al. 2015). Much work has already
been done to characterize the GW background and place limits
on continuous GWs (e.g., Arzoumanian et al. 2016, 2018a,
2020; Chen et al. 2021; Antoniadis et al. 2022; Agazie
et al. 2023; Arzoumanian et al. 2023; Falxa et al. 2023). During
the final inspiral and merger of a SMBHB system, the SMBHB
strongly emits GWs that are outside the frequency band
detectable by PTAs. However, the accumulated memory from
these GWs may be significant enough to be detected by PTAs
(Seto 2009; Pshirkov et al. 2010; van Haasteren & Levin 2010;
Cordes & Jenet 2012; Madison et al. 2014). In addition to these
signals, it is also possible to detect or constrain more exotic
GW sources using PTA data. For example, cosmic strings are
expected to emit strong bursts of GWs (Damour & Vilenkin 2000;
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Siemens et al. 2006). Yonemaru et al. (2020) have placed
limits on GW bursts from cosmic strings based on the second
PPTA data release.

Several studies have already been done using PTA data to
constrain GW memory. NANOGrav has published constraints
on GW memory using their 5 yr and 11 yr data sets
(Arzoumanian et al. 2015; Aggarwal et al. 2020, hereafter
NG5mem and NG11mem, respectively). The PPTA has also
published constraints in Wang et al. (2015). Madison et al.
(2016) have published the results of a search for GW memory
from five galaxy clusters using PPTA data.

Additionally, several studies have considered GW memory
using ground- and space-based detectors like LIGO–Virgo–
KAGRA and LISA. Lasky et al. (2016) suggest a method to
detect accumulated memory of many individual mergers, each
of which is too weak to see by itself. Hübner et al. (2021) find
no evidence of memory using data from 50 detections of GWs
made during the third observation run of LIGO and Virgo.
Boersma et al. (2020) forecasted that GW memory could be
detected with total S/N= 3 after approximately five years of
aLIGO operation at design sensitivity. Favata (2009a)
estimated that memory from SMBHB mergers may be
detectable (S/N∼ 5) out to z 2 with LISA, and Islo et al.
(2019) estimated that LISA may see between 1 and 10 memory
events in its lifetime.

In this paper, we present our analysis of the NANOGrav 12.5
yr data set (Alam et al. 2020) for GW memory. We find that there
is no significant evidence for GW memory in the data set. The
model including a memory signal and a common spatially
uncorrelated red noise (CURN) process is only very marginally
favored, with a Bayes factor of 2.8, when compared to a model
including only a CURN process. The posteriors from a full PTA
analysis show that there is a very weak hint for GW memory at
three different epochs: MJDs 54000, 55400, and 57300. However,
a more detailed analysis shows that these three features are
spurious. Each event is only supported by one or two pulsars, and
one even lies inside a data gap in which there are no TOAs. When
using more flexible red-noise models for three of the pulsars in the
data set, the Bayes factor drops to BF= 1.3.

Thus, finding no GW memory events, we present upper limits
constraining the amplitudes of any GW memory as functions of
trial burst epoch and sky location. In addition, we use the
constraints as a function of burst epoch to set constraints on rates
of all astrophysical events which produce GW memory.

In Section 2, we will describe the NANOGrav 12.5 yr data
set. Then, in Section 3, we will discuss how a GW memory
wave front affects TOAs from a PTA. Next, in Section 4, we
will summarize the mathematical techniques and software used
in this search. Finally, we will discuss the results in Section 5.

2. Data

In this paper, we analyze the NANOGrav 12.5 yr
narrowband data set (Alam et al. 2020). We will briefly
summarize some key points about this data set, but more details
may be found in Alam et al. (2020) (hereafter NG12).

This data set contains TOAs from observations of 47 pulsars
made between 2004 July and 2017 June. However, in this
analysis, we used only the 45 pulsars with at least three years of
data. These observations were performed using the Arecibo
Observatory (AO) and Green Bank Telescope (GBT). All
pulsars in the decl. range 0° < δ<+ 39° were observed at
Arecibo, with the remaining pulsars observed at GBT. In

addition, PSRs B1937+21 and J1713+0747, which lie within
the aforementioned decl. range, were also observed at GBT.
Based on work by Burt et al. (2011) and Christy et al. (2014),
six pulsars were also observed in a high-cadence program:
PSRs J0030+0451, J1640+2224, J1713+0747, J1909−3744,
J2043+1711, and J2317+1439. These six pulsars were
observed weekly starting from 2013 at GBT and 2015 at AO.
The remaining pulsars were observed monthly.
Each pulsar was, where possible, observed using two

different receivers at different frequency ranges, to help
understand and model out interstellar medium (ISM) and
dispersion measure (DM) effects. At Arecibo, observations
were performed with the 1.4 GHz receiver, and one of either
the 430 MHz or 2.1 GHz receivers, depending on the noise
characteristics of the observed pulsar. At the GBT, monthly
observations used the 1.4 GHz and 820 MHz receivers. Weekly
observations, however, only used the 1.4 GHz receiver. The
observations were initially recorded using the ASP/GASP
backends at AO and GBT, respectively (Demorest 2007).
Later, between 2010 and 2012, these backends were replaced
by the wideband backends PUPPI/GUPPI at AO and GBT,
respectively (DuPlain et al. 2008; Ford et al. 2010).
Each pulsar’s timing model was fitted using TEMPO

64
(Nice

et al. 2015) and checked for consistency using TEMPO2
65

(Hobbs et al. 2006) and PINT
66

(Luo et al. 2019).

3. Signal and Noise Model

In this section, we will discuss the effects of GW memory on
TOA residuals in pulsar timing data and summarize all of the
components of the signal model and noise model used in this
search.
Qualitatively, a memory wave front passing over a single pulsar

will cause the observed rotational frequency of the pulsar to
suddenly increase or decrease by a constant amount. A memory
wave front passing over the Earth will cause the observed
rotational frequencies of all pulsars in the PTA to suddenly
increase or decrease by a constant amount. In either case, this
sudden change to the observed rotational frequency will introduce
timing residuals because of the difference between the pulsar’s
timing model fitted rotational frequency and the observed
rotational frequency. Because the difference between the expected
frequency and observed frequency is a constant, this will cause
residuals to accumulate linearly over the course of the observation.
In the case of a memory wave front passing over just one pulsar,
we will only see residuals in the TOAs of that pulsar. If a wave
front passes over the Earth, we will see the residuals begin
accumulating in the TOAs of every single observed pulsar.

For a GW memory wave front propagating in the direction k̂
with polarization angle ψ passing over the line of sight to a
pulsar at sky position p, the residuals induced may be
calculated (Estabrook & Wahlquist 1975; Hellings &
Downs 1983):

( ) ( ˆ ˆ ) ( ) ( )d y= k pt t B h t, , . 1mem mem

The projection factor ( ˆ ˆ )yk pB , , accounts for the fact that the

GW memory has a quadrupolar antenna pattern. The effect of

the GW memory on the TOAs from a pulsar depends on where

that pulsar lies inside the antenna pattern. For a pulsar at p and

64
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a wave front propagating in the direction k̂ separated by an

angle α, we can write the projection factor as

( ˆ ˆ ) ( )( ) ( )ˆy y a= -k pB , ,
1

2
cos 2 1 cos , 2p

where α is the angle between p̂ and k̂, and ˆy p is the angle

between the principal polarization vector (defined by ψ) and

the pulsar line of sight projected onto a plane perpendicular

to k̂.
The second factor in Equation (1) carries the strength and

time dependence of the burst. For a wave front with a
characteristic strain of h0, we may write the time dependence as

( ) [( ) ( ) ( ) ( )] ( )= - Q - - - Q -h t h t t t t t t t t , 3i imem 0 0 0

where t0 is the time at which the memory wave front passes

over the Earth, (∣ ∣ ) [ ( )]q= + +pt t c 1 cosi i i0 is the retarded

time at which the same wave front passed over the pulsar, and

Θ is the Heaviside function. The left- and right-hand terms in

Equation (3) are called the “Earth term” and “pulsar term,”

respectively. In reality, because the distance to each pulsar

in our PTA is on the order of thousands of light-years, and

the observation baselines of ongoing PTA experiments is tens

of years, we expect only one nonzero term in Equation (3).
The characteristic strain of GW memory h0 depends on the

amount of energy radiated as GWs,ΔErad, and the orientation and
distance of the source relative to the observer. For a binary merger

( ) ( )i i=
D

+h
E

r24
sin 17 cos , 40

rad 2 2

where r is the comoving distance to the source, ι is the orbital

inclination angle of the binary, and ΔErad is a function of the

individual masses and spins. As our signal model includes only

the memory portion, we are agnostic to the particulars of the

signal’s origin and parameterize our model with h0 directly.
Because of the significance of the detection of a CURN

process in NG12gwb, we also include a CURN with a fixed
spectral index as part of our model. The CURN is modeled as a
power law, with a power spectrum characterized by two
hyperparameters (A, γ) (Phinney 2001):

( ) ( )=
g

-

-

P f A
f

yr
, 52

1
⎜ ⎟
⎛
⎝

⎞
⎠

where f is the frequency of the spectral component, A is the

characteristic amplitude of the red-noise process at the reference

frequency yr−1, and γ is the spectral index of the process. A

stochastic gravitational wave background generated by an

ensemble of SMBHB is expected to have a spectral index of

γSMBHB= 13/3≈ 4.33. However, the maximum a posteriori

value found for the spectral index of the CURN in NG12gwb was

approximately γMAP= 5.5. In this paper, we present two sets of

results using both of these fixed spectral indices for the CURN.
In addition to these signals, we include Gaussian white noise

and Gaussian red noise on a per-pulsar basis. The Gaussian red
noise accounts for long-timescale changes in the pulsar’s
rotational frequency. Some examples of processes that can
cause these changes include spin noise (Shannon & Cordes
2010; Lam et al. 2016), stochastic variations in dispersion
measure (Demorest et al. 2013; Keith et al. 2013; Jones
et al. 2017), and mode changing (Lyne et al. 2010; Miles
et al. 2022a).

The Gaussian white noise is parameterized by three
parameters known as EQUAD, EFAC, and ECORR. EQUAD
and EFAC modify the measured TOA uncertainty: EQUAD
adds additional white noise in quadrature, and EFAC multiplies
the total TOA uncertainty after including EQUAD. ECORR
describes white noise that is correlated between TOAs gathered
in the same observation epoch but uncorrelated between
different observations. This term nominally accounts for pulse
jitter noise. For this analysis, the white noise parameters are
fixed to their median values as determined by single pulsar noise
analyses, for the sake of computational efficiency.

4. Methods

The techniques used in this search are documented in Sun
et al. (2023). As such, in this section, we will give only a brief
overview of the techniques. The residuals in a single pulsar’s
TOAs may be written as the sum of multiple stochastic and
deterministic processes:

( )d d= + + + +t t a a nM F F . 6mem gw gw

Above, δt are the residual time series for the pulsar. The term

δtmem represents the residuals induced by GW memory; M is

the design matrix accounting for small errors in the linearized

pulsar timing model ò; F is the design matrix for a pulsar-

intrinsic Gaussian red-noise process modeled as a Fourier series

with coefficients a; similarly, Fgw and agw are the design matrix

and Fourier coefficients for the CURN; finally, n represents the

uncertainties in the TOAs from Gaussian white noise.
Given estimations of the timing model parameters, GW

memory signal, and Gaussian process parameters, we can
construct residuals r:

( )d d= - - - -r t t a aM F F . 7mem gw gw

Because the residuals r are expected to arise only from
Gaussian white noise (having subtracted out all other effects),
we can compute the likelihood of any set of model parameters
as

( )
( ) ( ∣ ˆ ˆ )

( )

d d y

p

=

=
- -

a a t t a a k p

r r

L p h t

N

N

, , , , , , , , , ,

exp

2 det
.

8

T

gw mem gw mem 0

1

2

1

 

It is also possible to analytically marginalize this likelihood
over the timing model and red-noise parameters. For a full
description, see Lentati et al. (2013), van Haasteren &
Vallisneri (2014), and van Haasteren & Vallisneri (2015).
The final marginalized likelihood is

( )
( ∣ ˆ ˆ ) ( )d y

p
=

- -

t k p
q q

p h t
C

C
, , , ,

exp

2 det
, 9

T

mem 0

1

2

1

where we have the definitions:

( )d d= -q t t , 10mem

( )= +C N TDT , 11T

[ ] ( )=T M F , 12
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( )f= ¥
D

0

0
, 13⎡

⎣
⎤
⎦

where ∞ above is a diagonal matrix of infinities (which we can

understand as unconstrained priors on timing model parameters),

and f is a covariance matrix for the individual red noise and

CURN Fourier coefficients. Because we are using a CURN,

these f matrices are also diagonal, and they simply contain the

red-noise power at each frequency bin given by Equation (5).
Following the procedure of Sun et al. (2023), which is based

on methods in Section 6 of NG5mem, we then compute the
pulsar-term likelihoods (marginalized over intrinsic pulsar red
noise and fixed spectral index CURN) on a grid of trial
parameters {hi, tB} where hi is the post-projection strain of
the memory signal in the ith pulsar, and tB is the burst epoch.
The post-projection strain is given by the product of the
projection factor (Equation (2)) and the intrinsic strain of the
memory signal h0. We can only use the post-projection strain
because the residuals of one pulsar cannot break the degeneracy
between the location of the signal’s origin and the intrinsic
strain. Additionally, Sun et al. (2023) do not include a CURN,
but we choose to include this additional noise process because of
the results of NG12gwb, in which it was shown that there is
significant evidence for a CURN in the NANOGrav 12.5 yr data
set (NC12). These pulsar-term likelihood tables may be used to
set upper limits on pulsar-term GW memory.

Then, we can combine the pulsar-term likelihoods to
compute Earth-term likelihoods by making use of the
factorizability of the signal model:
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where above we have implicitly used Equation (2) to combine the

burst parameters k̂, ψ, and h0 into the post-projection, pulsar-term

GW memory strain hi. In this way, it becomes very computation-

ally inexpensive to compute the red-noise-marginalized Earth-term

likelihoods of any GW memory events on a full grid of trial

parameters { }q f yh tlog , , , ,B B B B10 0 , where h0 is the intrinsic

strain of the memory event, tB is the event epoch, (θB, fB) are the

polar and azimuthal angles of the sky location of the event source,

and ψB is the polarization angle of the memory wave front. Once

we have the likelihoods on a grid of trial parameters, we can simply

numerically marginalize over any of the trial parameters to obtain

marginalized likelihoods or posterior probability distributions.
These signal models and this likelihood calculation are

implemented in enterprise
67

(Ellis et al. 2020) and
enterprise_extensions68

(Taylor et al. 2021)

5. Results

5.1. Earth-term Memory Search

We began by performing an Earth-term Bayesian search for
GW memory using MCMC sampling. We compared two
models: (1) a noise-only model and (2) a noise and GW

memory model. The noise-only model included intrinsic pulsar
red noise, white noise, and a common red-noise process. The
signal model included the same noise processes with an
additional GW memory signal. The two models were
simultaneously sampled using the product-space sampling
method (Carlin & Chib 1995; Godsill 2001), allowing us to
determine the posterior probability for the memory signal and
compute the Bayes factor for the signal model compared to
noise only. The resulting Bayes factor of 2.8, shows the GW
memory model is marginally favored over noise only.
However, this Bayes factor is too small to be considered a
detection. The posterior probability distributions for the
memory signal and global spatially uncorrelated red-noise
process are shown in Figure 1. Based on the posterior
probability of the burst epoch, we can identify three “hot
spots” near MJDs 54000, 55400, and 57300.
The features near MJD 54000 and 55400 were both present

in the analysis of NG11mem, where they were the most
significant GW memory false-alarm events in NG11 and NG9,
respectively. The feature near MJD 54000 lies near the start of
our observations and at a time where there were large data gaps
for several pulsars. At early times in our data set, there were
fewer pulsars being observed, and the observations were less
regular. The sparsity of data makes it harder to constrain any
signal in these times. Events that occur early in the data are also
more degenerate with the quadratic pulsar timing model fit to
the pulsar rotational frequency and frequency derivative. This
means that the signal model can be consistent with a high-
amplitude memory event that is effectively removed by the
marginalization of the timing model.
Using a dropout analysis, we identified three pulsars in

particular that supported each of the three aforementioned
features: PSRs J0030+0451, J1744−1134, and J2043+1711.
We performed another Bayesian search using a free spectral
noise model, which treats the power in each frequency bin in the
power spectral density as an independent parameter, rather than
requiring a power-law red-noise power spectral density for these
three pulsars. We found that using a more flexible noise model in
these pulsars completely removes the features at MJD 55400 and
MJD 57300. Because each of these features has no support from
any other pulsars, we conclude that these events are related to
noise in individual pulsars and not actual GW memory events.
The analysis using the free spectral noise model in three pulsars
results in a Bayes factor for GW memory of 1.3. In general,
more complex noise models like those used in J. Simon et al.
(2023, in preparation) should help prevent noise features from
contaminating searches for GW memory in the future.

5.2. Pulsar-term Upper Limits

Because we make no detection, we report upper limits on
GW memory strain amplitude.
Figure 2 shows the pulsar-term upper limits on GW memory

using both γMAP and γSMBHB. Because the pulsar-term upper
limits are computed one pulsar at a time, we lose all
information relating to the sky location of the signal. This
amplitude upper limit is a constraint on the product of

( ˆ ˆ )yk pB , , and h0, because these two terms are fully
degenerate in the pulsar-term search. In other words, it is
impossible to differentiate between a weak memory event or
one that originated in the sky such that the antenna pattern is
weak at the pulsar’s sky location. We see that the choice of
spectral index does not affect the pulsar-term upper limits very

67
https://github.com/nanograv/enterprise

68
https://github.com/nanograv/enterprise_extensions
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much in most cases. Some pulsars (e.g., PSRs B1937+21,
J0613−0200, J0645+5158, and J1713+0747) show small but
significant differences.

5.3. Earth-term Upper Limits

Figures 3 and 4 show the upper limits on GW memory strain
amplitude in the NANOGrav 12.5 yr data set as a function of
burst epoch and sky location, respectively.

To compute the upper limits as a function of burst epoch
(Figure 4), we must compute amplitude posteriors that have
uniform priors over the sky and polarization. Thus, we started
by splitting up the sky into 48 HEALPix

69
(Gorski et al. 2005)

sky pixels using healpy
70

(nside=2) (Zonca et al. 2019).
Then, for each sky pixel, we computed likelihood tables for
global GW memory events using Equation (14) and the
pulsar-term likelihood tables. Finally, for each trial burst
epoch, we took an equal number of samples from the
amplitude posteriors from each source-orientation bin at that
trial epoch. We then concatenated the samples taken from
each of these amplitude posteriors together to form a sky-
averaged strain amplitude posterior.
We must sample each source-orientation bin independently

to construct our sky-averaged posteriors, because of the nature

of the memory signal. Our PTA does not have uniformly

Figure 1. A corner plot showing 1D and 2D marginalized posteriors for three key model parameters: burst epoch tB, burst strain amplitude hlog10 0, and CURN
amplitude Alog10 CURN. The good localization Alog10 CURN shows that the CURN is still detected in the presence of the memory model. Furthermore, the tail of hlog10 0

extends to very low amplitude, which indicates that h0 ∼ 0 is still supported by the model.

69
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70
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distributed pulsars, and as such, there are parts of the sky in
which we have little to no sensitivity. If we are not careful
about sampling, and instead search over the entire sky
simultaneously, our amplitude would be dominated by samples
taken from source orientations to which our PTA is completely
insensitive. Furthermore, because there is much more prior
volume at high amplitudes, these samples would all heavily
bias our amplitude posteriors toward higher amplitudes, which
our PTA has no way of ruling out. This sampling scheme, in
which we concatenate samples from different source-orienta-
tion bins, guarantees that our posterior is marginalized
uniformly over the prior (Malmquist 1922).
Figure 3 shows the upper limits on memory strain as a function

of sky location and fixed common red-noise spectral index. To
obtain these upper limits, we first computed Earth-term lookup
tables for 768 HEALPix sky pixels (nside=8) marginalized
over the polarization of the memory wave front (see the upper
limits as a function of burst epoch). For these Earth-term lookup
tables, we limit the prior on the burst epoch to the last three years
because some pulsars do not have more than three years of data.
We can see from this comparison that the upper limits differ
slightly depending on the choice of fixed spectral index for the
common red noise. While we do not believe these differences are
significant, there is a difference pattern that is very similar to the
antenna response of a GW memory event around PSR J0613
−0200. After repeating the same analysis, but omitting this pulsar,
the nearby differences largely disappear. This suggests that this
pulsar contains a noise feature that is difficult to model accurately
using only a red-noise power law and white noise. When
mismodeled, the excess noise is conflated with a GW memory
signal, thus causing the upper limit differences in Figure 3.
Figure 4 shows the upper limits on GW memory in the

NANOGrav 12.5 yr data set plotted as solid curves. We also show
the results of the NANOGrav 11 yr search for GW memory
plotted as a dashed green curve. The upper limits computed from
the NANOGrav 12.5 yr data set do not improve significantly upon
those computed from NG11mem in the overlapping epochs.
However, the increased volume of timing data and number of
pulsars do clearly result in improvements on the upper limits of
approximately half an order of magnitude when compared to early
upper limits. Continued observation and growth of this PTA will
cause the upper limits in the future to be even lower and thus give
much more stringent limits on GW memory.
Figure 5 shows the upper limits on the rate of SMBHB

mergers that produce GW memory computed using the results
shown in Figure 4. We do this by counting the number of
epochs that have lower strain upper limits than a given fixed
strain. From this, we can then constrain the rate of events that
have strains at or below this fixed strain. In addition, this figure
shows the predicted rate in Islo et al. (2019). From the right-
hand-side plot, we can see that our rate upper limits do not
improve much when compared to the NANOGrav 11 yr results.
We also include the sky-marginalized pulsar-term upper limits.
Notably, in this analysis, the Earth-term rate upper limits are
more constraining than the combined pulsar-term upper limits.
This indicates that the PTA contains enough pulsars that the
sensitivity at low strain amplitudes is no longer dominated by a
few pulsars. In addition, the NANOGrav 12.5 yr pulsar-term
rate upper limits are worse than the 11 yr rate upper limits. This
is due to the additional red-noise model used in the analysis of
the 12.5 yr data set.

Figure 2. A plot of the pulsar-term upper limits on memory strain amplitude.
The pulsars are listed in order of shortest to longest timing baseline. To find
these upper limits, we compute amplitude posteriors from the pulsar-term
lookup tables marginalized over the burst epoch, pulsar intrinsic red noise, and
a fixed spectral index common uncorrelated red noise (CURN) process.
Overall, we do not find much difference in pulsar-term upper limits when
comparing the results using a fixed CURN spectral index of γSMBHB = 4.33
and γMAP = 5.5.
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6. Discussion and Conclusion

In this paper, we have shown that there is no significant

detection of GW memory in the NANOGrav 12.5 yr data set.

We have therefore set upper limits on the strain amplitude of

any GW memory events in the NANOGrav 12.5 yr data set in

the presence of the CURN detected in NG12gwb. The

addition of a CURN to the noise model does not significantly

affect the upper limits, but it does have some covariance

with the GW memory signal. We also see from Figure 3 that

PSR J0613−0200 gives significantly different strain upper

limits for sources in its vicinity, depending on the choice of

spectral index for a CURN process. Furthermore, these

differences have a quadrupolar shape, similar to the antenna

response of a GW memory signal. This indicates the presence

of some excess low-frequency noise in this pulsar that can

be conflated with GW memory. From Figures 4 and 5, we

see that the additional data in the 12.5 yr data set continue

to increase our sensitivity to GW memory, especially later in

the data set. This in turn will allow us to continue placing

more stringent limits on the rates of memory-producing
events.
It is important to remember that the predicted event rate

upper limits shown in Figure 5 are only for SMBHB mergers.
While the prospects for detecting GW memory from SMBHB
mergers are low, there are many exotic sources that may be
expected to emit GWs and produce GW memory (Cutler
et al. 2014). Furthermore, it has been recently discovered that
there is some evidence of a GW background in the NANOGrav
15 yr data set (Agazie et al. 2023). The spectrum detected in
Agazie et al. (2023) may be used to update estimations of
SMBHB systems and recompute merger event rates. This work
is critical for continued development of future searches for GW
memory. Additionally, pulsar glitches, which are instantaneous
changes in the rotational frequencies, produce a signal almost
identical to that of a pulsar-term GW burst with memory
(Cordes & Jenet 2012). Pulsar glitches have been observed in
two millisecond pulsars, PSRs B1821−24 and J0613−0200,
thus far (Cognard & Backer 2004; McKee et al. 2016). Of these
two, J0613−0200 is in NANOGrav’s timing data set.

Figure 3. Top left: The upper limits on memory strain amplitude as a function of sky pixel including a CURN law process using a fixed spectral index of
γSMBHB = 4.33, as expected for a stochastic gravitational wave background originating from an ensemble of uniformly, isotropically distributed SMBHBs. Top right:
The upper limit on memory strain amplitude as a function of sky pixel including a CURN power-law process using a fixed spectral index of γMAP = 5.5, the maximum
a posteriori value for the detected CURN in NG12gwb. Bottom: The difference between the top two panels. A positive value indicates that the upper limits on strain
using a spectral index of 5.5 are higher. We see that, overall, the upper limits change slightly when the red-noise model uses the preferred red-noise spectral index.
However, these changes are localized to a small part of the sky. It can be shown that these upper limit differences can be largely attributed to PSR J0613−0200.
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However, this glitch occurred before NANOGrav began timing
the pulsar, and it should therefore have no effect on this
pulsar’s timing model or residuals. The pulsar-term upper
limits presented in this analysis may be used to set upper limits
on glitches in every other pulsar as well. In general, this
analysis may be used to cross-validate any detection of any
loud GW-producing event.

Finally, the search for GW memory can reveal interesting
noise features of a PTA’s constituent pulsars. For example, the
analysis presented in NG11mem shows that PSRs J1909−3744
and J0030+0451 had some excess, unmodeled noise. This
analysis shows that there is some excess noise in PSRs J1744
−1134 and J2043+1711 that conspires to give support for a
memory event at MJD 57300. This makes them good
candidates for any future studies of noise characteristics, like
those presented in Lam et al. (2016) and Hazboun et al.
(2020). In addition, Figure 3 suggests that PSR J0613−0200
may have a noise transient that is highly covariant with red
noise. Previous work has shown that scattering variations may
result in excess correlated noise in pulsar timing data sets
(Keith et al. 2013; Chalumeau et al. 2021; Goncharov
et al. 2021). In particular, Main et al. (2020, 2023) have
shown that data from PSR J0613−0200 show significant

evidence of scattering variations. These scattering variations
may be the source of the differences in GW memory upper
limits in the vicinity of this pulsar when using different CURN
spectral indices. As pulsar timing baselines become longer and
PTA sensitivity to red-noise increases, it will be critically
important to explore how strong red noise and components of
each pulsar’s timing models affect detection prospects of GW
memory.
Overall, the search for GW memory remains a critical part of

the GW analysis pipeline because of its use in cross-validation
of any potential detections of loud GWs, its ability to reveal
unmodeled noise, and the possibility that a GW memory event
may reveal exotic GW sources. Continued methods develop-
ment, as applied to both GW memory and intrinsic pulsar
noise, will allow us to perform more robust searches for these
sources using future data sets.
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