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Abstract

We prove that every connected P5-free graph has cop number at most two, solving a conjecture of
Sivaraman. In order to do so, we first prove that every connected P5-free graph G with independence
number at least three contains a three-vertex induced path with vertices a-b-c in order, such that
every neighbour of c is also adjacent to one of a, b.



1 Introduction

We denote the t-vertex path by Pt. There are a number of well-known open questions about P5-free
graphs (a graph G is H-free if no induced subgraph of G is isomorphic to H, and |G| denotes the
number of vertices of G). For instance:

• the Erdős-Hajnal [4] conjecture implies that for some c > 0, every P5-free graph G has a clique
or stable set of size at least |G|c (Nguyen et al. [15] have recently written what purports to be
a proof of this);

• a conjecture of Esperet [5] implies that for some c > 0, every P5-free graph G has chromatic
number at most ω(G)c, where ω(G) is the clique number of G;

• a conjecture of Hoàng et al. [9] says that for some c > 0, there is a function f such that for every
k there is an algorithm deciding whether a P5-free graph G is k-colourable in time f(k)|G|c.

In this paper, we study another conjecture on P5-free graphs, which concerns the game of cops
and robbers. In this game, there are s cops, and each stands on one vertex of the graph, and so does
the robber. In each turn, first each cop moves to a neighbouring vertex, or does not move; and then
the robber moves to a neighbouring vertex, or does not move. The cops win if at some stage, a cop is
standing on the same vertex as the robber. Cops may share vertices and this game is played with full
information. Given a graph G, how few cops suffice? The cop number c(G) is the smallest number
of cops which can capture the robber on G. The game played with one cop was initially defined
by Nowakowski and Winkler [16] and Quilliot [18]. The version with multiple cops was introduced
Aigner and Fromme [1]; in particular they proved that the cop number of any connected planar graph
is at most three.

Inspired by Andreae’s result [2] that the cop number of connected graphs forbidding H as a
minor is bounded for every graph H, Joret et al. [11] proved that the cop number of connected
H-free graphs is bounded if and only if H is a disjoint union of paths. In particular, they showed that
the cop number of connected Pt-free graphs is at most t−2 for t ≥ 3. Sivaraman [19] conjectured that
two cops can win on connected P5-free graphs and more generally that the cop number of connected
Pt-free graphs is at most t− 3 for t ≥ 5.

Other questions on the cop number and forbidden induced subgraphs have also been considered,
for instance relating the cop number and the independence number (in other words, tK1-free graphs)
[17] and excluding multiple induced subgraphs [10, 14, 20].

However, the question of the cop number of P5-free graphs has received the most attention in this
field; various weakenings of the conjecture about P5-free graphs have been studied. Sivaraman and
Testa [21] conjectured the weaker statement that the cop number of connected 2K2-free graphs is at
most two (2K2, also written 2P2, is graph obtained by the disjoint union of two edges; it can also be
seen as the complement of a four-vertex cycle). This was proved by the fourth author of this paper
[22]. Liu [12] proved various partial results for these problems and Gupta, Mishra and Pradhan [7]
have shown that the conjecture holds for multiple subclasses of P5-free graphs. Masjoody [13] has
conjectured the weaker statement that even if two cops perhaps cannot capture the robber on P5-free
graphs, they can confine it to a vertex.

In this paper, we prove Sivaraman’s conjecture on the cop number of P5-free graphs.

1.1. If G is a connected P5-free graph, then c(G) ≤ 2.
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The general strategy we employ is similar to the one used by the fourth author of this paper in [22]
to bound the cop number of 2K2-free graphs. First, show that any graph in the class must contain a
possible winning position for two cops, that is vertices a, b 6= c such that N [c] ⊆ N [a] ∪N [b]. Then,
consider a minimal graph in the class for which two cops cannot win, and use the minimality to force
the robber to move to c, after which try to eventually move the cops to a, b and show the robber
cannot escape.

The first part of this strategy is accomplished by the following result, which we prove in Section 3.

1.2. If G is connected and P5-free, with α(G) ≥ 3, then there is a three-vertex induced path of G with
vertices a, b, c in order, such that every neighbour of c is also adjacent to one of a, b.

Here, α(G) is the independence number of G, that is the cardinality of the largest stable set
in G. Let a-b-c be the vertices in order of a three-vertex induced path of G. We say that a-b-c is
domineering, or a domineering 3-path, if every neighbour of c is also adjacent to one of a, b. Thus 1.2
says that every connected P5-free graph with α(G) ≥ 3 has a domineering 3-path.

The condition α(G) ≥ 3 in 1.2 is needed. It is easy to see that every graph G with α(G) = 2 is
P5-free, and it has no domineering 3-path if and only if its complement H has diameter at most two,
which gives plenty of counterexamples to 1.2 with α(G) ≥ 3 omitted.

The relative of 1.2 proved by the fourth author for 2K2-free graphs [22] is the following.

1.3. If G is connected and 2K2-free, with |G| ≥ 3 and G not a cycle of length five, then there exist
distinct vertices a, b, c such that ab and bc are edges (possibly ac is also an edge) and every neighbour
of c is adjacent to one of a, b.

This differs from 1.2 in three ways, two weakenings and a strengthening. First, it of course assumes
that G is 2K2-free, instead of P5-free. Second, ac might be an edge. But third, it does not need the
assumption α(G) ≥ 3. What if we try to modify 1.3, asking for a domineering 3-path in a 2K2-free
graph G? Then again, it is false, but there are not so many counterexamples; every counterexample
G satisfies α(G) ≤ 2, and it is easy to see that the counterexamples are the complements of Moore
graphs of girth five. These are graphs of diameter two, with girth five, in which every vertex has the
same degree d; such a graph exists only when d = 2, 3, 7 and possibly 57.

In order to prove 1.2, we will need the following definition. Let us say a graph G is bijoined if

• for every two nonadjacent vertices u, v of G, there are exactly two vertices adjacent to both
u, v, and they are adjacent to each other, and

• G has no clique of cardinality four.

It is said to be nontrivial if |G| > 1. If a nontrivial bijoined graph has a complement graph that is
connected, then that complement would be a counterexample to 1.2, so we care about bijoined graphs.
Indeed, we will show in Section 3 that any counterexample to 1.2 has a connected induced subgraph
whose complement is a nontrivial bijoined graph; so the whole question boils down to showing that
there is no such graph. That is proved in Section 2.

The second part of the strategy, using 1.2 to capture the robber with two cops, is accomplished
in Section 4. One important difference between the proofs for the 2K2-free case and the P5-free case
is that once the robber is on c, in the former we can ensure the robber never leaves c, which is not
possible in the latter.
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Although this paper concerns only the t = 5 case of Sivaraman’s conjecture, we note that it might
be possible to generalize our approach to prove the conjecture for larger t.

Let us complete this section with some notation. Suppose G is a graph, which we always consider
to be simple and finite. For v ∈ V (G), we write N(v) for the neighbourhood of v (the set of vertices
adjacent to v), N [v] = N(v)∪ {v} for its closed neighbourhood of v, and M(v) = V (G) \N [v] for the
set of vertices distinct from and not adjacent to v. A vertex of a graph G is universal if it is adjacent
to every other vertex.

If X,Y ⊆ V (G) are disjoint, we say X is complete to Y if every vertex in X is adjacent to every
vertex in Y , and X is anticomplete to Y if there are no edges between X,Y . If X = {x}, we say x is
complete to Y if {x} is complete to Y , and so on.

If X ⊆ V (G), we write G[X] for the subgraph of G induced on X and G \X for G[V (G) \X]. If
X = {v}, we write G \ v for G \ {v}.

We will often write x1-x2- . . . -xk to represent a path with vertices x1, x2, . . . , xk in order.

2 Bijoined graphs

We first note that bijoined graphs exist; for instance, if H is a graph of girth at least five in which
every two nonadjacent vertices have exactly one common neighbour, and we add a universal vertex
to H, we obtain a bijoined graph. We will show that no graphs are bijoined other than these, and in
particular, no nontrivial bijoined graph has a connected complement graph.

We need the following well-known lemma:

2.1. Let H be a graph with girth at least five, such that for every two nonadjacent vertices u, v there is
exactly one vertex adjacent to both u, v. If the complement of H is connected, then every two vertices
of H have the same degree.

Proof. Since the complement of H is connected, it suffices to show that every two nonadjacent
vertices of H have the same degree. Thus, let u,w be nonadjacent. Let N = {v1, . . . , vk} be the set
of neighbours of u, and for 1 ≤ i ≤ k let Ni be the set of neighbours of vi different from u. Thus,
the sets {u}, N,N1, . . . , Nk are pairwise disjoint and have union V (H). Let w ∈ Nk say. For all
j ∈ {1, . . . , k − 1}, w has a neighbour in Nj (because it has distance two from vj), and has exactly
one such neighbour (since H has girth at least five); and has exactly one neighbour in N ∪ {u} ∪Nk

(that is, vk); and so w has degree exactly k. This proves 2.1.

We also need some results about strongly regular graphs. A graph is strongly regular with param-
eters (n, k, a, c) if it has n vertices, every vertex has degree k, every two adjacent vertices have exactly
a common neighbours, and every two nonadjacent vertices have exactly c common neighbours. Thus,
Moore graphs are the strongly regular graphs that have parameters (n, k, 0, 1) for some n, k. First,
we need a result about Moore graphs mentioned earlier, due to Hoffman and Singleton [8]:

2.2. A strongly regular graph with parameters (n, k, 0, 1) exists only when n = k2 + 1 and k = 2, 3, 7
and possibly 57.

Second, we need the following (see Lemmas 10.3.2 and 10.3.3 of Godsil and Royle [6]):

2.3. If a strongly regular graph exists with parameters (n, k, a, c), then either 2k = (n− 1)(c− a) or
(a− c)2 + 4(k − c) is a perfect square.
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Now we prove:

2.4. If G is a bijoined and non-null graph, then G has a universal vertex.

Proof. If u, v are distinct, let R(u, v) be the set of all vertices adjacent to both u, v; thus, if u, v are
nonadjacent then |R(u, v)| = 2 and its two members are adjacent. For convenience, we say “R(u, v)
is an edge”. We observe that no induced cycle of G has length four (because for two opposite vertices
u, v of such a cycle, R(u, v) is not an edge). Thus G is C4-free, where C4 is the cycle of length
four. We suppose that G has no universal vertex, for a contradiction. A 4-clique means a clique of
cardinality four.

(1) For each v ∈ V (G), the complement of G[N(v)] is connected.

Suppose not. Then there is a partition (X,Y ) of N(v) with X,Y 6= ∅, such that X is complete
to Y . Since G is C4-free, one of X,Y is a clique, say X; let x ∈ X. Then x is adjacent to all other
vertices in N(v), so we may assume that X = {x} and Y = N(v) \ {x}. Since G has no 4-clique,
Y is a stable set. Since x is not universal, there exists z ∈ V (G) nonadjacent to x. Consequently
z /∈ N [v]. But then R(v, z) is a subset of Y and so not an edge, a contradiction. This proves (1).

(2) For each v ∈ V (G), all vertices of G[N(v)] have the same degree in G[N(v)].

G[N(v)] has no cycle of length three, since G is K4-free; and G[N(v)] is C4-free since G is C4-free.
Thus, G[N(v)] has girth at least five. If u,w ∈ N(v) are nonadjacent, then R(u,w) consists of v and
exactly one vertex of N(v); and so u,w have exactly one common neighbour in G[N(v)]. From (1)
and 2.1, this proves (2).

By (2) and since G is bijoined, for every vertex v there exists kv such that G[N(v)] is a Moore
graph with parameters ((kv)

2 + 1, kv, 0, 1). In particular, |R(u, v)| = kv for every neighbour u of v.
It follows that ku = kv for every pair of neighbours u and v, and since G is connected, there exists k
such that kv = k for every v. So G is a strongly regular graph with parameters (n, k2 + 1, k, 2) for
some n (which is determined by k but does not matter), where k ∈ {2, 3, 7, 57} by 2.2. Let us apply
2.3, and deduce that one of the following holds:

• 2(k2 + 1) = (n− 1)(2− k); but this is impossible since k ≥ 2.

• (k − 2)2 + 4((k2 + 1) − 2) = k(5k − 4) is a perfect square; but this is not the case when
k = 2, 3, 7, 57.

This contradiction proves 2.4.

3 Finding a domineering 3-path

Let us prove 1.2, which we restate as follows.

3.1. If G is a connected P5-free graph with α(G) ≥ 3, then there exists a domineering 3-path in G.
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Proof. We assume that G is a counterexample to the theorem with G minimal. Thus, G is connected
and P5-free, with α(G) ≥ 3, and there is no domineering 3-path in G, and no proper induced subgraph
has these properties. We will prove that the complement of G is bijoined, which we will show is
impossible. We begin with:

(1) No two adjacent vertices u, v satisfy N(u) ⊆ N [v].

Suppose that there are two such vertices u, v. If there is a vertex w adjacent to v and not to u, then
w-v-u is domineering, a contradiction; so N [u] = N [v]. Let G′ be obtained by deleting u. Then G′ is
connected, P5-free, and satisfies α(G′) ≥ 3, and so from the minimality of G, there is a domineering
3-path a-b-c of G′. This is not domineering in G, and so u is adjacent to c and nonadjacent to a, b.
But then v 6= a, b, c, and so v is adjacent to c and not to a, b, contradicting that a-b-c is domineering
in G′. This proves (1).

(2) For each v ∈ V (G) and every component C of G[M(v)], no vertex u ∈ N(v) is complete to V (C).

Because if u is such a vertex, choose w ∈ V (C); then v-u-w is domineering, a contradiction. This
proves (2).

(3) For each v ∈ V (G), G[M(v)] is non-null and connected. Moreover, every vertex in N(v) has a
neighbour in M(v).

By (1),M(v) 6= ∅. Suppose that C1, C2 are distinct components of G[M(v)]. Since G is connected,
for i = 1, 2 there exists ui ∈ N(v) with a neighbour in V (Ci). By (2), for i = 1, 2, ui has a neighbour
and a non-neighbour in V (Ci), and since Ci is connected, there is an edge aibi of Ci such that ui is
adjacent to ai and not to bi. If u1 has a neighbour in V (C2), we may assume that u1 = u2, but then
b1-a1-u1-a2-b2 is a copy of P5, a contradiction. Thus u1 has no neighbour in V (C2), and similarly u2
has no neighbour in V (C1). If u1, u2 are nonadjacent then b1-a1-u1-v-u2 is a copy of P5, and if u1, u2
are adjacent then b1-a1-u1-u2-a2 is a copy of P5, in either case a contradiction. This proves the first
assertion. For the second, let u ∈ N(v); then u has a neighbour in M(v) by (1). This proves (3).

(4) For each v ∈ V (G), G[M(v)] has no domineering 3-path. Consequently α(G) = 3.

Suppose that a-b-c is a domineering 3-path of G[M(v)]. We claim that a-b-c is also domineering
in G. To show this, it suffices to show that every neighbour u of c not in M(v) is adjacent to one
of a, b. But if not, then a-b-c-u-v is a copy of P5, a contradiction. This proves the first assertion of
(4). For the second, suppose that α(G) ≥ 4, and choose v ∈ V (G) that belongs to a stable set of size
four. Then G[M(v)] has a stable set of size three, and it is connected by (3), and has no domineering
3-path as we just showed, contrary to the minimality of |G|. This proves (4).

(5) For each edge uv, if w ∈ N(u) \ N [v] and C is a component of G \ (N(u) ∪ N(v)), then w is
complete or anticomplete to V (C).

Suppose not; then there is an edge ab of C such that w is adjacent to a and not to b. But then
v-u-w-a-b is a copy of P5, a contradiction. This proves (5).

(6) If v belongs to a stable set of size three, then for each edge uv, G \ (N(u)∪N(v)) has exactly two
components, both complete graphs.
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Certainly it has at most two components, since α(G) = 3, and for the same reason, if G \ (N(u)∪
N(v)) has two components then they are both complete graphs. Thus we just need to show that
G \ (N(u) ∪N(v)) has at least two components.

Let C = G \ (N(u) ∪N(v)). Suppose that C has at most one component. By (1), N(u) \N [v] is
nonempty. Let w ∈ N(u)\N [v]; then since v-u-w is not domineering, it follows that w has a neighbour
in V (C), and hence is complete to V (C) by (5). So C is non-null, and N(u) \ N [v] is complete to
V (C). Now M(v) = V (C) ∪ (N(u) \ N [v]), and V (C), N(u) \ N [v] are both nonempty. If there is
an induced path a-b-c with a, c ∈ N(u) \ N [v] and b ∈ V (C), it follows that a-b-c is domineering
in G[M(v)], contrary to (4); and similarly there is no induced path a-b-c with b ∈ N(u) \ N [v] and
a, c ∈ V (C). Thus, V (C) ∪ (N(u) \N [v]) is a clique, contradicting that v belongs to a stable set of
size three. That proves (6).

(7) Every vertex belongs to a stable set of size three; and so for every edge uv, G \ (N(u)∪N(v)) has
exactly two components, both complete graphs.

Let X be the union of all stable sets of size three. If X 6= V (G), then since G is connected, there
is an edge uv with u /∈ X and v ∈ X. But then by (6), G\(N(u)∪N(v)) has exactly two components,
both complete graphs, and consequently u belongs to a stable set of size three, a contradiction. This
proves (7).

(8) For every edge uv, G \ (N(u) ∪N(v)) consists of two nonadjacent vertices.

By (7), G \ (N(u) ∪ N(v)) has exactly two components C1, C2, both complete graphs. For
i = 1, 2, let Xi be the set of vertices in N(u) ∪ N(v) that have a neighbour in V (Ci). Suppose
that c1, c′1 ∈ V (C1) are distinct. From (7) applied to the edge c1c′1, it follows that X2 ⊆ X1 (since
otherwise the set of vertices nonadjacent to both c1, c′1 induces a connected subgraph). Also, again
by (7) applied to the same edge, N(u) \N [v] ⊆ X1 (since for each w ∈ N(u) \N [v], if w /∈ X1 then
{v, u, w} induces a three-vertex path, contrary to (7)) and similarly N(v) \N [u] ⊆ X1.

Suppose that some w ∈ N(u) \N [v] belongs to X2 (and X1). Then w is complete to V (C1) and
V (C2), both by (5), and the set of vertices nonadjacent to both w, c1 is a subset of N [v] including
v (because w is complete to V (C1) ∪ V (C2), and c1 is complete to N(u) \N [v]); and so this subset
induces a connected subgraph, contrary to (7). Similarly, there is no w ∈ N(v) \N [u] which belongs
to X2. Thus X2 ⊆ N(u) ∩N(v).

Suppose that c2, c′2 ∈ V (C2) are distinct. Let w ∈ N(u) \N [v], which exists by (1). Then the set
of vertices nonadjacent to both c2, c′2 includes u, v, w, and these three vertices induce a path, contrary
to (7). So |C2| = 1, say C2 = {c2}. Choose d ∈ N(u)∩N(v) adjacent to c2 (which necessarily exists,
as c2 is not an isolated vertex); then u-d-c2 is domineering, a contradiction. This proves (8).

From (8) and since α(G) = 3, it follows that the complement of G is bijoined; and so from 2.4, G
has a vertex of degree zero, contradicting that it is connected. This proves 3.1.

4 Bounding the cop number

In order to prove our main result, we need the following definition and two lemmas regarding it.
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We say that a subgraph H of a graph G is P3-connected if H is connected, and for every pair of
edges e, f ∈ E(H) there exists a sequence of edges e = e0, e1, . . . , ek = f such that ei and ei+1 are two
edges of an induced P3 in G for every 0 ≤ i ≤ k− 1. Note that the property of being P3-connected is
not an intrinsic property of H, but depends on G: even though H is not required to be an induced
subgraph of G, the pairs of edges in the definition must form induced paths in G, not just in H.

4.1. If H is a P3-connected subgraph of a P5-free graph G and u, v ∈ V (G) \ V (H) are such that
uv ∈ E(G), u is anticomplete to V (H) and the endpoints of some edge e ∈ E(H) are non-neighbours
of v, then v is anticomplete to V (H).

Proof. Suppose for a contradiction that v has a neighbour in V (H). As H contains at least two
vertices (as it contains e) and is connected, there exists f ∈ E(H) such that one of its endpoints
is a neighbour of v. Let e = e0, e1, . . . , ek = f be the sequence of edges from the definition of P3-
connectedness (necessarily, k ≥ 1). As v is not adjacent to the endpoints of e0 but is adjacent to at
least one endpoint of ek, there exist ei, ei+1 such that v is not adjacent to the endpoints of ei (say,
x, y) but is adjacent to the other end of ei+1 (say, z). By the choice of the sequence, x is not adjacent
to z. Then, u-v-z-y-x is an induced P5 in G, which is a contradiction. This completes the proof of
4.1.

4.2. If H is a P3-connected subgraph of a connected graph G and v ∈ V (G), then either

(4.2.1) there exists a P3-connected subgraph H ′ of G such that H ⊆ H ′ and v ∈ V (H ′), or
(4.2.2) there exists a P3-connected subgraph H ′ of G such that v ∈ V (H ′) and some u ∈ V (H ′) is

complete to V (H) in H ′, or
(4.2.3) v is complete to V (H).

Proof. Let Q be a shortest path in G with one end v and another end in V (H). Let v = v0-v1- . . . -v`
be the vertex set of Q, where v` ∈ V (H). If ` = 0, that is v ∈ V (H), then H ′ = H satisfies (4.2.1),
and so we assume ` ≥ 1.

Suppose now that v`−1 has a non-neighbour in V (H). Since H is connected, we may suppose that
Q, v` are chosen such that for some w ∈ V (H) we have v`w ∈ E(H) and v`−1w 6∈ E(G). We claim
that in this case H ′ = Q∪H satisfies (4.2.1); let us verify that H ′ is P3-connected. As Q is a shortest
path, it is necessarily induced, and so Q is P3-connected. We also know that H is P3-connected. As
v`−1v` ∈ E(Q) and v`w ∈ E(H) are two edges of an induced P3 in G it follows that Q ∪H (that is,
the graph with vertex set V (Q) ∪ V (H) and edge set E(Q) ∪ E(H)) is P3-connected, as claimed.

It remains to consider the case when v`−1 is complete to V (H). If ` = 1, then v = v`−1 and
(4.2.3) holds, so we may assume ` ≥ 2. Let u = v`−1 and let H ′ be a subgraph of G with V (H ′) =
V (Q) ∪ V (H) and E(H ′) = E(Q) ∪ {uw : w ∈ V (H)}. We claim that H ′ satisfies (4.2.2). Indeed,
u is complete to V (H) in H ′ and H ′ is P3-connected since Q is P3-connected and every edge uw ∈
E(H ′) \ E(Q) forms a induced P3 in G with the edge v`−2u = v`−2v`−1 ∈ E(Q). This finishes the
proof of 4.2.

We are now ready to prove 1.1.

Proof. Suppose for a contradiction that there exists a connected P5-free graph G on which the
robber has a winning strategy to evade two cops, and choose such G with |V (G)| minimum. In a
series of claims we will obtain properties of this graph which will yield the desired contradiction.
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(1) α(G) > 2.

To show (1), it suffices to see that if α(G) ≤ 2, there exists a dominating set of size at most two,
on which two cops may start the game and win at the following turn, which is a contradiction.

(2) There exists a domineering path a-b-r in G.

This follows directly from 1.2 and (1). In the rest of the proof, we will always refer to a fixed
domineering path a-b-r.

(3) For every v ∈ V (G), no vertex of N(v) is complete to a component of G[M(v)].

Suppose otherwise that there exists u ∈ N(v) and a component C of G[M(v)] such that u is
adjacent to every vertex of C. First note that G \C is connected as all vertices in V (G) \C adjacent
to C are in N(v). By minimality of G, there exists a winning strategy for two cops on G \ C. We
will use this strategy to define a winning strategy for two cops on G, which will be a contradiction.
When playing on G, we say the robber’s shadow is on x if the robber is on x ∈ V (G) \ C, and is on
v if the robber is on a vertex of C. In particular, the robber’s shadow is always in G \ C. We show
that any move of the robber yields a valid move for the robber’s shadow in the sense that at every
turn of the game the shadow either stays on its current vertex or moves to an adjacent vertex. At a
given turn, suppose the robber moves from x1 to x2 (in particular, x1x2 ∈ E(G)).

• If x1, x2 ∈ C, then the robber’s shadow stays on v, which is a valid move.
• If x1, x2 /∈ C, then the robber’s shadow also moves from x1 to x2, which is a valid move
• If x1 ∈ C and x2 /∈ C, we note that necessarily x2 ∈ N(v). Hence, the shadow moving from v

to x2 is a valid move.
• If x1 /∈ C and x2 ∈ C, then x1 ∈ N(v) and so the shadow moving from x1 to v is a valid move.

Consider the following strategy for the cops on G. First, the cops follow the winning strategy on
G \C to capture the robber’s shadow. Once the cops have captured the robber’s shadow, either they
have captured the robber (if the robber and its shadow are on the same vertex) or the robber is in C
and its shadow is on v. In the latter case, having captured the shadow, at least one of the cops is on
v. The other cop may then eventually move to u, and then capture the robber since u is complete to
C. Note that in the meantime, the robber cannot leave C as it would be immediately captured by
the cop on v. This proves (3).

Note that the proof of (3) is a retract (special type of homomorphism) argument which is a
standard tool in the study of the game of cops and robbers. A quite general version, which is close
to the one presented here, was proved by Berarducci and Intriglia [3].

(4) For every v ∈ V (G), G[M(v)] is connected.

Using (3), this is exactly the first part of (3) in the proof of the existence of a domineering 3-path.

(5) There exists a strategy for two cops on G to guarantee that, in order to avoid capture, the robber
moves to r.

By (2) we have that N [r] ⊆ N [a] ∪N [b]. Since ab ∈ E(G), this implies that G \ r is a connected
graph. By minimality of G, there exists a winning strategy for two cops on G \ r. The strategy for
cops in (5) is to play this strategy on G as long as the robber has not entered r. If the robber never
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enters r then it is eventually captured since this strategy is winning when restricted to G \ r. Hence,
the robber eventually moves to r (or chooses r as its initial position). This proves (5).

In the rest of the proof, we will construct a strategy for two cops to attempt to capture the robber
on G. However, since c(G) > 2, we may assume that the robber has, and is playing, a strategy to
avoid capture. The cops’ strategy will begin by employing the strategy from (5), and let c1, c2 ∈ V (G)
be the positions of the cops after the robber moves to r. Note that it is possible that c1 = c2.

(6) c1, c2 ∈M(r).

If (6) did not hold, one of the two cops could capture the robber at the next turn, which would
be a contradiction.

(7) For each i ∈ {1, 2}, if ci ∈ N [a], then c3−i 6∈ N(b).

Suppose otherwise that for some i ∈ {1, 2}, ci ∈ N [a] and c3−i ∈ N(b). Then the cops can move
in one turn from {c1, c2} to {a, b}. Being on r at the start of the turn, the robber necessarily will be
in N [r] following its turn. As N [r] ⊆ N [a] ∪ N [b] by (2), the cops may then capture the robber at
the following turn. This contradiction proves (7).

We say that a subgraph H of G is a snare if

(H1) H is P3-connected,
(H2) V (H) ⊆M(r),
(H3) there exists d1d2 ∈ E(H) such that d1 ∈ N [c1] and d2 ∈ N [c2],
(H4) a ∈ V (H), and
(H5) V (H) ∩M(b) 6= ∅.

We finish the proof by showing that if a snare exists then the two cops can capture the robber,
and finally that a snare exists.

(8) There is no snare.

Suppose for a contradiction there exists a snare H. The cops are currently on c1, c2. The cops
move to the endpoints of an edge d1d2 ∈ E(H) as in (H3). Since H is connected, has at least one
edge and a ∈ V (H), there is an edge f ∈ E(H) incident with a. By (H1), there exists a sequence of
edges d1d2 = e0, e1, e2, . . . , ek = f of H such that ei and ei+1 are two edges of an induced P3 in G for
every 0 ≤ i ≤ k − 1. We may suppose without loss of generality that none of e0, . . . ek−1 is incident
with a. Over the next k turns, the cops will follow this sequence of edges. In other words, in i turns
(for 0 ≤ i ≤ k) the cops will be on distinct endpoints of edge ei. Finally, the cops will move to {a, b}.
Note that by (H2), b /∈ V (H). We remark that, since the robber is following a strategy which will
avoid capture, it never enters the closed neighbourhood of a cop.

Let r′ be the first vertex visited by the robber in M(b), and let R be the set of all the previous
positions of the robber. Note that R ⊆ N [b]. Such an r′ exists as once one of the cops is on b (which
always happens in the strategy described above), the robber must move to M(b) as it would otherwise
be captured at the next turn.

We claim that R is anticomplete to V (H). Suppose otherwise that at least one vertex of R has
a neighbour in V (H). By (H2), r has no neighbours in V (H), and so there must exists consecutive

9



positions of the robber r1, r2 ∈ R such that r1 has no neighbours in V (H) (and is not itself in V (H))
but r2 has at least one neighbour in V (H). Since r2 ∈ N [b], the cops are not on {a, b} when the
robber moves to r2, and so they are positioned on distinct endpoints of an edge of H. These endpoints
are non-neighbours of r2, and so it follows from 4.1 that r2 has no neighbours in V (H). This is a
contradiction, which implies our claim. Note that this implies that r′ /∈ V (H).

If the cops are positioned on an edge of H when the robber first moves to r′, then the same
argument yields that r′ has no neighbour in V (H), and because of (H4) we in particular have that
r′a /∈ E(G). Otherwise, the cops are on a, b when the robber moves to r′, and so r′a /∈ E(G). Hence,
in all cases r′a /∈ E(G).

As N [r] ⊆ N [a] ∪N [b], it follows that r′r 6∈ E(G). As G[R] is connected, and r′ has a neighbour
in R there exists an induced path r1-r2-r′ such that r1, r2 ∈ R. Suppose that there exists an edge
xy ∈ E(H) such that r′x ∈ E(G), but r′y /∈ E(G). Then r1-r2-r′-x-y is an induced P5. Hence, no
such edge exists. As H is connected and r′a 6∈ E(H) (in particular, r′ is not complete to V (H))
it follows that r′ is anticomplete to V (H). Since ab ∈ E(G) and a ∈ V (H), it follows that b is
not anticomplete to H. However, by (H5) b is not complete to H. Since H is connected, there
exists xy ∈ E(H) such that bx ∈ E(G) but by /∈ E(G). Then r′-r2-b-x-y is an induced P5. This
contradiction finishes the proof of (8).

It remains to show that there exists a snare in G, a contradiction.

(9) There exists a snare.

Let G′ = G[M(r)]. By (4) G′ is connected. Let P be an induced path in G′ with ends c1 and c2.
Then P is P3-connected, and either c1 = c2 or P contains an edge satisfying (H3), as it has at most
three edges.

Suppose first that c1 ∈ M(b). By 4.2 applied to G′ with H = P and v = a, either we find a
subgraph H ′ satisfying (4.2.1) or (4.2.2), or c1, c2 ∈ N [a]. In the first and second cases, H ′ is a snare;
property (H3) is the only one which takes a little effort to verify. If H ′ satisfies (4.2.1) and c1 6= c2,
then P contains an edge satisfying (H3) as noted above. If H ′ satisfies (4.2.1) and c1 = c2, then
c1x satisfies (H3) for any neighbour x of c1 in H ′; note that x exists by connectivity of H ′ unless
|V (H ′)| = 1, that is a = c1 = c2, which contradicts that c1 ∈ M(b). If H ′ satisfies (4.2.2) and
u ∈ V (H ′) is complete to V (P ) in H ′ then uc1 satisfies (H3). In the remaining case, c1, c2 ∈ N [a]
and G′[{c1, a}] is a snare.

Thus we may assume that c1, c2 ∈ N(b). By (7) we have c1, c2 6∈ N [a]. By (3) there exists
d ∈ V (G′) ∩M(b). Assume first that {c1, c2, d} is not a clique of size three. By 4.2 applied to G′

with H = P and v = d, there exists a P3-connected subgraph H∗ of G′ such that c1, c2, d ∈ V (H∗),
and H∗ contains a path with ends c1 and c2 with at most three edges. Indeed, if (4.2.1) or (4.2.2)
holds then H∗ = H ′ has the required properties. If (4.2.3) holds then H∗ = G′[{c1, c2, d}] is either
an induced P2 if c1 = c2 or an induced P3, as in this case d is adjacent to c1 and c2 and {c1, c2, d} is
not a clique of size three, and so H∗ is again as required.

We now apply 4.2 to G′ with H = H∗ and v = a. As c1, c2 6∈ N [a] and c1, c2 ∈ V (H∗), a is not
complete to V (H∗) and (4.2.3) does not hold. Thus (4.2.1) or (4.2.2) holds, that is there exists a
P3-connected subgraph H ′ of G′ such that c1, c2, d, a ∈ V (H ′) and H ′ still contains a path with ends
c1 and c2 with at most three edges. It is routine to check that H ′ is a snare.

It remains to consider the case when C = {c1, c2, d} is a clique of size three. We proceed similarly
to the proof of 4.2. Let Q be a shortest path from a to C in G′ with vertices a = v0-v1- . . . -v`, where
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v` ∈ C. As c1, c2 6∈ N [a], we have a 6∈ C and so ` ≥ 1.
Assume first that ` ≥ 2 and let H be the subgraph of G′ defined by V (H) = V (Q) ∪ C, and

E(H) = E(Q) ∪ {v`u : u ∈ V (C), v`−1u 6∈ E(G′)} ∪ {v`−1u : u ∈ V (C), v`−1u ∈ E(G′)}.

As Q is P3-connected, H is connected, and every edge in E(H)\E(Q) forms an induced P3 in G either
with the edge v`−2v`−1 or v`−1v`, it follows that H is P3-connected. Note that V (H) ⊆ V (G′) =M(r)
and a, d ∈ V (H). Let us show with what choice of edge (H3) holds. If at least one edge with both
ends in C is in H, then pick such an edge. Otherwise, it follows from the definition of H that v`−1
is necessarily complete to C, and so we can pick c1v`−1. Hence, H is a snare.

It remains to consider the case ` = 1. In this case a has a neighbour in C, and so ad is the unique
edge from a to C, as c1, c2 6∈ N [a]. Then H = G′[{a, d, c1}] is an induced P3 in G′ and the edge dc1
satisfies (H3). It follows that H is a snare in this last case.

This completes the proof of (9) and thus of the theorem.
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