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Abstract

Policy gradient methods enjoy strong practical performance
in numerous tasks in reinforcement learning. Their theoret-
ical understanding in multiagent settings, however, remains
limited, especially beyond two-player competitive and poten-
tial Markov games. In this paper, we develop a new frame-
work to characterize optimistic policy gradient methods in
multi-player Markov games with a single controller. Specifi-
cally, under the further assumption that the game exhibits an
equilibrium collapse, in that the marginals of coarse corre-
lated equilibria (CCE) induce Nash equilibria (NE), we show
convergence to stationary ϵ-NE in O(1/ϵ2) iterations, where
O(·) suppresses polynomial factors in the natural parameters
of the game. Such an equilibrium collapse is well-known to
manifest itself in two-player zero-sum Markov games, but
also occurs even in a class of multi-player Markov games
with separable interactions, as established by recent work.
As a result, we bypass known complexity barriers for com-
puting stationary NE when either of our assumptions fails.
Our approach relies on a natural generalization of the classi-
cal Minty property that we introduce, which we anticipate to
have further applications beyond Markov games.

Introduction
Realistic strategic interactions typically occur in stateful
multiagent environments in which agents’ decisions do not
only determine their immediate rewards, but they also shape
the next state of the system. Multiagent reinforcement learn-
ing (MARL), endowed with game-theoretic principles, fur-
nishes a rigorous framework whereby artificial agents with
strong performance guarantees can be developed even in
such complex and volatile environments. Indeed, algorith-
mic advances in MARL have been translated to exciting em-
pirical breakthroughs in grand AI challenges, covering two-
player competitive games (Bowling et al. 2015; Brown and
Sandholm 2017; Moravčı́k et al. 2017), as well as popular
multi-player games (Brown and Sandholm 2019). In spite of
those remarkable developments, our theoretical understand-
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ing is still lagging behind, especially in multi-player games;
this is precisely the primary focus of our paper.

In particular, we operate in the canonical framework
of Markov (aka. stochastic) games (Shapley 1953; Zhang,
Yang, and Basar 2019), which captures multiagent Markov
decision processes. Such settings have been the subject of
intense scrutiny in recent years, with a flurry of results
emerging for computing Nash equilibria (NE)—the stan-
dard game-theoretic equilibrium concept—in either two-
player zero-sum games or multi-player cooperative games;
our synopsis in the sequel features numerous such devel-
opments. Algorithmic advances beyond those classes of
games are scarce in the literature, and have been con-
siderably impeded by recently established computational
barriers for stationary NE even in turn-based two-player
Markov games (Daskalakis, Golowich, and Zhang 2023; Jin,
Muthukumar, and Sidford 2023); besides those recent lower
bounds, any student of algorithmic game theory should also
come to terms with the intrinsic intractability of NE even in
one-shot (stateless) general-sum games (Daskalakis, Gold-
berg, and Papadimitriou 2006). Yet, characterizing classes
of games that elude those computational barriers is recog-
nized as an important research direction in this line of work.

Our second key motivation—which will naturally coa-
lesce with the aforedescribed considerations—is to charac-
terize the behavior of policy gradient methods (Agarwal
et al. 2021) in Markov games. Such techniques are espe-
cially natural from an optimization standpoint, and enjoy
strong practical performance in a number of tasks (Schul-
man et al. 2015, 2017). Furthermore, unlike other popular
methods, they are amenable to function approximation (Sut-
ton et al. 1999), thereby enabling to tackle enormous action
spaces under continuous parameterizations.

In light of the inability of traditional gradient-based meth-
ods to converge even in normal-form zero-sum games (Mer-
tikopoulos, Papadimitriou, and Piliouras 2018), we focus
here on analyzing optimistic gradient descent (henceforth
OGD). Optimism has been a crucial ingredient in attain-
ing convergence in monotone settings and beyond (Cai,
Oikonomou, and Zheng 2022; Gorbunov, Taylor, and Gidel
2022; Golowich et al. 2020), but its role is not well-
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understood even in two-player zero-sum Markov games. In
this paper, we take an important step towards closing this
gap, which will uncover as a byproduct a new class of multi-
player Markov games for which we can compute efficiently
stationary Nash equilibria.

Our Results
To contextualize our approach, we first have to highlight a
classical condition in variational inequalities (VIs) which
guarantees convergence under certain first-order methods;
namely, the so-called Minty property (Facchinei and Pang
2003; Mertikopoulos et al. 2019). A great number of ex-
isting results in optimization—not least in the multiagent
setting—leverage that condition to analyze the behavior of
learning algorithms. Unfortunately, Daskalakis, Foster, and
Golowich (2020) observed that the Minty property fails even
in simple two-player Markov games with a single controller
(recalled in Proposition 3). Furthermore, although several
relaxations of the Minty property have been proposed, none
has been able to capture such settings, thereby leaving open
whether optimistic policy gradient methods converge.

In this context, our first main contribution is to intro-
duce a generalization of the Minty property (Property 4)
which addresses the aforementioned difficulties by captur-
ing a broad class of multi-player Markov games. Specifi-
cally, our condition is more permissive in two crucial as-
pects. First, it allows distorting the underlying operator by
a certain well-behaved function; this modification already
suffices to subsume the counterexample of Daskalakis, Fos-
ter, and Golowich (2020)—and generalizations thereof. The
second modification relaxes the pointwise aspect of the orig-
inal Minty property into an average guarantee, in the precise
sense of Property 5.

Now the upshot is that OGD—under a suitable
parameterization—still converges to an ϵ-strong solution of
the induced VI problem after T = Oϵ(1/ϵ

2) iterations even
under our more permissive criterion (Theorem 6), where
the notation Oϵ(·) here suppresses polynomial factors in all
natural parameters of the problem. In the full version, we
further establish that this guarantee is robust in the presence
of perturbations akin to relative deterministic noise—a
ubiquitous model in control theory and optimization—and
a certain slackness in our condition; the latter extension
turns out to be crucial to capture policy optimization under
greedy exploration.

As we have alluded to, the main application of our gen-
eral theory targets multi-player Markov games, formally in-
troduced in the sequel. In light of the inherent computa-
tional barriers described earlier, we need to impose addi-
tional structure to obtain meaningful guarantees. Our first
assumption is that the underlying Markov game exhibits a
certain equilibrium collapse, in that the marginals of coarse
correlated equilibria induce Nash equilibria (Definition 11).
It is well-known that such is the case in two-player zero-sum
games, but recent work (Kalogiannis and Panageas 2023;
Park, Zhang, and Ozdaglar 2023) has also revealed that equi-
librium collapse persists even in a class of multi-player zero-
sum games with separable interactions—building on a simi-
lar result in normal-form polymatrix games (Cai et al. 2016).

Yet, perhaps surprisingly and in stark contrast to normal-
form games, equilibrium collapse alone does not suffice
to enable efficient computation of stationary Nash equilib-
ria (Daskalakis, Golowich, and Zhang 2023; Jin, Muthuku-
mar, and Sidford 2023). For this reason, we further posit that
the game admits a single controller, a quite classical setting
in the literature. The upshot now is that under those two as-
sumptions, our condition that generalizes the Minty property
holds (Lemma 13), which brings us to one of our main re-
sults.

Theorem 1 (Informal; precise version in Theorem 14).
Consider any multi-player Markov game G with a single
controller. If G exhibits equilibrium collapse, there is a
poly(|G|, 1/ϵ) algorithm that receives gradient feedback and
computes a stationary ϵ-Nash equilibrium.

Above, we denote by poly(|G|) a polynomial in the nat-
ural parameters of the game; the precise version appears
as Theorem 14. In light of existing hardness results for
computing stationary NE even in turn-based two-player
Markov games (Daskalakis, Golowich, and Zhang 2023;
Jin, Muthukumar, and Sidford 2023), it is unlikely that the
assumption of having a single controller can be signifi-
cantly broadened. We also consider our theory investigating
tractability beyond the Minty property to have interest be-
yond Markov games, but this is left for future work.

Preliminaries on Markov Games
In this section, we provide the necessary preliminaries on
Markov games.

Notation We let N = {1, 2, . . . , } denote the set of nat-
ural numbers and N∗ := N ∪ {0}. For n ∈ N, we use
the shorthand notations [[n]] := {1, . . . , n} and [[n]]∗ :=
{0, 1, . . . , n}. For a vector z ∈ Rd, we often use the variable
r ∈ [[d]] to index its coordinates, so that the rth coordinate
is accessed by z[r]. The inequality z ≤ · is to be interpreted
coordinate-wise. For two vectors z, z′ ∈ Rd, we denote by
z◦z′ ∈ Rd their Hadamard product: (z◦z′)[r] := z[r]·z′[r],
for all r ∈ [[d]].

Moreover, we will let X represent a convex nonempty
and compact subset of a Euclidean space. We denote by
DX its ℓ2 diameter. A function F : X → X is called L-
Lipschitz continuous (with respect to the ℓ2 norm ∥ · ∥2) if
∥F (x)− F (x′)∥2 ≤ L∥x− x′∥2, for any x,x′ ∈ X ; a dif-
ferentiable function is called L-smooth if its gradient is L-
Lipschitz continuous. Finally, to lighten the exposition, we
will often use the On(·) notation to indicate the dependency
of a function solely on parameter n.

Markov games We are interested in analyzing the conver-
gence of policy gradient methods in multi-player Markov
(aka. stochastic) games (Shapley 1953) in the tabular
regime. In such games, each player repeatedly elects actions
within a multiagent MDP so as to maximize a reward func-
tion. Formally, a multi-player Markov game G is specified
by a tuple (N ,S, {Ai}ni=1,P, {Ri}ni=1, ζ,ρ) =: G, whose
constituents are defined as follows.

• N := [[n]] is the set of players (or agents);
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• S is a finite state space;
• Ai is the finite and nonempty set of available actions for

each player i ∈ [[n]] (for simplicity, and without loosing
any generality, we posit that the action set does not de-
pend on the underlying state); further, the joint action set
is denoted by A :=×n

i=1 Ai;
• P is the transition probability function, so that P(s′|s,a)

represents the probability of transitioning to state s′ ∈ S
starting from state s ∈ S under the joint action a ∈ A;

• Ri : S × A → [−1, 1] is the (normalized) reward func-
tion of player i ∈ [[n]], so that Ri(s,a) represents the
instantaneous reward when players select a ∈ A in state
s ∈ S; (For simplicity, the rewards are deterministic.)

• ζ := min(s,a)∈S×A(1 −
∑

s′∈S P(s′|s,a)) > 0 is a
lower bound on the probability that the game will ter-
minate at some step of the shared MDP; and

• ρ ∈ ∆(S) is the initial distribution over states, assumed
to have full support.

Learning algorithms Learning in such multiagent set-
tings proceeds as follows. At every step h ∈ N∗ each player
i ∈ [[n]] 1) observes the underlying state sh ∈ S; 2) se-
lects an action ai,h ∈ Ai; and 3) subsequently receives some
feedback from the environment, to be specified in the sequel.
This process is repeated until the game terminates, which in-
deed occurs with probability 1 since we assume that ζ > 0;
the last step before the game terminates will be denoted by
H ∈ N∗, which is a random variable.

Policies A (potentially randomized) stationary policy for
player i ∈ [[n]] is a mapping πi : S → ∆(Ai); that is,
a stationary policy remains invariant for all steps h ∈ N∗.
We only consider Markovian policies throughout this pa-
per, without explicitly mentioning so. We will assume that
players follow direct parameterization so that πi 7→ xi ∈
∆(Ai)

S =: Xi with the strategy xi,s[ai] := πi(ai|s) for
all (ai, s) ∈ Ai × S . As such, strategies and policies will
be used interchangeably. The set of all possible (stationary)
policies for player i ∈ [[n]] will be denoted by Πi, while
Π :=×n

i=1 Πi. We will also let X :=×n
i=1 Xi.

Value The value function V π
i (s) with respect to an initial

state s ∈ S gives the expected reward for player i ∈ [[n]]
under the joint policy π := (π1, . . . ,πn) ∈ Π:

V π
i (s) := Eπ

[
H∑

h=0

Ri(sh,ah)|s0 = s

]
, (1)

where the expectation above is taken with respect to the tra-
jectory induced by the joint policy π ∈ Π. We also gen-
eralize (1) by defining V π

i (ρ) := Es∼ρ[V
π
i (s)], where we

recall that ρ ∈ ∆(S). Similarly, the Q function with respect
to player i is defined as

Qπ
i : (s,a) 7→ Eπ

[
H∑

h=0

Ri(sh,ah)|s0 = s,a0 = a

]
,

where the expectation is again taken over the trajectory in-
duced by π ∈ Π. In this context, we will assume that each
player receives as feedback from the environment the gradi-
ent of its value function with respect to its strategy.

Nash equilibrium Consider any player i ∈ [[n]], and let
µ−i : S → ∆(A−i) be a potentially correlated policy. We
denote a stationary best response policy of i under µ−i by

π†
i = π†

i (µ−i) ∈ Πi, so that V †,µ−i

i (ρ) := V
π†

i ,µ−i

i (ρ).1

Definition 2. A (stationary) product policy π⋆ ∈ Π is an
ϵ-Nash equilibrium if maxi

{
V

†,π⋆
−i

i (ρ)− V π⋆

i (ρ)
}
≤ ϵ.

Finally, for π ∈ Π, we define the state visitation distri-
bution dπs0 ∈ ∆(S) by dπs0 [s] ∝

∑
h∈N∗ Pπ(sh = s|s0),

and dπρ := Es0∼ρ[d
π
s0 ]. It will also be useful to consider the

unnormalized counterparts of those distributions: d̃πs0 [s] =∑
h∈N∗ Pπ(sh = s|s0) and d̃πρ := Es0∼ρ[d̃

π
s0 ].

Convergence Beyond the Minty Property
A classical condition that guarantees tractability for a vari-
ational inequality (VI) problem is the so-called Minty prop-
erty (Facchinei and Pang 2003). To be precise, let F : X →
X be a single-valued operator. The Minty property postu-
lates the existence of a point x⋆ ∈ X such that

⟨x− x⋆, F (x)⟩ ≥ 0, ∀x ∈ X . (2)

By now, there has been significant progress on under-
standing convergence of first-order methods under the Minty
property. Unfortunately, and crucially for the purpose of this
work, even two-player zero-sum Markov games fail to sat-
isfy (2), as was first observed by Daskalakis, Foster, and
Golowich (2020). In particular, they studied a simple two-
player zero-sum Markov game known as Von Neumann’s
ratio game, given by

V (x1,x2) :=
x⊤
1 Rx2

x⊤
1 Sx2

, (3)

where x1 ∈ ∆(A1) =: X1,x2 ∈ ∆(A2) =: X2, and R,S ∈
RA1×A2 . It is further assumed that x⊤

1 Sx2 ≥ ζ, for some
parameter ζ > 0. The following proposition underlies much
of the difficulty of analyzing policy gradient methods even
under the simple ratio game (3).

Proposition 3 (Daskalakis, Foster, and Golowich, 2020).
Fix any scalars ϵ, s ∈ (0, 1), and suppose that

R :=

(
−1 ϵ
−ϵ 0

)
and S :=

(
s s
1 1

)
. (4)

Then, the ratio game induced by the matrices in (4) fails to
satisfy the Minty property (2).

Notwithstanding the above realization, empirical simula-
tions suggest that optimistic policy gradient methods do in
fact exhibit convergent behavior. As a result, a criterion more
robust than the Minty property is needed. This is precisely
the primary subject of this section.

Before we proceed with our generalized condition, let us
make a further observation regarding the ratio game defined
in Proposition 3 that will be useful in the sequel: that game

1It is well-known that there is always a stationary policy among
the set of best response policies (Sutton and Barto 2018).
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admits a single controller—the transition probabilities de-
pend solely on the strategy of one of the players; indeed, we
note that x⊤

1 Sx2 = x⊤
1 s for any (x1,x2) ∈ X1×X2, where

s = (s, 1)—and thereby does not depend on x2.
Now, to address the aforementioned difficulties, we intro-

duce and study a new condition, described below.

Property 4 (Generalized Minty property). Let F : X → X
be such that X = ×d

r=1 Zr for d ∈ N, and 1Zr
be the

vector with 1 for all entries corresponding to the component
Zr, and 0 otherwise. Suppose further that A : X → X and
W : X → X are functions such that

• A(x) :=
∑d

r=1 ar(x)1Zr , where each ar : X → R is
α-Lipschitz continuous; 0 < ℓ ≤ A(x) ≤ h; and

• W (x) :=
∑d

r=1 wr(x)1Zr ; 0 < ℓ ≤ W (x) ≤ h.

We say that the induced VI problem satisfies the (α, ℓ, h)-
generalized Minty property if there exists x⋆ ∈ X so that

⟨x− x⋆, F (x) ◦A(x) ◦W (x⋆)⟩ ≥ 0, ∀x ∈ X , (5)

where ◦ denotes component-wise multiplication.

Several remarks are in order regarding this property. First,
a key assumption is that the underlying joint strategy space
X can be decomposed as a Cartesian product, and that the
functions A and W adhere to that structure. It is evident that
Property 4 is more general than (2) since one can simply
take A and W to be constant functions. In fact, when d = 1
the two conditions are equivalent; it is precisely the product
structure of X—which is inherently present in multi-player
games—that makes Property 4 interesting. It is also worth
noting a related condition appearing in (Harris et al. 2023,
Appendix C.5), although it did not have any algorithmic im-
plications.

Let us now relate Property 4 to the difficulty exposed
by Proposition 3 in the context of the ratio game. One can
show that if x⋆ ∈ X1×X2 is a Nash equilibrium of the ratio
game, then if we take A(x1,x2) and W (x1,x2) as

(x⊤
1 s

|A1|︷ ︸︸ ︷
(1, . . . , 1),

|A2|︷ ︸︸ ︷
(1, . . . , 1)),

( 1

x⊤
1 s

|A1|︷ ︸︸ ︷
(1, . . . , 1),

|A2|︷ ︸︸ ︷
(1, . . . , 1)

)
,

respectively, then (5) is satisfied (in this particular applica-
tion, d = 2). Furthermore, having assumed that x⊤

1 Sx2 ≥
ζ > 0, we also have control over the lower bound ℓ (as
well as the upper bound h); naturally, taking ℓ arbitrarily
small trivializes Property 4, and so the interesting regime
occurs when ℓ is bounded away from 0—this also becomes
evident from the guarantee of Theorem 6. This observation
regarding the VI induced by the ratio game is in fact non-
trivial, and it is a byproduct of the minimax theorem shown
by Shapley (1953); in the sequel, we will prove this property
in much greater generality.

As we shall see, Property 4 is already permissive enough
to lead beyond known results. Nevertheless, to obtain as gen-
eral results as possible, we next introduce a further extension
of Property 4.

Property 5 (Average version of Property 4). Under the
preconditions of Property 4 with respect to some triple

(α, ℓ, h) ∈ R3
>0, we say that the induced VI problem sat-

isfies the average (α, ℓ, h)-generalized Minty property if for
any sequence σ(T ) := (x(t))1≤t≤T there exists X ∋ x⋆ =

x⋆(σ(T )) so that

T∑
t=1

⟨x(t) − x⋆, F (x(t)) ◦A(x(t)) ◦W (x⋆)⟩ ≥ 0. (6)

Property 4 clearly implies Property 5 as a suitable x⋆ ∈ X
would make every term in the summand (6) nonnegative; we
have found that the additional generality of the latter prop-
erty is useful for some applications.

We are now ready to proceed to the main result of this
section, which concerns the behavior of the update rule

x(t) := ΠX (x̂(t) − ηA(x(t−1)) ◦ F (x(t−1))),

x̂(t+1) := ΠX (x̂(t) − ηA(x(t)) ◦ F (x(t))),
(OGD)

for t ∈ N. Above, η > 0 is the learning rate; ΠX (·) is the
Euclidean projection operator; and x(0) = x̂(1) ∈ X is an
arbitrary initialization. The update rule (OGD) is the famil-
iar optimistic gradient descent method (Chiang et al. 2012;
Rakhlin and Sridharan 2013), but with an important twist:
the operator F (x(t)) is now replaced by A(x(t)) ◦ F (x(t)),
where A : X → X is a problem-specific function—in direct
correspondence with Property 4; this can be simply viewed
as incorporating a time-varying but non-vanishing learning
rate. We remark that it is assumed that A can be accessed
in order to perform the update rule (OGD); this assumption
will be discussed and addressed in the context of our appli-
cations. Below, we show that Property 5 is indeed sufficient
to guarantee tractability for the induced VI problem, in the
following formal sense.

Theorem 6. Let X = ×d
r=1 Zr for some d ∈ N and

F : X → X be an L-Lipschitz continuous operator with
BF := max1≤r≤d ∥Fr∥2. Suppose further that the aver-
age (α, ℓ, h)-generalized Minty property (Property 5) holds.
Then, for any ϵ > 0, after T ≥ 2D2

Xh
ℓϵ2 iterations of (OGD)

with learning rate η ≤ 1
4

√
ℓ

h3L2+hB2
Fα2d

there is a point

x(t) ∈ X such that for any x⋆ ∈ X ,

⟨x(t) − x⋆, F (x(t))⟩ ≤ 2d

(
maxr DZr

ηℓ
+

hBF

ℓ

)
ϵ.

Proof sketch The proof of this theorem is deferred to the
full version, but we briefly describe the key ingredients here.
In a nutshell, we analyze optimistic gradient descent (OGD)
following the regret analysis of optimistic mirror descent
in the context of multi-player games (Rakhlin and Sridha-
ran 2013; Syrgkanis et al. 2015); more precisely, we essen-
tially view each component over Zr, comprising the Carte-
sian product X :=×d

r=1 Zr, as a separate player. The twist
is that—in accordance with (OGD)—the observed utility is
taken to be Fr(x

(t)) ◦ Ar(x
(t)), instead of Fr(x

(t)), where
Fr is the rth component of F . Importantly, the structure im-
posed on A(x) by Property 5 enables us to show that a suit-
able weighted notion of regret enjoys a certain upper bound
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independent of both A and W . Thus, leveraging (6), we are
able to show—following earlier work (Anagnostides et al.
2022)—that the second-order path lengths of the dynamics
are bounded. Then, Theorem 6 follows by the assumption
that 0 < ℓ ≤ A(x) ≤ h; that is, incorporating A(x) into the
update rule (OGD) does not distort by much the underlying
operator F .

A point x(t) such that ⟨x(t) − x⋆, F (x(t))⟩ ≤ ϵ for any
x⋆ ∈ X—as in the guarantee of Theorem 6—is known
as an ϵ-approximate solution to the Stampacchia VI prob-
lem (aka. an ϵ-approximate strong solution). To make this
guarantee more concrete, and to connect it with the forth-
coming applications, let us consider an n-player game so
that F = (F1, . . . , Fn) and Fi := −∇xi

ui(x), where
ui : X → R is the differentiable utility of player i ∈ [[n]].

Corollary 7. Under the preconditions of Theorem 6, we
can compute a point x ∈ X after a sufficiently large T =
Oϵ(1/ϵ

2) iterations of (OGD), for any ϵ > 0, such that

1. if each ui(xi, ·) is L-smooth, then for any player i ∈
[[n]] and x⋆

i ∈ Xi with ∥x⋆
i − xi∥2 ≤ δ, ui(x) −

ui(x
⋆
i ,x−i) ≥ −ϵ− L

2 δ
2;

2. if each ui(xi, ·) is gradient dominant, then for any player
i ∈ [[n]] and x⋆

i ∈ Xi, ui(x)− ui(x
⋆
i ,x−i) ≥ −ϵ.

To be precise, the (per-player) gradient dominance prop-
erty postulates that

ui(x)− max
x⋆

i ∈Xi

ui(x
⋆
i ,x−i) ≥ G min

x⋆
i ∈Xi

⟨xi−x⋆
i ,∇xiui(x)⟩

for all x ∈ X , where G > 0 is some parameter. As such,
Item 2 follows directly by definition and Theorem 6. Item 1
above is more permissive, but only yields a local optimal-
ity guarantee. Still, it turns out that computing such points
is hard even in smooth min-max optimization (Daskalakis,
Skoulakis, and Zampetakis 2021); more precisely, Item 1 is

interesting in the local regime δ <
√

2ϵ
L ; see (Daskalakis,

Skoulakis, and Zampetakis 2021, Definition 1.1); other no-
tions of local optimality have also been studied in the litera-
ture, but this is not in our scope here.

Before we conclude this section, let us highlight some in-
teresting extensions of Theorem 6 included in the full ver-
sion. First, one can further broaden the scope of Property 5
by replacing the right-hand side of (6) by −γT , for some
parameter γ ∈ R≥0. We show that we can then compute
an Oϵ,γ(

√
γ + ϵ)-approximate strong solution. This partic-

ular relaxation turns out to be crucial to capture policy pa-
rameterization under Θγ(γ)-greedy exploration. In such set-
tings, one has control over the parameter γ, and so by taking
γ := ϵ2 we can generalize the guarantee of Theorem 6.

Our second extension concerns the behavior of (OGD) in
the presence of noise. Our model of perturbation is akin to
the standard relative deterministic noise, wherein the error
is proportional to the distance from optimality, for an ap-
propriate notion of distance. More precisely, for parameters
ρ, δ > 0, we assume access to a noisy operator F δ,ρ : X →
X such that ∥F δ,ρ(x) − F (x)∥2 ≤ δ · EQGAP(x), where
EQGAP(x) : X ∋ x 7→ maxx⋆∈X ⟨x − x⋆, F (x)⟩ repre-
sents the equilibrium gap. We further posit that F δ,ρ satisfies

a relaxed version of Property 5 in which the right-hand side
of (6) can be as small as −ρ

∑T
t=1(EQGAP(x(t)))2. In this

context, we show that the conclusion of Theorem 6 is robust
if δ and ρ are small enough.

Optimistic Policy Gradient in Multi-Player
Markov Games

In this section, we leverage the theory developed earlier in
order to characterize optimistic policy gradient methods in
multi-player Markov games. In light of the inherent hardness
of computing Nash equilibria in general-sum games, we will
restrict our attention to more structured classes of Markov
games. The first assumption we consider can be viewed as a
natural counterpart of the Minty property, but with respect to
the value functions—without linearizing by taking the gra-
dients.

Assumption 8. Let G be a Markov game. There exists a joint
policy (π⋆

1 , . . . ,π
⋆
n) ∈ Π such that

n∑
i=1

V
π⋆

i ,π−i

i (ρ)−
n∑

i=1

V π
i (ρ) ≥ 0, ∀(π1, . . . ,πn) ∈ Π.

Crucially, unlike the Minty property (2), Assumption 8
subsumes two-player zero-sum (Markov) games. Indeed,
Shapley (1953) proved that there exist policies (π⋆

1 ,π
⋆
2) ∈

Π such that

V π⋆
1 ,π2(ρ) ≤ V π⋆

1 ,π
⋆
2 (ρ) ≤ V π1,π

⋆
2 (ρ), ∀(π1,π2) ∈ Π.

Here, V1(ρ) := −V (ρ) and V2(ρ) := V (ρ) (since the game
is zero-sum). The above display establishes Assumption 8
since V

π⋆
1 ,π2

1 (ρ) + V
π1,π

⋆
2

2 (ρ) ≥ 0. In other words, As-
sumption 8 is a byproduct of Shapley’s minimax theorem.

It is worth noting that any (stationary) Nash equilibrium
(π⋆

1 , . . . ,π
⋆
n) ∈ Π satisfies

n∑
i=1

V π⋆

i (ρ)−
n∑

i=1

V
πi,π

⋆
−i

i (ρ) ≥ 0, ∀(π1, . . . ,πn) ∈ Π,

which closely resembles the condition of Assumption 8.
However, unlike Assumption 8, the above condition always
holds since (stationary) NE always exist.

As it will become clear, Assumption 8 is naturally associ-
ated with Property 4. We also introduce a more permissive
assumption in direct correspondence with Property 5.

Assumption 9. Let G be a Markov game. For any sequence
of product policies σ(T ) := (π(t))1≤t≤T , there exists Π ∋
π⋆ = π⋆(σ(T )) such that

T∑
t=1

n∑
i=1

V
π⋆

i ,π
(t)
−i

i (ρ)−
T∑

t=1

n∑
i=1

V π(t)

i (ρ) ≥ 0.

Beyond the two-player zero-sum setting, we first show
that Assumption 9 is satisfied for the class of zero-sum poly-
matrix Markov games (Kalogiannis and Panageas 2023) (see
also (Park, Zhang, and Ozdaglar 2023)).
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Polymatrix zero-sum Markov games A polymatrix
game is based on an undirected graph G = (V,E). Each
node i ∈ V is (uniquely) associated with a player, while
every edge {i, i′} ∈ E represents a pairwise interaction be-
tween players i and i′. It is assumed that the reward of each
player is given by the sum of the rewards from each game en-
gaged with its neighbors. The zero-sum aspect imposes that
the sum of the players’ rewards is 0. Such games were inves-
tigated by Cai et al. (2016) under the normal form represen-
tation. For the Markov setting, Kalogiannis and Panageas
(2023) further assumed that in each state there is a single
player (not necessarily the same) whose actions determine
the transition probabilities to the next state. For that class of
games, with a careful examination of their analysis we are
able to show the following result.
Proposition 10. Assumption 9 is satisfied for any polyma-
trix zero-sum Markov game.

In fact, this result is a byproduct of a more general char-
acterization that we prove. We first recall the concept of a
coarse correlated equilibrium (CCE), which relaxes Defini-
tion 2 by allowing correlated policies. We will further use
the concept of an ϵ-average CCE (ϵ-ACCE), a relaxation
of CCE in which the sum—instead of the maximum as in
CCE—of the players’ deviation benefits is at most ϵ.
Definition 11 (Equilibrium collapse). Let G be a Markov
game. We say that G exhibits equilibrium collapse if there
is a C = C(G) ∈ R>0 such that for any stationary ϵ-ACCE
µ ∈ ∆(A)S of G, the marginal policies (π1, . . . ,πn) =
(π1(µ), . . . ,πn(µ)) form a (Cϵ)-Nash equilibrium of G.

We remark that the prior work on zero-sum polymatrix
Markov games established equilibrium collapse with respect
to ϵ-CCE (Kalogiannis et al. 2023), but their argument read-
ily carries over for ACCE as well. Proposition 10 is thus
implied by the following result.
Proposition 12. Assumption 9 is satisfied in any Markov
game G exhibiting equilibrium collapse per Definition 11.

Having justified Assumptions 8 and 9, we now proceed
to establishing Property 4. Taking a step back, one might
hope that equilibrium collapse (in the sense of Definition 11)
would already suffice to efficiently compute stationary NE—
as in the case of normal-form games. However, recent lower
bounds dispel any such hopes, thereby necessitating addi-
tional structure in order to elude those intractability barriers.
This is precisely where the admission of a single controller
comes into play, an assumption crucial for establishing Prop-
erty 5. Indeed, this is shown in the following key lemma,
which relies on the expression of the difference of the value
function and the connection between the Q function and the
gradient of the value function. In accordance with our earlier
theory, we let FG(x) := −(∇x1

V1(ρ), . . . ,∇xn
Vn(ρ)).

Lemma 13. Consider a Markov game G, and let

Λi(x,x
⋆)[s, ai] :=

d̃
π⋆
i ,π−i

ρ [s]

d̃π
ρ [s]

for i ∈ [[n]] and (s, ai) ∈ S ×
Ai. Further, let Λ(x,x⋆) := (Λ1(x,x

⋆), . . . ,Λn(x,x
⋆)).

If Assumption 8 holds, then there exists x⋆ ∈ X such that

⟨x− x⋆, F (x) ◦ Λ(x,x⋆)⟩ ≥ 0, ∀x ∈ X . (7)

In particular, if G admits a single controller, denoted by
cntrlG , then Property 4 holds with

Ai(x)[s, ai] :=

{
1 : if i ̸= cntrlG(
d̃πi
ρ [s]

)−1

: if i = cntrlG ,

and

Wi(x
⋆)[s, ai] :=

{
1 : if i ̸= cntrlG

d̃
π⋆

i
ρ [s] : if i = cntrlG .

We see that (7)—a generalization of Property 4—holds
without any additional assumptions on the transition proba-
bilities. Yet, decoupling Λ(x,x⋆) := A(x) ◦W (x⋆) in the
sense of Property 4 turns out to be crucial to apply our tech-
niques. In fact, the recent hardness result of Park, Zhang,
and Ozdaglar (2023) suggests that the general case should be
intractable. We further remark that Lemma 13 applies sim-
ilarly to conclude Property 5 if we substitute Assumption 8
by Assumption 9.

Finally, having established Lemma 13, we can now ap-
ply Theorem 6 along with the gradient dominance prop-
erty to obtain one of our main results. Specifically, we ap-
propriately bound all of the involved parameters appear-
ing in Theorem 6; as usual, this includes a certain distri-
bution mismatch coefficient CG—the multi-player analog of
the quantity considered by Daskalakis, Foster, and Golowich
(2020)—as well as a dependency on 1/∥ρ∥∞, necessitating
that the original distribution ρ assigns a non-negligible prob-
ability mass to all states.
Theorem 14. Let G be a Markov game that satisfies As-
sumption 9 and admits a single controller. Then, (OGD) after
1/ϵ2 · poly(n,

∑n
i=1 |Ai|, |S|, 1/ζ, CG , 1/∥ρ∥∞) iterations

computes a stationary ϵ-NE.
The importance of Theorem 6 stems not just from its com-

putational complexity implications, but also from its appli-
cability in a decentralized environment. Indeed, all players
are performing gradient steps without any further informa-
tion from their environment, with the sole exception of the
controller. In particular, as predicted by Lemma 13, per-
forming the update rule (OGD) requires some further access
to the environment in order to estimate the (unnormalized)
state visitation distribution d̃πρ [·]; using standard arguments,
this requires poly(|G|, 1/ϵ) time to determine within ϵ-error,
which suffices for applying Theorem 6.

It is worth noting that our proof technique shares an in-
teresting conceptual similarity with the approach of Erez
et al. (2023), also based on a weighted notion of regret. The
key point of departure is that we explicitly incorporate the
weights into the update rule (OGD), which in turn induces a
second-order dependency on the deviation of the weights in
lieu of a first-order bound; this turns out to be crucial for es-
tablishing Theorem 14. Yet, our approach is more restrictive
in that it rests on having a single controller.

Further Related Work
Computing and learning equilibria in Markov games has
attracted considerable interest recently. Most focus has
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been on the Nash equilibrium in either identical-interest—
or more generally, potential—games (Fox et al. 2022;
Leonardos et al. 2022; Aydin and Eksin 2023; Ding et al.
2022; Zhang et al. 2022b), or two-player zero-sum Markov
games (Daskalakis, Foster, and Golowich 2020; Cen et al.
2023; Wei et al. 2021; Zhang et al. 2020; Sayin et al.
2021; Huang et al. 2022; Cui and Du 2022; Perolat et al.
2015; Zeng, Doan, and Romberg 2022; Pattathil, Zhang,
and Ozdaglar 2023; Yang and Ma 2023), albeit with a
few exceptions (Qin and Etesami 2023; Sayin 2023; Gi-
annou et al. 2022; Kalogiannis and Panageas 2023; Kalo-
giannis et al. 2023; Park, Zhang, and Ozdaglar 2023). In
general-sum multi-player games, in light of the intractabil-
ity of Nash equilibria, most focus has been on computing or
indeed learning (coarse) correlated equilibria (Daskalakis,
Golowich, and Zhang 2023; Jin et al. 2021; Erez et al. 2023;
Liu, Szepesvári, and Jin 2022; Zhang et al. 2022a).

Nevertheless, an important question has been to iden-
tify classes of multi-player games that circumvent the in-
tractability of NE in general games. For example, recent
work (Kalogiannis and Panageas 2023; Park, Zhang, and
Ozdaglar 2023) investigates the class of polymatrix Markov
games, which is based on the homonymous class of normal-
form games (Cai et al. 2016); indeed, the topic of net-
work games has been particularly popular in the litera-
ture on MARL (see (Zhang et al. 2018; Chu, Chinchali,
and Katti 2020; Parise and Ozdaglar 2019), and references
therein). Specifically, Kalogiannis and Panageas (2023) and
Park, Zhang, and Ozdaglar (2023) leverage the equilibrium
collapse of CCE to NE to show that Markov NE can be
computed efficiently; in stark contrast, Park, Zhang, and
Ozdaglar (2023) showed that computing a stationary NE
is PPAD-hard; the latter hardness result is based on ear-
lier work by Daskalakis, Golowich, and Zhang (2023); Jin,
Muthukumar, and Sidford (2023). In the class of polyma-
trix zero-sum Markov games, our novelty compared to ear-
lier work (Kalogiannis and Panageas 2023; Park, Zhang, and
Ozdaglar 2023) (see also the concurrent paper of Ma, Yang,
and Zhang (2023)) lies in showing convergence to station-
ary Nash equilibria; this does not contradict the aforemen-
tioned hardness results since we impose an additional as-
sumption on the transitions. It is worth underscoring that sta-
tionarity is a fundamental desideratum with a long history;
among other benefits, stationary policies enjoy a much more
memory-efficient encoding, which becomes especially cru-
cial when each policy is represented via an enormous neural
network with millions of parameters, while stationary poli-
cies are also arguably more interpretable.

Beyond games with separable interactions, Kalogiannis
et al. (2023) showed that NE can be computed efficiently in
a class of games that subsumes both zero-sum and potential
games—namely, adversarial team Markov games. It is also
worth noting that certain refinements of NE—such as strict
equilibria—have been shown to be attractors under policy
gradient methods (Giannou et al. 2022), although such re-
finements are not universal.

Naturally, gradient-based methods have also received
considerable attention in imperfect-information extensive-
form games (Lee, Kroer, and Luo 2021; Piliouras et al.

2022; Zinkevich et al. 2007; Liu et al. 2023), as well as the
more tractable class of normal-form games (Hsieh, Anton-
akopoulos, and Mertikopoulos 2021; Hussain, Belardinelli,
and Piliouras 2023). Even for the latter class of games, it
is known that gradient-based methods may fail to converge
pointwise to Nash equilibria (Mertikopoulos, Papadimitriou,
and Piliouras 2018). In stark contrast, it has been docu-
mented that optimism, a minor modification akin to the
extra-gradient method introduced in the online learning liter-
ature by Rakhlin and Sridharan (2013); Chiang et al. (2012),
leads to last-iterate convergence in monotone settings (Cai,
Oikonomou, and Zheng 2022; Gorbunov, Taylor, and Gidel
2022; Golowich et al. 2020). Further, beyond the mono-
tone regime, ample of prior work has endeavored to iden-
tify broader classes of tractable VIs, such as the weak Minty
property put forward by Diakonikolas, Daskalakis, and Jor-
dan (2021). In turn, this has engendered a considerable re-
cent body of work; we refer to the papers of Cai and Zheng
(2023); Pethick et al. (2022); Lee and Kim (2021); Mah-
davinia et al. (2022), and the references therein.

Finally, we highlight that Markov games with a single
controller have a rich history; see (Parthasarathy and Ragha-
van 1981; Başar and Olsder 1998; Eldosouky, Saad, and
Niyato 2016; Guan et al. 2016; Qiu et al. 2021; Sayin,
Zhang, and Ozdaglar 2022); those references contain am-
ple motivation and examples of realistic strategic interac-
tions that can be faithfully modeled as Markov games with a
single controller. For example, Eldosouky, Saad, and Niyato
(2016) cast strategically configuring a wireless network so
as to protect against potential attacks as a security game in
which the defender serves as the sole controller.

Conclusions and Future Work
In conclusion, we have furnished a natural generalization of
the classical Minty property, and we showed that computa-
tional tractability persists even under our more permissive
condition. We also applied our general theory to obtain new
convergence results to stationary Nash equilibria for opti-
mistic policy gradient methods in a broad class of multi-
player Markov games. A number of interesting questions
arise. First, our new condition crucially relies on the product
structure of the joint strategy space. While such structure is
always present in multi-player games with uncoupled strat-
egy sets, it may break in some settings of interest (Jordan,
Lin, and Zampetakis 2023; Goktas and Greenwald 2022).
Extending our theory to capture such settings is an interest-
ing avenue for future work. Furthermore, we have seen that
any Markov game that exhibits equilibrium collapse satisfies
property (7), without assuming the existence of a single con-
troller. Understanding when property (7) suffices to ensure
tractability is another promising direction.
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