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Abstract. As neural networks have become increasingly prolific solu-
tions to modern problems in science and engineering, there has been a
congruent rise in the popularity of the numerical machine learning tech-
niques used to design them. While numerical methods are highly gener-
alizable, they also tend to produce unintuitive networks with inscrutable
behavior. One solution to the problem of network interpretability is to
use analytical design techniques, but these methods are relatively under-
developed compared to their numerical alternatives. To increase the uti-
lization of analytical techniques and eventually facilitate the symbiotic
integration of both design strategies, it is necessary to improve the effi-
cacy of analytical methods on fundamental function approximation tasks
that can be used to perform more complex operations. Toward this end,
this manuscript extends the design constraints of the addition and sub-
traction subnetworks of the functional subnetwork approach (FSA) to
arbitrarily many inputs, and then derives new constraints for an alterna-
tive neural encoding/decoding scheme. This encoding/decoding scheme
involves storing information in the activation ratio of a subnetwork’s
neurons, rather than directly in their membrane voltages. We show
that our new “relative” encoding/decoding scheme has both qualita-
tive and quantitative advantages compared to the existing “absolute”
encoding/decoding scheme, including helping to mitigate saturation and
improving approximation accuracy. Our relative encoding scheme will
be extended to other functional subnetworks in future work to assess its
advantages on more complex operations.

Keywords: Neural Encoding Schemes · Functional Subnetwork
Approach · Analytical Network Design Methods

1 Introduction

Over the past decade, there has been an explosion of academic interest in neu-
ral networks, both in their capacity as biological computational units and as
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potential solutions to a plethora of problems across disparate fields of scientific
inquiry. Accompanying the precipitous ascendance of neural network research,
there has been an escalation in the quantity and quality of techniques used in
their design and training. Since the advent of backpropagation [2] made it pos-
sible to train networks comprised of multiple layers of neurons, techniques such
as stochastic gradient descent (SGD) [1] and its many variations (e.g., Adagrad
[5], Adam [4], etc.) have cemented numerical methods as the dominant approach
to tuning network parameters. While numerical methods are excellent in terms
of their ease of application and scalability, especially given modern advances
in graphical processing units (GPU) [3], their key limitation is that they tend
to produce networks whose decision making and computational processes are
inscrutable. This makes them inappropriate for designing networks for applica-
tions where transparency is essential, such as when building high fidelity biolog-
ical models. Fortunately, some analytical techniques for designing interpretable
neural networks do exist (e.g., the functional subnetwork approach (FSA) [6,7]),
but these methodologies remain relatively underdeveloped and need additional
investigation to facilitate their broader utilization. Among the many open ques-
tions concerning analytical techniques, one of particular interest is how best to
encode information in these networks to facilitate their design and enhance their
approximation accuracy. After all, different encoding schemes require different
network design constraints and may be more or less appropriate depending on
the application. Since the existing work of the FSA is currently limited to a
single encoding scheme that represents information directly in the membrane
voltages of the neurons, this work extends these techniques to a new encoding
scheme: one that stores information in neural activation ratios. While potentially
less intuitive, such an encoding scheme is prudent since it allows for the simple
integration of multiple subnetworks that might other operate over significantly
different representational domains.

1.1 Our Contribution

In this manuscript we derive simple, yet novel analytical design rules for creating
functional subnetworks that encode information in neural activation ratios rather
than directly in membrane voltages. Our analysis indicates that this “relative”
information encoding scheme has a variety of qualitative advantages (e.g., satu-
ration prevention, biological plausibility, etc.), while also improving the approx-
imation accuracy of the resulting subnetworks. For the purpose of generating
quantitative results, we use our unique design rules to build small functional
subnetworks that perform addition and subtraction operations. We then com-
pare the design rules and performance of our custom “relative” addition and
subtraction subnetworks to the “absolute” variations of the FSA [6] to empha-
size the advantages of our approach. In this way, the work discussed here serves
as an alternative to the non-spiking FSA formulation, with advantages that make
it easier to use for some problems while offering improved accuracy.



A Comparison of Neural Encoding Schemes 195

2 Background

The two fields of information that are required to understand our work on encod-
ing schemes in functional subnetworks are those pertaining to neuron modeling
and the existing non-spiking FSA design rules.

2.1 Neuron Model

We use the same rate-based LIF model as [6] to facilitate direct comparisons
with their results. Suppose that we want to analyze the behavior of a system of
n ∈ N neurons over some time domain T = [0, Tf ] where Tf ∈ R>0 is the final
time of interest. Then the membrane voltages of these neurons form a first order
dynamical system comprised of n ∈ N state variables Ui ∈ R that satisfy

Cm,iU̇i = Ileak,i + Isyn,i + Iapp,i, (1)

∀i ∈ N≤n, where the leak and synaptic currents are defined as

Ileak,i = −Gm,iUi, (2)

Isyn,i =
n

∑

j=1

gs,ij min

(

max

(

Uj

Rj

, 0

)

, 1

)

(ΔEs,ij − Ui) , (3)

respectively, and the applied currents Iapp,i : T → R are known functions of
time. Throughout this work, the following definitions hold: Ui ∈ R is the mem-
brane voltage of the ith neuron with respect to its resting potential, Cm,i ∈ R>0

is the membrane capacitance of the ith neuron, Gm,i ∈ R>0 is the membrane
conductance of the ith neuron, Rj ∈ R>0 is the activation domain of the jth
neuron with respect to its resting potential, gs,ij ∈ R>0 is the maximum synaptic
conductance from neuron j to neuron i, and ΔEs,ij ∈ R is the synaptic reversal
potential from neuron j to neuron i with respect to neuron i’s resting poten-
tial. Substituting the leak current Eq. (2) and synaptic current Eq. (3) into the
dynamical system Eq. (1) we have the governing equation

Cm,iU̇i = −Gm,iUi +
n

∑

j=1

gs,ij min

(

max

(

Uj

Rj

, 0

)

, 1

)

(ΔEs,ij − Ui) + Iapp,i.

(4)

2.2 Functional Subnetwork Approach (FSA)

The functional subnetwork approach (FSA) refers to the analytical methods
developed in [6] for designing subnetworks of non-spiking neurons to perform
basic tasks, including: (1) signal transfer such as transmission and modulation;
(2) arithmetic operations such as addition, subtraction, multiplication, and divi-
sion; and (3) calculus operations such as differentiation and integration. One of
the main attractions of this work lies in the fact that it combines simple neural
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architectures with analytical design rules constrained by biological limitations,
a combination of features that ensures that the resulting subnetworks are both
meaningful and interpretable. For a thorough explanation of the existing FSA
design rules refer to [6].

3 Methodology

To begin our analysis of information encoding schemes in addition and sub-
traction functional subnetworks, we derive the analytical design rules that are
necessary to create these subnetworks in the first place. In order to compare the
absolute encoding scheme, which stores information in the membrane voltages
of a network’s neurons, and the relative encoding scheme, which stores informa-
tion in the percent activation of a network’s neurons, we derive the design rules
of both approaches using arbitrarily many inputs. Since the absolute encoding
scheme is the same as that used in [6], the design rules for our absolute addition
and subtraction subnetworks simplify to those of [6] when each subnetwork is
assumed to have only two inputs. Similarly, since addition is just a special case
of subtraction, we exclusively derive analytical design rules for subtraction sub-
networks, because these rules can be simplified to apply to addition subnetworks
by removing the inhibitory synapses.

3.1 Subtraction Subnetwork Architecture and Equilibrium

Consider a system of n ∈ N neurons, with each of the first n − 1 neurons con-
nected to the final nth neuron via some combination of excitatory and inhibitory
synapses as shown in Fig. 1a. Let U�

i ∈ R be the steady state membrane volt-
age of the ith neuron with respect to its resting potential ∀i ∈ N≤n. Given this
architecture, the steady state membrane voltage of the output neuron U�

n can be
written in terms of the steady state membrane voltages of the first n − 1 input
neurons by

U�
n =

∑n−1
i=1 gs,ni min

(

max
(

U�
i

Ri
, 0

)

, 1
)

ΔEs,ni + Iapp,n

Gm,n +
∑n−1

i=1 gs,ni min
(

max
(

U�
i

Ri
, 0

)

, 1
) . (5)

Equation (5) describes the natural steady state behavior of our subtraction sub-
network given our chosen neuron model and architecture.

3.2 Absolute and Relative Notions of Subtraction

Given the baseline steady state behavior of our subtraction subnetwork in Eq.
(5), we now consider how we want our subnetwork to behave for each of our two
encoding schemes. For the absolute encoding scheme we want the membrane
voltage of the output neuron to be the sum of the membrane voltages of the
excitatory input neurons less that of the inhibitory input neurons, scaled by
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Fig. 1. (a) Generic subtraction subnetwork architecture. (b) Addition subnetwork
example. (c) Subtraction subnetwork example. Triangular synapses are excitatory, cir-
cular synapses are inhibitory, and square synapses may be either.

some gain c ∈ R>0. Let si ∈ S = {−1, 1} be the sign associated with each input
neuron ∀i ∈ N≤n−1, where −1 is assigned to each inhibitory synapse and 1 is
assigned to each excitatory synapse. In this case, the steady state membrane
voltage of the output neuron should satisfy

U�
n = c

n−1
∑

i=1

siU
�
i . (6)

While the absolute formulation in Eq. (6) is convenient for directly represent-
ing differences, it requires a potentially biologically unfeasible representational
domain Rn at the output neuron. Consider an example where there are many
more positive inputs than negative inputs in our subtraction subnetwork, such as
when approximating an addition operation. When this happens, Eq. (6) requires
that the representation domain Rn of the output neuron be the sum of the rep-
resentational domains of the input neurons in order to prevent the output from
saturating prematurely. Yet, as the number of input pathways grows, so too
does the required output representational domain Rn, allowing for potentially
impractically large values.

To address this problem, we can instead create a relative formulation for
desired subtraction subnetwork behavior wherein the steady state activation

ratio of the output neuron
U�

n

Rn
is the average steady state activation ratio of the

excitatory input neurons less that of the inhibitory input neurons, scaled by some
gain c ∈ R>0. Let n+, n− ∈ N be the number of excitatory and inhibitory sub-
traction subnetwork inputs, respectively. Similarly, let i+k ∈ I+ = {i ∈ N≤n−1 :
si = 1} and i−k ∈ I− = {i ∈ N≤n−1 : si = −1} be the sets of indexes associ-
ated with excitatory and inhibitory input neurons, respectively. In this case, the
steady state membrane voltage of the output neuron should satisfy

U�
n = cRn

⎛

¿

1

n+

n+
∑

k=1

U�

i
+
k

Ri
+
k

−
1

n−

n−

∑

k=1

U�

i
−

k

Ri
−

k

À

⎠ . (7)
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This formulation ensures that the representational domain Rn of the output
neuron can be selected as appropriate for the application.

3.3 Universal Subtraction Subnetwork Design

To make Eq. (5) have a similar structure to either Eq. (6) or Eq. (7), several
common parameters must be set. Firstly, the external current applied to the
output neuron Iapp,n should be zero in order to eliminate the constant offset
from the numerator of Eq. (5). Likewise, the membrane conductance Gm,n of the
output neuron should be minimized to mitigate its influence on the denominator
of Eq. (5), though it can not be completely eliminated and still allow the neuron
to behave as a leaky integrator. Finally, in order to emphasize the impact of the
membrane voltage terms U�

i in the numerator of Eq. (5) compared to those in
the denominator, we must maximize the synaptic reversal potentials ΔEs,ni of
the excitatory synapses and minimize those of the inhibitory synapses. While
the synaptic reversal potentials ΔEs,ni are in theory unbounded, they are in
practice limited by biological constraints. As such, we use ΔEs,ni = 194 mV,
which describes calcium ion channels, for excitatory synapses, and ΔEs,ni =
−40 mV, which describes chloride channels, for inhibitory synapses.

3.4 Absolute Subtraction Subnetwork

For an absolute subtraction subnetwork, the membrane voltage of the nth neuron
should satisfy Eq. (6). To achieve this, we start by substituting Eq. (5) into Eq.
(6) and solving for the gain c to find

c =

∑n−1
i=1 gs,ni min

(

max
(

U�
i

Ri
, 0

)

, 1
)

ΔEs,ni + Iapp,n

(

∑n−1
i=1 siU

�
i

)(

Gm,n +
∑n−1

i=1 gs,ni min
(

max
(

U�
i

Ri
, 0

)

, 1
)) . (8)

There are numerous parameters in Eq. (8) that need to be set in order to
achieve the desired gain c, most of which are already constrained by the principles
discussed in Sect. 3.3. Among the remaining parameters, the most appropriate to
adjust to achieve the desired gain c are the n−1 maximum synaptic conductances
gs,ni. However, since there are n − 1 maximum synaptic conductances gs,ni and
only one constraining equation (e.g., Eq. (8)), there are infinitely many sets
of maximum synaptic conductances gs,ni that produce the desired gain c for

a single steady state input membrane voltage point �U� =
[

U�
1 · · · U�

n−1

]T
∈

R
n−1. To constrain the number of solutions, we choose n − 1 steady state input

membrane voltage points �U�
j ∈ R

n−1 at which to enforce the gain relationship

in Eq. (8), ∀j ∈ N≤n−1. For notational convenience, let U� ∈ R
(n−1)×(n−1) be

such that U� =
[

�U�
1 · · · �U�

n−1

]

. Enforcing Eq. (8) at each of the n − 1 steady

state membrane voltage points �U�
j that comprise the columns of U� yields the
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system of equations

c =

∑n−1
i=1 gs,ni min

(

max
(

U
�
ij

Ri
, 0

)

, 1
)

ΔEs,ni + Iapp,n

(

∑n−1
i=1 siU�

ij

)(

Gm,n +
∑n−1

i=1 gs,ni min
(

max
(

U�
ij

Ri
, 0

)

, 1
)) , (9)

∀j ∈ N≤n−1. Rearranging Eq. (9) into matrix-vector form and isolating the
maximum synaptic conductances gs,ni yields a linear system of equations

A�gs,n = �b (10)

where A ∈ R
(n−1)×(n−1) such that ∀i, j ∈ N≤n−1

Aij =

(

c

n−1
∑

k=1

skU
�
ki − ΔEs,nj

)

min

(

max

(

U�
ji

Rj

, 0

)

, 1

)

, (11)

�gs,n ∈ R
n−1 such that �gs,n =

[

gs,n1 · · · gs,n(n−1)

]T
, and �b ∈ R

n−1 such that
∀i ∈ N≤n−1

�bi = Iapp,n − cGm,n

n−1
∑

k=1

skU
�
ki. (12)

While any linearly independent choice of n− 1 steady state input membrane
voltage points �U�

j would be sufficient for computing a unique set of maximum
synaptic conductances gs,ni, certain choices are more insightful than others. For

example, if we choose �U�
j such that ∀i, j ∈ N≤n−1

U�
ij =

{

Ri, i = j

0, i �= j
(13)

then the system matrix in Eq. (10) becomes diagonal and the associated design
requirement for each gs,ni simplifies substantially. To see this, substitute Eq.
(13) into Eq. (10) such that the system becomes

£

¤

¤

¤

¥

cs1R1 − ∆Es,n1 · · · 0

.

.

.

.
.
.

.

.

.

0 · · · csn−1Rn−1 − ∆Es,n(n−1)

¦

§

§

§

¨

£

¤

¤

¤

¥

gs,n1

.

.

.

gs,n(n−1)

¦

§

§

§

¨

=

£

¤

¤

¤

¥

Iapp,n − cGm,ns1R1

.

.

.

Iapp,n − cGm,nsn−1Rn−1

¦

§

§

§

¨

.

(14)

Solving the system of equations described by Eq. (14) for each gs,nk yields

gs,nk =
Iapp,n − cskGm,nRk

cskRk − ΔEs,nk

, (15)

∀k ∈ N≤n−1. The design requirement from Eq. (15) allows for absolute subtrac-
tion subnetworks to be designed with arbitrarily many input neurons. Note that
choosing a different linearly independent set of steady state membrane voltage
points �U�

j at which to enforce the gain relationship Eq. 9 will yield a modified
variation of the design requirement in Eq. 15 that prioritizes error minimization
at those specific points.
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3.5 Relative Subtraction Subnetwork

For a relative subtraction subnetwork, the membrane voltage of the nth neuron
should satisfy Eq. (7). If we substitute Eq. (5) into Eq. (7) and solve for the gain
c we find

c =

∑n−1
i=1 gs,ni min

(

max

(

U�
i

Ri
, 0

)

, 1

)

∆Es,ni + Iapp,n

Rn

»

¼

½

1
n+

∑

n+
k=1

U�

i
+
k

R
i
+
k

−

1
n−

∑

n−

k=1

U�

i
−

k
R

i
−

k

¾

¿

À

(

Gm,n +
∑n−1

i=1 gs,ni min

(

max

(

U�
i

Ri
, 0

)

, 1

))

. (16)

Following the same procedure as in Sect. 3.4, let �U�
j =

[

U�
1,j · · · U�

n−1,j

]T
∈ R

n−1,
∀j ∈ N≤n−1 be the n − 1 steady state membrane voltage points at which we

want to achieve Eq. (16). Similarly, let U� ∈ R
(n−1)×(n−1) be such that U� =

[

�U�
1 · · · �U�

n−1

]

. Enforcing Eq. (16) at each of the n − 1 steady state membrane

voltage points �U�
j that comprise the columns of U� yields the system of equations

c =

∑n−1
i=1 gs,ni min

(

max

(

U
�
ij

Ri
, 0

)

, 1

)

∆Es,ni + Iapp,n

»

¼

½
Rn

»

¼

½

1
n+

∑

n+
k=1

U�

i
+
k

j

R
i
+
k

−

1
n−

∑

n−

k=1

U�

i
−

k
j

R
i
−

k

¾

¿

À

¾

¿

À

(

Gm,n +
∑n−1

i=1 gs,ni min

(

max

(

U�
ij

Ri
, 0

)

, 1

))

,

(17)

∀j ∈ N≤n−1. To compress the following notation, let

Cj = Rn

⎛

¿

1

n+

n+
∑

k=1

U�

i
+
k

j

Ri
+
k

−
1

n−

n−

∑

k=1

U�

i
−

k
j

Ri
−

k

À

⎠ , (18)

∀j ∈ N≤n−1. Rearranging Eq. (17) into matrix-vector form and isolating the
maximum synaptic conductances gs,ni yields a linear system of equations

A�gs,n = �b (19)

where A ∈ R
(n−1)×(n−1) such that ∀i, j ∈ N≤n−1

Aij = (cCi − ΔEs,nj) min

(

max

(

U�
ji

Rj

, 0

)

, 1

)

, (20)

�gs,n ∈ R
n−1 such that �gs,n =

[

gs,n1 · · · gs,n(n−1)

]T
, and �b ∈ R

n−1 such that
∀i ∈ N≤n−1

�bi = Iapp,n − cGm,nCi (21)

Choosing the same n − 1 steady state input membrane voltage points �U�
j as

in Eq. (13), the system matrix in Eq. (19) becomes diagonal. Such a choice for

the �U�
j simplifies the parameters Cj from Eq. (18) to

Cj =
sjRn

n±
j

, (22)
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where sj ∈ S = {−1, 1} is defined as

sj =

{

−1, j ∈ I−

1, j ∈ I+
, (23)

and n±
j ∈ N = {n−, n+} is defined as

n±
j =

{

n−, j ∈ I−

n+, j ∈ I+
, (24)

∀j ∈ N≤n−1. The associated system of equations in Eq. (10) then becomes
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¤

¤

¤

¤

¤

¥

cs1Rn

n
±
1

− ∆Es,n1 · · · 0

.

.

.

.
.
.

.

.
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0 · · ·

csn−1Rn

n
±
n−1

− ∆Es,n(n−1)

¦

§

§

§

§

§

§

¨

£

¤

¤

¤

¥

gs,n1

.

.

.

gs,n(n−1)

¦

§

§

§

¨

=

£

¤

¤

¤

¤

¤

¤

¥

Iapp,n −

cGm,ns1Rn

n
±
1

.

.

.

Iapp,n −

cGm,nsn−1Rn

n
±
n−1

¦

§

§

§

§

§

§

¨

. (25)

Solving Eq. (25) for each gs,nk yields

gs,nk =
n±

k Iapp,n − cskGm,nRn

cskRn − n±
k ΔEs,nk

, (26)

∀k ∈ N≤n−1. The design requirement from Eq. (26) allows for relative subtrac-
tion subnetworks to be designed with arbitrarily many input neurons. As before,
choosing a different linearly independent set of steady state membrane voltage
points �U�

j at which to enforce the gain relationship Eq. 17 will yield a modified
variation of the design requirement in Eq. 26 that prioritizes error minimization
at those specific points.

4 Results

After deriving the analytical design rules necessary to build addition and subtrac-
tion subnetworks for each information encoding scheme, it is possible to deter-
mine how these different approaches impact subnetwork approximation accu-
racy by applying these techniques to example subnetworks. Toward this end, we
employ the design constraints from Sect. 3.3, as well as from Eq. (15) and Eq.
(26), to build simple addition and subtraction subnetworks for each encoding
scheme. The example addition and subtraction subnetworks that we consider
here have the architectures shown in Figs. 1b, 1c, respectively. To ensure that
the output neurons of our subtraction subnetworks stay positive throughout the
entire input domain, we apply a constant current to the output neuron so that
it is tonically excited to half of its maximum value in the absence of inputs.

The steady state results obtained from simulating the two addition subnet-
works are represented graphically in Fig. 2, while those associated with the two
subtraction subnetworks are displayed in Fig. 3. Both figures are divided into
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four sections, where plots (a) and (b) show the steady state response of the sub-
networks when using the absolute and relative information encoding schemes,
respectively; plot (c) shows the steady state approximation error associated with
each encoding scheme; and plot (d) shows the difference in steady state approx-
imation error between the two encoding schemes. Comparing plots (a) and (b)
from Fig. 2, it is clear that the maximum approximation error for each encoding
scheme occurs when the input neurons are maximally active. Plots (a) and (b)
from Fig. 2 also indicate that the relative encoding scheme tends to have less
error across the input domain than the absolute encoding scheme. This fact is
confirmed by plot (c) from Fig. 2 where both the maximum and average approx-
imation error associated with the relative encoding scheme are less than that of
the absolute encoding scheme. Finally, plot (d) from Fig. 2 makes the difference
in approximation accuracy explicit by showing that the approximation error for
relative addition subnetwork never exceeds that of the absolute addition subnet-
work.

Fig. 2. Addition subnetwork information encoding scheme comparison. (a) Absolute
steady state response. (b) Relative steady state response. (c) Steady state approxima-
tion error. (d) Difference in approximation error.

Figure 3 tells a similar story concerning the approximation accuracy of the
subtraction subnetwork. In this case, plots (a) and (b) from Fig. 3 show that
the maximum approximation error occurs for both encoding schemes when the
first input neuron value is minimized and the second input neuron value is max-
imized. Similarly, plot (c) of Fig. 3 indicates that the approximation error of the
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relative subtraction subnetwork is typically less than that of the absolute sub-
traction subnetwork, except for when the first input neuron value is small. This
relationship is confirmed in plot (d) of Fig. 3, wherein the relative subtraction
subnetwork typically outperforms the absolute subtraction subnetwork, but not
for the entire input domain.

Fig. 3. Subtraction subnetwork information encoding scheme comparison. (a) Absolute
steady state response. (b) Relative steady state response. (c) Steady state approxima-
tion error. (d) Difference in approximation error.

5 Discussion

Our results indicate that there are both qualitative and quantitative advantages
to using a relative information encoding scheme compared to an absolute one.
The design constraints derived in Sect. 3 allow the representation domain of the
output neuron to be unconstrained when using a relative encoding scheme, mean-
ing that a biologically realistic value may be selected by the designer without
risking saturation for expected inputs. Although only addition and subtraction
subnetworks are considered here, this feature may be even more salient in the
context of certain mathematical operations, such as division, that tend toward
infinity under certain input conditions. When this happens, an absolute sub-
network would be unable to represent the infinite output value, but a relative
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subnetwork would simply encode the result as a maximally active output. In
addition to these qualitative benefits, the results shown in Figs. 2 and 3 demon-
strate that the relative subnetworks tend to experience less approximation error,
though the extent to which this is true is somewhat modest at about 4.44% for
addition subnetworks and 2.71% for subtraction subnetworks. While differences
in approximation error do vary across the input domain and the operation being
approximated, the quantitative benefits that we have observed from using a rel-
ative encoding scheme are appreciable on average despite these variations. A
logical extension of this work would be to apply our relative encoding scheme
to other functional subnetworks in order to determine whether the qualitative
network design benefits and quantitative reductions in approximation error are
maintained in other contexts as we expect.

6 Conclusions

The functional subnetwork approach (FSA) provides a collection of analytical
design tools for building neural networks that approximate basic mathematical
operations. This work takes a step toward extending these pre-existing tech-
niques by deriving a simple, yet novel method of encoding information in the
activation ratio of the neurons that comprise such subnetworks. We showed that
applying the relative encoding scheme presented in this work modestly improves
approximation accuracy and allows the designer freedom to chose convenient
representation domains. Since continuing to improve existing analytical neural
network design techniques is necessary to bring their advantages to bear on a
wider variety of modern scientific problems, it is our goal to continue to expand
the generality and utility of these methods by applying them to new subnetworks
and mathematical operations in future work.
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