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Model analogies and exchange of ideas between physics or chemistry with biology

or epidemiology have often involved inter-sectoral mapping of techniques. Material

mechanics has benefitted hugely from such interpolations from mathematical physics

where dislocation patterning of platstically deformed metals and mass transport in

nanocomposite materials with high diffusivity paths such as dislocation and grain

boundaries, have been traditionally analyzed using the paradigmatic Walgraef-Aifantis

(W-A) double-diffusivity (D-D) model. A long standing challenge in these studies

has been the inherent nonlinear correlation between the diffusivity paths, making it

extremely difficult to analyze their interdependence. Here, we present a novel method

of approximating a closed form solution of the ensemble averaged density profiles and

correlation statistics of coupled dynamical systems, drawing from a technique used in

mathematical biology to calculate a quantity called the basic reproduction number R0,

which is the average number of secondary infections generated from every infected. We

show that the R0 formulation can be used to calculate the correlation between diffusivity

paths, agreeing closely with the exact numerical solution of the D-D model. The method

can be generically implemented to analyze other reaction-diffusion models.

Keywords: double diffusion, reproduction number, autocorrelation, spatiotemporal correlation, Fick’s diffusion

1. INTRODUCTION

Transport of mass, heat or electricity in inhomogeneous media has been modeled [1–3] involving
distinct conducting paths such as diffusion in metals containing a large number of dislocations
and/or grain boundaries [4], fluid flows in fissured rocks and media with double porosity [5, 6],
heat or electricity conduction in fiber reinforced composites [10] have been addressed by Aifantis
through continuous models, typically based on coupled sets of linear partial differential equations
(the double diffusivity or D-D model) involving 4 phenomenological constants: 2 diffusion
coefficients for each one of the two paths and two mass exchange constants between the paths. The
above two-state idea was also utilized later in developing the first dynamical model of dislocation
patterning, commonly known as the Walgraef-Aifantis (W-A) model [1, 2] that could distinguish
between two dislocation populations: slow or “immobile” dislocation and fast or “mobile” ones
that brings plastic deformation about. It turns out that the linearized version of the W-A model is
identical in form to the D-D model variant of the two-state reaction-diffusion (R-D) formulation
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used to describe transport of multiple families of species such
as vacancies and interstitials in crystalline lattices, impurity,
segregation in dislocation and grain boundaries or trapping and
precipitation process in alloys.

Over the last two decades, the D-D and W-A models have
become quite popular in both the applied mathematics [11] and
the material science [12] communities due to the interesting
mathematical properties of the former and robust interpretation
of experimental observations of the latter groups of models. This
includes implementation of D-D type models in interpreting
molecular and mesoscopic transport in condensed matter and
cosmological systems [13], i.e., Most of such models though
overlooked the contribution of stochastic forcing or spatial
randomness, e.g., surface impurities in materials, restricting
the implementation of such models in explaining experimental
observations. A recent series of stochastically driven D-Dmodels
[7–9] have not only addressed this issue of steering qualitative
phenomenological models closer to experimental descriptions,
technically these have opened up further possibilities of cross-
disciplinary implementation of these models from material
science to other fields and vice versa.

Anomalous diffusion involving multiple species and media
has for long remained an interesting field of research. The
diffusive behavior changes their characteristics depending on the
choice of medium. There are many plausible reasons for this.
One of them is that there exists some void grain boundary in
the medium which represents an especially high diffusivity path
inside the medium. Also, there are relatively narrow domains
in the medium where the diffusion rate is slower. Simultaneous
diffusion in multiple media has been traditionally analyzed
using double-diffusion models [4–6, 10, 14] that is a coupled
system of partial differential equations involving interacting
variables. These D-D models considered two species of diffusive
elements, one that follows the regular path, another following
a high-diffusive path, with eventual dynamics determined by a
dynamical equilibrium of these competing paths.

1.1. State of the Art
Elias C. Aifantis developed and introduced the concept of double
diffusion step by step in Aifantis and Hill [5, 6] and Aifantis
[15, 16]. A continuum basis for diffusion in regions with multiple
diffusivity was introduced in Aifantis [15]. Simultaneously,
in Aifantis [17], the diffusion in media with a continuous
distribution of high-diffusivity paths was modeled. Finally,
Aifantis provided a formulation generalizing this idea of the
diffusion in solidmedia for wide range of applicability in different
physical process, in double porosity [18], from metallurgy to
soil science [14] polymer physics and geophysics, in Aifantis
and Hill [5, 6]. Another explanation of this double diffusion
model was provided in Hill [19] using the concept of discrete
random walk model. In [5, 6]–[19], Aifantis and Hill studied the
basic mathematical questions of the model. Mainly they studied
uniqueness, maximum principles and basic source solutions in
Aifantis [20] and Hill [19] and boundary value problems in Hill
[19]. Kuttler and Aifantis studied the existence and uniqueness
of the weak form of the nonclassical diffusion equation in Kuttler
and Aifantis [21].

The diffusion process in a media is not deterministic. Indeed
there are stochastic effects initiated and controlled by several
factors. Randomness can be related to thermal fluctuations, grain
size changes, impurity effects, etc. Recent studies of a type of
non-equilibrium system involving multiple states of diffusion of
a diffusing species, called stochastic resetting, is governed by a
dynamics similar to a double-diffusion system [22]. These types
of interactive features play an important role in the process and
it became necessary to take into account of the stochastic agents.
In nanoscales or nanopolycrystals, the diffusion near the grain
boundary following two paths, regular and high diffusive, can
be affected by stochastic fluctuations [7]. Deterministic internal
length gradient method can not completely explain relaxation
time for diffusion in nanopolycrystals. Considering boundary
layer fluctuations, stochasticity was added in the modeling and
first stochastic gradient nanomechanics (SGNM) model was
proposed in Chattopadhyay and Aifantis [8]. Using SGNM
model, relaxation time is discussed thoroughly for a specific
superconductors [23] in Chattopadhyay and Aifantis [9]. Also,
linear stochastic resonance has been predicted and how stochastic
effects start affecting the system is explained in Chattopadhyay
and Aifantis [9].

1.2. Open Questions
The present article is the first in line to provide a closed form
approximate perturbative solution of the nonlinear model (close
to the linearized stationary state) resulting from a combination
of the D-D and W-A models. The D-D:W-A composite model
leads to a coupled system of reaction-diffusion (R-D) equations
where the diffusion terms are identical to those contained
in both models, the linear terms as in the D-D model [7,
8] while the nonlinear terms resemble the W-A model (3rd
order). In addition, the composite model contain second order
cross-coupled terms that do not lend themselves to an exact
analytical solution, not even in their linearized form. The
underlying physical picture represents a system of multiple
diffusive relaxation, including boundary layer shear (nonlinear
terms), and driven by stochastic forcing as in the two models.
The present model considers simultaneous diffusion in the lattice
or grain interior along the grain boundaries but also allow for
trapping and impurity effects. In other words, diffusing species
can be trapped in both grain interiors along dislocation cores
and dislocation dipoles as well as in the counterparts of the
defects within the grain boundary space, as also impurity of
lattice imperfection that are stochastically distributed and hence
extremely difficult to account for.

While diffusion mediated interaction between multiple
species is intrinsically nonlinear, traditional analyzes have relied
on the dual approach of numerical modeling (nonlinear systems)
and exactly solvable linear models (approximate only). Most
of these studies are deterministic with occasional stochastic
models strictly restricted to linear models. The present study
outlines a generic approach, repurposed from the field of
mathematical biology, to provide approximate closed form
solutions of inherently nonlinear coupled systems irrespective of
their origin. While there is no paucity of numerical estimation of
nonlinear models, including those for double diffusion ([8] and
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references therein), from the perspective of theoretical modeling,
analytical clarity had to give way to quantitative precision. More
importantly, a closed form solution offers a direct methodological
link between the process and its parameters that is not available
from brute numerical evaluation in a multi-parameter space.
The present study is thus a major breakaway from the linearity
assumption, retaining closer proximity to experiments while
also comparing favorably with numerical solutions, as we will
later show.

Nonlinear diffusion equations, a classical example of parabolic
type equations, play an important role in the modeling
of diffusion equations with nonlinearity [24], in particular,
for stochastically driven diffusive systems. One is for free
boundary problems such as the distribution of temperature in a
homogeneous material during phase-transition [25], i.e., the time
evolution of the phase boundaries, the so called Stefan problem.

Another is for reaction-diffusion problems, such as the
Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-KPP)model for
propagation of an advantageous gene in a population [26, 27],
Gray Scott Model for diffusion of chemical species [28]. Similar
style of modeling can be found for dislocation profiles in a
material. Walgraef and Aifantis (WA model) proposed a model
of a system of Reaction-Diffusion equations considering two
profiles of dislocation flows, immobile dislocation for slow
moving and mobile for relatively speedy moving [1]. The W-
A model has been studied extensively numerically, toward
bifurcation analysis and pattern formation in Pontes et al. [11]
and Spillotis et al. [12]. None of these were targeting a closed form
analysis, as is the target in this study.

The article provides a generic technique, repurposed from
a diverse domain (mathematical biology), to solve systems of
coupled nonlinear equations. Following a general introduction
and pointers to open questions in Section 1, Section 2
summarizes the model equation and provides a physical
explanation of the mechanisms involved. Section 3 represents
the nondimensionalized representation of the model in Section
2, the relevant non-dimensional governing equations and their
linear stability analysis. Section 4 first discusses a popular
method used in mathematical epidemiology in the calculation
of the time varying reproduction number R0, then identifies the
phenomenology as one of analyzing the covariance of two (or
more) coupled variables in a dynamical system, and then uses
this hypothesis to connect with the cross-coupling between D-D
variables. Section 5 provides the anatomy of the time (t) evolution
of the reproduction number R0(t) in the equivalent D-D model
as one measuring the strength of cross-correlation between the
different diffusing species. Finally, Section 6 summarizes the
outcomes of this continuum (approximate) mapping that then
is compared against direct numerical evaluation of this model.

2. THE MODEL

In this work, we focus on a closed-form, albeit approximate,
solution of the D-D model for nano polycrystal diffusion by
considering nonlinear source terms in the original W-A model,
representing additional exchange of diffusion species between the

two paths. These new non-linear exchange terms represent the
transfer of diffusion species through dislocation atmosphere i.e.,
diffusing species segregated in dislocation cores and dislocation
dipoles. We study in particular how the “transmissibility” of
the species affect their diffusion and corresponding trapping
processes. We observe how their internal interactions can affect
their behavior. We study how the transmissibility of the species
affects their diffusion.

Considering ρ̃1 and ρ̃2 as the concentrations/densities for the
two distinct D-D species along two different paths, the governing
equations of diffusion are given by

∂ρ̃1

∂ t̃
= D1

∂2ρ̃1

∂ x̃2
− k1ρ̃1 + k2ρ̃2 + λ1ρ̃1ρ̃2 + σ1ρ̃1

2ρ̃2 (1a)

∂ρ̃2

∂ t̃
= D2

∂2ρ̃2

∂ x̃2
+ k1ρ̃1 − k2ρ̃2 + λ2ρ̃1ρ̃2 + σ2ρ̃1ρ̃2

2 (1b)

where D1,D2 are diffusion coefficients, k1, k2 are the rate mass
exchange between different paths. The nonlinear terms represent
the interactions between different species (or dislocation paths, in
case of two diffusive paths in the material body) when the density
of one species influences the creation or annihilation of the other.

3. NON-DIMENSIONALIZATION OF THE
DOUBLE DIFFUSING
WALGRAEF-AIFANTIS MODEL

Let x̃ = ax, t̃ = bt, ρ̃1 = c1ρ1, ρ̃2 = c2ρ2. Substituting in
Equations (1a–1b), then assuming that the diffusion coefficients
remain unchanged after scaling, and choosing coefficients of
nonlinear product terms as unity after scaling, for σ1 = σ2 = σ ,
we have

∂ρ1

∂t
= D1

∂2ρ1

∂x2
−

(

k1σ

λ1λ2

)

ρ1 +

(

k2σ

λ21

)

ρ2 + ρ1ρ2 + ρ2
1ρ2 (2a)

∂ρ2

∂t
= D2

∂2ρ2

∂x2
+

(

k1σ

λ22

)

ρ1 −

(

k2σ

λ1λ2

)

ρ2 + ρ1ρ2 + ρ1ρ
2
2 . (2b)

Note, the variables ρ1 and ρ2, representing Equations (2a, 2b),
are non-dimensional. The numerical model uses this system of a
non-dimensional dynamical system.

3.1. Linear Stability Analysis
Equations (2a,2b) can be represented as the following coupled
reaction-diffusion model

∂ρ1

∂t
= D1

∂2ρ1

∂x2
+ F1(ρ1, ρ2) (3a)

∂ρ2

∂t
= D2

∂2ρ2

∂x2
+ F2(ρ1, ρ2), (3b)

where F1(ρ1, ρ2) = −

(

k1σ
λ1λ2

)

ρ1 +

(

k2σ
λ21

)

ρ2 + ρ1ρ2 + ρ2
1ρ2, and

F2(ρ1, ρ2) =
(

k1σ
λ22

)

ρ1 −

(

k2σ
λ1λ2

)

ρ2 + ρ1ρ2 + ρ1ρ
2
2 . We analyze

the system stability near theHomogeneous Equilibrium (HE) state
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or at the uniform steady state (ρ∗
1 , ρ

∗
2 ) [1, 12], in line with the

approach used in Spillotis et al. [12], i.e., where

F1(ρ
∗
1 , ρ

∗
2 ) = 0, (4a)

F2(ρ
∗
1 , ρ

∗
2 ) = 0 (4b)

Solving these equations we get the HE state, (ρ∗
1 , ρ

∗
2 ) = (0, 0).

Perturbing around this equilibrium state, perturbations defined
as (ρ̂1, ρ̂2), we get ρ1 = ρ∗

1 + ρ̂1, ρ2 = ρ∗
2 + ρ̂2.

Now near the HE states, the linearized version of the
Equations (3a, 3b) are

∂ρ

∂t
=

(

D1 0
0 D2

)

∂2ρ

∂x2
+ JFρ (5)

where ρ =

(

ρ̂1
ρ̂2

)

, and JF is the Jacobian of

(

F1(ρ1, ρ2)
F2(ρ1, ρ2)

)

at the

equilibrium states (ρ∗
1 , ρ

∗
2 ). We consider ρ =

(

φ1(t)
φ2(t)

)

eiωx for

real ω and get

(

dφ1
dt
dφ2
dt

)

=
(

JF − ω2D
)

(

φ1(t)
φ2(t)

)

, (6)

where D =

(

D1 0
0 D2

)

. As this is a system of two variables, the

signatures of trace and determinant of the matrix
(

JF − ω2D
)

defines the stability of the system. The determinant should be
always positive and trace should be always negative for all real
values of ω. We test these conditions for the HE state at (0, 0) and
arrive at the following closed form expressions for the Trace (Tr)
and Determinant (Det) of the model:

Tr
(

JF − ω2D
)

= −D1ω
2 − D2ω

2 −
k1σ

λ1λ2
−

k1σ

λ1λ2
(7a)

Det
(

JF − ω2D
)

= D1D2ω
4 +

D1k2σω2

λ1λ2
+

D2k1σω2

λ1λ2
(7b)

For D1 > 0,D2 > 0, k1 > 0, k2 > 0, σ > 0, λ1 > 0λ2 > 0,ω2 >

0, Trace is always negative and determinant is always positive.
Hence, the HE state at (0, 0) is a stable state.

4. BIOLOGY TO MATERIALS’ MODELING

It is usual practice in infectious disease epidemiology and
modeling to measure the “speed” of the propagation of the
infection. This measurement is generally called the basic
reproduction number R0 that effectively equates to the number
of secondary infections generated from each infected member of
the population. R0 depends on the numbers of currently infected,
susceptible and the rate of infection in the population. This R0
is the threshold parameter for an infectious disease, determining
whether it becomes an epidemic, pandemic, or extinct in a
community. The epidemiologists follow several methods to

calculate R0. Two of these, referred to as the next generation
method and the age-structured method [29–31] are widely used.
Both are effective and popular in infection modeling studies.

In this work, we show how the concept of R0 can be made an
auxiliary method in studying the diffusion process in a medium.
We show how the profile of time evolution of R0 can help us
to understand the diffusion-dynamics of two species, and can be
used as a substitute to the enumeration of correlation functions.

Our starting point in this “reverse mapping” scheme from
mathematical biology to material science relates to the origin
of the concept of basic reproduction number R0. Let I(t) be a
time-evolving quantity whose value at time t is dependent on
its values at previous time points. This essential non-Markovian
distribution ensures non-trivial values for all I(t − τ ), where 0 ≤

τ ≤ t, as long as I(t) is defined. Representing I(t) as the number
of infected individuals at time t in a population, non-Markovian
kinetics ensures that I(t) should depend on the number of
infected, present in the population, at time t − τ , since the
new infections can only be generated by the previous infections.
The time required for an infected individual to generate a new
infection, from the onset of its infection, is called the generation
time τ . Clearly, τ is a non-negative continuous random variable
which has a probability density function, say g(τ ). In the case
of infectious diseases, g(τ ) is generally taken as Gamma or a
lognormal distribution.

5. “GENERATION TIME” IN DOUBLE
DIFFUSION: COMPARISON WITH
RANDOM WALK MODEL

We can think of double diffusion as the continuum limit of a
random walk model where the random walker diffuses along
two different diffusive paths, occasionally jumping between
them [19]. Here, by different diffusivity of paths we mean the
probability of left jump (pi), right jump (qi), staying at same
position without making any jump (ri) are different for the two
paths, where i = 1, 2 for path-1 and path-2. Let us introduce
a random time interval τ , having a probability density function
g(τ ), during which the walker diffuses along the same path before
making any jump to the other path. The time τ can be thought
of as the generation time for the double diffusion model, in
parallel with the well defined generation time for an infectious
disease. For this random walk model of double diffusion, let the
probability of jumping from path-1 to path-2 be P(1 → 2) = s1
and same for path-2 to path-1 be P(2 → 1) = s2. Therefore,
the generation time in case of our double diffusion model can
be compared to the survival time of the random walker on a
single path before making a jump to the other. Now, for the
random walk model of double diffusion we must have pi + qi +
ri + si = 1 for i = 1, 2. Therefore, the probability that the
random walker continues on path i, in two consecutive jumps, is
(1− si). Hence the corresponding survival probability on path i is
given by a geometric distribution. More explicitly, the probability
that the walker will stay on path i for n consecutive jumps is
(1 − si)

nsi. Motivated by the fact that the geometric distribution
has memoryless property, and exponential distribution is the
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FIGURE 1 | Comparison of normalized autocorrelation and R0 at x = 0.2. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation (in

blue) is decreasing at later times although the R0 is increasing for the species ρ1 (orange curve). This indicates that at x = 0.2 the production of ρ1 occurs from its own

population at small timescales. On the other hand in (B), the simultaneous decreasing behavior of the autocorrelation and R0 indicate that at x = 0.2 the production of

ρ2 also occurs at smaller timescales. However, in case of ρ2, its production occurs due to the conversion of ρ1 into ρ2, since the measure of self-creation R0 is

decreasing in this case.

FIGURE 2 | Comparison of normalized autocorrelation and R0 at x = 0.3. Outset is in log scale and inset is in original scale. (A) Shows that the autocorrelation

function and R0 for the species ρ1 have the same increasing trend as a function of time. The understanding we get from this trend is that the species ρ1 is produced

fom its own species for long time-scales. (B) Indicates that the dynamics of the species ρ2 is quite different than ρ1. The species ρ2 is produced from the conversion

of ρ1 instead from its own ancestors, as the R0 for ρ2 decreases over time.

only continuous distribution having memoryless property, it is
reasonable to assume that the generation time is exponentially
distributed in the continuum limit of this random walk model of
double diffusion.

5.1. The Reproduction Number R0 and Its
Mapping to the D-D Model
Following the similar concept in the case of double diffusion, we
can think of the density ρ(t) of certain species is dependent on
its density ρ(t − τ ) at earlier times (0 ≤ τ ≤ t). The time
required for generating new particles of the same species from
the old ones is a continuous random variable τ with some density

function g(τ ). Therefore, in the same token, as defined in case of
infectious diseases, we can define a quantity R0 for a species in a
double-diffusive process as

R0(t) =
ρ(t)

∫∞

0 ρ(t − τ ) g(τ ) dτ
. (8)

where g(τ ) is the generation time.
Figures 1–4 compare the R0 equivalent of an equivalent

epidemic rate model with that of the autocorrelation function
(Equations (2a, 2b) at the quantitative level, providing interesting
insights into the D-D reaction-diffusion model. It can be easily
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FIGURE 3 | Comparison of normalized autocorrelation and R0 at x = 0.5. Outset is in log scale and inset is in original scale. (A) Shows similar trend for R0 and

autocorrelation as in Figure 2A, which indicates that the production of ρ1 is boosted by the abundance of its ancestor. (B) Whereas, the production of ρ2 occurs both

by the conversion of ρ1 for some time and due to its own population at later times.

FIGURE 4 | Comparison of normalized autocorrelation and R0 at x = 0.6. Outset is in log scale and inset is in original scale. The dynamics at x = 0.6 is almost similar

to that of at x = 0.5, as shown in Figure 3. (A) Autocorrelation and R0 of ρ1 at x = 0.6. (B) Autocorrelation and R0 of ρ2 at x = 0.6.

understood from the mathematical expression of R0(t) that it is a
measure of the production rate of a species from the population
of the same species at an earlier epoch, rather than due the
conversion of other species. On the other hand, autocorrelation
is a measure of the abundance of a species as a whole,
aggregating the production of a species from it’s own population
as well as due to the conversion of other species. Therefore,
the autocorrelation function together with the time-varying
R0(t), gives us interesting spatio-temporal insights about the
observed abundance.

A comparison between Figures 1, 2 with Figure 3

clearly indicates that while asymmetric cases (x < 0.5)
ensure only partial convergence between the R0 and
autocorrelation profiles, i.e., only one of the two
double diffusing variables match both profiles, at

x = 0.5, the profiles match (approximately) for
both variables.

Note, the dynamics of ρ1 as shown in Figure 5 matches those
for x = 0.3, 0.5, 0.6. However, the species ρ2 is mostly created
by the conversion of the species ρ1. These 5 figures clearly
indicate that only for the symmetric case x = 0.5, the time
dynamical evolution of the reproductive number for an epidemic
model matches the average energy dissipation rate of individual
variables (expressed as autocorrelation functions), not otherwise.
This is not unexpected as the point x = 0.5 (spatial scale 0 < x <

1) represents the point of dynamical equilibrium between two
diffusing species, that also represents infection flux equilibrium
between susceptible-infected-recovered species in an epidemic
model. In other words, a fair quantitative comparison between
the R0 vs. the D-D model is only ensured at x = 0.5.
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FIGURE 5 | Comparison of normalized autocorrelation and R0 at x = 0.7. Outset is in log scale and inset is in original scale. (A) Autocorrelation and R0 of ρ1 at

x = 0.7. (B) Autocorrelation and R0 of ρ2 at x = 0.7.

6. CONCLUSIONS

Clearly, a comparison of the dynamical variable R0(t),
motivated by the epidemiological literature, with the
autocorrelation function reveals the richness of the dynamics
of a reaction-diffusion system which offers an option of
interpolating the results from the epidemic model into
the double-diffusion domain, in the process providing a
closed form solution of the latter that has remained elusive
thus far. Comparing the time evolution of R0 with the
autocorrelation function gives the information of the origin
of the observed abundance of different species in a reaction-
diffusion system as explained in Figures 1–5. The analogy
is strictly restricted to the spatially symmetric (x = 0.5)
conformation though, a point of dynamical equilibrium
between two (or multiple) diffusing species, an analogy with
the stationary state fixed point of an epidemic model in
dynamical equilibrium.

Therefore, the introduction of the epidemiologically
motivated quantity R0(t) into the studies of the reaction-
diffusion systems can play a crucial role in understanding such
systems in more depth. Since this interpolation between two
unrelated disciplines only uses the mathematical similarity
between two (or multiple) reaction-diffusion species, expressed
as double-diffusion in material science, as compared to infection
rate growth in epidemiology, the approach is generic enough
to be applied to all coupled reaction-diffusion models. At the
point of symmetry (x = 0.5 in our model), both quantities
(R0 and autocorrelation) will asymptotically match their
values with evolving time allowing for a closed form mapped
(from mathematical biology) solution of the R-D model. As
a comparison with the numerical solution confirms close
convergence with the approximate mapped solution (based on

the R0(t) formula as a descriptor of the correlation strength
of the diffusing variables), the solution provides handle to
studies analyzing higher order perturbations and relevant
bifurcations, also including stochastic terms. Future studies
involving calculation of correlated superconducting fluxes would
be presented using the same method.
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