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Abstract

A graph G is H-free if it has no induced subgraph isomorphic to H. We prove that a P5-free graph
with clique number ω ≥ 3 has chromatic number at most ωlog2(ω). The best previous result was
an exponential upper bound (5/27)3ω, due to Esperet, Lemoine, Maffray, and Morel. A polynomial
bound would imply that the celebrated Erdős-Hajnal conjecture holds for P5, which is the smallest
open case. Thus, there is great interest in whether there is a polynomial bound for P5-free graphs,
and our result is an attempt to approach that.



1 Introduction

If G,H are graphs, we say G is H-free if no induced subgraph of G is isomorphic to H; and for a
graph G, we denote the number of vertices, the chromatic number, the size of the largest clique, and
the size of the largest stable set by |G|, χ(G), ω(G), α(G) respectively.

The k-vertex path is denoted by Pk, and P4-free graphs are well-understood; every P4-free graph
G with more than one vertex is either disconnected or disconnected in the complement [24], which
implies that χ(G) = ω(G). Here we study how χ(G) depends on ω(G) for P5-free graphs G.

The Gyárfás-Sumner conjecture [10, 25] says:

1.1 Conjecture: For every forest H there is a function f such that χ(G) ≤ f(ω(G)) for every
H-free graph G.

This is open in general, but has been proved [10] when H is a path, and for several other simple
types of tree ([3, 11, 12, 13, 14, 17, 19]; see [18] for a survey). The result is also known if all induced
subdivisions of a tree are excluded [17].

A class of graphs is hereditary if the class is closed under taking induced subgraphs and under
isomorphism, and a hereditary class is said to be χ-bounded if there is a function f such that χ(G) ≤
f(ω(G)) for every graph G in the class (thus, the Gyárfás-Sumner conjecture says that, for every
forest H, the class of H-free graphs is χ-bounded). Louis Esperet [8] made the following conjecture:

1.2 (False) Conjecture: Let G be a χ-bounded class. Then there is a polynomial function f such
that χ(G) ≤ f(ω(G)) for every G ∈ G.

Esperet’s conjecture was recently shown to be false by Briański, Davies and Walczak [2]. However,
this raises the further question: which χ-bounded classes are polynomially χ-bounded? In particular,
the two conjectures 1.1 and 1.2 would together imply the following, which is still open:

1.3 Conjecture: For every forest H, there exists c > 0 such that χ(G) ≤ ω(G)c for every H-free
graph G.

This is a beautiful conjecture. In most cases where the Gyárfás-Sumner conjecture has been proved,
the current bounds are very far from polynomial, and 1.3 has been only been proved for a much
smaller collection of forests (see [15, 20, 22, 23, 21, 5, 16]). In [23] we proved it for any P5-free tree
H, but it has not been settled for any tree H that contains P5. In this paper we focus on the case
H = P5.

The best previously-known bound on the chromatic number of P5-free graphs in terms of their
clique number, due to Esperet, Lemoine, Maffray, and Morel [9], was exponential:

1.4 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ (5/27)3ω(G).

Here we make a significant improvement, showing a “near-polynomial” bound:

1.5 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ ω(G)log2(ω(G)).

(The cycle of length five shows that we need to assume ω(G) ≥ 3. Sumner [25] showed that χ(G) ≤ 3
when ω(G) = 2.) Conjecture 1.3 when H = P5 is of great interest, because of a famous conjecture
due to Erdős and Hajnal [6, 7], that:
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1.6 Conjecture: For every graph H there exists c > 0 such that α(G)ω(G) ≥ |G|c for every H-free
graph G.

This is open in general, despite a great deal of effort; and in view of [4], the smallest graph H for
which 1.6 is undecided is the graph P5. Every forest H satisfying 1.3 also satisfies the Erdős-Hajnal
conjecture, and so showing that H = P5 satisfies 1.3 would be a significant result. (See [1] for some
other recent progress on this question.)

We use standard notation throughout. When X ⊆ V (G), G[X] denotes the subgraph induced on
X. We write χ(X) for χ(G[X]) when there is no ambiguity.

2 The main proof

We denote the set of nonnegative real numbers by R+, and the set of nonnegative integers by Z+.
Let f : Z+ → R+ be a function. We say

• f is non-decreasing if f(y) ≥ f(x) for all integers x, y ≥ 0 with y > x ≥ 0;

• f is a binding function for a graph G if it is non-decreasing and χ(H) ≤ f(ω(H)) for every
induced subgraph H of G; and

• f is a near-binding function for G if f is non-decreasing and χ(H) ≤ f(ω(H)) for every induced
subgraph H of G different from G.

In this section we show that if a function f satisfies a certain inequality, then it is a binding
function for all P5-free graphs. Then at the end we will give a function that satisfies the inequality,
and deduce 1.5.

A cutset in a graph G is a set X such that G\X is disconnected. A vertex v ∈ V (G) is mixed on a
set A ⊆ V (G) or a subgraph A of a graph G if v is not in A and has a neighbour and a non-neighbour
in A. It is complete to A if it is adjacent to every vertex of A. We begin with the following:

2.1 Let G be P5-free, and let f be a near-binding function for G. Let G be connected, and let X be
a cutset of G. Then

χ(G \X) ≤ f(ω(G)− 1) + ω(G)f(⌊ω(G)/2⌋).

Proof. We may assume (by replacing X by a subset if necessary) that X is a minimal cutset of
G; and so G \ X has at least two components, and every vertex in X has a neighbour in V (B),
for every component B of G \ X. Let B be one such component; we will prove that χ(B) ≤
f(ω(G)− 1) + ω(G)f(⌊ω(G)/2⌋), from which the result follows.

Choose v ∈ X (this is possible since G is connected), and let N be the set of vertices in B adjacent
to v. Let the components of B \N be R1, . . . , Rk, S1, . . . , Sℓ, where R1, . . . , Rk each have chromatic
number more than f(⌊ω(G)/2⌋), and S1, . . . , Sℓ each have chromatic number at most f(⌊ω(G)/2⌋).
Let S be the union of the graphs S1, . . . , Sℓ; thus, χ(S) ≤ f(⌊ω(G)/2⌋). For 1 ≤ i ≤ k, let Yi be the
set of vertices in N with a neighbour in V (Ri), and let Y = Y1 ∪ · · · ∪ Yk.

(1) For 1 ≤ i ≤ k, every vertex in Yi is complete to Ri.
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Let y ∈ Yi. Thus, y has a neighbour in V (Ri); suppose that y is mixed on Ri. Since Ri is con-
nected, there is an edge ab of Ri such that y is adjacent to a and not to b. Now v has a neighbour
in each component of G \ X, and since there are at least two such components, there is a vertex
u ∈ V (G) \ (X ∪ V (B)) adjacent to v. But then u-v-y-a-b is an induced copy of P5, a contradiction.
This proves (1).

(2) χ(Y ) ≤ (ω(G)− 1)f(⌊ω(G)/2⌋).

Let 1 ≤ i ≤ k. Since f(⌊ω(G)/2⌋) < χ(Ri) ≤ f(ω(Ri)), and f is non-decreasing, it follows that
ω(Ri) > ω(G)/2. By (1), ω(G[Yi]) + ω(Ri) ≤ ω(G), and so ω(G[Yi]) < ω(G)/2. Consequently
χ(Yi) ≤ f(⌊ω(G)/2⌋), for 1 ≤ i ≤ k. Choose I ⊆ {1, . . . , k} minimal such that

⋃
i∈I Yi = Y . From

the minimality of I, for each i ∈ I there exists yi ∈ Yi such that for each j ∈ I \ {i} we have that
yi /∈ Yj ; and so the vertices yi (i ∈ I) are all distinct. For each i ∈ I choose ri ∈ V (Ri). For
all distinct i, j ∈ I, if yi, yj are nonadjacent, then ri-yi-v-yj-rj is isomorphic to P5, a contradiction.
Hence the vertices yi (i ∈ I) are all pairwise adjacent, and adjacent to v; and so |I| ≤ ω(G) − 1.
Thus, χ(Y ) = χ(

⋃
i∈I Yi) ≤ (ω(G)− 1)f(⌊ω(G)/2⌋). This proves (2).

All the vertices in N \ Y are adjacent to v, and so ω(G[N \ Y ]) ≤ ω(G) − 1. Moreover, for
1 ≤ i ≤ k, each vertex of Ri is adjacent to each vertex in Yi, and Yi ̸= ∅ since B is connected, and so
ω(Ri) ≤ ω(G)−1. Since there are no edges between any two of the graphs G[N \Y ], R1, . . . , Rk, their
union (Z say) has clique number at most ω(G)−1 and so has chromatic number at most f(ω(G)−1).
But V (B) is the union of Y, V (S) and V (Z); and so

χ(B) ≤ f(ω(G)− 1) + (ω(G)− 1)f(⌊ω(G)/2⌋) + f(⌊ω(G)/2⌋).

This proves 2.1.

2.2 Let Ω ≥ 1, and let f : Z+ → R+ be non-decreasing, satisfying the following:

• f is a binding function for every P5-free graph H with ω(H) ≤ Ω; and

• f(w − 1) + (w + 2)f(⌊w/2⌋) ≤ f(w) for each integer w > Ω.

Then f is a binding function for every P5-free graph G.

Proof. We prove by induction on |G| that if G is P5-free then f is a binding function for G. Thus,
we may assume that G is P5-free and f is near-binding for G. If G is not connected, or ω(G) ≤ Ω,
it follows that f is binding for G, so we assume that G is connected and ω(G) > Ω. Let us write
w = ω(G) and m = ⌊w/2⌋. If χ(G) ≤ f(w) then f is a binding function for G, so we assume, for a
contradiction, that:

(1) χ(G) > f(w − 1) + (w + 2)f(m).

We deduce that:

(2) Every cutset X of G satisfies χ(X) > 2f(m).
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If some cutset X satisfies χ(X) ≤ 2f(m), then since χ(G \ X) ≤ f(w − 1) + wf(m) by 2.1, it
follows that χ(G) ≤ f(w − 1) + (w + 2)f(m), contrary to (1). This proves (2).

(3) If P,Q are cliques of G, both of cardinality at least w/2, then G[P ∪Q] is connected.

Suppose not; then there is a minimal subset X ⊆ V (G) \ (P ∪ Q) such that P,Q are subsets of
different components (A,B say) of G \ X. From the minimality of X, every vertex x ∈ X has a
neighbour in V (A) and a neighbour in V (B). If x is mixed on A and mixed on B, then since A
is connected, there is an edge a1a2 of A such that x is adjacent to a1 and not to a2; and similarly
there is an edge b1b2 of B with x adjacent to b1 and not to b2. But then a2-a1-x-b1-b2 is an induced
copy of P5, a contradiction; so every x ∈ X is complete to at least one of A,B. The set of vertices
in X complete to A is also complete to P , and hence has clique number at most m, and hence has
chromatic number at most f(m); and the same for B. Thus, χ(X) ≤ 2f(m), contrary to (2). This
proves (3).

If v ∈ V (G), we denote its set of neighbours by N(v), or NG(v). Let a ∈ V (G), and let B be a
component of G \ (N(a) ∪ {a}); we will show that χ(B) ≤ (w −m+ 2)f(m).

A subset Y of V (B) is a joint of B if there is a component C of B \ Y such that χ(C) > f(m)
and Y is complete to C. If ∅ is not a joint of B then χ(B) < f(m) and the claim holds, so we may
assume that ∅ is a joint of B; let Y be a joint of B chosen with Y maximal, and let C be a component
of B \ Y such that χ(C) > f(m) and Y is complete to C.

(4) If v ∈ N(a) has a neighbour in V (C), then χ(V (C) \N(v)) ≤ f(m).

Let NC(v) be the set of neighbours of v in V (C), and M = V (C) \ NC(v); and suppose that
χ(M) > f(m). Let C ′ be a component of G[M ] with χ(C ′) > f(m), and let Z be the set of vertices
in NC(v) that have a neighbour in V (C ′). Thus, Z ̸= ∅, since NC(v), V (C ′) ̸= ∅ and C is connected.
If some z ∈ Z is mixed on C ′, let p1p2 be an edge of C ′ such that z is adjacent to p1 and not to
p2; then a-v-z-p1-p2 is an induced copy of P5, a contradiction. So every vertex in Z is complete to
V (C ′); but also every vertex in Y is complete to V (C) and hence to V (C ′), and so Y ∪ Z is a joint
of B, contrary to the maximality of Y . This proves (4).

(5) χ(Y ) ≤ f(m) and χ(C) ≤ (w −m+ 1)f(m).

Let X be the set of vertices in N(a) that have a neighbour in V (C). Since C is a component of
B \Y and hence a component of G \ (X ∪Y ), and a belongs to a different component of G \ (X ∪Y ),
it follows that X ∪ Y is a cutset of G. By (2), χ(X ∪ Y ) > 2f(m). Since ω(C) ≥ m + 1 (because
χ(C) > f(m), and f is near-binding for G) and every vertex in Y is complete to V (C), it follows
that ω(G[Y ]) ≤ w − m − 1 ≤ m, and so has chromatic number at most f(m) as claimed; and so
χ(X) > f(m). Consequently there is a clique P ⊆ X with cardinality w−m. The subgraph induced
on the set of vertices of C complete to P has clique number at most m, and so has chromatic number
at most f(m); and for each v ∈ P , the set of vertices of C nonadjacent to v has chromatic number
at most f(m) by (4). Thus, χ(C) ≤ (|P |+ 1)f(m) = (w −m+ 1)f(m). This proves (5).

4



(6) χ(B) ≤ (w −m+ 2)f(m).

By (3), every clique contained in V (B) \ (V (C) ∪ Y ) has cardinality less than w/2 (because it is
anticomplete to the largest clique of C) and so

χ(B \ (V (C) ∪ Y )) ≤ f(m);

and hence χ(B \ Y ) ≤ (w − m + 1)f(m) by (5), since there are no edges between C and V (B) \
(V (C) ∪ Y ). But χ(Y ) ≤ f(m) by (5), and so χ(B) ≤ (w −m+ 2)f(m). This proves (6).

By (6), G\N(a) has chromatic number at most (w−m+2)f(m). But G[N(a)] has clique number
at most w−1 and so chromatic number at most f(w−1); and so χ(G) ≤ f(w−1)+(w−m+2)f(m),
contrary to (1). This proves 2.2.

Now we deduce 1.5, which we restate:

2.3 If G is P5-free and ω(G) ≥ 3 then χ(G) ≤ ω(G)log2(ω(G)).

Proof. Define f(0) = 0, f(1) = 1, f(2) = 3, and f(x) = xlog2(x) for every real number x ≥ 3. Let
G be P5-free. If ω(G) ≤ 2 then χ(G) ≤ 3 = f(2), by a result of Sumner [25]; if ω(G) = 3 then
χ(G) ≤ 5 ≤ f(3), by an application of the result 1.4 of Esperet, Lemoine, Maffray, and Morel [9];
and if ω(G) = 4 then χ(G) ≤ 15 ≤ f(4), by another application of 1.4. Consequently every P5-free
graph G with clique number at most four has chromatic number at most f(ω(G)).

We claim that
f(x− 1) + (x+ 2)f(⌊x/2⌋) ≤ f(x)

for each integer x > 4. If that is true, then by 2.2 with Ω = 4, we deduce that χ(G) ≤ f(ω(G)) for
every P5-free graph G, and so 1.5 holds. Thus, it remains to show that

f(x− 1) + (x+ 2)f(⌊x/2⌋) ≤ f(x)

for each integer x > 4. This can be verified by direct calculation when x = 5, so we may assume that
x ≥ 6.

The derivative of f(x)/x4 is
(2 log2(x)− 4)xlog2(x)−5,

and so is nonnegative for x ≥ 4. Consequently

f(x− 1)

(x− 1)4
≤ f(x)

x4

for x ≥ 5. Since x2(x2 − 2x− 4) ≥ (x− 1)4 when x ≥ 5, it follows that

f(x− 1)

x2 − 2x− 4
≤ f(x)

x2
,

that is,

f(x− 1) +
2x+ 4

x2
f(x) ≤ f(x),
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when x ≥ 5. But when x ≥ 6 (so that f(x/2) is defined and the first equality below holds), we have

f(⌊x/2⌋) ≤ f(x/2) = (x/2)log2(x/2) = (x/2)log2(x)−1 = (2/x)(x/2)log2(x) = (2/x2)f(x),

and so
f(x− 1) + (x+ 2)f(⌊x/2⌋) ≤ f(x)

when x ≥ 6. This proves 2.3.
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