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Abstract. This paper details the development and validation of a
dynamic 3D compliant worm-like robot model controlled by a Syn-
thetic Nervous System (SNS). The model was built and simulated in the
physics engine Mujoco which is able to approximate soft bodied dynamics
and generate contact, gravitational, frictional, and internal forces. These
capabilities allow the model to realistically simulate the movements and
dynamic behavior of a physical soft-bodied worm-robot. For validation,
the results of this simulation were compared to data gathered from a
physical worm robot and found to closely match key behaviors such as
deformation propagation along the compliant structure and actuator effi-
ciency losses in the middle segments. The SNS controller was previously
developed for a simple 2D kinematic model and has been successfully
implemented on this 3D model with little alteration. It uses coupled
oscillators to generate coordinated actuator control signals and induce
peristaltic locomotion. This model will be useful for analyzing dynamic
effects during peristaltic locomotion like contact forces and slip as well as
developing and improving control algorithms that avoid unwanted slip.

Keywords: 3D Model · Compliant Structure · Mujoco · Synthetic
Nervous System · Peristalsis · Worm Robot

1 Introduction

Soft robots are desirable for their efficacy in environments and tasks unsuitable
for rigid body robots. Earthworm-inspired robots are a prime example of this.
Their soft bodied locomotion lends itself well to squeezing through constrained
spaces such as pipes and tunnels that are impassable for rigid bodied robots [3,
13]. They can also be useful in medical procedures, like endoscopy, for which
rigid structures are undesirable [15]. The compliance that makes these worm-like
robots so useful also makes them difficult to model accurately. While materials
engineering and manufacturing methods continue to advance, easing the design
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and fabrication process, so too have the modeling methods used to simulate
these increasingly complex soft bodied structures and mechanisms [20].

There are many approaches to modeling and simulating soft robots each
with their own set of advantages and trade-offs. Some focus on modeling flexi-
ble deformation analytically [21]. Others use finite element methods (FEM) to
characterize the behavior of more complex mechanisms [4]. To perform dynam-
ics analysis and controller development, the model in this paper uses a physics
engine. Physics engines are frequently employed for rigid body robot model-
ing but some can also model soft body dynamics by approximating compliant
structures using many discrete rigid bodies [27]. The rigid bodies are connected
via joints with flexural and torsional stiffness and allow for bending and twist-
ing movements within the structure. These approximations allow for dynamic
computational efficiency but with less precision than FEM models. Reduced pre-
cision is not necessarily a detriment so long as the accuracy of the results can be
validated externally. For example, we validate the model presented in this paper
by comparing our results to those from a physical robot.

Peristaltic locomotion relies on geometric coupling between segment diameter
and segment length [7,26]. As a segment’s diameter contracts, its length increases
and vice versa. Earthworms take advantage of their hydrostatic skeletons to
accomplish this. Their bodies maintain a constant volume so a change in one
dimension necessitates a change in another. Many worm-like robots [13,22,28]
and models [3,8,19] utilize a two dimensional geometric approximation con-
sisting of rhombus structures with coupled height and length. None of these
models, however, accurately portray both the soft bodied dynamics and three
dimensional range of motion that the physical robots exhibit. While the previous
models have been used to analyze behaviors like slip, turning, and reaction to
perturbations and contact surface irregularities, further refinements of the model
and expansion to 3D space will improve understanding of these phenomena.

This paper details the development of a three dimensional compliant worm-
like robot model compatible with a Synthetic Nervous System (SNS) controller.
The SNS used to control this model was developed for and implemented on a
two dimensional simulated worm robot we introduced previously [19]. An SNS
is a dynamical neural network comprised of computational models of neurons
and synapses which have been implemented as controllers for many biologically
inspired robots [5,8,9,13,24,25]. This SNS uses coupled central-pattern gener-
ators (CPGs), oscillators thought to control many rhythmic behaviors in ani-
mals [16], to produce a peristaltic wave-form. The wave coordinates segment
muscle contraction cycles, facilitating locomotion [10,31].

The model reported in this paper is designed to emulate the worm-like robot
presented by Wang [28], which uses the rhombus segment approximation. The
model is built in the physics engine Mujoco, a platform oriented towards robotics
and biomechanics research. Mujoco was selected for three reasons: it easily inter-
faces with the SNS bio-inspired control signals, it is capable of approximating
soft bodied dynamics, and it can simulate ground reaction, gravitational, elastic,
and friction forces [27]. The resulting simulation captures more realistic robot
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motions, including deformation propagation whereby actuating segments can
deform nearby segments. Deformation propagation is modeled more accurately
here than in previous models [3,8,12,19].

2 Methods

2.1 2D Worm Models

Many worm-like robot models use a two dimensional segment approximation. As
found in Daltorio et al. [3] (Fig. 1b) and later in our previous work [19] (Fig. 1a)
these models can exist in a 2D plane with segments consisting of rigid side
lengths with hinge jointed vertices. Contraction of the segment occurs when an
actuator pulls two opposing vertices inward, thus pushing the remaining vertices
outwards. A spring connecting the outward displaced vertices provides tension
to return them to the original position, thus re-expanding the segment. The
geometric relationship governing this coupling is l2 + w2 = 4l2

s
where (w) and

(l) are rhombus height and length and (ls) is the given side length.
While both models use rigid side lengths for the rhombi, the Daltorio model

incorporates torsional springs at the joints to resist differences in neighboring
segment heights. This mimics behavior exhibited in continuous mesh worm-like
robots where structural compliance causes the deformation of one segment to
propagate to its surrounding elements. A similar model presented in Boxerbaum
et al. [1] (Fig. 1c) also implements torsion springs but places them in the middle
of the otherwise rigid rhombus side lengths to mimic the compliance within the
segment structure rather than between segments.

Fig. 1. Three previously reported models for 2D worm segments: a) Riddle et al. [19],
b) Daltorio et al. [3], c) Boxerbaum et al. [1]. The blue arrows represent contractile
actuator forces and the orange objects represent linear and torsional springs.

While useful in their own right all of these models, to varying degrees, suffer
from oversimplification. Our previous model [19] was capable of peristalsis but
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was purely kinematic, neglecting all forces as its purpose was only to validate
the control system presented in that work. The Daltorio model simulates sagit-
tal plane dynamics but neglects gravity, focusing instead on the larger forces
provided by contact with pipe walls which limits it to such environments [14].
The Boxerbaum model also simulates 2D dynamics but neglects ground contact
forces. Importantly, none of these captures the behavior of the compliant struc-
ture between actuated segments. Some worm-like robots such as MIT’s mesh-
worm [22] are made of a continuous mesh. They do not actuate every adjacent
rhombus but instead rely on the mechanical advantage of deformation propaga-
tion along the structure (Fig. 2). To model this behavior and more accurately
simulate gravitational and contact force effects, a 3D model is needed.

Fig. 2. Visualization of segment contraction with deformation propagation (right) and
without (left). The contracting segment is orange and unactuated segments are black.
(Color figure online)

2.2 3D Compliant Worm Model

Modeling a 3D robot using a physics engine has many advantages. A 2D approx-
imation is most often implemented in physical worm robots by wrapping a mesh
of rhombuses into a cylindrical tube, expanding it to 3D space [1,13,22,28].
Huang et al. [8] analytically modeled the kinematics of a 3D worm-like robot
in this fashion previously but utilized rigid side lengths and did not incorporate
forces. Analytically deriving these forces is a difficult task, however, a physics
engine can predict these. Assuming the model closely behaves like the robot,
a physics engine is capable of simulating the forces without requiring an ana-
lytical derivation. This is useful for examining dynamic phenomena in complex
three dimensional structures like sagging due to gravity and slip which is an
important factor in peristaltic locomotion and has been the subject of many
studies [3,12,28,30,32].

The 3D model described in this paper was designed to mimic the worm-
like robot presented in Wang’s dissertation [28] (Fig. 3). The physical robot’s
rhombus mesh was constructed from 12 polyethylene tubes wrapped helically in
both clockwise and counterclockwise directions and pinned at the intersection
points to create rotating joints. The joints serve as anchor points both for the
elastic springs and for eyelets through which actuator cables were threaded.
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Fig. 3. The physical robot [28] the 3D model is based on from the a) axial view and
b) sagittal view. Robot images provided by Wang.

Fig. 4. Rendering of the model in Mujoco from the a) axial view and b) isometric view.
The blue lines are the flexible cables used for the robot’s structure. The circumferential
red rings represent contractile muscle actuators. The axially oriented red lines are ten-
don springs. The spheres are visual markers for the joints holding everything together.
(Color figure online)

The cables attach to spool wheels mounted to servo motors. When the actuators
rotate, the cables are spooled in or out to shrink or expand the segment diameter,
akin to the circumferential muscles found in a real worm. The number of actuated
segments is defined by the number of actuator cables. The Wang robot is capable
of turning so it has two motors per segment but for straight line locomotion only
one motor per segment is required.

Soft Structure: The physics engine Mujoco was chosen for this task as it was
designed specifically to facilitate robotics and biomechanics research [27]. The
model was built by generating twelve sets of coordinates forming helical paths
which follow the shapes of the polyethylene tubing in the physical robot’s resting
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state. Flexible cable composite objects were then defined in Mujoco overlayed on
these paths. As in the physical robot, half of these twist clockwise and half twist
counterclockwise with joints defined at the intersection points, thus forming the
cylindrical rhombus mesh seen in Fig. 4. Mujoco models composite cable objects
by discretizing them into smaller rigid body capsules connected end-to-end with
flexible joints that allow for deformation of the structure. There are three such
capsule discretizations per each side length of the rhombuses in this model. The
coordinates and properties defining the structure and its compliant behavior are
assembled in an XML file which Mujoco is able to read into the physics engine
for both computation and rendering. A MATLAB code, available at https://
github.com/sriddle97/SNS-Controlled-Peristalsis.git, was used to automate the
XML generation given the desired dimensions (m), number of helixes (must be
even and ≥6), and number of discretizations per rhombus side length.

We used a number of methods to set material and stiffness properties in the
Mujoco model. The “bend” and “twist” properties of the cable object correlate
to the Young’s and shear Moduli of the cable material, respectively, and dictate
the degree of flexibility the structure exhibits. As such we set the “bend” and
“twist” properties to their respective moduli for polyethelyene (approximately
0.3 GPa and 0.2 GPa). To ensure the model and the physical robot have the same
mass, the density was also set to that of polyethylene (940 kg m−3) and the cable
thickness was set to match the cross-sectional area of the tubing, a necessary
adjustment as Mujoco does not have an option to model hollow tubes directly.
The cross sectional area for the tubing was found to be 1.7 × 10−5 m2 which
equates to a radius of about 0.002 m for a solid circular cross section. It should
be noted that Mujoco does not inherently define default units of measurement.
Instead, it allows the user to define the units through the scale of their inputs.
To ensure a consistent unit system for the simulated environment we define all
physical properties using standard SI units (kg, m, s, N, Pa) and verified that
resulting units of force were in Newtons (N).

Actuation: As a biomechanics oriented physics engine, Mujoco is capable of
dynamically modeling muscles and tendons. Passive tendon objects, serving the
same purpose as the elastic springs in the Wang robot, were attached to the
model structure at joints running in the axial direction. These tendons are ini-
tialized such that their unstretched lengths coincide with the fully expanded
resting state of the structure. Since the tendons only provide force in tension,
this prevents them from expanding the model diameter beyond the physical
robot’s mechanical limitations. The spring stiffness coefficient for these tendons
was set to 19.9N/m to match those of the physical robot.

Rather than directly modeling servo motors, we took advantage of Mujoco’s
built-in muscle actuators to provide contraction. Mujoco models these muscles as
abstract force generators attached to fixed-length tendons. The muscle actuator
behavior is dictated by a force-length-velocity function commonly reported in
biomechanics literature [27]. The exact function used by Mujoco can be found in
the FLV.m MATLAB file provided in Mujoco’s documentation and is visualized

https://github.com/sriddle97/SNS-Controlled-Peristalsis.git
https://github.com/sriddle97/SNS-Controlled-Peristalsis.git
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in Fig. 5. The function requires the muscle’s maximum and minimum lengths
(lmax, lmin), the maximum shortening velocity at which the muscle force drops to
zero (vmax), the passive force generated at the muscle’s maximum length (fp,max),
and the active force generated at saturated lengthening velocity (fv,max). The
muscles in our model use the default values Mujoco sets for these parameters
except for the minimum length (lmax = 1.6, vmax = 1.5, fp,max = 1.3, fv,max =
1.2). lmin was increased from the default 0.5 to 0.58 to avoid over-contraction of
the mesh.

Fig. 5. Visual of the Force-Length-Velocity relationship (Eq. 1) Mujoco uses to model
muscle actuator forces [27].

The forces are relative to the peak muscle activation force at zero velocity
(F0) and the lengths are relative to l0, the length where F0 is generated. Both
l0 and F0 are calculated automatically by the model compiler using the param-
eter values defined above. The compiler also has a scaling factor with which the
user can manually adjust F0 if needed. The actuator forces generated within
the physics engine are determined using the function in Eq. 1. Here, the muscle
activation signal act(U) is a function of the corresponding CPG neuron mem-
brane potentials. The muscle activation varies from 0 (deactivated) to 1 (fully
activated) via a monotonic and saturating sigmoid as detailed in Sect. 2.3.

actuator force = −FLV(l, v, act(U)) ∗ F0 (1)

The automatically generated F0 did not provide enough force to contract the
segment so a scaling factor of 550,000 was included. This may seem high but
the actuators generated forces up to 2.5 N at this scale. This is in line with the
amount of force required to displace six 19.9 N/m tendon springs (the number of
tendons per segment) approximately 2–3 cm, which is sufficient for appreciable
segment contraction in this model.

Sensing: Mechanoreceptors and sensory neurons provide animal nervous sys-
tems with proprioceptive feedback to mediate locomotion. Worms have sensory
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neurons that perceive muscle stretch and are used to control their muscle con-
tractions during peristalsis and steering [29]. Here, these sensory neurons are
approximated with mechanical stretch sensors. The stretch sensors feed the seg-
ment length data into the controller where it is used to coordinate actuation and
propagate the peristaltic wave down the body. This approach is used on both
the Wang robot and in our previous work where they give the SNS positional
feedback from the 2D model. The data packet Mujoco outputs at each timestep
of the simulation contains the tendon lengths which can be exported to the SNS
controller where they are used to generate input signals for the next time step.

2.3 Synthetic Nervous System Controller

The SNS controller used in this work, seen in Fig. 6, is nearly identical to that
presented in our previous paper [19].

Fig. 6. Worm robot Synthetic Nervous System control network diagram (Fig. 2 of [19]).

The only substantial difference is that the network code was ported from MAT-
LAB to python for Mujoco compatibility and reformatted using the SNS-Toolbox
package developed by Nourse et al. [18]. SNS-Toolbox simplified the network
building and Mujoco interfacing processes and will reduce the effort required to
alter the controller for future work. As before, each segment’s contraction cycle is
controlled by a half-center oscillator CPG [2,23]. The time dynamics enabled by
the Hodgkin-Huxley fast transient sodium currents and mutual inhibition cause
the neurons to flip between excited and inhibited states in a catch-and-release
type manner [6]. The membrane potential of each half-center neuron is fed into
the function shown in Eq. (2) to generate the muscle activation signal used in
Eq. (1):

act = 1/(1 + e−0.35∗(Uexp−Ucon)) (2)

Our previous 2D model had linear actuators that operated with position
control. A piecewise linear sigmoid function, not unlike Eq. (2), mapped the
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neuron potentials to position targets and a simple proportional controller dic-
tated the actuator speed accordingly. The 3D model employs muscle actuators
controlled by the force-length-velocity function in Eq. (1), so while the actuation
command signal is similar, the actuation itself is much more bio-plausible than
the position control. Regardless the end result is the same. When the contrac-
tion neuron potential is higher, the signal sent to the actuator tells it to contract
the segment. Likewise, a higher expansion neuron potential signals for segment
expansion. Interneurons and stretch sensors couple the CPGs from one segment
to the next to coordinate the peristaltic wave propagation. For more details on
the SNS controller, please refer to our previous publication [19].

3 Results

For a direct comparison to the previous 2D simulation results, the Mujoco
model presented here is composed of 3 segments (N = 3). In practice this can

Fig. 7. Plots of the CPG neuron membrane potentials, color coded by segment number,
and stretch sensor length readings for the 3 segment 3D model.
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be expanded to any number N ≥ 3 but does become more computationally
expensive the larger the model gets. For reference, running this model for 5000
time steps took 3.5 min on a high-end, consumer grade computer. Rather than
having actuators defined at every axially adjacent rhombus, one rhombus was
left between each muscle ring. This was done to demonstrate that the structural
deformation propagation can extend beyond directly neighboring rhombuses.
Running the simulation for 5 s with 1 ms time steps produced the data plotted
in Fig. 7. A video of this simulation as well as the code required to run it are
available at https://github.com/sriddle97/SNS-Controlled-Peristalsis.git.

The results show that the controller generates peristaltic behavior as it did
in the 2D model (see Fig. 4 in [19] for comparative data). The stretch sensor
readings indicate lengthening of the segment when the contraction neuron is
excited and shortening when the CPG flips and the expansion neuron is excited,
as expected. Segments 1 and 3 experienced a maximum elongation of 4.20 cm and
4.02 cm respectively, a mere 4.45% difference. Segment 2, however, experienced
a maximum elongation of just 2.55 cm, 39.4% less than that of Segment 1.

Fig. 8. The compliant worm model with the second segment contracted at t = 1500 ms.
The green rhombus shows deformation propagating to a nearby unactuated segment.
The pink rhombus indicates a segment sufficiently far from the contracted segment to
remain relatively unaffected.

4 Discussion

The key difference between the 2D model data [19] and the 3D model data
here lies in the stretch sensor length readings. The purely kinematic 2D model
produced very smooth, idealized length changes that do not capture deformation
caused by nearby segment actuation. On the other hand, the 3D model does
capture the deformation propagation of the mesh, even when actuated rhombuses
are not directly adjacent. This can be seen in the length plot data of Fig. 7 and
is visualized with a rendering of the model during contraction in Fig. 8. When
Segment 1 contracts, the length of Segment 2 also increases slightly and both

https://github.com/sriddle97/SNS-Controlled-Peristalsis.git
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Segments 1 and 3 have elevated length readings when Segment 2 contracts since
it neighbors both. This behavior closely emulates that exhibited by the Wang
robot in their length readings seen in Fig. 9 (data provided by the authors [28]).
The physical robot has two stretch sensors per segment to measure asymmetric
contraction during turning.

Fig. 9. Stretch sensor length readings from the physical robot during straight-line
locomotion, provided by Wang [28]. The solid and dotted lines are for sensors on the
left and right side of the robot, respectively.

It should be noted that Segment 2’s smaller length change is due to contact
frictional forces and its central location along the worm. While all segments
experience losses from friction in the joints, Segment 2, unlike Segments 1 and
3, must push against the rest of the worm body in both directions in order to
contract. Thus, it is reasonable to conclude that this energy loss is the result
of the surrounding segments slipping along the ground as Segment 2 pushes
them outward. In this simulation the robot model moves along flat ground, not
inside a pipe, so ground contact forces are produced by gravitational effects.
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If the model contained more segments the reduced efficiency would be present
in all interior segments (2, N− 1). These observations are all supported by the
Wang robot length data in Fig. 9 which also exhibits decreased lengthening in
Segments 2 and 3 of their four segment robot (N = 4) while locomoting across
flat ground with a non-zero coefficient of friction. The averages of the left and
right sensor readings for each segment were used to compare maximum length
changes to those of the 3D model. The average maximum length change of the
physical robot’s Segments 1–4, respectively, were 6.15 cm, 3.82 cm, 4.78 cm, and
5.98 cm. Just as in the model, the first segment elongates the most, there is a
small difference between the first and last segment elongations (2.75%), and the
middle segments elongate much less than Segment 1 (37.8% decrease for Segment
2, 22.2% for Segment 3).

5 Conclusions and Future Work

The primary purpose of this paper is to report the development of a 3D compliant
worm-like robot model and show it is capable of accurately simulating soft bodied
dynamics. The quantitative results in Fig. 7 substantiate these claims as our
modeled data is comparable to that recorded from the Wang physical robot
shown in Fig. 9 [28]. The qualitative evidence also supports this, as the snapshot
in Fig. 8 and the video found at the linked Github page show behavior that
visually matches the physical robot motion. A secondary purpose of this work
was to show that the SNS developed in our previous publication could be applied
to a more realistic robot model with little to no changes as we claimed [19]. Since
the controller instigated peristaltic behavior in this much more realistic model,
this work confirms that hypothesis.

Now that we have a model that simulates soft worm robot dynamics more
realistically, we can use it to develop improved control systems. While peristaltic
wave-forms were achieved, the parameters were not fine-tuned to produce appre-
ciable directional locomotion in the simulated environment. As such the model,
as presented in this paper, was only capable of achieving negligibly small speeds.
This is largely due to unoptimized friction coefficients (Mujoco’s default friction
coefficient µ = 1 was used) and a small number of segments, both of which
impact locomotive efficiency [13]. As mentioned earlier, friction and slip play a
large roll in peristaltic locomotion and the SNS controller, in its current state,
was not designed to account for these since the initial 2D kinematic model did
not simulate them. Furthermore, the tendon length data used for the approx-
imated stretch sensor readings were somewhat idealized in that they did not
include noise. Noise is present in nearly all sensor readings and must be miti-
gated when applying any control algorithm to a physical robot. Accounting for
noise should be as simple as adjusting the stretch sensor signal threshold in the
SNS controller but this remains to be validated.

Future work will focus on adjusting the controller to accommodate sensor
noise and improve straight-line motion. This will likely involve adding contact
pressure sensors to sense the normal forces along the underside of the worm
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model. The combination of pressure and stretch sensors has been shown by Wang
to provide reasonably reliable slip detection in soft worm robots [28]. We also plan
to add more functionality to the SNS control system, namely adaptive peristaltic
gaits. Nourse et al. [17] proposed an adaptive frequency CPG model which can
increase and decrease oscillation rates in response to manual, neural, or sensory
stimuli. In another paper, Ijspeert et al. [11] present a network of connected
descending CPGs which exhibited the ability to transition a salamander robot’s
gait from walking to swimming by changing only the drive input. These works
indicate that it should be feasible to implement an adaptive CPG in the SNS
to enable adaptive locomotion in a worm robot. Such functionality would allow
it to react to changes in its environment, such as the narrowing of a pipe, by
increasing the peristaltic wave speed or even changing waveforms altogether.

Acknowledgements. We would like to thank Yifan Wang, Mingyi Wang, and
Natasha Rouse for providing the sensor data from their physical worm robot and
allowing us to use it in this publication for comparison to our 3D model [28].
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