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Abstract   —   Solar  cells  containing  complex  geometric
structures such as texturing,  photonic crystals,  and plasmonics
are  becoming  increasingly  popular,  but  this  complexity  also
creates  increased  computational  demand when  designing these
devices  through  costly  full-wave  simulations.  Treating  these
complex geometries by modeling them as homogeneous slabs can
greatly speed up these computations. To this end, we introduce a
simple and robust method to solve the branching problem in the
homogenization of metamaterials. We start from the branch of
the complex logarithm in the Nicolson-Ross-Weir method with
the  minimum  absolute  mean  derivative  in  the  low  frequency
range and enforce continuity. This is followed by comparing the
reflectance,  transmittance,  and absorptance of the original and
homogenized slabs. We use our method to demonstrate accurate
and fast optical simulations of patterned PbS colloidal quantum
dot  solar  cell  films.  We  also  compare  patterned  solar  cells
homogenized via  equivalent  models  (wavelength-scale  features)
and effective models (sub-wavelength-scale features), finding that
for  the  latter,  agreement  is  almost  exact,  whereas  the  former
contains  small  errors  due  to  the  unphysical  nature  of  the
homogeneity assumption for that size regime. This method can
greatly reduce computational cost and thus facilitate the design
of optical structures for solar cell applications.

I. INTRODUCTION AND BACKGROUND

Complex geometries  such as photonic crystals,  plasmonic

structures,  and  textured  surfaces  have  gained  popularity  in

solar cell design. However, the full-wave simulations required

to study 2D/3D structures are computationally costly. In this

work,  we  use  effective  and  equivalent  material  models  to

homogenize patterned layers and reduce the problem to 1D,

for  which  methods  such  as  the  Transfer  Matrix  Method

(TMM) can be used. Once a homogenized model is produced,

it  can  be  reused  in  many  simulations,  reducing  the

computational  cost  drastically.  Unlike  equivalent  models,

effective models have an averaged electric field similar to that

in the inhomogeneous medium, since the feature size (f.s.) of

the inhomogeneities satisfies f.s. ≪ λ, and homogenization is

physically  valid.  In  equivalent  models  f.s.  ≈  λ, and  effects

such as diffraction and scattering dominate [1].

Homogenizing complex materials simplifies their treatment.

Many  works  use  homogenization  to  model  electrical

properties of solar cells with multiple constituents [2]. Others

use  effective  media  to  model  complex  geometries,  such  as

textured [3],  silicon nanowire [4],  and plasmonic solar cells

[5]. Many solar cell  patterns satisfy f.s.  ≈  λ,  necessitating a

thorough  investigation  of  equivalent  models,  which  are

insufficiently treated in the literature.

A  popular  homogenization  method  is  the  Nicolson-Ross-

Weir (NRW) method, which starts from the S-parameters to

obtain  the  refractive  index  Neff(ω)  =  neff(ω)  +  iκeff(ω) of  a

corresponding  homogeneous  slab.  κeff(ω) can  be  uniquely

calculated  but  neff(ω) depends on a complex logarithm with

multiple branches  indexed by the  integer  branch  number  m

[6]-[8]. The ambiguity of  m results in a  branching problem,

which  must  be  resolved.  One  approach  takes  m at  each

frequency such that  neff(ω) is closest to the application of the

Kramers-Kronig  relations  to  κeff(ω).  This  can  result  in

discontinuities, so a different approach is based on continuity

[6],  [9],  but this leaves the starting branch ambiguous. It  is

common to  start  from the  zeroth  branch  for  a  low enough

frequency, since the slab is optically thin [1].

Some works  consider  an  effective  thickness  deff different

from  the  geometric  thickness.  One  definition  involves

boundaries  for  which the incoming and outgoing waves are

plane  waves  (which  is  not  true  near  an  inhomogeneous

material)  [6].  Another  treatment  rounds  the  branch  number

calculated from the Kramers-Kronig relations for permittivity

and permeability  and  takes  effective  thickness  as  the value

that minimizes the error associated with the rounding [10].

II. METHODS

We now introduce our solution to the branching problem.

First,  we obtain the S-parameters  via  finite-difference  time-

domain  (FDTD) simulation  [11]  of  the  inhomogeneous

material.  Then we must choose the starting branch. Since the

low-frequency behavior of Neff(ω) of a wide range of materials

will  approach  a  constant,  and  since  the  branches  differ  by

2πm/k0deff  (k0 is  the  free  space  wavenumber), for  low

frequencies  (small  k0deff),  the  false  branches  become  very

steep while the correct branch is flat in comparison. Thus, we

find the starting branch by minimizing the magnitude of the

mean  derivative  across  the  low  frequency  portion  of  each

branch  (before  the  first  discontinuity).  Then,  we  use  the

continuity of  neff(ω) for the remaining frequencies:  for each

point,  the  next  branch  index  is  recursively  taken  as  that

yielding the closest value to the present branch. This method

is  more  robust  than  that  commonly  found  in  the  literature,

which starts from a low enough frequency to ensure that the

slab is optically thin and thus takes the first branch index as 0.

This is a “hard” requirement: that method fails if the starting

branch is not 0 in reality.  However,  our method only has a

“soft” condition that the correct branch be flat enough to be

978-1-6654-6059-0/23/$31.00 ©2023 IEEE 1

20
23

 IE
EE

 5
0t

h 
Ph

ot
ov

ol
ta

ic
 S

pe
ci

al
ist

s C
on

fe
re

nc
e 

(P
VS

C)
 |

 9
78

-1
-6

65
4-

60
59

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
PV

SC
48

32
0.

20
23

.1
03

60
06

2

Authorized licensed use limited to: Johns Hopkins University. Downloaded on June 25,2024 at 00:58:00 UTC from IEEE Xplore.  Restrictions apply. 



distinguishable,  and thus the starting branch number can be

nonzero. 

Next,  we  analytically  calculate  the  reflectance  (Reff),

transmittance (Teff), and absorptance (Aeff) of the homogenized

slab.  We  compare  these  to  Rinh,  Tinh,  Ainh from  the  FDTD

simulation of the inhomogeneous material via mean squared

error (MSE). We choose deff to minimize MSE. This improves

matching  of  the  optical  spectra,  especially  for  equivalent

models, due to the greater region where plane wave behavior

breaks down when effects such as diffraction dominate. 

III. RESULTS AND DISCUSSION

We first demonstrate the steps of our method in Fig. 1 with

a 790 nm thick homogeneous slab of PbS colloidal quantum

dots  (PbS  CQDs)  with  exciton  peak  at  1200  nm.  The

agreement  between  the  optical  spectra  from  the  FDTD

calculation  and  our  method is  exact  (MSE =  1.68  ×  10-6),

verifying  the  self-consistency  of  our  model.  The  refractive

index  of  PbS  CQDs  was  obtained  via  Variable  Angle

Spectroscopic Ellipsometry (VASE).

Fig. 1. The  index  model  estimation  method  applied  to  a
homogeneous  slab  of  PbS  CQDs.  (a)  Branches  of  the  complex
logarithm together with the real and imaginary parts of the refractive
index; (b) branch number as a function of frequency; (c) extracted
refractive index compared to the known refractive index of the PbS
CQD (since it is homogeneous); (d) optical behavior from the FDTD
simulation compared to the method of this work.

A more interesting example is an inhomogeneous material

with  f.s.  ≈  λ so  that  assuming  homogeneity  is  unphysical.

Here, we want an equivalent slab model with the same R,  T,

and  A as the inhomogeneous material. We investigate a PbS

CQD  film  nanodisk  array  with  ZnO  filling  the  space  in

between. The nanodisks have radius 252.8 nm with periodicity

632 nm, and height 790 nm. The refractive index of ZnO was

obtained from [12]. As visible in Fig. 2, the effective thickness

of  the  homogenized  slab  is  thicker  than  the  geometric

thickness due to the surrounding lack of plane wave behavior. 

We  also  apply  the  Kramers-Kronig  relations  to  κeff(ω),

observing they are violated especially for shorter λ. However,

this does not violate causality [13]. For an effective model, the

averaged  electric  field  in  the  inhomogeneous  material

corresponds to that in the homogenized one, and the Kramers-

Kronig  relations  hold  [13].  However,  this  is  not  so  for

equivalent  models.  Rather,  it  simply  demonstrates  that  the

homogenization process for f.s.  ≈  λ is physically unjustified,

resulting in an “unphysical” equivalent index model.

Fig. 2. Demonstration of the method for a patterned slab of PbS
CQD  nanodisks  surrounded  by  ZnO.  (a)  The  inhomogeneous
structure with PbS CQDs (red) and ZnO (green); (b) the equivalent
refractive index model with Kramers-Kronig relations; (c) MSE as a
function of effective thickness; (d) comparison of the optical spectra.

We now simulate the behavior  of  a PbS CQD solar  cell.

Modifying the design in [14],  the solar cell  is  composed of

225 nm of ITO as the front contact, 75 nm of ZnO, the above

790 nm slab of nanodisks, 100 nm of PbS CQDs, and 300 nm

of Au as an electrode. The refractive indices of ITO and Au

were obtained from [15], [16]. We replace the patterned layer

by the equivalent slab calculated previously. Then we simulate

the  solar  cell  using  a  fast  optical  stack  solver  [11].  We

compare the results to the FDTD simulation. We also compare

(Fig. 3) with a solar cell that is identical except that the radius

of nanodisks is 25.28 nm and the periodicity of the structure is

63.2 nm, for which f.s. ≪ λ, and the homogenized medium is

an effective  model.   As we might expect,  for the solar  cell

simulated with an effective model, the comparison of FDTD

to the stack solution is almost exact for the entire wavelength

range  of  interest,  due  to  the  physically  viable  homogeneity

assumption.  However,  for  the  solar  cell  simulated  with  an

equivalent  model,  there  is  more error  due to the unfounded

assumption  of  homogeneity,  and  the  dominance  of  effects

such as diffraction and scattering that cannot be modeled with

a  homogeneous  slab.  Regardless,  both  simulations  are

substantially  accurate  and  much  faster  than  an  FDTD

simulation, running almost instantaneously.

(a) (b)

(c) (d)

(a) (b)

(c) (d)
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Fig. 3. Comparison of the optical behavior of the solar cell under
consideration depending on simulation technique. (a) depicts a solar
cell  which  was  simulated  with  an  equivalent  model  and  (b)  the
corresponding FDTD results  compared to  the optical  stack solver,
while (c) contains the solar cell for which an effective model was
used and (d) contains the optical behavior comparison.

IV. CONCLUSION

In  this  work,  we  have  introduced  a  simple  and  robust

solution to the branching problem in the NRW method that

starts  from  the  branch  of  the  complex  logarithm  with  the

lowest absolute mean derivative in the low frequency region,

and  enforces  continuity  to  recursively  obtain the  remaining

branch  numbers.  We  then  compare  the  reflectance,

transmittance,  and  absorptance  of  the  homogenized  and

inhomogeneous  slabs,  and minimize  the deviations between

them to calculate the effective thickness of the homogenized

slab.  We  investigate  two  regimes.  When  f.s.  ≪ λ,  (i)  the

homogenization is physically valid, (ii) the averaged electric

field in the inhomogeneous and effective models is the same

[13], (iii) the optical behavior between the two agree, and (iv)

the Kramers-Kronig relations hold. Meanwhile, in the regime

with wavelength-scale features,  these properties do not hold

due to the unphysical homogeneity assumption. Regardless, an

equivalent  model  giving  the  same  optical  behavior  is  still

useful in simplifying complex models. We demonstrate this by

reducing a patterned solar cell to a 1D problem and solving for

its  optical  properties  much  more  quickly  than  with  FDTD

simulations,  thus improving computational efficiency  during

photovoltaic design. We expect that this model will be widely

useful  to  the  field  in  helping  researchers  design  optical

structures for a variety of solar cell applications.
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