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Abstract  —  Solar cells containing complex geometric
structures such as texturing, photonic crystals, and plasmonics
are becoming increasingly popular, but this complexity also
creates increased computational demand when designing these
devices through costly full-wave simulations. Treating these
complex geometries by modeling them as homogeneous slabs can
greatly speed up these computations. To this end, we introduce a
simple and robust method to solve the branching problem in the
homogenization of metamaterials. We start from the branch of
the complex logarithm in the Nicolson-Ross-Weir method with
the minimum absolute mean derivative in the low frequency
range and enforce continuity. This is followed by comparing the
reflectance, transmittance, and absorptance of the original and
homogenized slabs. We use our method to demonstrate accurate
and fast optical simulations of patterned PbS colloidal quantum
dot solar cell films. We also compare patterned solar cells
homogenized via equivalent models (wavelength-scale features)
and effective models (sub-wavelength-scale features), finding that
for the latter, agreement is almost exact, whereas the former
contains small errors due to the unphysical nature of the
homogeneity assumption for that size regime. This method can
greatly reduce computational cost and thus facilitate the design
of optical structures for solar cell applications.

I. INTRODUCTION AND BACKGROUND

Complex geometries such as photonic crystals, plasmonic
structures, and textured surfaces have gained popularity in
solar cell design. However, the full-wave simulations required
to study 2D/3D structures are computationally costly. In this
work, we use effective and equivalent material models to
homogenize patterned layers and reduce the problem to 1D,
for which methods such as the Transfer Matrix Method
(TMM) can be used. Once a homogenized model is produced,
it can be reused in many simulations, reducing the
computational cost drastically. Unlike equivalent models,
effective models have an averaged electric field similar to that
in the inhomogeneous medium, since the feature size (f.s.) of
the inhomogeneities satisfies f.s. << A, and homogenization is
physically valid. In equivalent models f.s. & A, and effects
such as diffraction and scattering dominate [1].

Homogenizing complex materials simplifies their treatment.
Many works use homogenization to model electrical
properties of solar cells with multiple constituents [2]. Others
use effective media to model complex geometries, such as
textured [3], silicon nanowire [4], and plasmonic solar cells
[5]. Many solar cell patterns satisfy f.s. & A, necessitating a
thorough investigation of equivalent models, which are
insufficiently treated in the literature.
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A popular homogenization method is the Nicolson-Ross-
Weir (NRW) method, which starts from the S-parameters to
obtain the refractive index Neg(w) = nes(w) + ike(w) of a
corresponding homogeneous slab. ke(w) can be uniquely
calculated but ne(w) depends on a complex logarithm with
multiple branches indexed by the integer branch number m
[6]-[8]. The ambiguity of m results in a branching problem,
which must be resolved. One approach takes m at each
frequency such that nes(w) is closest to the application of the
Kramers-Kronig relations to Ket(w). This can result in
discontinuities, so a different approach is based on continuity
[6], [9], but this leaves the starting branch ambiguous. It is
common to start from the zeroth branch for a low enough
frequency, since the slab is optically thin [1].

Some works consider an effective thickness d.s different
from the geometric thickness. One definition involves
boundaries for which the incoming and outgoing waves are
plane waves (which is not true near an inhomogeneous
material) [6]. Another treatment rounds the branch number
calculated from the Kramers-Kronig relations for permittivity
and permeability and takes effective thickness as the value
that minimizes the error associated with the rounding [10].

II. METHODS

We now introduce our solution to the branching problem.
First, we obtain the S-parameters via finite-difference time-
domain (FDTD) simulation [11] of the inhomogeneous
material. Then we must choose the starting branch. Since the
low-frequency behavior of Nei(w) of a wide range of materials
will approach a constant, and since the branches differ by
2mm/kodes (ko is the free space wavenumber), for low
frequencies (small kod.y), the false branches become very
steep while the correct branch is flat in comparison. Thus, we
find the starting branch by minimizing the magnitude of the
mean derivative across the low frequency portion of each
branch (before the first discontinuity). Then, we use the
continuity of nes(w) for the remaining frequencies: for each
point, the next branch index is recursively taken as that
yielding the closest value to the present branch. This method
is more robust than that commonly found in the literature,
which starts from a low enough frequency to ensure that the
slab is optically thin and thus takes the first branch index as 0.
This is a “hard” requirement: that method fails if the starting
branch is not 0 in reality. However, our method only has a
“soft” condition that the correct branch be flat enough to be
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distinguishable, and thus the starting branch number can be
nonzero.

Next, we analytically calculate the reflectance (Re),
transmittance (T.), and absorptance (Ae) of the homogenized
slab. We compare these to Rim, Tinn, Amn from the FDTD
simulation of the inhomogeneous material via mean squared
error (MSE). We choose d. to minimize MSE. This improves
matching of the optical spectra, especially for equivalent
models, due to the greater region where plane wave behavior
breaks down when effects such as diffraction dominate.

III. RESULTS AND DISCUSSION

We first demonstrate the steps of our method in Fig. 1 with
a 790 nm thick homogeneous slab of PbS colloidal quantum
dots (PbS CQDs) with exciton peak at 1200 nm. The
agreement between the optical spectra from the FDTD
calculation and our method is exact (MSE = 1.68 x 10),
verifying the self-consistency of our model. The refractive
index of PbS CQDs was obtained via Variable Angle
Spectroscopic Ellipsometry (VASE).

10 S s 10

w

Branch Number
o v

Refractive Index

o

0.2 0.4 0.6 (b) 0 0.2 0.4 0.6
Frequency (PHz) Frequency (PHz)

—_
QU

—

o

w
=

—kK *Tinh

xf— eff L e

2 —neff

---lnput K
1 ---Input n

0.5 \____A\'nh\

| Teff N

-
0 \_V\:/'B\/[\/ ff

0— Aeff

Refractive Index

500 1000 1500 2000 500 1000 1500 2000
(C) Wavelength (nm) (d) Wavelength (nm)

Fig.1. The index model estimation method applied to a
homogeneous slab of PbS CQDs. (a) Branches of the complex
logarithm together with the real and imaginary parts of the refractive
index; (b) branch number as a function of frequency; (c) extracted
refractive index compared to the known refractive index of the PbS
CQD (since it is homogeneous); (d) optical behavior from the FDTD
simulation compared to the method of this work.

A more interesting example is an inhomogeneous material
with f.s. & A so that assuming homogeneity is unphysical.
Here, we want an equivalent slab model with the same R, T,
and A as the inhomogeneous material. We investigate a PbS
CQD film nanodisk array with ZnO filling the space in
between. The nanodisks have radius 252.8 nm with periodicity
632 nm, and height 790 nm. The refractive index of ZnO was
obtained from [12]. As visible in Fig. 2, the effective thickness
of the homogenized slab is thicker than the geometric
thickness due to the surrounding lack of plane wave behavior.
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We also apply the Kramers-Kronig relations to ke(w),
observing they are violated especially for shorter A. However,
this does not violate causality [13]. For an effective model, the
averaged electric field in the inhomogeneous material
corresponds to that in the homogenized one, and the Kramers-
Kronig relations hold [13]. However, this is not so for
equivalent models. Rather, it simply demonstrates that the
homogenization process for f.s. ~ A is physically unjustified,
resulting in an “unphysical” equivalent index model.
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Fig. 2. Demonstration of the method for a patterned slab of PbS
CQD nanodisks surrounded by ZnO. (a) The inhomogeneous
structure with PbS CQDs (red) and ZnO (green); (b) the equivalent
refractive index model with Kramers-Kronig relations; (c) MSE as a
function of effective thickness; (d) comparison of the optical spectra.

We now simulate the behavior of a PbS CQD solar cell.
Modifying the design in [14], the solar cell is composed of
225 nm of ITO as the front contact, 75 nm of ZnO, the above
790 nm slab of nanodisks, 100 nm of PbS CQDs, and 300 nm
of Au as an electrode. The refractive indices of ITO and Au
were obtained from [15], [16]. We replace the patterned layer
by the equivalent slab calculated previously. Then we simulate
the solar cell using a fast optical stack solver [11]. We
compare the results to the FDTD simulation. We also compare
(Fig. 3) with a solar cell that is identical except that the radius
of nanodisks is 25.28 nm and the periodicity of the structure is
63.2 nm, for which f.s. < A, and the homogenized medium is
an effective model. As we might expect, for the solar cell
simulated with an effective model, the comparison of FDTD
to the stack solution is almost exact for the entire wavelength
range of interest, due to the physically viable homogeneity
assumption. However, for the solar cell simulated with an
equivalent model, there is more error due to the unfounded
assumption of homogeneity, and the dominance of effects
such as diffraction and scattering that cannot be modeled with
a homogeneous slab. Regardless, both simulations are
substantially accurate and much faster than an FDTD
simulation, running almost instantaneously.
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Fig. 3. Comparison of the optical behavior of the solar cell under
consideration depending on simulation technique. (a) depicts a solar
cell which was simulated with an equivalent model and (b) the
corresponding FDTD results compared to the optical stack solver,
while (c) contains the solar cell for which an effective model was
used and (d) contains the optical behavior comparison.

IV. CONCLUSION

In this work, we have introduced a simple and robust
solution to the branching problem in the NRW method that
starts from the branch of the complex logarithm with the
lowest absolute mean derivative in the low frequency region,
and enforces continuity to recursively obtain the remaining
branch numbers. We then compare the reflectance,
transmittance, and absorptance of the homogenized and
inhomogeneous slabs, and minimize the deviations between
them to calculate the effective thickness of the homogenized
slab. We investigate two regimes. When f.s. < A, (i) the
homogenization is physically valid, (ii) the averaged electric
field in the inhomogeneous and effective models is the same
[13], (iii) the optical behavior between the two agree, and (iv)
the Kramers-Kronig relations hold. Meanwhile, in the regime
with wavelength-scale features, these properties do not hold
due to the unphysical homogeneity assumption. Regardless, an
equivalent model giving the same optical behavior is still
useful in simplifying complex models. We demonstrate this by
reducing a patterned solar cell to a 1D problem and solving for
its optical properties much more quickly than with FDTD
simulations, thus improving computational efficiency during
photovoltaic design. We expect that this model will be widely
useful to the field in helping researchers design optical
structures for a variety of solar cell applications.
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