Polynomial bounds for chromatic number. IV. A near-polynomial bound for excluding the five-vertex path

 ${\rm Alex~Scott^1}$ Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK

Paul Seymour² Princeton University, Princeton, NJ 08544

Sophie Spirkl³ University of Waterloo, Waterloo, Ontario N2L3G1, Canada

August 8, 2021; revised June 26, 2024

¹Research supported by EPSRC grant EP/V007327/1.

²Supported by AFOSR grant FA9550-22-1-0234, and by NSF grant DMS-2154169.

³We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number RGPIN-2020-03912]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) [numéro de référence RGPIN-2020-03912].

Abstract

A graph G is H-free if it has no induced subgraph isomorphic to H. We prove that a P_5 -free graph with clique number $\omega \geq 3$ has chromatic number at most $\omega^{\log_2(\omega)}$. The best previous result was an exponential upper bound $(5/27)3^{\omega}$, due to Esperet, Lemoine, Maffray, and Morel. A polynomial bound would imply that the celebrated Erdős-Hajnal conjecture holds for P_5 , which is the smallest open case. Thus, there is great interest in whether there is a polynomial bound for P_5 -free graphs, and our result is an attempt to approach that.

1 Introduction

If G, H are graphs, we say G is H-free if no induced subgraph of G is isomorphic to H; and for a graph G, we denote the number of vertices, the chromatic number, the size of the largest clique, and the size of the largest stable set by $|G|, \chi(G), \omega(G), \alpha(G)$ respectively.

The k-vertex path is denoted by P_k , and P_4 -free graphs are well-understood; every P_4 -free graph G with more than one vertex is either disconnected or disconnected in the complement [24], which implies that $\chi(G) = \omega(G)$. Here we study how $\chi(G)$ depends on $\omega(G)$ for P_5 -free graphs G.

The Gyárfás-Sumner conjecture [10, 25] says:

1.1 Conjecture: For every forest H there is a function f such that $\chi(G) \leq f(\omega(G))$ for every H-free graph G.

This is open in general, but has been proved [10] when H is a path, and for several other simple types of tree ([3, 11, 12, 13, 14, 17, 19]; see [18] for a survey). The result is also known if all induced subdivisions of a tree are excluded [17].

A class of graphs is *hereditary* if the class is closed under taking induced subgraphs and under isomorphism, and a hereditary class is said to be χ -bounded if there is a function f such that $\chi(G) \leq f(\omega(G))$ for every graph G in the class (thus, the Gyárfás-Sumner conjecture says that, for every forest H, the class of H-free graphs is χ -bounded). Louis Esperet [8] made the following conjecture:

1.2 (False) Conjecture: Let \mathcal{G} be a χ -bounded class. Then there is a polynomial function f such that $\chi(G) \leq f(\omega(G))$ for every $G \in \mathcal{G}$.

Esperet's conjecture was recently shown to be false by Briański, Davies and Walczak [2]. However, this raises the further question: which χ -bounded classes are polynomially χ -bounded? In particular, the two conjectures 1.1 and 1.2 would together imply the following, which is still open:

1.3 Conjecture: For every forest H, there exists c > 0 such that $\chi(G) \leq \omega(G)^c$ for every H-free graph G.

This is a beautiful conjecture. In most cases where the Gyárfás-Sumner conjecture has been proved, the current bounds are very far from polynomial, and 1.3 has been only been proved for a much smaller collection of forests (see [15, 20, 22, 23, 21, 5, 16]). In [23] we proved it for any P_5 -free tree H, but it has not been settled for any tree H that contains P_5 . In this paper we focus on the case $H = P_5$.

The best previously-known bound on the chromatic number of P_5 -free graphs in terms of their clique number, due to Esperet, Lemoine, Maffray, and Morel [9], was exponential:

1.4 If G is
$$P_5$$
-free and $\omega(G) \geq 3$ then $\chi(G) \leq (5/27)3^{\omega(G)}$.

Here we make a significant improvement, showing a "near-polynomial" bound:

1.5 If G is
$$P_5$$
-free and $\omega(G) \geq 3$ then $\chi(G) \leq \omega(G)^{\log_2(\omega(G))}$.

(The cycle of length five shows that we need to assume $\omega(G) \geq 3$. Sumner [25] showed that $\chi(G) \leq 3$ when $\omega(G) = 2$.) Conjecture 1.3 when $H = P_5$ is of great interest, because of a famous conjecture due to Erdős and Hajnal [6, 7], that:

1.6 Conjecture: For every graph H there exists c > 0 such that $\alpha(G)\omega(G) \ge |G|^c$ for every H-free graph G.

This is open in general, despite a great deal of effort; and in view of [4], the smallest graph H for which 1.6 is undecided is the graph P_5 . Every forest H satisfying 1.3 also satisfies the Erdős-Hajnal conjecture, and so showing that $H = P_5$ satisfies 1.3 would be a significant result. (See [1] for some other recent progress on this question.)

We use standard notation throughout. When $X \subseteq V(G)$, G[X] denotes the subgraph induced on X. We write $\chi(X)$ for $\chi(G[X])$ when there is no ambiguity.

2 The main proof

We denote the set of nonnegative real numbers by \mathbb{R}_+ , and the set of nonnegative integers by \mathbb{Z}_+ . Let $f: \mathbb{Z}_+ \to \mathbb{R}_+$ be a function. We say

- f is non-decreasing if $f(y) \ge f(x)$ for all integers $x, y \ge 0$ with $y > x \ge 0$;
- f is a binding function for a graph G if it is non-decreasing and $\chi(H) \leq f(\omega(H))$ for every induced subgraph H of G; and
- f is a near-binding function for G if f is non-decreasing and $\chi(H) \leq f(\omega(H))$ for every induced subgraph H of G different from G.

In this section we show that if a function f satisfies a certain inequality, then it is a binding function for all P_5 -free graphs. Then at the end we will give a function that satisfies the inequality, and deduce 1.5.

A cutset in a graph G is a set X such that $G \setminus X$ is disconnected. A vertex $v \in V(G)$ is mixed on a set $A \subseteq V(G)$ or a subgraph A of a graph G if v is not in A and has a neighbour and a non-neighbour in A. It is complete to A if it is adjacent to every vertex of A. We begin with the following:

2.1 Let G be P_5 -free, and let f be a near-binding function for G. Let G be connected, and let X be a cutset of G. Then

$$\chi(G\setminus X)\leq f(\omega(G)-1)+\omega(G)f(\lfloor\omega(G)/2\rfloor).$$

Proof. We may assume (by replacing X by a subset if necessary) that X is a minimal cutset of G; and so $G \setminus X$ has at least two components, and every vertex in X has a neighbour in V(B), for every component B of $G \setminus X$. Let B be one such component; we will prove that $\chi(B) \leq f(\omega(G)-1) + \omega(G)f(|\omega(G)/2|)$, from which the result follows.

Choose $v \in X$ (this is possible since G is connected), and let N be the set of vertices in B adjacent to v. Let the components of $B \setminus N$ be $R_1, \ldots, R_k, S_1, \ldots, S_\ell$, where R_1, \ldots, R_k each have chromatic number more than $f(\lfloor \omega(G)/2 \rfloor)$, and S_1, \ldots, S_ℓ each have chromatic number at most $f(\lfloor \omega(G)/2 \rfloor)$. Let S be the union of the graphs S_1, \ldots, S_ℓ ; thus, $\chi(S) \leq f(\lfloor \omega(G)/2 \rfloor)$. For $1 \leq i \leq k$, let Y_i be the set of vertices in N with a neighbour in $V(R_i)$, and let $Y = Y_1 \cup \cdots \cup Y_k$.

(1) For $1 \le i \le k$, every vertex in Y_i is complete to R_i .

Let $y \in Y_i$. Thus, y has a neighbour in $V(R_i)$; suppose that y is mixed on R_i . Since R_i is connected, there is an edge ab of R_i such that y is adjacent to a and not to b. Now v has a neighbour in each component of $G \setminus X$, and since there are at least two such components, there is a vertex $u \in V(G) \setminus (X \cup V(B))$ adjacent to v. But then u-v-y-a-b is an induced copy of P_5 , a contradiction. This proves (1).

(2)
$$\chi(Y) \leq (\omega(G) - 1) f(\lfloor \omega(G)/2 \rfloor).$$

Let $1 \leq i \leq k$. Since $f(\lfloor \omega(G)/2 \rfloor) < \chi(R_i) \leq f(\omega(R_i))$, and f is non-decreasing, it follows that $\omega(R_i) > \omega(G)/2$. By (1), $\omega(G[Y_i]) + \omega(R_i) \leq \omega(G)$, and so $\omega(G[Y_i]) < \omega(G)/2$. Consequently $\chi(Y_i) \leq f(\lfloor \omega(G)/2 \rfloor)$, for $1 \leq i \leq k$. Choose $I \subseteq \{1, \ldots, k\}$ minimal such that $\bigcup_{i \in I} Y_i = Y$. From the minimality of I, for each $i \in I$ there exists $y_i \in Y_i$ such that for each $j \in I \setminus \{i\}$ we have that $y_i \notin Y_j$; and so the vertices y_i $(i \in I)$ are all distinct. For each $i \in I$ choose $r_i \in V(R_i)$. For all distinct $i, j \in I$, if y_i, y_j are nonadjacent, then r_i - y_i -v- y_j - r_j is isomorphic to P_5 , a contradiction. Hence the vertices y_i $(i \in I)$ are all pairwise adjacent, and adjacent to v; and so $|I| \leq \omega(G) - 1$. Thus, $\chi(Y) = \chi(\bigcup_{i \in I} Y_i) \leq (\omega(G) - 1) f(\lfloor \omega(G)/2 \rfloor)$. This proves (2).

All the vertices in $N \setminus Y$ are adjacent to v, and so $\omega(G[N \setminus Y]) \leq \omega(G) - 1$. Moreover, for $1 \leq i \leq k$, each vertex of R_i is adjacent to each vertex in Y_i , and $Y_i \neq \emptyset$ since B is connected, and so $\omega(R_i) \leq \omega(G) - 1$. Since there are no edges between any two of the graphs $G[N \setminus Y], R_1, \ldots, R_k$, their union (Z say) has clique number at most $\omega(G) - 1$ and so has chromatic number at most $f(\omega(G) - 1)$. But V(B) is the union of Y, V(S) and V(Z); and so

$$\chi(B) \leq f(\omega(G)-1) + (\omega(G)-1)f(\lfloor \omega(G)/2 \rfloor) + f(\lfloor \omega(G)/2 \rfloor).$$

This proves 2.1.

2.2 Let $\Omega \geq 1$, and let $f: \mathbb{Z}_+ \to \mathbb{R}_+$ be non-decreasing, satisfying the following:

- f is a binding function for every P_5 -free graph H with $\omega(H) \leq \Omega$; and
- $f(w-1) + (w+2)f(|w/2|) \le f(w)$ for each integer $w > \Omega$.

Then f is a binding function for every P_5 -free graph G.

Proof. We prove by induction on |G| that if G is P_5 -free then f is a binding function for G. Thus, we may assume that G is P_5 -free and f is near-binding for G. If G is not connected, or $\omega(G) \leq \Omega$, it follows that f is binding for G, so we assume that G is connected and $\omega(G) > \Omega$. Let us write $w = \omega(G)$ and $m = \lfloor w/2 \rfloor$. If $\chi(G) \leq f(w)$ then f is a binding function for G, so we assume, for a contradiction, that:

(1)
$$\chi(G) > f(w-1) + (w+2)f(m)$$
.

We deduce that:

(2) Every cutset X of G satisfies $\chi(X) > 2f(m)$.

If some cutset X satisfies $\chi(X) \leq 2f(m)$, then since $\chi(G \setminus X) \leq f(w-1) + wf(m)$ by 2.1, it follows that $\chi(G) \leq f(w-1) + (w+2)f(m)$, contrary to (1). This proves (2).

(3) If P, Q are cliques of G, both of cardinality at least w/2, then $G[P \cup Q]$ is connected.

Suppose not; then there is a minimal subset $X \subseteq V(G) \setminus (P \cup Q)$ such that P,Q are subsets of different components (A, B say) of $G \setminus X$. From the minimality of X, every vertex $x \in X$ has a neighbour in V(A) and a neighbour in V(B). If x is mixed on A and mixed on B, then since A is connected, there is an edge a_1a_2 of A such that x is adjacent to a_1 and not to a_2 ; and similarly there is an edge b_1b_2 of B with x adjacent to b_1 and not to b_2 . But then $a_2-a_1-x-b_1-b_2$ is an induced copy of P_5 , a contradiction; so every $x \in X$ is complete to at least one of A, B. The set of vertices in X complete to A is also complete to P, and hence has clique number at most m, and hence has chromatic number at most f(m); and the same for B. Thus, $\chi(X) \leq 2f(m)$, contrary to (2). This proves (3).

If $v \in V(G)$, we denote its set of neighbours by N(v), or $N_G(v)$. Let $a \in V(G)$, and let B be a component of $G \setminus (N(a) \cup \{a\})$; we will show that $\chi(B) \leq (w - m + 2)f(m)$.

A subset Y of V(B) is a *joint* of B if there is a component C of $B \setminus Y$ such that $\chi(C) > f(m)$ and Y is complete to C. If \emptyset is not a joint of B then $\chi(B) < f(m)$ and the claim holds, so we may assume that \emptyset is a joint of B; let Y be a joint of B chosen with Y maximal, and let C be a component of $B \setminus Y$ such that $\chi(C) > f(m)$ and Y is complete to C.

(4) If $v \in N(a)$ has a neighbour in V(C), then $\chi(V(C) \setminus N(v)) \leq f(m)$.

Let $N_C(v)$ be the set of neighbours of v in V(C), and $M = V(C) \setminus N_C(v)$; and suppose that $\chi(M) > f(m)$. Let C' be a component of G[M] with $\chi(C') > f(m)$, and let Z be the set of vertices in $N_C(v)$ that have a neighbour in V(C'). Thus, $Z \neq \emptyset$, since $N_C(v)$, $V(C') \neq \emptyset$ and C is connected. If some $z \in Z$ is mixed on C', let p_1p_2 be an edge of C' such that z is adjacent to p_1 and not to p_2 ; then a-v-z- p_1 - p_2 is an induced copy of P_5 , a contradiction. So every vertex in Z is complete to V(C'); but also every vertex in Y is complete to V(C) and hence to V(C'), and so $Y \cup Z$ is a joint of B, contrary to the maximality of Y. This proves (4).

(5)
$$\chi(Y) < f(m) \text{ and } \chi(C) < (w-m+1)f(m).$$

Let X be the set of vertices in N(a) that have a neighbour in V(C). Since C is a component of $B \setminus Y$ and hence a component of $G \setminus (X \cup Y)$, and a belongs to a different component of $G \setminus (X \cup Y)$, it follows that $X \cup Y$ is a cutset of G. By (2), $\chi(X \cup Y) > 2f(m)$. Since $\omega(C) \ge m+1$ (because $\chi(C) > f(m)$, and f is near-binding for G) and every vertex in Y is complete to V(C), it follows that $\omega(G[Y]) \le w - m - 1 \le m$, and so has chromatic number at most f(m) as claimed; and so $\chi(X) > f(m)$. Consequently there is a clique $P \subseteq X$ with cardinality w - m. The subgraph induced on the set of vertices of C complete to P has clique number at most m, and so has chromatic number at most m, and for each m is each m in m in

(6)
$$\chi(B) \le (w - m + 2)f(m)$$
.

By (3), every clique contained in $V(B) \setminus (V(C) \cup Y)$ has cardinality less than w/2 (because it is anticomplete to the largest clique of C) and so

$$\chi(B \setminus (V(C) \cup Y)) \le f(m);$$

and hence $\chi(B \setminus Y) \leq (w - m + 1)f(m)$ by (5), since there are no edges between C and $V(B) \setminus (V(C) \cup Y)$. But $\chi(Y) \leq f(m)$ by (5), and so $\chi(B) \leq (w - m + 2)f(m)$. This proves (6).

By (6), $G \setminus N(a)$ has chromatic number at most (w-m+2)f(m). But G[N(a)] has clique number at most w-1 and so chromatic number at most f(w-1); and so $\chi(G) \leq f(w-1) + (w-m+2)f(m)$, contrary to (1). This proves 2.2.

Now we deduce 1.5, which we restate:

2.3 If G is P_5 -free and $\omega(G) \geq 3$ then $\chi(G) \leq \omega(G)^{\log_2(\omega(G))}$.

Proof. Define f(0) = 0, f(1) = 1, f(2) = 3, and $f(x) = x^{\log_2(x)}$ for every real number $x \geq 3$. Let G be P_5 -free. If $\omega(G) \leq 2$ then $\chi(G) \leq 3 = f(2)$, by a result of Sumner [25]; if $\omega(G) = 3$ then $\chi(G) \leq 5 \leq f(3)$, by an application of the result 1.4 of Esperet, Lemoine, Maffray, and Morel [9]; and if $\omega(G) = 4$ then $\chi(G) \leq 15 \leq f(4)$, by another application of 1.4. Consequently every P_5 -free graph G with clique number at most four has chromatic number at most $f(\omega(G))$.

We claim that

$$f(x-1) + (x+2)f(|x/2|) \le f(x)$$

for each integer x > 4. If that is true, then by 2.2 with $\Omega = 4$, we deduce that $\chi(G) \leq f(\omega(G))$ for every P_5 -free graph G, and so 1.5 holds. Thus, it remains to show that

$$f(x-1) + (x+2)f(\lfloor x/2 \rfloor) \le f(x)$$

for each integer x > 4. This can be verified by direct calculation when x = 5, so we may assume that $x \ge 6$.

The derivative of $f(x)/x^4$ is

$$(2\log_2(x) - 4)x^{\log_2(x) - 5},$$

and so is nonnegative for $x \geq 4$. Consequently

$$\frac{f(x-1)}{(x-1)^4} \le \frac{f(x)}{x^4}$$

for $x \ge 5$. Since $x^2(x^2 - 2x - 4) \ge (x - 1)^4$ when $x \ge 5$, it follows that

$$\frac{f(x-1)}{x^2 - 2x - 4} \le \frac{f(x)}{x^2},$$

that is,

$$f(x-1) + \frac{2x+4}{x^2}f(x) \le f(x),$$

when $x \geq 5$. But when $x \geq 6$ (so that f(x/2) is defined and the first equality below holds), we have

$$f(\lfloor x/2 \rfloor) \le f(x/2) = (x/2)^{\log_2(x/2)} = (x/2)^{\log_2(x)-1} = (2/x)(x/2)^{\log_2(x)} = (2/x^2)f(x),$$

and so

$$f(x-1) + (x+2)f(|x/2|) \le f(x)$$

when $x \geq 6$. This proves 2.3.

References

- [1] P. Blanco and M. Bucić, "Towards the Erdős-Hajnal conjecture for P_5 -free graphs", manuscript, September 2022.
- [2] M. Briański, J. Davies and B. Walczak, "Separating polynomial χ -boundedness from χ -boundedness", arXiv:2201.08814.
- [3] M. Chudnovsky, A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. XII. Distant stars", J. Graph Theory 92 (2019), 237–254, arXiv:1711.08612.
- [4] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Erdős-Hajnal for graphs with no five-hole", submitted for publication, arXiv:2102.04994.
- [5] M. Chudnovsky, A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds for chromatic number. VI. Adding a four-vertex path", submitted for publication, arXiv:2202.10412.
- [6] P. Erdős and A. Hajnal, "On spanned subgraphs of graphs", *Graphentheorie und Ihre Anwendungen* (Oberhof, 1977).
- [7] P. Erdős and A. Hajnal, "Ramsey-type theorems", Discrete Applied Math. 25 (1989), 37–52.
- [8] L. Esperet, *Graph Colorings, Flows and Perfect Matchings*, Habilitation thesis, Université Grenoble Alpes (2017), 24, https://tel.archives-ouvertes.fr/tel-01850463/document.
- [9] L. Esperet, L. Lemoine, F. Maffray, and G. Morel, "The chromatic number of $\{P_5, K_4\}$ -free graphs", Discrete Math. **313** (2013), 743–754.
- [10] A. Gyárfás, "On Ramsey covering-numbers", in *Infinite and Finite Sets*, Vol. II (Colloq., Keszthely, 1973), Coll. Math. Soc. János Bolyai 10, 801–816.
- [11] A. Gyárfás, "Problems from the world surrounding perfect graphs", Proceedings of the International Conference on Combinatorial Analysis and its Applications, (Pokrzywna, 1985), Zastos. Mat. 19 (1987), 413–441.
- [12] A. Gyárfás, E. Szemerédi and Zs. Tuza, "Induced subtrees in graphs of large chromatic number", Discrete Math. 30 (1980), 235–344.
- [13] H. A. Kierstead and S. G. Penrice, "Radius two trees specify χ -bounded classes", J. Graph Theory 18 (1994), 119–129.

- [14] H. A. Kierstead and Y. Zhu, "Radius three trees in graphs with large chromatic number", SIAM J. Disc. Math. 17 (2004), 571–581.
- [15] X. Liu, J. Schroeder, Z. Wang and X. Yu, "Polynomial χ -binding functions for t-broom-free graphs", arXiv:2106.08871.
- [16] I. Schiermeyer and B. Randerath, "Polynomial χ -binding functions and forbidden induced subgraphs: a survey", *Graphs and Combinatorics* **35** (2019), 1–31.
- [17] A. Scott, "Induced trees in graphs of large chromatic number", J. Graph Theory 24 (1997), 297–311.
- [18] A. Scott and P. Seymour, "A survey of χ -boundedness", J. Graph Theory 95 (2020), 473–504, arXiv:1812.07500.
- [19] A. Scott and P. Seymour, "Induced subgraphs of graphs with large chromatic number. XIII. New brooms", European J. Combinatorics 84 (2020), 103024, arXiv:1807.03768.
- [20] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds on chromatic number. I. Excluding a biclique and an induced tree", J. Graph Theory, to appear, arXiv:2104.07927.
- [21] A. Scott and P. Seymour, "Polynomial bounds for chromatic number. V. Excluding a tree of radius two and a complete multipartite graph", submitted for publication, arXiv:arXiv:2202.05557.
- [22] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds on chromatic number. II. Excluding a star-forest", J. Graph Theory, 101 (2022), 318–322, arXiv:2107.11780.
- [23] A. Scott, P. Seymour and S. Spirkl, "Polynomial bounds on chromatic number. III. Excluding a double star", J. Graph Theory, 101 (2022), 323–340, arXiv:2108.07066.
- [24] D. Seinsche, "On a property of the class of n-colorable graphs", J. Combin. Theory, Ser. B, 16 (1974), 191–193.
- [25] D. P. Sumner, "Subtrees of a graph and chromatic number", in *The Theory and Applications of Graphs*, (G. Chartrand, ed.), John Wiley & Sons, New York (1981), 557–576.