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Air quality, health and equity implications of 
electrifying heavy-duty vehicles

Sara F. Camilleri    1  , Anastasia Montgomery    1, Maxime A. Visa    1, 
Jordan L. Schnell    1,2,6,7, Zachariah E. Adelman3, Mark Janssen3, 
Emily A. Grubert    4, Susan C. Anenberg5 & Daniel E. Horton    1,2

Heavy-duty vehicles (HDVs) disproportionately contribute to the creation 
of air pollutants and emission of greenhouse gases—with marginalized 
populations unequally burdened by the impacts of each. Shifting to 
non-emitting technologies, such as electric HDVs (eHDVs), is underway; 
however, the associated air quality and health implications have not been 
resolved at equity-relevant scales. Here we use a neighbourhood-scale 
(~1 km) air quality model to evaluate air pollution, public health and equity 
implications of a 30% transition of predominantly diesel HDVs to eHDVs 
over the region surrounding North America’s largest freight hub, Chicago, 
IL. We find decreases in nitrogen dioxide (NO2) and fine particulate matter 
(PM2.5) concentrations but ozone (O3) increases, particularly in urban 
settings. Over our simulation domain NO2 and PM2.5 reductions translate 
to ~590 (95% confidence interval (CI) 150–900) and ~70 (95% CI 20–110) 
avoided premature deaths per year, respectively, while O3 increases add ~50 
(95% CI 30–110) deaths per year. The largest pollutant and health benefits 
simulated are within communities with higher proportions of Black and 
Hispanic/Latino residents, highlighting the potential for eHDVs to reduce 
disproportionate and unjust air pollution and associated air-pollution 
attributable health burdens within historically marginalized populations.

Electrifying the transportation sector is an ongoing and accelerating 
climate change mitigation action that will bring a range of co-benefits 
that could potentially reduce long-standing environmental injustices 
associated with air pollutant exposure1,2. Despite representing only 6% 
of total on-road vehicles in the United States3, medium-to-heavy-duty 
trucks and buses are the second largest source of transportation CO2 
emissions (~27% (ref. 4)), the largest contributors to on-road NOX (~32% 
(ref. 2))—an Environmental Protection Agency (EPA) criteria pollutant 
and key precursor in ozone (O3) formation—and a substantial on-road 
source of particulate matter (PM) 5. In the United States, traffic-related 
pollution contributes to yearly PM2.5- and O3-related premature deaths of 

between 12,000 and 31,000 (ref. 6) and 43% of traffic-related PM2.5 and O3 
mortality has been linked to on-road diesel pollution7. Traffic-related air 
pollution has also been linked to paediatric asthma incidence8 and circu-
latory and ischaemic heart disease mortality9. Air pollution hotspots from 
heavy-duty vehicles (HDVs) typically occur in urban settings, areas close 
to interstate highways, and along truck routes10–12, and with more than 45 
million people living within 300 feet of major road networks in the United 
States13—the majority of whom are people of colour14—HDV-related emis-
sions disproportionately impact minoritized populations15–19.

Transitioning from traditional internal combustion HDVs to 
electric HDVs (eHDVs) is one commonly espoused climate mitigation 
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instantaneously converted to eHDVs. We focus our analysis on the 
region surrounding North America’s largest freight hub, Chicago, 
IL33, and leverage the most recent census tract-level health data to 
estimate census tract-level variability in eHDV-driven health impacts 
that account for the underlying susceptibilities of exposed popula-
tions. Additionally, we assess equity outcomes by characterizing how 
eHDV adoption could alter air pollution and health impact disparities 
among racial/ethnic subgroups. Our approach accounts for on-road 
and refuelling infrastructure emission changes as well as altered emis-
sions from electricity generation units (EGUs) due to eHDV battery 
charging demands.

Results
Changes in emissions
For most chemical species, an instantaneous transition to 30% 
eHDVs results in on-road emission reductions that more than 
offset emission increases from EGUs (Fig. 1 and Supplementary  
Table 3). The highest-magnitude emission reductions occur along major 
road networks and within densely populated areas (Supplementary  
Fig. 9). Emission increases are limited to point sources within grid cells 
where EGUs reside (Fig. 1 and Supplementary Fig. 1) which are predomi-
nately gas-fired within our CTM domain (Fig. 1b). Despite an increase 
of ~4.9 M tonnes of CO2 per year at EGUs following an increase in elec-
tricity demand, we estimate net CO2 emission reductions of ~2.5 M 
tonnes per year. NOx emissions also exhibit net reductions (~7%; Sup-
plementary Table 3) compared with our baseline simulations in which 
HDVs are predominantly diesel powered—with the largest decreases 
along major traffic routes (Fig. 1a). Elemental carbon emissions show 
the second largest decrease following NOx, with a net decrease of ~6% 
(Supplementary Table 3). In contrast, SO2 emissions, mostly emitted 
from coal combustion at EGUs4, increase by ~3%. We note that the emis-
sion changes reported here are probably worst-case estimates as EGU 
emissions are projected to decrease as the grid continues to modernize 
and decarbonize34.

Changes in NO2 and O3 concentrations
We find that the shift of 30% of HDVs to eHDVs results in domain-wide 
population-weighted NO2 reductions of 0.5 ppb (~6%), with maximum 
reductions reaching 4.9 ppb (Fig. 2b). Reductions are particularly 

strategy3; however, the associated air-quality and public health implica-
tions of such a transition have not yet been widely assessed at the fine 
(~1 km) spatial resolutions needed to determine differential exposure 
between population subgroups in urban settings20; a critical need for 
environmental justice objectives such as the US Federal Government’s 
Justice40 Initiative21. While changes in GHG emissions brought about 
by eHDV adoption (for example, CO2), can be directly related to global 
atmospheric abundances, determining overall changes in air pollutant 
concentrations is more challenging due to non-linear chemistry, the 
formation of secondary pollutants, the effects of dynamic meteorol-
ogy, and other nuances associated with a region’s chemical regime.

Estimating the air quality and health implications from 
emission changes can be done at high spatial resolutions using 
reduced-complexity models (RCMs22)—tools that are ideal for testing 
a multitude of policies when computational resources are limited23,24. 
However, the advantages of an RCM come at the expense of higher 
uncertainties25, coarser temporal resolution, and the inability to assess 
changes in secondary pollutants such as O3 (ref. 24)—a pollutant associ-
ated with adverse traffic-related health impacts. Chemical transport 
models (CTMs) on the other hand, are more computationally expensive 
but include the complex atmospheric chemistry and meteorological 
feedbacks necessary for representing changes in secondary pollut-
ants while also allowing for simulations at short temporal scales, in 
line with regulatory air quality standards. General agreement on the 
potential of electric vehicles (EVs) to reduce GHGs as well as NOx and 
PM2.5 concentrations exists among CTM studies26–31; however, the 
spatial distribution of these differences at neighbourhood scales is 
not fully captured when coarse resolution CTMs are used29–31. Unlike 
NO2 and PM2.5, evidence documenting O3 changes that result from EV 
adoption is inconsistent, with national studies suggesting widespread 
O3 reductions29,31 but finer-scale studies, of which only two are United 
States based, identifying isolated increases26–28,32. Few CTM studies have 
estimated the air pollution-related health impacts due to EVs30 par-
ticularly at equity-relevant scales26, with no study thus far estimating 
the associated environmental justice implications of eHDV adoption.

In this Article, we use a regulatory-grade two-way coupled CTM 
framework (WRF-CMAQ) to characterize neighbourhood-scale 
(1.3 km) changes in primary and secondary pollutant concentrations 
(that is, NO2, O3 and PM2.5) when a portion of the on-road HDV fleet is 
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Fig. 1 | Emission changes. a,b, On-road and EGU NOx emission changes compared 
with the baseline scenario in mol s−1 (a) and EGU percentage generation increase 
by fuel type following 30% electrification of HDVs (b). Numbers at the tails of 
colour bar in a indicate minimum and maximum differences in emissions within 
the domain. Note that increases in emissions are depicted in a; however, they are 
restricted to grid cells that contain EGUs. While accounting for clean electricity 

generation from emission-free renewable EGUs (other than nuclear), the increase 
in electricity demand depicted in b represents only the portion of electricity 
sourced from non-renewable powered EGUs and nuclear EGUs. OFSL and OTHF 
fuel types refer to other fossil fuel types and fuel derived from waste heat, 
unknown or purchased sources, respectively.
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pronounced along highway corridors, at transportation hubs, and 
within urban centres that also exhibit high baseline NO2 concentra-
tions (Fig. 2a and Supplementary Fig. 2) and NOx emission reductions  
(Fig. 1a). In fact, NO2 reductions in urban areas are ~3.5 times greater than 
reductions in rural regions (Fig. 2b and Supplementary Table 5). Even 
in grid cells containing EGUs, our simulations show net NO2 reductions 
driven by on-road decreases, despite increased electricity demand and 
increased EGU NOx emissions (Supplementary Table 4). Differences in 
NO2 concentrations for individual simulated months are largely consist-
ent with annual differences; however, larger-magnitude reductions are 
simulated in our summer and autumn months (Supplementary Fig. 3).

In contrast to NO2 changes, annual mean daily maximum 8 h run-
ning mean O3 concentrations (MDA8O3)—a widely used regulatory 
and health-relevant O3 metric—exhibit regionally mixed increases 
and decreases following eHDV adoption. We find increases in simu-
lated MDA8O3 concentrations of up to 1.45 ppb occurring adjacent 
to major highways and within urban areas (Fig. 2d and Supplemen-
tary Table 5) but decreases of up to 0.18 ppb in non-urban regions  
(Fig. 2d). However, domain average MDA8O3 changes are positive 
(0.11 ppb; rural and 0.45 ppb; urban) with a population-weighted 
domain mean increase of 0.19 ppb (~+0.4%). Areas exhibiting increases 
in simulated MDA8O3 concentrations correspond to locations in the 
baseline with low MDA8O3 but high NO2 (Fig. 2a,c). On a seasonal basis, 
MDA8O3 concentration changes are spatiotemporally heterogeneous 
(Supplementary Discussion and Supplementary Fig. 3).

Simulated patterns of heterogeneous change in MDA8O3 con-
centrations can be explained by spatiotemporal variations in the O3 
regime, that is, the VOC-to-NOx ratio. In highly polluted urban areas 
and along road networks we simulate low baseline surface VOC/NOx 

ratios (4.9 ppbC/ppb; Supplementary Table 6 and Supplementary  
Fig. 4), indicating a VOC-limited environment. Conversely, in rural 
and suburban areas, we simulate VOC/NOx concentration ratios that 
are about twice those in urban areas, indicating NOx-limited regimes 
(9.0 ppbC/ppb). Consequently, following eHDV adoption, NOx reduc-
tions in urban and heavily trafficked areas lead to O3 increases due to less 
titration of O3 by NO (ref. 35). In addition, more OH radicals are available 
to react with VOCs, which in turn results in additional O3 formation36 
(Supplementary Fig. 5). In rural and NOx-limited areas, NOx reductions 
have a marginal impact on the overall MDA8O3 changes (~0.01 ppb;  
Fig. 2d). Our simulation of urban areas as NOx-limited-to-transitional is 
consistent with previous studies33,37,38. Prior work has suggested that the 
surface VOC/NOx O3 regime typically transitions around 8 ppbC/ppb; 
however, this threshold varies spatially and temporally and depends on 
factors such as local meteorology and VOC composition36,39. In a nation-
wide study of O3 regime surface VOC/NOx ratios, Ashok and Barrett37 
estimate different ratios across the United States with ~7 ppbC/ppb 
estimated for the Chicago Metropolitan Area, suggesting that ratios 
of less/more than 7 ppbC/ppb represent VOC-limited/NOx-limited 
regimes. The seasonality of simulated MDA8O3 changes can also be 
partially explained by VOC/NOx ratios (Supplementary Discussion and 
Supplementary Table 6).

From a concentration threshold exceedance standpoint, electrifi-
cation of 30% of on-road HDVs results in two to six additional grid cell 
days with MDA8O3 levels higher than the World Health Organization’s 
MDA8O3 threshold exceedance guideline of 50 ppb (ref. 40) in urban 
areas such as Cook County, IL (home to Chicago; Fig. 3a) and Milwau-
kee, WI (Fig. 3b) as well as in isolated rural areas such as Noble County, 
IN (Fig. 3d). However, less of a clear signal is observed for counties in 
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Fig. 2 | NO2 and MDA8O3 changes. a–d, Simulated annual mean (a) NO2 and (c) MDA8O3 baseline concentrations and differences in (b) NO2 and (d) MDA8O3 annual 
mean concentrations between the eHDV and baseline simulations.
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Michigan as we note both decreases and increases in the number of grid 
cell exceedance days (for example, Grand Rapids, MI; Fig. 3c). Applying 
the less stringent 70 ppb MDA8O3 US EPA National Ambient Air Quality 
Standard results in 1–2 additional grid cell exceedance days mostly in 
north-western and southern Cook County (Supplementary Fig. 6).

Changes in PM2.5 concentrations
Thirty per cent adoption of eHDVs reduces annual mean 
population-weighted PM2.5 concentrations by an average of 0.09 µg m−3 
across the study domain and by a maximum of 0.49 µg m−3 at hotspots 
within densely populated metropolitan areas—areas that generally have 
high simulated baseline PM2.5 concentrations (Fig. 4 and Supplementary 
Table 4). Although we note domain-wide decreases in PM2.5 concentra-
tions (even in grid cells with EGUs), simulated sulfate (SO4) concentra-
tions increase in rural regions (Supplementary Fig. 7c). Sulfate and 
nitrate compete for ammonia41; therefore, as NOx emissions decrease 
(−6.65%; Supplementary Table 3) and ammonia (NH3) emissions remain 
largely unchanged (−0.02%; Supplementary Table 3), increases in SO2 
emissions (3.10%; Supplementary Table 3) result in decreases in NO3 
aerosols but increases in SO4 aerosols (Supplementary Fig. 7). This PM 
chemical interplay highlights the utility of high-resolution CTMs to 
simulate the complex formation of air pollution not only at emission 
source locations such as EGUs but also in areas where secondary pol-
lutants form, and exposure may occur.

Health benefits and trade-offs
To leverage the high spatial resolution of our simulated air quality 
changes, we utilize similarly high-resolution health data. When com-
puted with census tract-level USALEEP baseline all-cause mortality 
data, domain-wide reductions in simulated annual mean NO2 and PM2.5 
concentrations for 30% eHDV adoption translate to 590 (95% confi-
dence interval (CI) 150–900) and 70 (95% CI 20–110) annual avoided 
premature deaths compared with the baseline (Supplementary Table 
7). We note that health benefits in urban areas such as Chicago do not 
occur at the expense of health damages in rural areas; even rural census 
tracts that contain EGUs experience health benefits. However, it should 
be noted that ~20% of the electricity demand is met by EGUs outside our 
CTM domain, where pollutant impacts cannot be assessed. In contrast 
to NO2 and PM2.5, the overall health impact associated with MDA8O3 

exposure across the domain adds up to 50 (95% CI 30–110) additional 
deaths per year. To exclude the influence of baseline mortality data, 
we also calculate the attributable fraction (equation (1)) and estimate 
that 0.42% and 0.05% decreases of all-cause baseline mortality are 
associated with reductions in NO2 and PM2.5, respectively, while a 0.04% 
increase of all-cause baseline mortality is associated with increases in 
annual mean MDA8O3.

The spatial distribution of differences in attributable mortality 
rate (per 100,000) for each pollutant following eHDV adoption reflects 
both differences in simulated pollutant concentrations and underlying 
susceptibilities (Supplementary Fig. 8). We find that the highest dif-
ferences in attributable mortality rates for all three pollutants occur 
in Cook County and along census tracts close to Interstate-90, which 
enters our domain on its eastern margin, passes just south of Lake 
Michigan, turns north-west across Cook County and exits the domain 
on its western margin (Supplementary Figs. 8 and 9). We note that 
the magnitude of air pollution changes does not scale linearly to the 
magnitude of estimated health impacts as pollutant exposure impacts 
depend on pollutant-specific β values as well as the spatial distribution 
of baseline mortality data. In fact, discrepancies between the spatial 
distribution of attributable mortality rate differences and air pollu-
tion concentrations, such as high mortality differences west of Cook 
County (Supplementary Fig. 8), are linked to the spatial variability 
of the baseline mortality data (Supplementary Fig. 10). That is, when 
census tracts with high baseline mortality rates coincide with moder-
ate differences in pollutant concentrations, health impacts can be 
amplified as more susceptible people are exposed. Despite increases 
in estimated MDA8O3-related attributable deaths, our results show 
that electrifying HDVs leads to health benefits largely resulting from 
substantial reductions in simulated NO2 concentrations. The health 
estimates for related pollutants such as PM2.5 and NO2 should be consid-
ered in isolation, as a summation of these health impacts could result 
in overestimated impacts9.

Equity implications
Resolving neighbourhood-scale pollutants not only allows us to dis-
tinguish differences in air pollution concentrations and their associ-
ated health impacts, but also facilitates an equity-focused analysis that 
characterizes racial/ethnic disparities in the air quality and public health 
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Fig. 3 | MDA8O3 exceedances. a–d, Differences in number of grid cell days with MDA8O3 levels greater than 50 ppb across the study domain and in Cook County, IL (a), 
Milwaukee, WI (b), Grand Rapids, MI (c) and Noble County, IN (d).
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benefits and trade-offs of eHDV adoption. Given its prodigious impact, 
we focus our eHDV equity analysis on NO2, but provide PM2.5 and MDA8O3 
analyses in Supplementary Figs. 11 and 12. We assess the racial/ethnic 
composition of each NO2 concentration change decile over the full model 
domain and within Chicago city limits (Fig. 5a,c). We also perform a simi-
lar analysis on changes in attributable mortality rate deciles (Fig. 5b,d). At 
the domain level, the largest NO2 reductions (that is, highest magnitude 
pollutant decreases in the highest (10th) decile) occur where Black (24%), 
Asian (9%) and Hispanic or Latino (18%) populations represent a relatively 
high proportion of the total population within that decile (Fig. 5a), while 
the smallest reductions (that is, lowest magnitude decreases in the lowest 
(1st) decile) occur where non-Hispanic white populations predominate 
(90% of the population within the 1st decile Fig. 5a). Health benefits, in 
the form of reduced mortality rates, largely mirror NO2 concentration 
declines; however, the Black population is overrepresented in the highest 
decile, indicating an outsized health benefit for this community (46%; 
Fig. 5b), largely driven by higher underlying baseline mortality rates and 
susceptibilities (Supplementary Fig. 10).

Within Chicago city limits, our equity findings are more nuanced. 
People of colour constitute the majority of the racial/ethnic composi-
tion for all Chicago NO2 concentration change deciles (>50%; Fig. 5c). 
However, in contrast to our domain-level findings, NO2 reductions 
are distributed more equally across population subgroups (Fig. 5c). 
This difference is reflective of the racial/ethnic make-up of the city 
and the proximity of non-Hispanic white populations to the northern 
branch of Interstate-90, where large reductions in NO2 concentrations 
are simulated (Fig. 5e and Supplementary Fig. 13a). Despite relatively 
equitably distributed NO2 reductions across population subgroups, 
we note disproportionately large NO2-health benefits for Chicago’s 
Black population, particularly in the higher (9th and 10th) deciles 
(43–68%; Fig. 5d). To help explain these outsized health impacts, we 
investigate the bivariate distribution of baseline mortality rates and 
simulated NO2 changes across Chicago (Fig. 5e–g). Areas where NO2 
health benefits are greatest (Fig. 5f) correspond to census tracts with 
high baseline mortality rates and high NO2 reductions (dark green;  
Fig. 5g), whereas areas with high NO2 reductions and low baseline mor-
tality rates (dark blue; Fig. 5g) experience lower health benefits (light 
green; Fig. 5f). Our results demonstrate that even low-to-moderate 
reductions in pollutant concentrations can lead to substantial health 
benefits (yellow; Fig. 5g); an outcome that is particularly true for Chi-
cago’s Black population whose spatial distribution (Supplementary 
Fig. 13b) only partially overlaps with high magnitude NO2 reductions 
(Fig. 5f), but whose baseline mortality rates are relatively high. Indeed, 
we find that the spatial correlation of the City’s Black population with 
the footprint of our simulated NO2 reductions is relatively weak and 

negative (Pearson’s r = −0.20), whereas the Black population’s cor-
relations with NO2 health benefits and baseline mortality rates are 
both higher and positive (Pearson’s r = 0.43 and 0.54). This finding is 
consistent with previous studies that have demonstrated the outsized 
role of socio-demographic factors in determining health impacts as 
compared to pollutant exposure levels42.

Discussion
Using a regulatory-grade neighbourhood-resolving two-way coupled 
CTM, we demonstrate that net emissions decrease across our study 
domain (despite SO2 emission increases at EGUs), leading to annual 
mean NO2 and PM2.5 decreases of up to 4.91 ppb and 0.50 µg m−3, respec-
tively. We highlight large decreases along dense road networks and in 
urban areas where on-road HDV emissions are highest. Reductions 
in on-road emissions outweigh increases in EGU emissions such that 
decreases in NO2 and PM2.5 concentrations (and their associated health 
impacts) are simulated even in grid cells that contain EGUs. In con-
trast, we note increases in annual mean simulated MDA8O3 concen-
trations in areas of high NOx reductions and decreases in non-urban 
areas. Increases in MDA8O3 concentrations are linked to a reduction 
in O3 titration by NO as well as an increase in available OH radicals. 
Our results indicate that, in our domain, shifting to eHDVs increases 
VOC/NOx ratios, which, if the shift is of a sufficient magnitude, could 
lead to a change in the O3 regime of some areas, for example, areas in 
transition from VOC- to NOx-limited, and could result in decreased O3 
formation following NOx emission reductions of sufficient magnitude.

The overall impact of shifting emissions from on-road tailpipes 
and refuelling infrastructure to EGUs largely depends on the electricity 
generation mix of the region as well as the distribution of electricity 
from EGUs to sources of demand43,44. The predominant electricity gen-
eration mix in our domain is natural gas. As such, results presented in 
this study, particularly results pertinent to emission changes at EGUs 
and changes in PM2.5 concentrations, might differ when looking at 
regions with a different electricity generation mix, when incorporating 
a decarbonizing electric grid45, or when using Earth System simplify-
ing RCMs46. Nonetheless, results presented in this study are largely 
consistent with previous studies that have focused on changes in air 
pollutant concentrations following the adoption of various EVs sce-
narios. Previous CTM-based studies suggest that transitioning to EVs 
leads to reductions in net NOx emissions despite projected increases 
in electricity demand26,29. Similarly, previous United States-focused 
studies employing different EV adoption scenarios have shown reduc-
tions in PM2.5 concentrations both nationwide29,31 and regionally26. 
Using 12 km CTM United States-wide simulations and shifting 17% of 
light-duty vehicles and 8% of HDVs to electric, Nopmongcol et al.29 
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found PM2.5 reductions of less than 0.5 µg m−3 for most of the eastern 
United States despite a projected 5% increase in electricity demand, met 
mostly by natural gas. In contrast, Schnell et al.31, using a 50 km CTM, 
found somewhat mixed results for the United States, that is, with 25% 
electric light-duty vehicle adoption PM2.5 benefits/disbenefits were 
strongly dependent on the region and season, with a high sensitivity 
to a region’s electricity generation mix. Lastly, when comprehensive 
fleet turnover to EVs was assessed using a CTM with 1 km resolution over 
the Greater Houston area, Pan et al.26 found PM2.5 reductions ranging 
between 0.5 and 2 µg m−3 with large reductions near highways.

Changes in O3 concentrations driven by the adoption of different 
classes of EVs have also been reported; however, results are varied. 
Nationwide studies using CTMs at medium-to-coarse resolutions report 
widespread reductions in O3 (refs. 29,31) largely driven by on-road NOx 
emission reductions31. However, Schnell et al.31. observed O3 increases in 
some grid cells, for example, in southern California and north-eastern 
Illinois. More regionally focused CTM studies at finer scales26,32 also 
found increases in O3 concentrations, particularly along highways and 
in NOx-saturated environments. Consistent with results presented in 
this study, increases in O3 in these more regionally focused studies are 
generally linked to smaller reductions in VOC emissions as compared 
with NOx emission reductions in NOx-saturated environments leading to 
reduced O3 titration by NO (refs. 26,32). The differences in O3 responses 

to EV adoption summarized here may be related to differences in study 
design, simulated domain and/or model configuration and complex-
ity, although it is notable that increases in spatial resolution tend to 
demonstrate pockets of increasing O3 concentrations with EV adoption, 
suggesting that resolving fine-scale features is critical to resolving 
non-linear chemistry and the formation of secondary pollutants over 
tight spatial gradients (for example, near roadways or in urban environ-
ments), and is particularly critical for studies focused on public health 
impacts and/or environmental justice outcomes.

Accurately representing the environmental impacts of EV adop-
tion scenarios is limited by our ability to forecast EV market share as well 
as the future evolution of the US electric grid. Projections for EV sales 
continue to increase from a 2018 estimate of 21% of new car sales to a 
recent estimate of 52% by 2030 (ref. 47). Our 30% eHDV instantaneous 
adoption estimate should not be considered a forecast with a specific 
time horizon. Indeed, our use of 2016 grid infrastructure with 30% 
eHDV adoption is temporally inconsistent, and the air quality benefits 
and trade-offs tied to grid infrastructure reported here should be 
considered conservative, given the on-going transition of current grid 
infrastructure to emission-free EGUs48. To quantify the sensitivity of 
our results to a future grid, we run sensitivity simulations assuming all 
added grid demand from 30% eHDV adoption is met by emission-free 
EGUs. We find that over our domain, average NO2, PM2.5 and MDA8O3 
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concentrations decrease further when the additional electricity 
demand needed for charging is supplied by emission-free sources 
(−0.17%, −0.09% and −0.004%, respectively). These relatively small 
magnitude changes highlight the marginal impact of EGU emissions 
on air quality as compared with on-road emissions when transition-
ing to EVs. While we account for emissions related to hotelling hours, 
which represent the hours truck drivers spend in their long-haul trucks 
during mandated rest periods49, the emissions modelling scheme used 
in this study does not include HDV idling emissions during loading/
unloading or queueing at warehouses. Future eHDV studies should 
incorporate these emission processes as they might amplify the net 
effect of eHDVs, particularly for communities living near such facili-
ties. Here we present changes in eHDV on-road tailpipe and refuelling 
emissions; however, we do not consider any increased contributions 
to on-road non-exhaust emissions such as brake wear, tyre wear, road 
wear and road dust resuspension that contribute to on-road PM and 
that might increase in the future as heavy batteries in EVs weigh more 
compared with internal combustion engines, particularly for vehicles 
with a larger driving range50. Lastly, here we choose to electrify only 
HDVs to isolate and characterize eHDV adoption impacts. However, 
the transition to electrified transport will not occur in isolation, but 
rather will co-occur with other vehicle classes, different alternative 
fuel transportation technologies (for example, hydrogen), changes 
in fuel refining infrastructure, scale-up of battery manufacturing, 
and changes in other forms of emitting infrastructure (for example, 
heating, ventilation and air conditioning systems (HVACs), cooking 
stoves, urban greening and so on).

Despite the above caveats, our results demonstrate that transi-
tioning 30% of HDVs to eHDVs has robust air quality and health ben-
efits, including reduced NO2 and PM2.5 concentrations and associated 
health benefits, reduced air pollution disparities among population 
subgroups, and reduced CO2 emissions. To contextualize the CO2 
changes in terms of their economic damages and/or benefits we use a 
state-of-the-science social cost of carbon estimate of $185 per tonne 
of CO2 ($44–413 per t-CO2: 5–95% range, 2020 US dollars51), in line with 
an EPA-proposed estimate currently under review52. Multiplying the 
30% eHDV net CO2 reduction (~2.5 Mt per year) by the social cost of 
carbon, we estimate net savings of $456M per year within our domain. 
However, this estimate is based on the 2016 grid and therefore should 
be considered conservative. Assuming a best-case scenario whereby 
all the additional electricity demand needed for charging eHDVs is 
met by renewable resources, the avoided CO2-related damage costs 
following 30% eHDV adoption would increase to $1.4B per year. For ease 
of comparison, we also estimate monetized health impacts, by multi-
plying the widely used estimate of value of a statistical life of $9.6M  
(ref. 53) by the estimated traffic-related avoided or additional attribut-
able deaths from eHDV adoption. With current grid infrastructure and 
30% eHDV adoption, we estimate $5.7B and $0.6B in avoided annual 
health damages related to NO2 and PM2.5 reductions and an additional 
cost of $0.5B yearly related to MDA8O3 increases. Supplying the addi-
tional electricity demand to charge 30% of HDVs from emission-free 
electricity sources could result in additional savings associated with 
NO2 and PM2.5 avoided health damages (~$97M (NO2) and $67M (PM2.5)) 
while health damages associated with MDA8O3 remain unaltered. 
Our results show higher monetized savings associated with mortal-
ity co-benefits as compared with savings associated solely with CO2 
reductions. This finding agrees with studies suggesting air quality 
co-benefits of similar magnitude to abatement cost estimates54,55 and 
emerging literature showing that health co-benefits not only offset the 
cost of climate action but exceed it56.

In this study, use of a neighbourhood-resolving CTM has allowed 
us to simulate changes in both primary and secondary pollutants and 
characterize air quality and public health benefits and trade-offs at 
equity-relevant scales. The methods used here demonstrate the abil-
ity of Earth-system-science tools to assess the benefits, trade-offs and 

equity implications of proposed climate solutions at the scales envi-
sioned by recent aspirational policy proposals. While computational 
expense limits our domain of focus, our work has global implications, 
and demonstrates that policies aimed at reducing transportation 
emissions could have unintended consequences, such as increases 
in secondary pollutants like O3. Regulatory consequences hinging on 
single pollutants can mask overall air quality benefits which are better 
addressed by holistic air quality measures. Consequently, here we show 
that a shift to greener HDVs has the potential to improve overall air qual-
ity and reduce health burdens, especially in marginalized communities.

Methods
Air quality model set-up and eHDV emission scenarios
To simulate changes in air pollution that result from eHDV adop-
tion, we use the two-way coupled Community Multi-scale Air Quality 
(CMAQ, v5.2 (ref. 57)) and Weather Research and Forecasting (WRF, v3.8  
(ref. 58)) modelling system (WRF-CMAQ59). Our analysis domain has 
a 1.3 km horizontal resolution, is centred on southern Lake Michigan 
(Fig. 1a), encompasses parts of WI, IL, IN and MI, and includes the urban 
centres of Chicago, IL, Milwaukee, WI, and Grand Rapids, MI. One 
month baseline, that is, no-eHDVs and no EGU changes, WRF-CMAQ 
simulations were performed and validated for each meteorological 
season (August and October 2018, and January and April 2019). Details 
of these baseline simulations together with WRF-CMAQ performance 
metrics can be found in Supplementary Table 1 and Discussion, and in 
Montgomery et al.60. We note that pollutant concentrations are highly 
dependent on meteorological conditions and given the temporally lim-
ited scope of our simulations, interpretation of results should bear this 
in mind61. Annual means presented in this study represent the average 
of the four simulated months, similar to previous resource-intensive 
CTM studies (for example, Peng et al.62).

Meteorologically informed 1.3 km emissions for the baseline and 
eHDV scenario simulations were created using the Sparse Matrix Opera-
tor Kernal Emissions (SMOKE) processing system63 with the EPA’s Beta 
platform64 in conjunction with emission factors from the MOtor Vehicle 
Emission Simulator (MOVES)49. HDV processes captured in MOVES 
include: running and start exhaust, brake wear and tyre wear, evapora-
tive emissions, crankcase exhaust, refuelling emissions and extended 
idling (that is, hotelling) emissions. MOVES generates four types of 
emissions factors: rate-per-distance, rate-per-vehicle, rate-per-profile 
and rate-per-hour. Emissions factors take into consideration vehicle 
type (for example, passenger car, heavy-duty truck and so on; Supple-
mentary Table 3), age distribution of vehicle type fleet, road type and 
vehicle type usage (that is, class of roadway), and ambient meteorol-
ogy65. The SMOKE emissions model then combines activity data (for 
example, vehicle miles travelled (VMT) and vehicle population), mete-
orological data, MOVES emission factors and other ancillary data, such 
as speed distributions, to generate hourly, meteorologically adjusted 
mobile emissions66. County total emissions from the 2016v7.2 National 
Emissions Inventory (NEI)64 were processed using the 2016 SMOKE Beta 
platform in conjunction with 1.3 km spatial surrogates provided by the 
Lake Michigan Air Directors Consortium67. Spatial surrogates allocate 
NEI county-level emission estimates to model grid cells (1.3 km) using 
spatially resolved land use information specific to the study domain 
(for example, population, industry, location of roadways and so on). 
The fractional composition of spatial surrogates within each grid cell 
is used as a proxy to refine county-level emissions to finer scales65 
(refer also to Supplementary Discussion). Using SMOKE, we calculate 
anthropogenic on-road, point, and area emissions, while biogenic 
(BEIS), lightning NOx and windblown dust emissions were calculated 
interactively within CMAQ.

In our eHDV scenario, we instantaneously transition 30% of inter-
nal combustion engine HDVs to eHDVs (that is, unaccompanied by 
any decarbonization shifts in the power sector and a 1-to-1 on-road 
fleet replacement with no shift from on-road freight to, for example, 
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rail). This 30% target falls within the decarbonization mid-transition, 
a period in which our reliance on fossil-fuelled EGUs remains critical68. 
For the eHDV scenario we scale down the annual county-level VMTs 
for each HDV type, that is, intercity, transit and school buses; refuse, 
single-unit short-haul and single-unit long-haul trucks, motor homes, 
combination short-haul and long-haul trucks by 30% (Supplementary 
Table 2). HDV emissions for all MOVES processes are reduced by 30% 
through modification of emissions factor tables (EFTABLES) in SMOKE. 
The increase in EGU electricity demand was estimated at the county 
level as a function of VMTs that are now electric, vehicle type charging 
efficiency, and a grid gross loss of 5.1% (ref. 69) (supplementary equa-
tion 1). We estimate the increase in electricity demand at EGUs using 
an augmented version of the vehicle-to-EGU electricity assignment 
algorithm employed by Schnell et al.31,45. Emission changes at EGUs 
are computed at the CONUS level from which the changes occurring 
at EGUs within our CTM domain are selected. As such this study does 
not consider changes in air quality and associated health and equity 
impacts at EGUs outside our CTM domain. Presuming an instanta-
neous increase in demand, the augmented version of the emission 
remapping algorithm uses 2016 grid infrastructure and is described 
in detail in Supplementary Discussion, although we also discuss 
simulations whereby the increase in electricity demand is sourced 
from emission-free electricity generation in the discussion. We run 
month-long eHDV simulations and compare results with simulations in 
which HDVs are predominantly diesel powered (baseline). Throughout 
this study, differences between the baseline and the eHDV simulations 
are presented as eHDV—baseline such that negative changes represent 
lower values for the eHDV scenario as compared with the baseline 
simulations and vice versa.

Health and equity impacts
Changes in all-cause mortality associated with differences in annual 
mean NO2 and PM2.5 and daily maximum 8 h running mean O3 (MDA8O3) 
between the baseline and eHDV scenarios were estimated at the census 
tract level using the following equations:

AFCT = 1 − exp(−βΔxCT) (1)

MortCT = BMRCT × POPCT × AFCT (2)

The attributable fraction (AFCT) is estimated following equation 
(1) where ΔxCT represents the simulated changes in annual mean air 
pollution concentrations between the baseline and eHDV scenario at 
the census tract level (CT). We note that annual mean air pollution 
levels are an average of the four simulation months from each mete-
orological season. Census tract-level air pollution concentrations 
were determined by calculating the area average of the intersection 
between grid cell-level simulated pollutant concentrations and census 
tract polygons (using the GeoPandas package70). β  is a coefficient 
derived from epidemiological studies describing the relationship 
between the specific air pollutant and the associated health outcome. 
For each census tract, the all-cause mortality is then estimated by 
multiplying the AF by the baseline mortality (equation (2)). The base-
line mortality for each census tract is calculated by multiplying the 
population within each census tract (POPCT) by the corresponding 
baseline mortality rate (BMRCT). Age-stratified census tract-level popu-
lation and demographic data were obtained from the American Com-
munity Survey (ACS 2015–2019) (ref. 71). We have specifically used 
5 year estimates from 2015–2019 as these include a larger sample size 
thereby reducing the margin of error as compared with datasets span-
ning a shorter time period. To maintain a high level of detail through 
our health estimates, we also use recent census tract-level age-specific 
all-cause baseline mortality rates obtained from Industrial Economic, 
Incorporated with different rates for each 5 year age group (IEc 2010–
2015) (ref. 72). These mortality incidence rates are derived from 

USALEEP abridged life tables with modifications for broader use in 
national health benefits analyses.

For our NO2 and PM2.5 health estimates we use β values derived 
from the latest Health Effects Institute systematic review and 
meta-analysis report assessing long-term traffic-related health 
effects9 and for O3 we use β values derived from an extended analysis 
of the Cancer Prevention Study II by Turner et al.73. All-cause mortality 
associated with long-term exposure to NO2 is estimated using a rela-
tive risk (RR) of 1.04 (95% CI 1.01–1.06 (ref. 9)) per 10 µg m−3 converted 
to ppb equivalent using our model simulated annualized mean tem-
perature of 9.4 °C (ref. 60) (that is, 10 µg m−3 = 5.04 ppb NO2 translat-
ing to a β value of ~0.008). An RR of 1.02 (95% CI 1.01–1.04 (ref. 73)) 
per 10 ppb is then used to estimate the all-cause mortality associated 
with long-term exposure to MDA8O3. Finally, to estimate the 
PM2.5-related health impacts we use an RR of 1.03 (95% CI 1.01–1.04 
(ref. 9)) per 5 µg m−3. The exposure estimates presented in this study 
hold for the population 30 years and older. Given the different sources 
used for each RR, and the underlying differences in methodologies, 
we do not present summed health estimates of the three pollutants 
as a combined estimate could lead to a misrepresentation of the 
 true effect.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
As inputs to our Vehicle-to-EGU Electricity Assignment and Emission 
Remapping Algorithm we use: a grid gross loss across the United States 
from EPA (2021) (refs. 69), the eGRID-2016 database74 for EGU details 
related to location, age and capacity with shapefiles from US Cen-
sus Cartographic boundary shapefiles75 and NERC76. Model output is 
hosted on Northwestern’s servers. Due to model output size limitation, 
specific model output requests can be made to the corresponding 
author. For our health and equity impacts, population and demo-
graphic data was obtained from the American Community Survey 
(ACS 2015–2019 (ref. 71)) and can be downloaded from https://doi.
org/10.18128/D050.V17.0, baseline all-cause mortality incidence rates 
were obtained from Industrial Economic, Incorporated (IEc 2010–2015) 
(ref. 72) and are available on request, β values are obtained from latest 
Health Effects Institute systematic review and meta-analysis report9 
and for O3 β values are from an extended analysis of the Cancer Preven-
tion Study II by Turner et al.73.

Code availability
The WRF-CMAQ two-way model source code used for this numeri-
cal model study can be downloaded for WRF at https://www2.mmm.
ucar.edu/wrf/users/download/get_sources.html and for CMAQ at 
https://github.com/USEPA/CMAQ. Simulations were conducted using 
WRF-CMAQ v5.2 and WRF v3.8. The 2016 SMOKE Beta platform was 
used for allocating emissions to a 1.3 km grid with county total emis-
sions from the 2016v7.2 NEI and 1.3 km spatial surrogated provided by 
the Lake Michigan Air Directors Consortium (LADCO) and available 
on request. The code used for our Vehicle-to-EGU Electricity Assign-
ment and Emission Remapping Algorithm can be found at https://
github.com/NU-CCRG/Camilleri-et-al-2022_WRFCMAQ-eHDVstudy. 
All analysis was conducted using R Version 4.2.2, Python Version 
3.8.12 with the GeoPandas package for determining census tract-level 
air pollution concentrations Version 0.9.0 and Microsoft Excel Ver-
sion 16.66.1. State boundaries are obtained using Cartopy v0.18.0 
(https://doi.org/10.5281/zenodo.8216315), while Chicago shapefiles 
are available from the Chicago Data Portal via https://data.cityofchi-
cago.org/. All data analysis scripts including those used for estimating 
health and equity implication are available at https://doi.org/10.5281/
zenodo.8234544.
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Data collection The  WRF-CMAQ  two-way  model  source  code used for this numerical model study  can  be  downloaded  here  (WRF:  https://
www2.mmm.ucar.edu/wrf/users/download/get_sources.html;  CMAQ:  https://github.com/USEPA/CMAQ). Simulations were conducted using 
WRF-CMAQ v5.2 and WRF v3.8. The 2016 SMOKE Beta platform was used for allocating emissions to a 1.3km grid with county total emissions 
from the 2016v7.2 NEI and 1.3 km spatial surrogated provided by the Lake Michigan Air Directors Consortium (LADCO) and available on 
request. State boundaries are obtained using Cartopy v0.18.0 (https://doi.org/10.5281/zenodo.8216315) while Chicago shapefiles are 
available from the Chicago Data Portal via https://data.cityofchicago.org/. All other related code used for our Vehicle-to-EGU Electricity 
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doi.org/10.5281/zenodo.8234544 

Data analysis All analysis was conducted using: R Version 4.2.2, Python Version 3.8.12 with the GeoPandas package for determining census tract level air 
pollution concentrations Version 0.9.0 and Microsoft Excel Version 16.66.1. All scripts are available here (https://github.com/NU-CCRG/
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As inputs to our Vehicle-to-EGU Electricity Assignment and Emission Remapping Algorithm we use: a grid gross loss across the U.S. from EPA (2021), the eGRID-2016 
database for EGU details related to location, age and capacity with shapefiles from U.S. Census Cartographic boundary shapefiles and NERC. Model output is hosted 
on Northwestern’s servers. Due to model output size limitation, specific model output requests can be made to the corresponding author. For our health and equity 
impacts, population and demographic data was obtained from the American Community Survey (ACS 2015-2019) and can be downloaded from here: http://
doi.org/10.18128/D050.V17.0, baseline all-cause mortality incidence rates were obtained from Industrial Economic, Incorporated (IEc 2010-2015)  and are available 
on request, β values were obtained from the Health Effects Institute report (HEI, 2022) for NO2 and PM2.5 and from Turner et al. (2016) for O3. 
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All studies must disclose on these points even when the disclosure is negative.

Study description This is a numerical modeling study. All our analysis and findings are based on simulated data from sensitivity experiments. 

Research sample We conduct a total of 3 experiments:  
(a) A baseline simulation (no vehicles are electric) 
(b) Sensitivity experiment 1 - Electrifying 30% of heavy duty vehicles with not changes to the electric grid 
(c) Sensitivity experiment 2 - Electrifying 30% of heavy duty vehicles assuming all additional energy demand is met by renewables

Sampling strategy Each experiment was run for a total of 4 months. Annual means presented in this study represent the average of the 4 simulated 
months.

Data collection Model simulations were performed by Anastasia Montgomery and Sara F. Camilleri with output hosted on Northwestern's servers. 

Timing and spatial scale Each model simulation was run for a total of 4 months (Jul 2018, Oct 2018, Jan 2019 and April 2019) and focus our analysis to the 
region surrounding North America’s largest freight hub, Chicago, Illinois. Simulations are conducted a spatial resolution of 1.3km. 

Data exclusions The first 10 days of each simulation was not included in the analysis to all for model spin up. 

Reproducibility All simulations are numerical modeling experiments

Randomization Temporal constraints

Blinding Blinding was not included as this is a numerical modeling study 
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