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Heavy-duty vehicles (HDVs) disproportionately contribute to the creation

of air pollutants and emission of greenhouse gases—with marginalized
populations unequally burdened by the impacts of each. Shifting to
non-emitting technologies, such as electric HDVs (eHDVs), is underway;
however, the associated air quality and health implications have not been
resolved at equity-relevant scales. Here we use a neighbourhood-scale
(-1km) air quality model to evaluate air pollution, public health and equity
implications of a30% transition of predominantly diesel HDVs to eHDVs
over the region surrounding North America’s largest freight hub, Chicago,
IL. We find decreases in nitrogen dioxide (NO,) and fine particulate matter
(PM, ) concentrations but ozone (O,) increases, particularly in urban
settings. Over our simulation domain NO, and PM, ;reductions translate
t0~590 (95% confidence interval (CI) 150-900) and ~70 (95% C120-110)
avoided premature deaths per year, respectively, while O, increases add ~-50
(95% CI130-110) deaths per year. The largest pollutant and health benefits
simulated are within communities with higher proportions of Black and
Hispanic/Latino residents, highlighting the potential for eHDVs to reduce
disproportionate and unjust air pollution and associated air-pollution
attributable health burdens within historically marginalized populations.

Electrifying the transportation sector is an ongoing and accelerating
climate change mitigation action that will bring a range of co-benefits
that could potentially reduce long-standing environmental injustices
associated with air pollutant exposure'*. Despite representing only 6%
of total on-road vehicles in the United States’, medium-to-heavy-duty
trucks and buses are the second largest source of transportation CO,
emissions (-27% (ref. 4)), the largest contributors to on-road NOy (-32%
(ref. 2))—an Environmental Protection Agency (EPA) criteria pollutant
and key precursor in ozone (O,) formation—and a substantial on-road
source of particulate matter (PM)°. In the United States, traffic-related
pollution contributes to yearly PM, s-and O;-related premature deaths of

between12,000 and 31,000 (ref. 6) and 43% of traffic-related PM, ;and O,
mortality has been linked to on-road diesel pollution’. Traffic-related air
pollution hasalso been linked to paediatric asthmaincidence® and circu-
latoryandischaemic heart disease mortality’. Air pollution hotspots from
heavy-duty vehicles (HDVs) typically occurin urban settings, areas close
tointerstate highways, and along truck routes' ", and with more than 45
million people living within 300 feet of major road networks in the United
States”—the majority of whomare people of colour'*—HDV-related emis-
sions disproportionately impact minoritized populations"™.
Transitioning from traditional internal combustion HDVs to
electric HDVs (eHDVs) is one commonly espoused climate mitigation
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Fig.1| Emission changes. a,b, On-road and EGU NO, emission changes compared
with the baseline scenario in mol s™ (a) and EGU percentage generation increase
by fuel type following 30% electrification of HDVs (b). Numbers at the tails of
colour barinaindicate minimum and maximum differences in emissions within
the domain. Note that increases in emissions are depicted in a; however, they are
restricted to grid cells that contain EGUs. While accounting for clean electricity
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generation from emission-free renewable EGUs (other than nuclear), the increase
inelectricity demand depicted in b represents only the portion of electricity
sourced from non-renewable powered EGUs and nuclear EGUs. OFSL and OTHF
fuel types refer to other fossil fuel types and fuel derived from waste heat,
unknown or purchased sources, respectively.

strategy’; however, the associated air-quality and public healthimplica-
tions of such atransition have not yet been widely assessed at the fine
(-1 km) spatial resolutions needed to determine differential exposure
between population subgroups in urban settings®; a critical need for
environmental justice objectives such asthe USFederal Government’s
Justice40 Initiative?.. While changes in GHG emissions brought about
by eHDV adoption (for example, CO,), canbe directly related to global
atmosphericabundances, determining overall changesinair pollutant
concentrations is more challenging due to non-linear chemistry, the
formation of secondary pollutants, the effects of dynamic meteorol-
ogy, and other nuances associated with aregion’s chemical regime.
Estimating the air quality and health implications from
emission changes can be done at high spatial resolutions using
reduced-complexity models (RCMs**)—tools that are ideal for testing
amultitude of policies when computational resources are limited”*.
However, the advantages of an RCM come at the expense of higher
uncertainties”, coarser temporal resolution, and the inability to assess
changesin secondary pollutants such as O, (ref. 24)—a pollutant associ-
ated with adverse traffic-related health impacts. Chemical transport
models (CTMs) onthe other hand, are more computationally expensive
butinclude the complex atmospheric chemistry and meteorological
feedbacks necessary for representing changes in secondary pollut-
ants while also allowing for simulations at short temporal scales, in
line with regulatory air quality standards. General agreement on the
potential of electric vehicles (EVs) to reduce GHGs as well as NO, and
PM, ; concentrations exists among CTM studies®*~'; however, the
spatial distribution of these differences at neighbourhood scales is
not fully captured when coarse resolution CTMs are used”'. Unlike
NO, and PM, ;, evidence documenting O, changes that result from EV
adoptionisinconsistent, with national studies suggesting widespread
0, reductions®?* but finer-scale studies, of which only two are United
Statesbased, identifyingisolated increases?**2, Few CTM studies have
estimated the air pollution-related health impacts due to EVs*® par-
ticularly at equity-relevant scales®, with no study thus far estimating
the associated environmental justice implications of eHDV adoption.
In this Article, we use a regulatory-grade two-way coupled CTM
framework (WRF-CMAQ) to characterize neighbourhood-scale
(1.3 km) changes in primary and secondary pollutant concentrations
(thatis, NO,, O, and PM, ;) when a portion of the on-road HDV fleet is

instantaneously converted to eHDVs. We focus our analysis on the
region surrounding North America’s largest freight hub, Chicago,
IL**, and leverage the most recent census tract-level health data to
estimate census tract-level variability in eHDV-driven health impacts
that account for the underlying susceptibilities of exposed popula-
tions. Additionally, we assess equity outcomes by characterizing how
eHDV adoption could alter air pollution and healthimpact disparities
among racial/ethnic subgroups. Our approach accounts for on-road
and refuellinginfrastructure emission changes as well as altered emis-
sions from electricity generation units (EGUs) due to eHDV battery
charging demands.

Results

Changes in emissions

For most chemical species, an instantaneous transition to 30%
eHDVs results in on-road emission reductions that more than
offset emission increases from EGUs (Fig. 1 and Supplementary
Table3). The highest-magnitude emission reductions occur along major
road networks and within densely populated areas (Supplementary
Fig.9).Emissionincreasesare limited to point sources withingrid cells
where EGUs reside (Fig.1and Supplementary Fig.1) which are predomi-
nately gas-fired within our CTM domain (Fig. 1b). Despite anincrease
of -4.9 M tonnes of CO, per year at EGUs following anincrease in elec-
tricity demand, we estimate net CO, emission reductions of -2.5M
tonnes per year. NO, emissions also exhibit net reductions (-7%; Sup-
plementary Table 3) compared with our baseline simulations in which
HDVs are predominantly diesel powered—with the largest decreases
along major traffic routes (Fig. 1a). Elemental carbon emissions show
the second largest decrease following NO,, with a net decrease of -6%
(Supplementary Table 3). In contrast, SO, emissions, mostly emitted
from coal combustion at EGUs*, increase by ~3%. We note that the emis-
sionchanges reported here are probably worst-case estimates as EGU
emissions are projected to decrease as the grid continues to modernize
and decarbonize*.

Changes inNO, and O, concentrations

We find that the shift of 30% of HDVs to eHDVs results in domain-wide
population-weighted NO, reductions of 0.5 ppb (-6%), with maximum
reductions reaching 4.9 ppb (Fig. 2b). Reductions are particularly

Nature Sustainability


http://www.nature.com/natsustain

Article

https://doi.org/10.1038/s41893-023-01219-0

a Baseline - NO, (ppb)

Minimum 1

Maxi
Baseline - MDA8O, (ppb) aXl5n£um

Minimum
35

Maximum 28

b eHDV-baseline - NO, (ppb) Maximum O

v 2.0

/
A : '
o 1.0

1
.‘;“

-2.0

Minimum
-4.9

Vi
eHDV-baseline - MDASO, (ppb) e

1.6

-1.6

Minimum
-0.2

Fig.2|NO, and MDASO, changes. a-d, Simulated annual mean (a) NO, and (c) MDA8O; baseline concentrations and differences in (b) NO, and (d) MDA8O, annual

mean concentrations between the eHDV and baseline simulations.

pronounced along highway corridors, at transportation hubs, and
within urban centres that also exhibit high baseline NO, concentra-
tions (Fig. 2a and Supplementary Fig. 2) and NO, emission reductions
(Fig.1a).Infact,NO,reductionsinurbanareasare~3.5times greater than
reductions in rural regions (Fig. 2b and Supplementary Table 5). Even
ingrid cells containing EGUs, our simulations show net NO, reductions
drivenby on-road decreases, despite increased electricity demand and
increased EGU NO, emissions (Supplementary Table 4). Differencesin
NO, concentrations for individual simulated months are largely consist-
ent withannual differences; however, larger-magnitude reductions are
simulated in our summer and autumn months (Supplementary Fig. 3).

In contrast to NO, changes, annual mean daily maximum 8 h run-
ning mean O, concentrations (MDA8O;)—a widely used regulatory
and health-relevant O, metric—exhibit regionally mixed increases
and decreases following eHDV adoption. We find increases in simu-
lated MDA8O, concentrations of up to 1.45 ppb occurring adjacent
to major highways and within urban areas (Fig. 2d and Supplemen-
tary Table 5) but decreases of up to 0.18 ppb in non-urban regions
(Fig. 2d). However, domain average MDA8O, changes are positive
(0.11 ppb; rural and 0.45 ppb; urban) with a population-weighted
domain meanincrease of 0.19 ppb (-+0.4%). Areas exhibiting increases
in simulated MDA8O; concentrations correspond to locations in the
baseline withlow MDA8O, but high NO, (Fig.2a,c). On aseasonal basis,
MDAS8O, concentration changes are spatiotemporally heterogeneous
(Supplementary Discussion and Supplementary Fig. 3).

Simulated patterns of heterogeneous change in MDA8O; con-
centrations can be explained by spatiotemporal variations in the O,
regime, that is, the VOC-to-NO, ratio. In highly polluted urban areas
and along road networks we simulate low baseline surface VOC/NO,

ratios (4.9 ppbC/ppb; Supplementary Table 6 and Supplementary
Fig. 4), indicating a VOC-limited environment. Conversely, in rural
and suburban areas, we simulate VOC/NO, concentration ratios that
are about twice those in urban areas, indicating NO,-limited regimes
(9.0 ppbC/ppb). Consequently, following eHDV adoption, NO, reduc-
tionsinurbanand heavily trafficked areas lead to O, increases duetoless
titration of O; by NO (ref. 35). Inaddition, more OH radicals are available
to react with VOCs, which in turn results in additional O, formation®
(Supplementary Fig. 5). Inruraland NO -limited areas, NO, reductions
have a marginal impact on the overall MDA8O, changes (~0.01 ppb;
Fig.2d). Our simulation of urban areas as NO,-limited-to-transitional is
consistent with previous studies®*”*%, Prior work has suggested that the
surface VOC/NO, O, regime typically transitions around 8 ppbC/ppb;
however, this threshold varies spatially and temporally and depends on
factors suchaslocal meteorology and VOC composition®**. Inanation-
wide study of O, regime surface VOC/NO, ratios, Ashok and Barrett®’
estimate different ratios across the United States with -7 ppbC/ppb
estimated for the Chicago Metropolitan Area, suggesting that ratios
of less/more than 7 ppbC/ppb represent VOC-limited/NO,-limited
regimes. The seasonality of simulated MDA8O, changes can also be
partially explained by VOC/NO, ratios (Supplementary Discussion and
Supplementary Table 6).

Froma concentration threshold exceedance standpoint, electrifi-
cation of 30% of on-road HDVs results in two to six additional grid cell
days with MDA8O, levels higher than the World Health Organization’s
MDAS8O; threshold exceedance guideline of 50 ppb (ref. 40) in urban
areas such as Cook County, IL (home to Chicago; Fig. 3a) and Milwau-
kee, WI (Fig.3b) aswell asinisolated rural areas such as Noble County,
IN (Fig. 3d). However, less of a clear signal is observed for counties in
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Fig.3|MDAS8O; exceedances. a-d, Differences in number of grid cell days with MDA8O; levels greater than 50 ppb across the study domain and in Cook County, IL (a),

Milwaukee, WI (b), Grand Rapids, MI (c) and Noble County, IN (d).

Michiganaswe note both decreases and increases in the number of grid
cellexceedance days (for example, Grand Rapids, MI; Fig. 3c). Applying
theless stringent 70 ppb MDA8O, US EPA National Ambient Air Quality
Standard results in1-2 additional grid cell exceedance days mostly in
north-western and southern Cook County (Supplementary Fig. 6).

Changes in PM, s concentrations

Thirty per cent adoption of eHDVs reduces annual mean
population-weighted PM, s concentrations by an average of 0.09 pg m
across the study domain and by amaximum of 0.49 pg m—at hotspots
within densely populated metropolitan areas—areas that generally have
highsimulated baseline PM, ;concentrations (Fig. 4 and Supplementary
Table4). Although we note domain-wide decreases in PM, s concentra-
tions (eveningrid cells with EGUs), simulated sulfate (SO,) concentra-
tions increase in rural regions (Supplementary Fig. 7c). Sulfate and
nitrate compete forammonia*; therefore, as NO, emissions decrease
(-6.65%; Supplementary Table 3) and ammonia (NH;) emissions remain
largely unchanged (-0.02%; Supplementary Table 3), increasesin SO,
emissions (3.10%; Supplementary Table 3) result in decreases in NO,
aerosolsbutincreasesin SO, aerosols (Supplementary Fig. 7). This PM
chemical interplay highlights the utility of high-resolution CTMs to
simulate the complex formation of air pollution not only at emission
source locations such as EGUs but also in areas where secondary pol-
lutants form, and exposure may occur.

Health benefits and trade-offs

To leverage the high spatial resolution of our simulated air quality
changes, we utilize similarly high-resolution health data. When com-
puted with census tract-level USALEEP baseline all-cause mortality
data, domain-wide reductionsinsimulated annualmean NO, and PM, 5
concentrations for 30% eHDV adoption translate to 590 (95% confi-
dence interval (CI) 150-900) and 70 (95% C120-110) annual avoided
premature deaths compared with the baseline (Supplementary Table
7). We note that health benefits in urban areas such as Chicago do not
occur atthe expense of health damagesinrural areas; evenrural census
tracts that contain EGUs experience health benefits. However, it should
be noted that ~-20% of the electricity demand is met by EGUs outside our
CTM domain, where pollutantimpacts cannot be assessed. In contrast
to NO, and PM, ;, the overall health impact associated with MDASO,

exposure across the domain adds up to 50 (95% CI30-110) additional
deaths per year. To exclude the influence of baseline mortality data,
wealso calculate the attributable fraction (equation (1)) and estimate
that 0.42% and 0.05% decreases of all-cause baseline mortality are
associated withreductionsin NO,and PM, , respectively, while a 0.04%
increase of all-cause baseline mortality is associated with increases in
annual mean MDAS8O,.

The spatial distribution of differences in attributable mortality
rate (per100,000) for each pollutant following eHDV adoption reflects
both differencesinsimulated pollutant concentrations and underlying
susceptibilities (Supplementary Fig. 8). We find that the highest dif-
ferences in attributable mortality rates for all three pollutants occur
in Cook County and along census tracts close to Interstate-90, which
enters our domain on its eastern margin, passes just south of Lake
Michigan, turns north-west across Cook County and exits the domain
on its western margin (Supplementary Figs. 8 and 9). We note that
the magnitude of air pollution changes does not scale linearly to the
magnitude of estimated healthimpacts as pollutant exposure impacts
depend on pollutant-specific S values as well as the spatial distribution
of baseline mortality data. In fact, discrepancies between the spatial
distribution of attributable mortality rate differences and air pollu-
tion concentrations, such as high mortality differences west of Cook
County (Supplementary Fig. 8), are linked to the spatial variability
of the baseline mortality data (Supplementary Fig. 10). That is, when
census tracts with high baseline mortality rates coincide with moder-
ate differences in pollutant concentrations, health impacts can be
amplified as more susceptible people are exposed. Despite increases
in estimated MDA8O;-related attributable deaths, our results show
that electrifying HDVs leads to health benefits largely resulting from
substantial reductions in simulated NO, concentrations. The health
estimates for related pollutants such as PM, ;and NO, should be consid-
eredinisolation, as asummation of these health impacts could result
in overestimated impacts’.

Equity implications

Resolving neighbourhood-scale pollutants not only allows us to dis-
tinguish differences in air pollution concentrations and their associ-
ated healthimpacts, but also facilitates an equity-focused analysis that
characterizesracial/ethnic disparitiesin the air quality and public health
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Fig.4|PM, ;changes. a,b, Simulated annual mean PM, s baseline concentrations (a) and differences between the eHDV and baseline simulation (b).

benefits and trade-offs of eHDV adoption. Givenits prodigious impact,
we focus our eHDV equity analysis on NO,, but provide PM, ;and MDASO,
analyses in Supplementary Figs. 11 and 12. We assess the racial/ethnic
composition of each NO, concentration change decile over the fullmodel
domain and within Chicago city limits (Fig. 5a,c). We also performa simi-
lar analysis on changes in attributable mortality rate deciles (Fig. 5b,d). At
the domainlevel, the largest NO, reductions (that s, highest magnitude
pollutant decreasesin the highest (10th) decile) occur where Black (24%),
Asian (9%) and Hispanic or Latino (18%) populations represent arelatively
high proportion of the total population within that decile (Fig. 5a), while
the smallest reductions (thatis, lowest magnitude decreases inthe lowest
(1st) decile) occur where non-Hispanic white populations predominate
(90% of the population within the 1st decile Fig. 5a). Health benefits, in
the form of reduced mortality rates, largely mirror NO, concentration
declines; however, the Black populationis overrepresentedin the highest
decile, indicating an outsized health benefit for this community (46%;
Fig.5b), largely drivenby higher underlying baseline mortality rates and
susceptibilities (Supplementary Fig. 10).

Within Chicago city limits, our equity findings are more nuanced.
People of colour constitute the majority of the racial/ethnic composi-
tion for all Chicago NO, concentration change deciles (>50%; Fig. 5c).
However, in contrast to our domain-level findings, NO, reductions
are distributed more equally across population subgroups (Fig. 5c).
This difference is reflective of the racial/ethnic make-up of the city
and the proximity of non-Hispanic white populations to the northern
branchof Interstate-90, where large reductionsin NO, concentrations
are simulated (Fig. 5e and Supplementary Fig. 13a). Despite relatively
equitably distributed NO, reductions across population subgroups,
we note disproportionately large NO,-health benefits for Chicago’s
Black population, particularly in the higher (9th and 10th) deciles
(43-68%; Fig. 5d). To help explain these outsized health impacts, we
investigate the bivariate distribution of baseline mortality rates and
simulated NO, changes across Chicago (Fig. 5e-g). Areas where NO,
health benefits are greatest (Fig. 5f) correspond to census tracts with
high baseline mortality rates and high NO, reductions (dark green;
Fig.5g), whereas areas with high NO, reductions and low baseline mor-
tality rates (dark blue; Fig. 5g) experience lower health benefits (light
green; Fig. 5f). Our results demonstrate that even low-to-moderate
reductions in pollutant concentrations can lead to substantial health
benefits (yellow; Fig. 5g); an outcome that is particularly true for Chi-
cago’s Black population whose spatial distribution (Supplementary
Fig. 13b) only partially overlaps with high magnitude NO, reductions
(Fig.5f), but whose baseline mortality rates are relatively high. Indeed,
we find that the spatial correlation of the City’s Black population with
the footprint of our simulated NO, reductions is relatively weak and

negative (Pearson’s r=-0.20), whereas the Black population’s cor-
relations with NO, health benefits and baseline mortality rates are
both higher and positive (Pearson’s r = 0.43 and 0.54). This finding is
consistent with previous studies that have demonstrated the outsized
role of socio-demographic factors in determining health impacts as
compared to pollutant exposure levels*.

Discussion
Using aregulatory-grade neighbourhood-resolving two-way coupled
CTM, we demonstrate that net emissions decrease across our study
domain (despite SO, emission increases at EGUs), leading to annual
meanNO, and PM, ;decreases of up to4.91 ppband 0.50 ug m, respec-
tively. We highlight large decreases along dense road networks and in
urban areas where on-road HDV emissions are highest. Reductions
in on-road emissions outweigh increases in EGU emissions such that
decreasesinNO,and PM, ; concentrations (and their associated health
impacts) are simulated even in grid cells that contain EGUs. In con-
trast, we note increases in annual mean simulated MDA8O,; concen-
trations in areas of high NO, reductions and decreases in non-urban
areas. Increases in MDA8O, concentrations are linked to a reduction
in O, titration by NO as well as an increase in available OH radicals.
Our results indicate that, in our domain, shifting to eHDVs increases
VOC/NO, ratios, which, if the shift is of a sufficient magnitude, could
lead to a change in the O, regime of some areas, for example, areas in
transition from VOC- to NO,-limited, and could resultin decreased O,
formation following NO, emission reductions of sufficient magnitude.
The overall impact of shifting emissions from on-road tailpipes
andrefuellinginfrastructure to EGUs largely depends on the electricity
generation mix of the region as well as the distribution of electricity
from EGUs to sources of demand****. The predominant electricity gen-
eration mix in our domain is natural gas. As such, results presented in
this study, particularly results pertinent to emission changes at EGUs
and changes in PM, ;s concentrations, might differ when looking at
regions withadifferent electricity generation mix, whenincorporating
adecarbonizing electric grid®, or when using Earth System simplify-
ing RCMs*¢. Nonetheless, results presented in this study are largely
consistent with previous studies that have focused on changes in air
pollutant concentrations following the adoption of various EVs sce-
narios. Previous CTM-based studies suggest that transitioning to EVs
leads to reductions in net NO, emissions despite projected increases
in electricity demand®**. Similarly, previous United States-focused
studies employing different EV adoption scenarios have shown reduc-
tions in PM, 5 concentrations both nationwide?** and regionally?®.
Using 12 km CTM United States-wide simulations and shifting 17% of
light-duty vehicles and 8% of HDVs to electric, Nopmongcol et al.”’

Nature Sustainability


http://www.nature.com/natsustain

Article

https://doi.org/10.1038/s41893-023-01219-0

-2

a Domain Domain
-0.01 -0.10
I‘I 1st decile Ill
-0.10 @ -099
-0.17 A II é -1.78 Ill
0.26 25 -255 III
= i oo 2. 1
3 3 | |
& -0374 =5 -3.40
g L |
= ] o _ |
5 048 g5 -4
3 SN |
~ -0.58 82 5424
o ERS
b4 58
I -073 235 -671
. || |
-0.86 - ®  -8.54-
- In g N |
-1.02 1 Z 185
[ e -

0% 25% 50% 75% 100%

. Asian

0% 25% 50% 75% 100%

White

. Black

American Indian/Alaska Native

. Other

ANO, attributable
mortality rate
(deaths per 100,000)
0

f.ﬂ "l

-10 :‘:

Fig. 5| Equity Implications of eHDV adoption. a-d, Fractional race and
ethnicity of populations for deciles of NO, concentration changes (aand c¢) and
NO, attributable mortality rate changes (b and d) for the fullmodel domain (a
andb) and the city of Chicago (¢ and d) with 30% eHDV adoption. Decile ranks

Native Hawaiian/Other Pacific Islander

Q.

c Chicago Chicago
-0.50 -2.26
oo | :
= ] oo -6 1
e | D
& 0874 =3 -7.85
N DR
= | o T _ |
5 -0.93 g5 -89
3 L -
~ -0.97 Q2 -10.02
o] S5
p=4 S o
< -1.08 4 a5 -11.48 |
I g
-1.23 4 @, -14.00 4
|
-1.39 4 Z  17.054

0% 25% 50% 75% 100%

0% 25% 50% 75% 100%

Two or more races

. Hispanic or Latino

indicated on a. e-g, Highlight of city of Chicago NO, concentration changes

(e), NO, attributable mortality rate changes (f) and bivariate depiction of the
relationship of baseline USALEEP mortality rates with NO, changes (g). All race
groups except Hispanic or Latino, include only those identifying as non-Hispanic.

found PM, s reductions of less than 0.5 pg m for most of the eastern
United States despite a projected 5% increase in electricity demand, met
mostly by natural gas. In contrast, Schnell et al.”, using a 50 km CTM,
found somewhat mixed results for the United States, that is, with 25%
electric light-duty vehicle adoption PM, s benefits/disbenefits were
strongly dependent on the region and season, with a high sensitivity
to aregion’s electricity generation mix. Lastly, when comprehensive
fleet turnover to EVs was assessed usinga CTM with1kmresolution over
the Greater Houston area, Pan et al.” found PM, s reductions ranging
between 0.5 and 2 pug m~with large reductions near highways.
Changes in O; concentrations driven by the adoption of different
classes of EVs have also been reported; however, results are varied.
Nationwide studies using CTMs at medium-to-coarse resolutionsreport
widespreadreductionsin O, (refs. 29,31) largely driven by on-road NO,.
emissionreductions®. However, Schnell et al.”. observed O, increases in
somegrid cells, for example, in southern Californiaand north-eastern
lllinois. More regionally focused CTM studies at finer scales®*** also
foundincreases in O;concentrations, particularly along highways and
in NO,-saturated environments. Consistent with results presented in
thisstudy, increasesin O,in these more regionally focused studies are
generally linked to smaller reductions in VOC emissions as compared
with NO, emissionreductionsinNO,-saturated environments leading to
reduced O, titration by NO (refs. 26,32). The differences in O; responses

to EVadoptionsummarized here may berelated to differencesinstudy
design, simulated domain and/or model configuration and complex-
ity, although it is notable that increases in spatial resolution tend to
demonstrate pockets of increasing O; concentrations with EV adoption,
suggesting that resolving fine-scale features is critical to resolving
non-linear chemistry and the formation of secondary pollutants over
tight spatial gradients (for example, near roadways or in urban environ-
ments), and is particularly critical for studies focused on public health
impacts and/or environmental justice outcomes.

Accurately representing the environmental impacts of EV adop-
tionscenariosis limited by our ability to forecast EV market share as well
asthe future evolution of the US electric grid. Projections for EV sales
continue to increase from a 2018 estimate of 21% of new car sales to a
recent estimate of 52% by 2030 (ref.47). Our 30% eHDV instantaneous
adoption estimate should not be considered a forecast with a specific
time horizon. Indeed, our use of 2016 grid infrastructure with 30%
eHDV adoptionis temporally inconsistent, and the air quality benefits
and trade-offs tied to grid infrastructure reported here should be
considered conservative, given the on-going transition of current grid
infrastructure to emission-free EGUs*. To quantify the sensitivity of
ourresultstoafuture grid, we run sensitivity simulations assuming all
added grid demand from 30% eHDV adoption is met by emission-free
EGUs. We find that over our domain, average NO,, PM, s and MDA8O,
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concentrations decrease further when the additional electricity
demand needed for charging is supplied by emission-free sources
(-0.17%, —0.09% and —0.004%, respectively). These relatively small
magnitude changes highlight the marginal impact of EGU emissions
on air quality as compared with on-road emissions when transition-
ing to EVs. While we account for emissions related to hotelling hours,
whichrepresentthe hourstruck drivers spend in their long-haul trucks
during mandated rest periods*’, the emissions modelling scheme used
in this study does not include HDV idling emissions during loading/
unloading or queueing at warehouses. Future eHDV studies should
incorporate these emission processes as they might amplify the net
effect of eHDVs, particularly for communities living near such facili-
ties. Here we present changes in eHDV on-road tailpipe and refuelling
emissions; however, we do not consider any increased contributions
to on-road non-exhaust emissions such as brake wear, tyre wear, road
wear and road dust resuspension that contribute to on-road PM and
that might increase in the future as heavy batteries in EVs weigh more
compared withinternal combustion engines, particularly for vehicles
with a larger driving range®. Lastly, here we choose to electrify only
HDVs to isolate and characterize eHDV adoption impacts. However,
the transition to electrified transport will not occur in isolation, but
rather will co-occur with other vehicle classes, different alternative
fuel transportation technologies (for example, hydrogen), changes
in fuel refining infrastructure, scale-up of battery manufacturing,
and changes in other forms of emitting infrastructure (for example,
heating, ventilation and air conditioning systems (HVACs), cooking
stoves, urban greening and so on).

Despite the above caveats, our results demonstrate that transi-
tioning 30% of HDVs to eHDVs has robust air quality and health ben-
efits, including reduced NO, and PM, s concentrations and associated
health benefits, reduced air pollution disparities among population
subgroups, and reduced CO, emissions. To contextualize the CO,
changesin terms of their economic damages and/or benefits we use a
state-of-the-science social cost of carbon estimate of $185 per tonne
of CO, ($44-413 per t-CO,: 5-95% range, 2020 US dollars™), inline with
an EPA-proposed estimate currently under review>?. Multiplying the
30% eHDV net CO, reduction (~2.5 Mt per year) by the social cost of
carbon, we estimate net savings of $456M per year within our domain.
However, this estimate is based on the 2016 grid and therefore should
be considered conservative. Assuming a best-case scenario whereby
all the additional electricity demand needed for charging eHDVs is
met by renewable resources, the avoided CO,-related damage costs
following 30% eHDV adoption would increase to $1.4B per year. For ease
of comparison, we also estimate monetized health impacts, by multi-
plying the widely used estimate of value of a statistical life of $9.6M
(ref. 53) by the estimated traffic-related avoided or additional attribut-
able deaths from eHDV adoption. With current grid infrastructure and
30% eHDV adoption, we estimate $5.7B and $0.6B in avoided annual
health damages related to NO, and PM, s reductions and an additional
cost of $0.5B yearly related to MDA8SO; increases. Supplying the addi-
tional electricity demand to charge 30% of HDVs from emission-free
electricity sources could result in additional savings associated with
NO, and PM, ;avoided health damages (-$97M (NO,) and $67M (PM, 5))
while health damages associated with MDA8O; remain unaltered.
Our results show higher monetized savings associated with mortal-
ity co-benefits as compared with savings associated solely with CO,
reductions. This finding agrees with studies suggesting air quality
co-benefits of similar magnitude to abatement cost estimates®**° and
emerging literature showing that health co-benefits not only offset the
cost of climate action but exceed it*°.

Inthis study, use of aneighbourhood-resolving CTM has allowed
ustosimulate changes in both primary and secondary pollutants and
characterize air quality and public health benefits and trade-offs at
equity-relevant scales. The methods used here demonstrate the abil-
ity of Earth-system-science tools to assess the benefits, trade-offs and

equity implications of proposed climate solutions at the scales envi-
sioned by recent aspirational policy proposals. While computational
expense limits our domain of focus, our work has global implications,
and demonstrates that policies aimed at reducing transportation
emissions could have unintended consequences, such as increases
insecondary pollutants like O,. Regulatory consequences hinging on
single pollutants can mask overall air quality benefits which are better
addressed by holistic air quality measures. Consequently, here we show
thatashifttogreener HDVs has the potential toimprove overall air qual-
ity andreduce health burdens, especially in marginalized communities.

Methods

Air quality model set-up and eHDV emission scenarios

To simulate changes in air pollution that result from eHDV adop-
tion, we use the two-way coupled Community Multi-scale Air Quality
(CMAQ, v5.2(ref. 57)) and Weather Research and Forecasting (WRF,v3.8
(ref. 58)) modelling system (WRF-CMAQ?®). Our analysis domain has
a1.3 km horizontal resolution, is centred on southern Lake Michigan
(Fig.1a), encompasses parts of WI, IL, INand MI, and includes the urban
centres of Chicago, IL, Milwaukee, WI, and Grand Rapids, MI. One
month baseline, that is, no-eHDVs and no EGU changes, WRF-CMAQ
simulations were performed and validated for each meteorological
season (August and October 2018, andJanuary and April 2019). Details
of these baseline simulations together with WRF-CMAQ performance
metrics canbe found in Supplementary Table 1and Discussion, andin
Montgomery et al.®®. We note that pollutant concentrations are highly
dependent on meteorological conditions and given the temporally lim-
ited scope of our simulations, interpretation of results should bear this
in mind®. Annual means presented in this study represent the average
of the four simulated months, similar to previous resource-intensive
CTM sstudies (for example, Peng et al.®?).

Meteorologically informed 1.3 km emissions for the baseline and
eHDV scenario simulations were created using the Sparse Matrix Opera-
tor Kernal Emissions (SMOKE) processing system®® with the EPA’s Beta
platform®*in conjunction with emission factors from the MOtor Vehicle
Emission Simulator (MOVES)*. HDV processes captured in MOVES
include: running and start exhaust, brake wear and tyre wear, evapora-
tive emissions, crankcase exhaust, refuelling emissions and extended
idling (that is, hotelling) emissions. MOVES generates four types of
emissions factors: rate-per-distance, rate-per-vehicle, rate-per-profile
and rate-per-hour. Emissions factors take into consideration vehicle
type (for example, passenger car, heavy-duty truck and so on; Supple-
mentary Table 3), age distribution of vehicle type fleet, road type and
vehicle type usage (that is, class of roadway), and ambient meteorol-
ogy®. The SMOKE emissions model then combines activity data (for
example, vehicle miles travelled (VMT) and vehicle population), mete-
orological data, MOVES emission factors and other ancillary data, such
asspeed distributions, to generate hourly, meteorologically adjusted
mobile emissions®. County total emissions from the 2016v7.2 National
Emissions Inventory (NEI)** were processed using the 2016 SMOKE Beta
platformin conjunctionwith1.3 kmspatial surrogates provided by the
Lake Michigan Air Directors Consortium®. Spatial surrogates allocate
NEI county-level emission estimates to model grid cells (1.3 km) using
spatially resolved land use information specific to the study domain
(for example, population, industry, location of roadways and so on).
The fractional composition of spatial surrogates within each grid cell
is used as a proxy to refine county-level emissions to finer scales®
(refer also to Supplementary Discussion). Using SMOKE, we calculate
anthropogenic on-road, point, and area emissions, while biogenic
(BEIS), lightning NO, and windblown dust emissions were calculated
interactively within CMAQ.

Inour eHDV scenario, we instantaneously transition 30% of inter-
nal combustion engine HDVs to eHDVs (that is, unaccompanied by
any decarbonization shifts in the power sector and a 1-to-1 on-road
fleet replacement with no shift from on-road freight to, for example,
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rail). This 30% target falls within the decarbonization mid-transition,
aperiodinwhich ourreliance onfossil-fuelled EGUs remains critical®®,
For the eHDV scenario we scale down the annual county-level VMTs
for each HDV type, that is, intercity, transit and school buses; refuse,
single-unit short-haul and single-unit long-haul trucks, motor homes,
combination short-hauland long-haul trucks by 30% (Supplementary
Table 2). HDV emissions for all MOVES processes are reduced by 30%
through modification of emissions factor tables (EFTABLES) in SMOKE.
The increase in EGU electricity demand was estimated at the county
level as a function of VMTs that are now electric, vehicle type charging
efficiency, and agrid gross loss of 5.1% (ref. 69) (supplementary equa-
tion 1). We estimate the increase in electricity demand at EGUs using
an augmented version of the vehicle-to-EGU electricity assignment
algorithm employed by Schnell et al.*, Emission changes at EGUs
are computed at the CONUS level from which the changes occurring
at EGUs within our CTM domain are selected. As such this study does
not consider changes in air quality and associated health and equity
impacts at EGUs outside our CTM domain. Presuming an instanta-
neous increase in demand, the augmented version of the emission
remapping algorithm uses 2016 grid infrastructure and is described
in detail in Supplementary Discussion, although we also discuss
simulations whereby the increase in electricity demand is sourced
from emission-free electricity generation in the discussion. We run
month-long eHDV simulations and compare results with simulationsin
which HDVs are predominantly diesel powered (baseline). Throughout
this study, differences between the baseline and the eHDV simulations
are presented as eHDV—baseline such that negative changes represent
lower values for the eHDV scenario as compared with the baseline
simulations and vice versa.

Health and equity impacts

Changes in all-cause mortality associated with differences in annual
meanNO, and PM, ;and daily maximum 8 h running mean O; (MDASO,)
between the baseline and eHDV scenarios were estimated at the census
tract level using the following equations:

AFcp = 1— exp(-Aaxer) §))

Mortcr = BMRct X POPcr X AFct 2)

The attributable fraction (AFcy) is estimated following equation
(1) where Axc; represents the simulated changes in annual mean air
pollution concentrations between the baseline and eHDV scenario at
the census tract level (CT). We note that annual mean air pollution
levels are an average of the four simulation months from each mete-
orological season. Census tract-level air pollution concentrations
were determined by calculating the area average of the intersection
between grid cell-level simulated pollutant concentrations and census
tract polygons (using the GeoPandas package’). g is a coefficient
derived from epidemiological studies describing the relationship
between the specific air pollutant and the associated health outcome.
For each census tract, the all-cause mortality is then estimated by
multiplying the AF by the baseline mortality (equation (2)). The base-
line mortality for each census tract is calculated by multiplying the
population within each census tract (POPr) by the corresponding
baseline mortality rate (BMRcy). Age-stratified census tract-level popu-
lation and demographic datawere obtained from the American Com-
munity Survey (ACS 2015-2019) (ref. 71). We have specifically used
5Syear estimates from2015-2019 as these include alarger sample size
thereby reducing the margin of error as compared with datasets span-
ning ashorter time period. To maintain a high level of detail through
our health estimates, we also use recent census tract-level age-specific
all-cause baseline mortality rates obtained from Industrial Economic,
Incorporated with different rates for each 5 year age group (IEc 2010~
2015) (ref. 72). These mortality incidence rates are derived from

USALEEP abridged life tables with modifications for broader use in
national health benefits analyses.

For our NO, and PM, s health estimates we use g values derived
from the latest Health Effects Institute systematic review and
meta-analysis report assessing long-term traffic-related health
effects’ and for O, we use B values derived from an extended analysis
ofthe Cancer Prevention Study Il by Turner et al.”>. All-cause mortality
associated with long-term exposure to NO, is estimated using arela-
tiverisk (RR) 0f1.04 (95% C11.01-1.06 (ref. 9)) per 10 pg m~ converted
to ppb equivalent using our model simulated annualized mean tem-
perature of 9.4 °C (ref. 60) (thatis, 10 pg m™=5.04 ppb NO, translat-
ing to a g value of ~0.008). An RR 0f 1.02 (95% CI1 1.01-1.04 (ref. 73))
per10 ppbisthenusedto estimate the all-cause mortality associated
with long-term exposure to MDAS8O,. Finally, to estimate the
PM, s-related health impacts we use an RR 0f 1.03 (95% C11.01-1.04
(ref.9)) per 5 ug m=. The exposure estimates presented in this study
hold for the population30 years and older. Given the different sources
used for each RR, and the underlying differences in methodologies,
we do not present summed health estimates of the three pollutants
as a combined estimate could lead to a misrepresentation of the
true effect.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

As inputs to our Vehicle-to-EGU Electricity Assignment and Emission
Remapping Algorithm we use: a grid gross loss across the United States
from EPA (2021) (refs. 69), the eGRID-2016 database™ for EGU details
related to location, age and capacity with shapefiles from US Cen-
sus Cartographic boundary shapefiles”” and NERC’. Model output is
hosted on Northwestern’s servers. Due to model output size limitation,
specific model output requests can be made to the corresponding
author. For our health and equity impacts, population and demo-
graphic data was obtained from the American Community Survey
(ACS 2015-2019 (ref. 71)) and can be downloaded from https://doi.
org/10.18128/D050.V17.0, baseline all-cause mortality incidence rates
were obtained from Industrial Economic, Incorporated (IEc2010-2015)
(ref.72) and are available onrequest, S values are obtained from latest
Health Effects Institute systematic review and meta-analysis report’
and for O, Bvalues are from an extended analysis of the Cancer Preven-
tion Study Il by Turner etal.”.

Code availability

The WRF-CMAQ two-way model source code used for this numeri-
cal model study can be downloaded for WRF at https://www2.mmm.
ucar.edu/wrf/users/download/get_sources.html and for CMAQ at
https://github.com/USEPA/CMAQ. Simulations were conducted using
WRF-CMAQ v5.2 and WRF v3.8. The 2016 SMOKE Beta platform was
used for allocating emissions to a 1.3 km grid with county total emis-
sions fromthe 2016v7.2 NEland 1.3 km spatial surrogated provided by
the Lake Michigan Air Directors Consortium (LADCO) and available
onrequest. The code used for our Vehicle-to-EGU Electricity Assign-
ment and Emission Remapping Algorithm can be found at https://
github.com/NU-CCRG/Camilleri-et-al-2022 WRFCMAQ-eHDVstudy.
All analysis was conducted using R Version 4.2.2, Python Version
3.8.12with the GeoPandas package for determining census tract-level
air pollution concentrations Version 0.9.0 and Microsoft Excel Ver-
sion 16.66.1. State boundaries are obtained using Cartopy v0.18.0
(https://doi.org/10.5281/zenodo.8216315), while Chicago shapefiles
are available from the Chicago Data Portal via https://data.cityofchi-
cago.org/. All dataanalysis scriptsincluding those used for estimating
health and equity implication are available at https://doi.org/10.5281/
zenodo.8234544.
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database for EGU details related to location, age and capacity with shapefiles from U.S. Census Cartographic boundary shapefiles and NERC. Model output is hosted
on Northwestern’s servers. Due to model output size limitation, specific model output requests can be made to the corresponding author. For our health and equity
impacts, population and demographic data was obtained from the American Community Survey (ACS 2015-2019) and can be downloaded from here: http://
doi.org/10.18128/D050.V17.0, baseline all-cause mortality incidence rates were obtained from Industrial Economic, Incorporated (IEc 2010-2015) and are available
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Study description This is a numerical modeling study. All our analysis and findings are based on simulated data from sensitivity experiments.
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(c) Sensitivity experiment 2 - Electrifying 30% of heavy duty vehicles assuming all additional energy demand is met by renewables

Sampling strategy Each experiment was run for a total of 4 months. Annual means presented in this study represent the average of the 4 simulated
months.
Data collection Model simulations were performed by Anastasia Montgomery and Sara F. Camilleri with output hosted on Northwestern's servers.

Timing and spatial scale  Each model simulation was run for a total of 4 months (Jul 2018, Oct 2018, Jan 2019 and April 2019) and focus our analysis to the
region surrounding North America’s largest freight hub, Chicago, lllinois. Simulations are conducted a spatial resolution of 1.3km.

Data exclusions The first 10 days of each simulation was not included in the analysis to all for model spin up.
Reproducibility All simulations are numerical modeling experiments
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