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A B S T R A C T   

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable, or unstable, when interacting with its surroundings. The combined law 
of thermodynamics derived by Gibbs about 150 years ago laid the foundation of thermodynamics. In Gibbs combined law, the entropy production due to internal 
processes was not included, and the 2nd law was thus practically removed from the Gibbs combined law, so it is only applicable to systems under equilibrium, thus 
commonly termed as equilibrium or Gibbs thermodynamics. Gibbs further derived the classical statistical thermodynamics in terms of the probability of configu
rations in a system in the later 1800’s and early 1900’s. With the quantum mechanics (QM) developed in 1920’s, the QM-based statistical thermodynamics was 
established and connected to classical statistical thermodynamics at the classical limit as shown by Landau in the 1940’s. In 1960’s the development of density 
functional theory (DFT) by Kohn and co-workers enabled the QM prediction of properties of the ground state of a system. On the other hand, the entropy production 
due to internal processes in non-equilibrium systems was studied separately by Onsager in 1930’s and Prigogine and co-workers in the 1950’s. In 1960’s to 1970’s the 
digitization of thermodynamics was developed by Kaufman in the framework of the CALculation of PHAse Diagrams (CALPHAD) modeling of individual phases with 
internal degrees of freedom. CALPHAD modeling of thermodynamics and atomic transport properties has enabled computational design of complex materials in the 
last 50 years. Our recently termed zentropy theory integrates DFT and statistical mechanics through the replacement of the internal energy of each individual 
configuration by its DFT-predicted free energy. The zentropy theory is capable of accurately predicting the free energy of individual phases, transition temperatures 
and properties of magnetic and ferroelectric materials with free energies of individual configurations solely from DFT-based calculations and without fitting pa
rameters, and is being tested for other phenomena including superconductivity, quantum criticality, and black holes. Those predictions include the singularity at 
critical points with divergence of physical properties, negative thermal expansion, and the strongly correlated physics. Those individual configurations may thus be 
considered as the genomic building blocks of individual phases in the spirit of the materials genome®. This has the potential to shift the paradigm of CALPHAD 
modeling from being heavily dependent on experimental inputs to becoming fully predictive with inputs solely from DFT-based calculations and machine learning 
models built on those calculations and existing experimental data through newly developed and future open-source tools. Furthermore, through the combined law of 
thermodynamics including the internal entropy production, it is shown that the kinetic coefficient matrix of independent internal processes is diagonal with respect to 
the conjugate potentials in the combined law, and the cross phenomena that the phenomenological Onsager flux and reciprocal relationships are due to the 
dependence of the conjugate potential of a molar quantity on nonconjugate molar quantities and other potentials, which can be predicted by the zentropy theory and 
CALPHAD modeling.   

1. Introduction 

This paper is based on the author’s presentation given at the CAL
PHAD Global 2021 virtual conference on the perspectives of CALPHAD 
modeling in next 50 years in view of its success in last 50 years. The 
future is hard to predict due to its intrinsic uncertainty in terms of 
probability of many possible events. Nevertheless, it is important to have 
perspectives on how the future may look like in both short- and long- 
terms based on past knowledge and anticipated trajectories. In 2020, 
in celebrating the 50th anniversary of “The Bridge” published by Na
tional Academy of Engineering, Sinnott and Liu (the present author) 
attempted such an effort on “Predicted Advances in the Design of New 
Materials” [1]. With the prehistory and protohistory of humanity 

divided into three ages in terms of materials of stone, bronze and iron 
followed by the three industry revolutions in terms of steam power, 
electricity, and computerization, we are now entering the 4th industry 
revolution, i.e., Industry 4.0. Industry 4.0 is commonly thought of as the 
integration of cyber-physical systems, where the physical, digital, and 
biological worlds are seamlessly unified to form a system with many 
autonomous subsystems enabled by advanced materials. In other words, 
digitization of materials and their manufacturing into functional devices 
in terms of Materials 4.0 and Manufacturing 4.0 [2]. Such digitization 
will demand increasingly more efficient development and deployment 
of materials with emergent properties to meet the performance re
quirements under extreme conditions. Sinnott and Liu [1] concluded 
that when this integrated system is fully implemented, the residuals 
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from the design, manufacturing, service, and recycling of materials can 
be drastically reduced, thus lessening the impact of materials usage on 
the environment. 

In the last century, digitization of materials knowledge progressed 
significantly, including the digitization of the Schrödinger equation in 
quantum mechanics [3,4] by the density functional theory (DFT) [5,6], 
resulting in massive digital databases of material properties predicted 
using high-performance computers, and thermodynamics by the 
CALculation of PHAse Diagrams (CALPHAD) method [7–10], resulting 
in CALPHAD databases widely used in academia and industry for edu
cation and design of technologically important materials. Those data 
together with models and mechanistic correlations are enabling the 
development of artificial intelligence (AI) to connect the data through 
machine learning (ML) algorithms and deep neural networks (DNNs) 
[11]. While DFT-based calculations have provided important input data 
for CALPHAD modeling [12], it is currently still necessary to refine the 
CALPHAD model parameters using experimental data in order to accu
rately reproduce experimental observations, particularly phase transi
tions [13,14]. The need of such refinements significantly hinders the 
computational discovery and design of materials. To fully understand 
the differences between DFT-based calculations and CALPHAD 
modeling, it is necessary to dive deep into their fundamentals and build 
connections so that in the future the CALPHAD model parameters can be 
evaluated solely from the DFT-based calculations with experiments as 
the validation of predictions. 

Thermodynamics is a science concerning the state of a system, 
whether it is stable, metastable, or unstable, when interacting with its 
surroundings. The interactions can involve exchanges of any combina
tions of heat, work, and mass between the system and the surroundings, 
defined by the boundary conditions. The typical work includes contri
butions from the external mechanic, electric and magnetic fields. 
Thermodynamics is commonly divided into four branches, i.e., classical 
Gibbs thermodynamics, statistical thermodynamics, quantum thermo
dynamics, and irreversible thermodynamics. In a recent overview article 
[15], the author discussed fundamental thermodynamics, thermody
namic modeling, and the applications of computational thermody
namics. In another recent perspective article [16], the author focused on 
irreversible thermodynamics as part of a more comprehensive frame
work of thermodynamics. 

In the present paper, the fundamentals of thermodynamics will be 
reviewed through the derivation of the combined law of thermody
namics with the entropy production due to internal processes and thus 
without the constraint of equilibrium. The four branches of thermody
namics will then be discussed individually along with their contribu
tions to the combined law of thermodynamics and their integration into 
a holistic view of thermodynamics. At the end, the author’s perspectives 
on the CALPHAD modeling in the next 50 years will be discussed. 

2. Review of the fundamentals of thermodynamics 

The fundamentals of thermodynamics are centered on the first and 
second laws of thermodynamics and their combination into the com
bined law of thermodynamics. Since the first and second laws of ther
modynamics are represented by an equality and an inequality, 
respectively, they had remained separately until Gibbs combined them 
to create the combined law of thermodynamics [17–19]. The first law of 
thermodynamics describes the interactions between the system and its 
surroundings and stipulates that the exchange of energy between the 
system and its surroundings is balanced by the internal energy change of 
the system. While the second law of thermodynamics governs the in
ternal processes inside the system under those interactions and states 
that any spontaneous internal processes are irreversible and must pro
duce entropy. In the 1870’s Gibbs [17] combined them together to 
create the combined law of thermodynamics and called it the funda
mental thermodynamic equation [19]. 

However, Gibbs considered only the case when the inequality is 

replaced by an equality, i.e., when the second law of thermodynamics 
vanishes for a system and was thus effectively removed from the Gibbs 
combined law of thermodynamics. Furthermore, Gibbs combined law of 
thermodynamics was first derived for a closed system without mass 
exchange with the surroundings, which was added later into the com
bined law of thermodynamics by introducing the chemical potential 
abruptly for each independent component of the system. This has caused 
considerable confusion in the literature on the concept of the chemical 
potential. 

In this section of the present paper, these two issues are addressed in 
deriving the combined law of thermodynamics of an open system with 
internal processes, and more detailed discussions can be found in these 
books [20,21]. It is noted that Gibbs combined law of thermodynamics 
with the internal energy of the system as a function of entropy and 
volume inspired Maxwell to construct manually a three-dimensional 
model to represent the internal energy surface as a function of entropy 
and volume with one copy sent to Gibbs [19] and one kept in Cavendish 
Laboratory at the University of Cambridge as shown in Fig. 1. 

2.1. First law of thermodynamics 

To properly introduce chemical potential in the combined law of 
thermodynamics, let us consider a system that is free to exchange heat, 
work, and mass with the surrounding and write the first law of ther
modynamics as follows 

dU = dQ + dW +
∑c

i=1
UidNi Eq. 1  

where dU is the internal energy change of the system, dQ, dW, and dNi 
are the exchanges of heat, work, and moles of component i from the 
surroundings to the system, with the work including mechanical, elec
tric, and magnetic work, c is the number of independent components, 
and Ui is the partial internal energy of component i defined as follows, 

Ui =

(
∂U
∂Ni

)

dQ=0,dW=0,Nj∕=i

Eq. 2 

It is noted that the first law of thermodynamics does not prescribe 
whether the system is in internal equilibrium or not, i.e., independent of 
what happens inside the system. Consequently, the value of Ui in the 
system may be different from that in the surroundings, while the ex
changes of heat and work are independent of the state of the system. As 
shown below, the inclusion of mass exchange in the first law of ther
modynamics enables the nature introduction of chemical potential. 

2.2. Second law of thermodynamics 

Gibbs [17] followed Clausius’ definition of entropy exchange (dQS)

between an equilibrium system and its surrounding with only reversible 
heat exchange as follows 

dQS =
dQ
T

Eq. 3  

For a nonequilibrium system, the second law of thermodynamics stip
ulates that an irreversible internal process (ip) inside the system gen
erates positive entropy production, dipS, as follows 

dipS ≥ 0 Eq. 4  

where the equality represents that there are no internal processes in the 
system, indicating that the system is either at equilibrium or under a 
freezing-in condition as discussed by Hillert [20] and to be further dis
cussed below. 

For an open system with mass exchange between the system and its 
surroundings, each mass exchange carries entropy exchange at the same 
time. Consequently, the total entropy change of the system can be 
written as follows [15,16,20,21]. 
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dS = dQS +
∑c

i=1
SidNi + dipS =

dQ
T

+
∑c

i=1
SidNi + dipS Eq. 5  

where Si is the partial entropy of component i defined as 

Si =

(
∂S
∂Ni

)

dQ=0,dipS=0,Nj∕=i

Eq. 6 

The work exchange between the system and its surroundings does 
not enter Eq. (5) directly, but indirectly affects the entropy change of the 
system by introducing internal processes. It is important to note that the 
first two terms in Eq. (5) concern the exchanges between the system and 
its surroundings, while the third term does not, so that the total entropy 
change contains the contributions from both internal processes and ex
changes between the system and its surroundings. Therefore, dS can be 
either positive or negative, which is not in contradiction with the second 
law of thermodynamics as the second law of thermodynamics concerns 
only the entropy production of an independent internal process repre
sented by Eq. (4) or the last term in Eq. (5). 

2.3. Combined law of thermodynamics 

Consequently, the combined law of thermodynamics form with in
ternal processes can be obtained by combining Eq. (1) and Eq. (5) as 
follows [15,16,20,21]. 

dU = TdS + dW +
∑c

i=1
μidNi − TdipS =

∑n

a=1
YadXa − TdipS Eq. 7  

μi = Ui − TSi =

(
∂U
∂Ni

)

dipS=0,Xa∕=Ni

Eq. 8  

where μi is the chemical potential of component i, n is the total number 
of independent contributions to the internal energy of the system 
controlled from the surroundings, i.e., the number of external variables, 
and Ya and Xa represent the pairs of conjugate variables with Ya for 
potentials, such as temperature, stress or pressure, electrical and mag
netic fields, and chemical potential, and Xa for molar quantities, such as 
entropy, strain or volume, electrical and magnetic displacements, and 
moles of components. The concept of the chemical potential is thus 
naturally introduced by Eq. (8), containing the contributions from both 
partial internal energy and partial entropy of the component. The use of 
superscript in Ya and Xa is to indicate that they are related to the ex
change between the system and its surroundings, thus external vari
ables, though entropy contains both internal and external contributions 
as shown by Eq. (5). The constraint of constant entropy production in 
Eq. (8) with heat exchange between the system and its surroundings 
signifies its difference from Eq. (2) which is for an adiabatic system even 
though both are for the change of internal energy with respect to the 
change of the amount of the component i. 

In a system, there can be many independent internal processes. Each 
of them must result in a positive entropy production, which can be 
divided into four parts: (1) heat generation (dipQ), (2) consumption of 
some components as reactants (dNr,j), (3) production of some compo
nents as products (dNp,k), and (4) reorganization of its configurations 
(dipSconfig), as follows [16,22], 

Fig. 1. Photo of the three-dimensional model in Cavendish Laboratory at the University of Cambridge made by Maxwell to represent the internal energy surface as a 
function of entropy and volume. 
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dipS =
dipQ

T
−

∑

j
SjdNr,j +

∑

k
SkdNp,k + dipSconfig =

D
T

dξ Eq. 9  

where Sj and Sk are the partial entropies of reactant j and product k of the 
internal process. The last part of Eq. (9) is based on the linear propor
tionality approximation with D and dξ being the driving force and 
progress of the internal process that is represented by a molar quantity 
or a combination of molar quantities involved in the internal process. In 
reality, internal processes do not obey linear proportionality, but in 
principle, one can always select a small enough dξ so the higher-order 
terms are less important and then perform integrations along the path
ways to obtain overall entropy production. On the other hand, to study 
the stability of an internal process or a system such as the limit of 
instability and critical points, one would need to include higher order 
terms beyond linear proportionality. The second law of thermodynamics 
prescribes that any spontaneous process with dξ > 0 must have a posi
tive driving force, i.e., D > 0, to result in a positive entropy production. 
The internal energy is thus a function of all Xa and internal variables of ξ, 
i.e., U(Xa,ξ), so are all the potentials, i.e., Ya(Xb, ξ) where Xb denotes all 
molar quantities including Xa. It is noted that this is not in contradiction 
to the early statement that the first law of thermodynamics does not 
concern the state of the systems, i.e., ξ, and the dependence of internal 
energy on ξ is introduced due to the dependence of entropy on ξ for a 
non-equilibrium system. 

For equilibrium systems, Eq. (5) and Eq. (7) are reduced to the 
following equations 

dS =
dQ
T

+
∑c

i=1
SidNi Eq. 10  

dU =
∑n

a=1
YadXa Eq. 11 

The internal energy is thus a function of all Xa only, i.e., U(Xa), and 
the internal variables of ξ become dependent variables as functions of Xa 

obtained from the condition of Ddξ = 0. It is noted that at equilibrium 
with D = 0, the external variables determines all the internal variables, 
i.e., ξ becomes a dependent variable. For systems under a freezing-in 
condition with dξ = 0 and D > 0, ξ is an independent variable. 

3. Classical Gibbs thermodynamics 

3.1. Combined law of thermodynamics for equilibrium systems 

Gibbs [17,18] first considered closed equilibrium systems under 
hydrostatic pressure (P), i.e., dNi = 0 and dipS = 0, and Eq. (10) and Eq. 
(11) are thus reduced to the following equations as shown in all 
textbooks 

dS =
dQ
T

Eq. 12  

dU = TdS − PdV Eq. 13  

where the negative sign in front of pressure is because − PdV is the work 
added to the system with P and V changing in opposite directions in a 
stable system as discussed below. The internal energy is thus a function 
of entropy and volume, i.e., U(S, V), which is the model that Maxwell 
constructed as shown in Fig. 1. 

For open systems, Gibbs directly added the chemical potential term 
to Eq. (13) as follows 

dU = TdS − PdV +
∑c

i=1
μidNi Eq. 14 

The internal energy is thus a function of entropy, volume, and moles 
of each component, i.e., U(S, V, Ni), which are all molar quantities and 
termed as natural variables of U. By virtual internal processes of moving 
infinitesimal amount of S, or V, or Ni at various locations inside the 
system, it can be shown that the equilibrium is reached when the driving 

force for each internal process is zero [21]. As the driving force is 
denoted by the difference of the conjugate potential of the internal 
process, every potential, i.e., T, P, and μi, which are the first partial 
derivatives of U with respect to its natural variables, is homogeneous 
everywhere in the system at equilibrium. The derivatives above and 
throughout the paper are all partial derivatived and performed with 
other natural variables kept constant unless specified otherwise. The 
stability of the equilibrium is further dictated by the second derivatives 
of U, i.e., the first derivative between conjugate potentials and molar 
quantities, as follows 

∂2U
∂ξ2 =

∂2U
∂(Xa)

2 =
∂Ya

∂Xa > 0 Eq. 15  

While the internal processes with dξ = dS and dξ = dV can be inde
pendently carried out, the internal process with dξ = dNi cannot be 
performed independently because it will carry the changes of entropy 
and volume simultaneously as follows 

dS = SidNi Eq. 16  

dV = VidNi =
∂V
∂Ni

dNi Eq. 17  

where Si is defined by Eq. (6), and Vi is the partial volume of component 
i. These will induce two additional internal processes in opposite di
rections if the homogenous temperature and pressure are to be main
tained in the system under equilibrium. This complication can be 
simplified by defining the Gibbs energy and re-writing the combined law 
of thermodynamics as follows 

dG = d(U − TS + PV) = − SdT + VdP +
∑c

i=1
μidNi Eq. 18 

Gibbs energy is thus with T, P and Ni as its natural variables with two 
being potentials, i.e., G(T,P,Ni). 

3.2. Gibbs-Duhem equation 

From Eq. (14), it is easy to show the following equation for a ho
mogeneous equilibrium system 

U = TS − PV +
∑c

i=1
μiNi Eq. 19  

By moving TS to the left side of Eq. (19), one defines the Helmholtz 
energy with the corresponding combined law of thermodynamics shown 
below 

dF = d(U + PV) = − SdT − PdV +
∑c

i=1
μidNi Eq. 20  

Helmholtz energy is thus with T, V and Ni as its natural variables with 
one being potential, i.e., F(T, V, Ni). By moving TS and −PV to the left 
side, one obtains the Gibbs energy as shown by Eq. (18). It is noted that 
“free” is not used here for Gibbs energy and Helmholtz energy as rec
ommended by International Union of Pure and Applied Chemistry 
(IUPAC) [23,24], while in the present work, the free energy is used to 
denote all energies derived from the internal energy. 

If all terms in the right-hand side of Eq. (19) are moved from right to 
left, one obtains 

Φ = U −

(

TS − PV +
∑c

i=1
μiNi

)

= 0 Eq. 21 

The differentiation of Eq. (21) together with Eq. (14) gives the Gibbs- 
Duhem equation 

dΦ = − SdT + VdP −
∑c

i=1
Nidμi = 0 Eq. 22  

The natural variables of Φ are thus all potentials, i.e., Φ(T,P,μi) = 0. It is 
tempting to call this free energy as the Duhem energy even though it is 
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zero, which can be written in a more general form as 

dΦ = d

(

U −
∑n

a=1
YadXa

)

= −
∑n

a=1
XadYa = 0 Eq. 23 

It also needs to emphasize that the Gibbs-Duhem equation is only 
applicable to a homogeneous equilibrium system or a portion of the 
equilibrium system, such as a homogeneous phase discussed in the next 
section. 

3.3. Gibbs phase rule 

The significance of Eq. (22) or Eq. (23) is that the potentials in a 
homogeneous equilibrium system are not independent of each other. In 
a system with n pairs of conjugate variables, i.e., Xa and Ya, there are n 
independent variables. They can be all molar quantities such as the in
ternal energy shown by Eq. (11) or some combinations of potentials and 
molar quantities such as Gibbs energy (Eq. (18)) with two potentials and 
Helmholtz energy (Eq. (20)) with one potential. If n independent vari
ables are all potentials, one obtains the Gibbs-Duhem equation (Eq. 23) 
or Duhem energy with the value being zero. This indicates that at least 
one independent variable of an equilibrium system must be a molar 
quantity. 

For a heterogeneous system with two or more homogeneous phases 
in equilibrium with each other, Gibbs [17,18] discussed the geometry of 
phase relations with the axes being molar quantities. Since phase equi
libria are defined by homogeneous potentials in the system, it is easier to 
understand phase relations if potentials are used as axis variables. Let us 
consider a homogeneous phase, say β, and apply the Gibbs-Duhem 
equation to it as follows 

dΦ = −
∑n

a=1
Xβ

a dYa = 0 Eq. 24  

where the subscripts represent the properies of a phase inside the sys
tem. 

For a system with p phases co-existing in equilibrium, Eq. (24) needs 
to be applied to each phase, resulting in p equations of Eq. (24), noting 
that the molar quantities are different in individual phases. The number 
of potentials that can be varied independently without changing the 
number of phases in equilibrium is thus 

υ = n − p Eq. 25 

The maximum number of phases that can co-exist in equilibrium 
with υ = 0 is then 

pmax = n Eq. 26 

It should be emphasized that in many textbooks, υ is termed as de
grees of freedom or independent variables of the system. This is inac
curate or at least not rigorous because the number of independent 
variables in the system is always n as defined by the combined law, while 
υ defines the number of independent potentials without changing the 
number of phases in equilibrium. For a system with p = pmax = n thus 
υ = 0, all n Xa can still be changed independently within certain ranges 
that will change the relative amounts of each phase but not the number 
of phases co-existing in equilibrium. 

3.4. Phase diagrams 

As discussed above, every potential has the same value in all phases 
co-existing in equilibrium, and phase diagrams with potentials as axes 
are thus important. Eq. (24) depicts that each phase is represented by a 
(n-1)-dimensional feature in the space of n potentials. A two-phase 
equilibrium is thus the (n-2)-dimensional feature where two (n-1)- 
dimensional features intersect each other. Following the Gibbs phase 
rule, a (pmax = n)-phase equilibrium is 0-dimension point where n (n-1)- 
dimensional features intersect each other, commonly referred as 

invariant point because the values of all potentials are fixed. It is thus 
evident that Gibbs phase rule can be directly applied to potential phase 
diagrams. 

To display more information about phases, it is useful to change one 
or more potentials to their conjugate molar quantities. Since a molar 
quantity has different values in different phases, the dimensionality of 
each phase region discussed above increases by one when one potential 
is replaced by its conjugated molar quantity until the dimension reaches 
n. The phases in equilibrium are then connected by tie-lines with their 
ends represent the values of their respective molar quantities. When all 
axes of the phase diagram are converted to molar quantities, the 
dimension of every phase region is the same and equals to the number of 
axes, i.e., n, and any features with lower dimensionality are termed as 
phase boundaries. The molar properties of individual phases are con
nected through the lever rule as follows 

X0
a =

∑p

β=1
f βXβ

a Eq. 27  

where X0
a and Xβ

a are the values of the over-all Xa in the system and in the 
β phase where the subscript is used for quantities of a phase inside the 
system similar to Eq. (24), respectively, and fβ the mole fraction of the 
phase β with summation going over all phases in equilibrium in the 
system. 

One has to section a multidimensional phase diagram in order to 
visualize it in two dimensions. Sectioning a potential diagram decreases 
the total number of potentials and does not change the features of the 
resulting phase diagram. The Gibbs phase rule thus becomes 

υ = n − p − ns Eq. 28  

pmax = n − ns Eq. 29  

where ns denotes how many times the potential diagram is sectioned, i. 
e., the number of potentials being fixed. However, sectioning a phase 
diagram with molar quantities does not change pmax and υ and is thus 
more complicated because tie lines are usually not in the resulting phase 
diagram, which is discussed in detail by Hillert [20]. 

Commonly used phase diagrams are the T − P potential phase dia
gram for one component systems, T − xB under constant P for binary 
systems with xB being the mole fraction of component B, xB − xC section 
under constant T and P for ternary systems with xB and xC being the 
mole fractions of component B and C (termed as isothermal sections), 
and T − xi section of ternary or multi-component systems under constant 
P and compositions of other components (termed as isopleth). It is noted 
that the lever rule, i.e., Eq. (27), cannot be directly used in an isopleth as 
the tie-lines are typically not in the phase diagram. When tie lines 
happen to be in the isopleth, the isopleth is often called pseudo-lower- 
order phase diagram such as pseudo-binary or pseudo-ternary phase 
diagrams as they behavior like binary or ternary systems. 

4. Gibbs and quantum statistical thermodynamics 

Statistical mechanics was introduced by Gibbs in 1901 [25] based on 
the foundations established by Clausius, Boltzmann, and Maxwell. Gibbs 
considered “a great number of independent systems (states) of the same 
nature (of a system), but differing in the configurations and velocities 
which they have at a given instant, and differing not merely infinitesi
mally, but it may be so as to embrace every conceivable combination of 
configuration and velocities” [25]. He thus broadened the early statis
tical mechanics from the consideration of the particles of a system to 
independent systems (configurations of a system). Gibbs systematically 
discussed the fundamental equation of statistical mechanics in terms of 
the principle of conservation of probability, applied it to the theory of 
errors in the calculated state of a system and the integration of the dif
ferential equations of motion, and studied the system under statistical 
equilibrium with ensembles in which the logarithm of the probability of 
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state is a linear function of the energy. A differential equation relating to 
average values in the ensemble was found to be identical in form with 
the fundamental differential equation of thermodynamics with the 
average index of probability of state corresponding to the entropy with 
change of sign and the modulus to temperature. By using the combined 
law of thermodynamics in terms of the internal energy [19] and 
differentiating the internal variables in the system and the external 
variables from the surroundings, Gibbs [25] considered the internal 
variable entropy due to the distribution of various microstates in the 
system but not the entropy of each microstate itself. Gibbs was then able 
to define the probability and the now-named partition function of each 
configuration in the system. 

In formulating statistical mechanics in the framework of quantum 
mechanics, Landau and Lifshitz [26] considered a closed system in 
complete statistical equilibrium by dividing it into a large number of 
macroscopic subsystems. They emphasized that the entropy of a closed 
system in complete statistical equilibrium can also be defined directly, 
without dividing the system into subsystems by imagining that the 
system considered is actually only a small part of a fictitious very large 
system. Landau and Lifshitz [26] introduced the number of quantum 
states corresponding to the energy interval equal in the order of 
magnitude to the mean fluctuation of energy of the system and showed 
the entropy of the system in terms of the tracer of each quantum state. By 
correlating the number of quantum states with the particle states in the 
limit of the classical theory, they obtained the entropy of a system as 
follows 

S = − kB

∑m

k=1
pk ln pk Eq. 30  

where m is the number of configurations, the probability pk of config
uration k was denoted by wn in their Eqs. (7) and (10), and kB is added 
here to be consistent with the current convention. 

Landau and Lifshitz [26] thus obtained the Gibbs distribution and 
presented the partition function of the system, Z, in relation to the 
Helmholtz energy of the system, F, and the internal energy of each 
quantum state, Ek, in their Eqs. (31.1) to (31.4), which are re-written as 
follows 

Z = e− F
kB T =

∑m

k=1
e− Ek

kB T =
∑m

k=1
Zk Eq. 31  

F = − kBTlnZ + kBT

(
∑m

k=1
pk ln Zk −

∑m

k=1
pk ln Zk

)

=
∑m

k=1
pkEk + kBT

∑m

k=1
pk ln pk =

∑m

k=1
pkEk − TS Eq. 32  

pk =
Zk

Z
=

e− Ek
kB T

Z
= e−Ek −F

kBT Eq. 33 

It is important to emphasize that Landau and Lifshitz [26] used 
quantum states in the above equations, while Gibbs did not do so as 
quantum mechanics was not developed at that time. Let us consider a 
hypothetical system with only one configuration, Eq. (32) thus becomes 

F = Ek Eq. 34 

Since F = Ek − TSk by definition, Eq. (34) gives Sk = 0 at finite 
temperature, indicating the configurations in Eq. (30) to Eq. (33) are all 
pure quantum states with only one configuration each as envisioned by 
Landau and Lifshitz [26]. For systems of practical interest, the number of 
pure quantum states is very large, and their complete sampling is in 
general intractable. The current available solution is their coarse 
graining through DFT [5,6] as discussed below, resulting in a non-zero 
entropy for each configuration at finite temperature and the necessity 
to modify the formula of the partition function as discussed in Section 7 
in terms of zentropy theory. 

It is noted that the statistical equilibrium of a closed system is usually 

discussed in terms of thermal equilibrium between the system and a 
thermal bath (surroundings). As pointed out recently by the author [16], 
thermal fluctuation in a closed statistically equilibrated system is an 
internal process and results in the heat or work exchange between the 
system and its surroundings. The entropy production of thermal fluc
tuation can be represented by Eq. (9) as follows 

dipS =
dipQ

T
+ dipSconfig ≥ 0 Eq. 35 

The thermal fluctuation either releases heat (dipQ > 0) and makes the 
system more ordered (dipSconfig < 0) or absorbs heat (dipQ < 0) and 
makes the system more disordered (dipSconfig > 0) with the corresponding 
amount of heat exchange (dQ = −dipQ) between the system and its sur
roundings to maintain dipS = 0. For an isolated system without a ther
mal bath, dQ = 0, the system reaches the internal statistical equilibrium 
with the equality in Eq. (35), i.e., all internal processes are reversible 
with the following relation between the heat production and the change 
of internal configurations of each thermal fluctuation to give dipS = 0, 

dipQ = − TdipSconfig Eq. 36 

One example of thermal fluctuation is the Brownian motion. The 
internal process releases hear with dipQ > 0 when the atoms return to 
their equilibrium positions, while absorbes heat with dipQ < 0 is when 
the atoms fluctuate away from their equilibrium positions. In the former 
case, the released heat can be extracted through an external effort to 
perform certain amount of work, which unfortunately has been 
considered in the literature as the evidence of the microscopic ‘violation 
of second law of thermodynamics’. The misunderstanding is because the 
dipSconfig was missed in counting the entropy changes of the internal 
processes as discussed in detail by the author recently [16]. 

5. Quantum thermodynamics in the framework of density 
functional theory 

Quantum mechanics provides a description of the physical properties 
of nature at the scale of atoms and subatomic particles. A solid can be 
thought of as a collection of interacting positively charged nuclei and 
negatively charged electrons and can theoretically be treated by solving 
the many-body Schrödinger quantum mechanics equation involving 
both the nuclei and the electrons [4]. However, it is extremely difficult 
to solve the equation due to its many-body nature with too many elec
trons. On the other hand, DFT developed in 1960’s [5,6] aims to 
represent the outcome of those interactions by a single wave function of 
one electron and articulates that there is a ground state in each system at 
zero K defined by a unique electron density. The widely used DFT-based 
calculations represents the state-of-the-art solution of the multi-body 
Schrödinger equation with several approximations as follows [12].  

• Adiabatic or Born-Oppenheimer approximation [27]. The nuclei that 
are much heavier than the electrons are assumed to be “frozen” and 
only contribute to an external potential for the electrons. The elec
trons are always in an instantaneous ground state with the nuclei. 

• Independent-electron approximation. Each electron moves inde
pendently of the others in an average effective potential collectively 
determined by the nuclei and all electrons. DFT by Hohenberg and 
Kohn [5] is formulated as an exact theory of many-body systems. It 
articulates that for an interacting electron gas there exists a universal 
functional of the density such that the energy is at its minimum 
value, i.e., the ground-state energy with a unique ground-state 
electron density. The Kohn-Sham approach [6] explicitly separates 
the independent-electron kinetic energy and long-range Coulomb 
interaction energy and replaces the many-body electron problem 
using independent electrons with an exchange-correlation functional 
of the electron density and an associated exchange-correlation en
ergy and potential, i.e., coarse graining of electrons. Consequently, the 
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exchange-correlation energy can be approximated as a local func
tional of the electron density.  

• Exchange-correlation functional approximation by the local spin 
density approximation (LSDA) [28,29] and the generalized gradient 
approximation (GGA) [30–32]. In LSDA, the exchange-correlation 
energy density at each point in space is assumed to be the same as 
in a homogenous electron gas with the same electron density. While 
in GGA, the exchange-correlation energy density depends addition
ally on the gradient of the electron density.  

• Replacement of the strong Coulomb potential of the nucleus and the 
tightly bound core electrons by a pseudopotential. This pseudopo
tential represents an effective potential acting on valence electrons 
and is obtained from atomic calculations. Since it is not unique, it is 
tailored to simplify calculations such as the commonly used ultrasoft 
pseudopotentials and the projector augmented wave (PAW) method 
[33]. 

With above approximations, the DFT-based first-principles calcula
tions solve a set of one-electron Schrödinger’s equations, one for each 
valence electron in the system with supercells of atomic structures and 
periodic boundary conditions, to obtain the ground-state electron den
sity, which is used to obtain ground-state energy and other properties of 
the system at 0 K. Additional calculations at volumes around that of the 
ground-state configuration can be performed to obtain the equation of 
states (EOS) along with the bulk modulus and its derivative with respect 
to volume by fitting the energy as a function of volume using various 
EOS models [34]. 

As the third law of thermodynamics postulates, the entropy of a 
system equals zero at 0 K, so is the entropy of the ground-state config
uration at 0 K. At finite temperature, electronic structures will change, 
and nuclei will vibrate, resulting in the increase of entropy. Kohn and 
Sham [6] used the finite temperature generalization of ground-state 
energy of an interacting inhomogeneous electron gas by Mermin [35] 
and formulated the entropy of thermal electrons at finite temperature. 
Wang et al. [36] added the vibrational contribution and presented the 
free energy as follows 

Fk = Ek,0 + Fk,el + Fk,vib = Ek − TSk Eq. 37  

Ek = Ek,0 + Ek,el + Ek,vib Eq. 38  

Sk = Sk,el + Sk,vib Eq. 39  

where Fk, Ek, and Sk are the Helmholtz energy, internal energy, and 
entropy of configuration k, Fk,el, Ek,el, and Sk,el are the contributions of 
thermal electron to Helmholtz energy, internal energy, and entropy of 
configuration k based on the Fermi–Dirac statistics for electrons, and 
Fk,vib, Ek,vib, and Sk,vib are the vibrational contributions to Helmholtz 
energy, internal energy, and entropy of configuration k based on the 
Bose–Einstein statistics for phonons, respectively. The vibrational con
tributions can be obtained by either phonon calculations or Debye 
model with the former being more accurate and the latter more efficient 
[36,37] through the high throughput DFT Tool Kits (DFTTK) [38,39]. 
The detailed equations for these quantities can be found in the literature 
[21,36]. For vibration-induced dipole-dipole long-range interactions, 
we have developed a mixed-space approach with the short-range in
teractions accounted for by supercells in the real space, the analytical 
solution for the origin in the reciprocal space which represents the 
infinite in the real space, and an interpolation scheme between them 
[40–42]. 

Non-ground-state configurations can be created by systematically 
varying the internal degrees of freedom of the ground-state configura
tion of the system. For stable non-ground-state configurations, Eq. (37) 
to Eq. (39) can be used to predict their Helmholtz energies. For unstable 
non-ground-state configurations, there will be imaginary frequencies in 
their phonon dispersion curves, and their Helmholtz energies can thus 

not be directly predicted by means of phonon calculations. Even though 
the Debye model does not explicitly concern whether the configuration 
is stable or unstable, the physical significance of those predictions needs 
to be further investigated [43]. This is the central topic in integrating the 
DFT-based calculations into the CALPHAD modeling [15,44–52], which 
will be further discussed in Sections 8. 

There have been continued efforts in improving DFT methods to 
obtain better electron density and total energy [53–60] include 
time-dependent DFT (TDDFT) [61–63], random phase approximation 
(RPA) [64,65], density-matrix functional theory (DMFT) [66–69], DFT 
+ U [70–72], dynamical mean-field theory [73,74], benchmarking with 
experimental measurements [75], deep neural network machine 
learning models [76–78], and some other hybrid methods [79]. These 
approaches primarily aim to improve the calculations for the 
ground-state configuration through approximations for the exchange 
correlation functional, i.e., Eq. (37) to Eq. (39). However, they may not 
be able to capture the statistical contributions from non-ground-state 
configurations reflected by experimental observations performed at 
finite temperatures as shown by Eq. (31) to Eq. (33). This will be further 
discussed in Section 7. 

It is noted that recently Perdew and co-workers pointed out that 
symmetry breaking can arise when a wave-like fluctuation drops to zero 
frequency [80]. By considering approximate density functional for ex
change and correlation that breaks symmetry, they demonstrated that 
symmetry breaking with an advanced density functional might reliably 
describe strong correlation and can thus be more revealing than an exact 
functional that does not [80,81]. They discussed that the ground-state 
total energy of a system of interacting electrons has contributions 
from fluctuations of various wavevectors, including the nonnegative 
zero-point energies of its collective excitations. For the uniform electron 
gas, they developed a new approximate density functional that includes 
the time-dependent fluctuations using the fluctuation-dissipation theo
rem as discussed in detail in Ref. [80], which is currently not practical 
for real systems due to the need to sum over all unoccupied and occupied 
orbitals to find the non-interacting linear response function and the lack 
of reliable exchange-correlation kernel. It is noted that the ground-state 
and non-ground-state configurations discussed above do have different 
symmetries. 

6. Irreversible thermodynamics in terms of internal processes 

6.1. Classical and extended irreversible thermodynamics 

Typical approaches to irreversible thermodynamics in the literature 
start from the Gibbs thermodynamics, i.e., Eq. (13) or Eq. (14) for closed 
systems with hydrostatic pressure or Eq. (11) in general. For example, 
Onsager used the microscopic reversibility that requires that if α and β 
be two quantities which depend only on the configuration of molecules 
and atoms, the event α = α′ followed some seconds later by β = β′ will 
occur as often as the event β = β′, followed later by α = α′. It also re
quires the same if α and β depend on the velocities of elementary par
ticles in such a manner that they are not changed when the velocities are 
reversed. Onsager noted that “the principle of microscopic reversibility 
is less general than the fundamental laws of thermodynamics”, which is 
shown below to be incompatible with irreversible processes. Based on 
the principle of microscopic reversibility, Onsager further derived the 
reciprocal relation among kinetic coefficients of fluxes which will be 
discussed in Section 6.3. 

While more often, as shown by de Groot and Mazur [82], Kondepudi 
and Prigogine [83], and in most textbooks, the combined law by Gibbs 
with dipS = 0 is used directly to derive formulas for irreversible ther
modynamics with Eq. (14) re-written as, neglecting convection and 
volumetric flow [83], 

dS =
1
T

dU −
∑c

i=1

μi

T
dNi = deS Eq. 40 
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where the last portion was added in the present work with deS being the 
entropy change or entropy current between the system and its sur
roundings as used by Kondepudi and Prigogine [83] who also used the 
symbol JS, or between an internal process and its surrounding inside the 
system. Its time-dependent form can be written as 

dS
dt

= Ṡ =
1
T

U̇ −
∑c

i=1

μi

T
Ṅi = eṠ Eq. 41 

The time-dependent first law of thermodynamics was then formu
lated in a flux form, re-arranged, and inserted back to Eq. (41), 

U̇ = Q̇ +
∑c

i=1
UiṄi = − ∇ •

(

JQ +
∑c

i=1
UiJi

)

= − ∇ • (JU) Eq. 42  

Ṡ = eṠ = −∇ •

(
JU

T
−

∑c

i=1

μiJi

T

)

+ JU • ∇

(
1
T

)

−
∑c

i=1
Ji • ∇

(μi

T

)

Eq. 43  

where JQ and Ji are the fluxes of heat and component i, respectively. 
This is a circular operation, resulting in the second law of thermody
namics with the first law of thermodynamics effectively removed from 
the combined law, i.e., Eq. (10), as follows 

Ṡ =
1
T

Q̇ +
∑c

i=1
SiṄi = eṠ Eq. 44 

This in principle should not result in any new information related to 
irreversible processes or the second law of thermodynamics as discussed 
below. 

It should be emphasized that the first law of thermodynamics rep
resented by Eq. (42) is applicable to both equilibrium and non- 
equilibrium systems with internal processes when it was introduced in 
Eq. (1), while Eq. (40) and Eq. (41) are for equilibrium systems only 
without internal processes, so Eq. (43) is only applicable to equilibrium 
systems. To solve this problem of circular operation, the common next 
step in the literature is to separate Eq. (43) into two contributions with 
the first term for entropy change or entropy current and the combination 
of the second and third terms as the entropy production due to internal 
processes i.e., 

Ṡ = eṠ = eṠ + ipṠ Eq. 45  

where ipṠ is the entropy production rate due to irreversible internal 

processes, written as iṠ or σ by Kondepudi and Prigogine [83]. This is 
evidently incorrect because one cannot start with the equation appli
cable to equilibrium systems without internal processes and end up with 
an equation for non-equilibrium systems with internal processes because 
Eq. (45) implies that ipṠ = 0. 

The problem is due to the circular use of the first law of thermody
namics and the artificial separation of contributions because the internal 
energy change does not concern the internal processes, but only the 
exchange between the system and its surroundings as defined by the first 
law of thermodynamics. This is shown by Eq. (7) in which TdipS is added 
into TdS in Eq. (5), and it should thus be emphasized that the internal 
processes do not change the internal energy of the system. The second 
law of thermodynamics concerns exclusively the entropy production due 
to irreversible internal processes. 

Another development in thermodynamics is the extended irrevers
ible thermodynamics [84,85], which aims to describe phenomena at 
frequencies comparable to the inverse of the relaxation times of the 
fluxes by including the fast variables among the set of basic independent 
variables. This is in analogy to keep the entropy production term as 
shown in Eq. (7), which can be re-arranged as follows 

Ṡ =
1
T

U̇ −
1
T

Ẇ −
∑c

i=1

μi

T
Ṅi + ipṠ = eṠ + ipṠ Eq. 46 

The central question is then how to formulate dipS or ipṠ. In the 
extended irreversible thermodynamics, dipS is formulated as a function 
of fluxes, and ipṠ is then related to the divergency of fluxes [84,85]. Since 
the unit of dipS does not contain time, it seems awkward to include fluxes 
as its independent variable. As shown below, it is more natural to 
formulate ipṠ as a function of flux instead. 

6.2. Formulation of internal processes 

As discussed above, irreversible thermodynamics concerns the 
formulation of internal processes. Based on the second law of thermo
dynamics, all kinetics processes in a nonequilibrium system are irre
versible and contribute to the total entropy change as shown by dipS in 
Eq. (7) and Eq. (9). For multiple independent internal processes, each can 
be represented by the last part of Eq. (9) and contributes to the internal 
energy of the system as follows for m independent internal processes 

dU =
∑n

a=1
YadXa −

∑m

b=1
Dbdξb Eq. 47  

Dbdξb ≥ 0 Eq. 48  

where Db and ξb are a pair of conjugate variables in analogy to Ya and Xa, 
denoted by Ya and Xa with Xa for internal variables as used in Section 3. 
For example, considering the diffusion of component i as an internal 
process, i.e., dξ = dci with ci = Ni/V being the concentration of 
component i in terms of moles per volume, the driving force is the 
decrease of the chemical potential of the component, i.e., D = − Δμi. 
This is the same as μi and dNi in the combined law. With the internal 
energy as a function of Xa and ξb, i.e., U(Xa,ξb), the dependent variables 
Ya and Db are also the functions of those independent variables, i.e., 
Ya(Xa, ξb) and Db(Xa, ξb), respectively. When free energy functions are 
introduced with some molar quantities, Xc, replaced by their conjugate 
potentials, Yc, the dependent potentials will follow the same as Ya(Xa,

Yc, ξb) and Db(Xa,Yc, ξb), respectively. 
When an internal process involves the change of several molar 

quantities simultaneously, such as chemical reactions involving several 
components, the entropy production of the internal process can be 
written as the sum of the entropy production of the change of each 
component. For a generic chemical reaction written as 
∑

r
NAr Ar =

∑

p
NBp Bp Eq. 49  

with NAr moles of reactant Ar and NBp moles of product Bp, its entropy 
production can be written as follows 

Ddξ = −

(
∑

p
NBp μBp

−
∑

r
NAr μAr

)

dξ Eq. 50  

where dξ represents the degree of the chemical reaction, i.e., (
∑

rNAr )dξ 
moles of reactants forming (

∑
pNp)dξ moles of products. The driving 

force D for the chemical reaction equals to the minus of weighted sum of 
products’ chemical potentials subtracted by the weighted sum of the 
reactants’ chemical potentials. It should be noted that there are internal 
variables that are related to microstructure such as grain size [86] and 
phase morphologies [87], which can be formulated into the combined 
law of thermodynamics with additional internal variables, but will not 
be discussed further in the present article because they do not directly 
appear in the combined law of thermodynamics. 

6.3. Formulation of flux equations 

One important type of internal processes is the transport of the molar 
quantity between neighboring positions in a system, i.e., its flux. Ons
ager [88,89] phenomenologically formulated a set of flux equations for 
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each molar quantity by postulating its linear dependence on the gradi
ents of all potentials and articulated that the matrix of the linear co
efficients is symmetrical, commonly referred to as the Onsager 
reciprocal relationship. Prigogine and co-workers further developed the 
flux equation by including chemical reactions [90–92] and presented a 
unified formulation of dynamics and thermodynamics through equa
tions of motion in terms of dynamics of correlations and instability in 
dissipative systems [93–95]. 

As discussed by the present author recently [16], there are four 
fundamental questions concerning Onsager’s phenomenological theo
rem as follows.  

1. As a symmetric matrix can be diagonalized to obtain its eigen values 
(kinetic coefficients) and the eigen vector (the set of independent 
driving forces), what is the eigen vector?  

2. When Db = 0, dξb may not be zero because the Onsager flux equation 
relates dξb to driving forces for all internal processes, indicating that 
the internal processes are not truly independent.  

3. The entropy production for the above scenario is zero as shown by 
Eq. (48), i.e., the flux of dξb does not produce entropy, which is in 
conflict with the second law of thermodynamics since any internal 
processes are irreversible and must result in a positive entropy 
production.  

4. If the microscopic reversibility and Gibbs combined law hold locally, 
so does the Gibbs-Duhem equation as shown by Eq. (22), signifying 
that not all potentials or their gradients could be varied indepen
dently, and at least one of them must be a molar quantity. 

Some of the above issues have been discussed in the literature as 
detailed by the author recently [16], particularly those by Truesdell and 
co-workers [96,97]. From the combined law of thermodynamics by Eq. 
(7), it is evident that only the product of each pair of conjugate variables 
enters the equation, and there are no cross-terms between non-conjugate 
pairs. The volumetric entropy production rate of an internal process, dξb, 
can thus be written as 

T
ΔV

dipS
dt

=
Db

AΔz
dξb

dt
= −

ΔYb

Δz
Ẋb

A
= −∇YbJXb Eq. 51  

where ΔV is the volume of the transport with area (A) and Δz the dis
tance between neighboring sites (Δz), Yb and Xb are a pair of conjugate 
variables with the subscript denoting the internal variables inside the 
system as mentioned in Section 3, and JXb is the flux of Xb. Consequently, 
in accordance with the combine law of thermodynamics, the change of a 
molar quantity is solely controlled by its conjugate potential gradient, 
and the flux equation of an internal process must be presented as follows 
[16] 

JXb = − LXb ∇Yb Eq. 52  

where LXb is the kinetic coefficient for the transport of Xb with − ∇Yb as 
its driving force. The entropy production can thus be written as 

σ = ipṠ = LXb (∇Yb)
2

≥ 0 Eq. 53 

As discussed in details by the present author [16], Eq. (51) to Eq. (53) 
resolve the four questions to the Onsager flux equations presented 
above. For a complex internal process involving more than one Xb rep
resented in the combined law, its driving force is similarly combined by 
their conjugate potentials, such as the chemical reactions discussed in 
Section 6.2 above. In dissipative systems [93,94], the transport and 
chemical reactions take place simultaneously. 

6.4. Theory of cross phenomena 

The central feature that the Onsager flux equations aimed to repre
sent is the cross phenomena [88], i.e., the experimental observations of 

transport of a molar quantity driven by the non-conjugate potentials 
such as migration of electrons by temperature gradient (thermoelectric, 
Seebeck coefficient) or stress gradient (electromechanical effect), or 
diffusion of atoms or molecules by temperature gradient (thermodiffu
sion, Soret coefficient). However, these observations do not provide 
information on the microscopic characteristics of underline physics. This 
is similar to the case of the Fick’s first law of diffusion that correlates the 
atomic diffusion to its concentration gradient, but fails to represent the 
uphill diffusion where atoms migrate from low concentration regions to 
high concentration regions [16,98,99]. The diffusion of a component is 
driven by its chemical potential gradient which is not only a function of 
its own concentration gradient, but the concentration gradients or 
chemical potentials of all other elements in the system [16,100–103]. 

It is realized that an internal process can be affected by all inde
pendent variables in the system because its driving force is a function of 
all those independent variables as shown by the discussion in relation to 
Eq. (47) and Eq. (48). However, the unit process of the internal process 
remains the same, i.e., the migration of a molar quantity over a barrier 
from one state to the next state either in terms of neighboring locations 
such as diffusion or different structures such as chemical reactions or 
phase transitions. It is noted that the kinetic coefficient, i.e., LXb in Eq. 
(52), is also a function of all those Independent variables, i.e., YXb (Xb, Xa,

Yc) and LXb (Xb, Xa, Yc) with Xa and Yc denoting the other independent 
molar quantity and potentials. Consequently, the gradient of YXb can be 
written as the gradients of other independent variables as follows 

∇YXb (Xb, Xa, Yc) =
∂Yb

∂Xb
∇Xb +

∑

a∕=b

∂Yb

∂Xa
∇Xa +

∑

c∕=a∕=b

∂Yb

∂Yc
∇Yc Eq. 54 

Eq. (52) is then written as 

JXb = − LXb

(
∂Yb

∂Xb
∇Xb +

∑

a∕=b

∂Yb

∂Xa
∇Xa +

∑

c∕=a∕=b

∂Yb

∂Yc
∇Yc

)

Eq. 55  

Eq. (55) demonstrates the cross phenomena. It overcomes the four 
shortcomings of the Onsager theorem discussed above and represents 
the fundamentals of cross phenomena. The first three shortcomings are 
resolved by Eq. (51) to Eq. (53), while the fourth shortcoming is 
addressed by Eq. (54) and Eq. (55), showing that at least one of the 
independent gradient is that of a molar quantity, i.e., the conjugate 
molar quantity of the potential. For example, in a system initially with ∇
Xb = 0, there is a driving force for Xb to migrate due to the gradients of 
∇Xa and ∇Yc as they induce a non-zero value of ∇Yb. The flow of Xb 
tends to transport Xb in the opposite direction of ∇Yb. If the system is 
closed with respect to Xb, i.e., no exchange of Xb with the surroundings, 
eventually the three terms on the right-hand side of Eq. (55) balance 
each other to result in zero driving force for Xb to flow, i.e., ∇Yb = 0 and 
JXb = 0, with a nonuniform Xb (∇Xb ∕= 0) in the system. Consequently, 
the values of Xb are higher than that of the original value at some regions 
and lower at other regions in the system, i.e., a transport phenomenon 
against ∇Xb, commonly referred to as uphill transport. 

It is evident that the significances of cross phenomena depend on the 
signs and magnitudes of the three sets of derivatives in Eq. (55) as dis
cussed below.  

• The first set of derivatives is between two conjugate variables and is 
positive for a stable system, i.e., ∂Yb

∂Xb
> 0, shown by the diagonal 

quantities in Table 1 [16]. It becomes zero at the limit of stability of 
the system or the internal process if there are more than one internal 
process, and its inverse diverges positively, i.e., ∂Yb

∂Xb
= +0 and ∂Xb

∂Yb
= +

∞.  
• The second set of derivatives is between a potential and a non- 

conjugate molar quantity, representing many quantities from 
typical experimental measurements as shown by the off-diagonal 
quantities in Table 1 [16]. Since they are not required to be posi
tive, they can be sometimes negative such as the negative thermal 

Z.-K. Liu                                                                                                                                                                                                                                          



Calphad 82 (2023) 102580

10

expansion observed experimentally and predicted by the zentropy 
theory [104,105], which will be discussed further in Section 7. 
Table 1 is symmetrical due to the Maxwell relation with the ones at 
low-left side more easily measurable experimentally and the ones at 
up-right side more easily predicted theoretically [16,106]. The 
quantities in the last row and column of the table can be related to 
quantum criticality as discussed by the author [16]. At the limit of 
stability, they may diverge negatively, i.e., ∂Yb

∂Xa
= ±0 and ∂Xa

∂Yb
= ± ∞. 

This derivative provides fundamental understanding of uphill 
diffusion where the diffusion of a component from a low concen
tration region to a high concentration region is driven by the 
gradient of another component, such as the carbon diffusion (μC)

driven by silicon (cSi) as reported by Darken [16,98,99] due to the 
large negative value of ∂μC

∂cSi
.  

• The third set of derivatives is between two potentials. While the 
second set of derivatives discussed above can be considered as cross 
phenomena, this third set represents the commonly referred cross 
phenomena in the literature where an externally controlled potential 
gradient, such as temperature and stress gradients and electric and 
magnetic fields, results in an internal ∇Yc that drives the flows of Xc 
and other molar quantities inside the system. These derivatives are 
listed in Table 2 [16,107]. Since they are not commonly seen in the 
literature, further discussions will be presented below. 

As shown above, the derivatives between potentials play a central 
role in understanding the observation of typical cross phenomena. Their 
missing in the literature is probably partially because the scientific 
community is deeply rooted by the Onsager’s phenomenological flux 
equation and the Onsager reciprocal relationship that stipulate the ki
netic characteristics of cross phenomena and partially due to the lack of 
data to evaluate them. Furthermore, direct experimental measurements 
or kinetic simulations of cross phenomena give the products of kinetic 
coefficient and the derivative, i.e., LXb

∂Yb
∂Yc 

or LXb
∂Yb
∂Xa 

in Eq. (55), which 
indeed contains the kinetic coefficient of the internal process, but not a 
new kinetic coefficient. 

In the interest of further discussion of the kinetic coefficient matrix, 
let us consider the migrations of only 2 molar quantities using Eq. (55) as 
follows, 

JXb = − LXb

(
∂Yb

∂Xb
∇Xb +

∂Yb

∂Yc
∇Yc

)

Eq. 56  

JXc = − LXc

(
∂Yc

∂Yb
∇Yb +

∂Yc

∂Xc
∇Xc

)

Eq. 57 

It is evident that the kinetic coefficient matrix is not symmetrical in 
general as LXb and LXc are independent of each other, i.e., 

LXb

∂Yb

∂Yc
∕= LXc

∂Yc

∂Yb
Eq. 58  

Alternatively, the flux equations can be written as 

JXb = − LXb

(
∂Yb

∂Xb
∇Xb +

∂Yb

∂Xc
∇Xc

)

Eq. 59  

JXc = − LXc

(
∂Yc

∂Xb
∇Xb +

∂Yc

∂Xc
∇Xc

)

Eq. 60  

Again, one obtains the following inequality, 

LXb

∂Yb

∂Xc
∕= LXc

∂Yc

∂Xb
Eq. 61 

This was pointed by the present author in a recently published 
comment [102]. It should be mentioned that the two sides in Eq. (58) or 
Eq. (61) could be made equal if LXb and LXc are not independent from 
each other, which means that Xb and Xc are not independent variables 
and should thus be combined to form a new independent variable. This 
is the case for diffusions in ionic systems where the charge neutrality 
constrains the equality of Eq. (58) and Eq. (61) as discussed in Ref. [102] 
and references cited therein. This was also the case that Onsager focused 
on as discussed in his Nobel lecture [245] though not true in general. 

To validate our above theory of cross phenomena, we calculated the 
electronic Helmholtz energy as a function of temperature using the 
Mermin formula [35] as shown in the work by Kohn and Sham [6] and 
Wang et al. [36] and predicted the Seebeck coefficients for a number of 
thermoelectric materials, showing remarkable agreement with experi
mental measurements [108,109]. In typical experiments, one starts with 
an initially homogeneous system without gradients for any molar 

Table 1 
Physical quantities related to the first directives of molar quantities (first column) to potentials (first row), symmetrical due to the Maxwell relations [16,106].   

T, Temperature σ, Stress E, Electrical field H , Magnetic field μi, Chemical potential 

S, Entropy Heat capacity Piezocaloric effect Electrocaloric effect Magnetocaloric effect ∂S
∂μk 

ε, Strain Thermal expansion Elastic compliance Converse piezoelectricity Piezomagnetic moduli ∂εij

∂μk 
θ, Electrical displacement Pyroelectric coefficient Piezoelectric moduli Permittivity Magnetoelectric coefficient ∂Di

∂μk 
B, Magnetic induction Pyromagnetic coefficient Piezomagnetic moduli Magnetoelectric coefficient Permeability ∂Bi

∂μk 
Nj, Moles Thermoreactivity Stressoreactivity Electroreactivity Magnetoreactivity ∂Ni

∂μk
, Thermodynamic factor  

Table 2 
Cross phenomenon coefficients represented by derivatives between potentials, symmetrical due to the Maxwell relations [16,107].   

T, Temperature σ, Stress E, Electrical field H , Magnetic field μi, Chemical potential 

T 1 
−

∂S
∂ε −

∂S
∂θ 

−
∂S
∂B 

−
∂S
∂ci 

Partial entropy 
σ ∂σ

∂T 
1 

−
∂ε
∂θ 

−
∂ε
∂B 

−
∂ε
∂ci 

Partial strain 

E ∂E
∂T 

∂E
∂σ 

1 
−

∂θ
∂B 

−
∂θ
∂ci 

Partial electrical displacement 

H ∂H

∂T 
∂H

∂σ 
∂H

∂E 
1 

−
∂B
∂ci 

Partial magnetic induction 
μi ∂μi

∂T 
Thermodiffusion 

∂μi
∂σ Stressmigration 

∂μi
∂E 

Electromigration 
∂μi
∂H 

Magnetomigration ∂μi
∂μj

= −
∂cj

∂ci
=

Φii

Φji 
Crossdiffusion  
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quantities or potentials, i.e., ∇ce = 0, ∇μe = 0, ∇S = 0, and ∇T = 0, 
where e denotes electron. When a small external temperature gradient, i. 
e., ∇Yc = ∇T, is imposed to the system, it induces a heat conduction in 
the system and results in an internal temperature gradient in the system, 
i.e., ∇Yc = ∇T. It is noted that in principles that this process takes some 
time to establish the internal temperature gradient, which is one of the 
topics that the extended irreversible thermodynamics aims to address, i. 
e., relaxation time [84,85]. Due to the temperature difference, the 
chemical potentials of electrons become inhomogeneous in the system, i. 
e., ∇μe ∕= 0, inducing a driving force for electrons to migrate from high 
chemical potential regions to low chemical potential regions and 
resulting in an inhomogeneous distribution of electrons, i.e., ∇ce ∕= 0. In 
typical experiments, the two ends of the system are not connected so 
electrons do not leave the system. The redistribution of electrons thus 
decreases ∇μe until it becomes zero, i.e., ∇μe = 0, while the inhomo
geneous electron distribution with ∇ce ∕= 0 results in an internal voltage, 
∇Ve. The ratio of ∇Ve/∇T gives the experimentally measured Seebeck 
coefficient, noting that ∇Ve and ∇T have different signs so the Seebeck 
coefficient is negative for n-type thermoelectric materials. For p-type 
thermoelectric materials, the voltage due to the gradient of holes has the 
same sign as ∇T, giving positive Seebeck coefficient. 

In typical computer simulations to evaluate Seebeck coefficients, the 
heat and electron fluxes are measured by imposing either temperature 
gradient or electric field, and the evaluation of Seebeck coefficient thus 
requires the simultaneous estimation of electrical and thermal conduc
tivity coefficients as mentioned above. Our theory of cross phenomena 
and computational approach avoids the evaluations of electrical and 
thermal conductivity coefficients in predicting the Seebeck coefficients, 
demonstrating better agreement with experiment measurements [108, 
109]. It is noted that the calculations of electrical and thermal con
ductivity coefficients are still needed in order to get the diagonal terms 
of the kinetic coefficient matrix including atomic mobilities for mass 
transport [108,110,111]. Furthermore, one possible next step is to 
combine internal processes of both transport and chemical reactions to 
understand and predict the properties of dissipative systems involving 
critical phenomena or bifurcations [95]. 

6.5. Maxwell–Stefan diffusion equation 

In the Maxwell-Stefan diffusion equation [112,113], the chemical 
potential gradient of a component is expanded through the Maxwell–
Stefan diffusion coefficients, flux, and concentration of all diffusion 
components as follows 

∇μi

RT
=

∑c

j=1,∕=i

cj

ctÐij

(
Jj

cj
−

Ji

ci

)

=
1
ct

∑c

j=1,∕=i

1
Ðij

(

Jj −
cj

ci
Ji

)

Eq. 62  

where ct is the total molar concentration, and Ðij the Maxwell–Stefan 
diffusion coefficient. Complex relations between Maxwell–Stefan and 
commonly used diffusion coefficients have been worked out in the 
literature with a number of approximations for multi-component sys
tems, relying on the Onsager reciprocal relation [112,113]. It seems that 
the Maxwell–Stefan approach reduces the total number of diffusion 
coefficients as Ðii is not needed, but the Maxwell–Stefan diffusion co
efficients are not based on measurable quantities and have to be esti
mated [113]. 

On the other hand, as shown by Eq. (52), one only needs one kinetic 
coefficient for diffusion of component i, i.e., Li, which is in the lattice- 
fixed frame of reference. As presented elegantly by Andersson and 
Ågren [100], Li can be related to the atomic mobility (Mi) through 
diffusion mechanisms and further to the tracer diffusivity (D*

i ) through 
the Einstein relation. By changing the chemical potential gradient to 
concentration gradients in the lattice-fixed frame of reference, one ob
tains the intrinsic diffusivity (iDik = Li

∂μi
∂ck

) of component i with respect to 
the concentration gradient of component k, thus no longer diagomal. It 
is noted that the chemical potential of a component depends on the 

concentrations of all components where ∂μi
∂ck 

is commonly referred to as 
the thermodynamic factor. 

On the other hand, if one switches to the volume-fixed frame of 
reference considering the lattice drifting due to transport of vacancy, 
one obtains a complex non-diagonal kinetic coefficient matrix L′

ij so that 

the flux J′
i in the volume-fixed frame of reference depends on the 

chemical potential of all components as shown by Andersson and Ågren 
[100]. When the chemical potential gradients are further changed into 
concentration gradients, one obtains the chemical diffusivity of 
component i with respect to the concentration gradient of component 
(

Dik =
∑

jL′
ij

∂μj
∂ck

). The relationships among these diffusion coefficients 

and kinetic coefficients are shown in Fig. 2 where iDn
ik and Dn

ik are the 
reduced intrinsic and chemical diffusivity of component i with respect to 
the concentration gradient of component k with component n as the 
dependent component [16,100]. Dn

ik can be evaluated through concen
tration profiles in diffusion experiments, while the evaluation of iDn

ik 
needs the information on inert marker movement. 

The above discussion indicates that the number of independent 
diffusion kinetic coefficients equals to the number of independent 
diffusion components. The complexity in the Maxwell-Stefan diffusion 
equation and its diffusion coefficients thus seems redundant as they are 
related to the atomic mobility and thermodynamic factors. Large scale 
atomic mobility databases have been developed in terms of the method 
shown in Fig. 2 by Andersson and Ågren [100] and broadly used in 
diffusion simulations [114,115]. 

7. Zentropy theory for coarse graining of entropy 

7.1. Overview of zentropy theory 

It is evident from the above discussions that all theories require ac
curate free energy as a function of both internal and external variables. 
The key challenge in theoretical predictions of free energy of a phase is 
because only one or a few configurations are typically considered in 
computational approaches, whereas experimental measurements stem 
from sampling all possible configurations at all scales simultaneously. 
This challenge becomes acute for systems with phase transitions, which 
is often where the most fascinating transformative properties exist. This 
is reflected by the following gaps between statistical mechanics and 
quantum mechanics out of the discussions presented in Sections 4 and 5.  

i. Typical DFT-based calculations are focused on the ground-state 
configuration of a system, while experimental observations 
include both ground-state and non-ground-state configurations 
through statistical mechanics. It is thus not surprising that in 
general DFT-based calculations are not able to show good quan
titative agreements with the experimental observations obtained 
at high temperature.  

ii. The total energy of each configuration in statistical mechanics in 
Eq. (31) to Eq. (33) should be represented by Eq. (38) in quantum 
mechanics. However, many DFT-based calculations are per
formed at 0 K and thus provide only E0

k which is only part of the 
total energy of a configuration.  

iii. The ground-state and non-ground-state configurations have non- 
zero entropies as shown by Eq. (39) and are thus not pure 
quantum states, rather coarse-grained representations of multi- 
body interactions of electrons and phonons for each configura
tion. They are thus incompatible with the existing statistical 
mechanics shown by Eq. (31)-(33). 

The first gap has been extensively addressed in the literature through 
the development of an effective Hamiltonian fitted to DFT-based cal
culations of ground-state and some non-ground-state configurations 
[116–120] followed by molecular dynamics (MD) and Monte Carlo (MC) 
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simulations. There are also approaches that directly couple DFT with 
MD and MC such as ab initio molecular dynamics (AIMD) [121–123] and 
quantum Monte Carlo (QMC) [124–128]. All those simulations try to 
sample as many configurations as possible and present the properties of 
a system by averaging properties of a set of well converged configura
tions. The selections of model, truncation, and parameter fitting in the 
effective Hamiltonian approach limit the quantitative predicative ca
pabilities of MD and MC simulations in addition to the usual use of DFT 
data from 0 K in the fitting. Another challenge is to ensure that all 
important configurations are sampled in the MD and MC simulations, 
particularly those symmetry-breaking configurations. 

The second and third gaps above are related and are not widely 
addressed in the literature. Ceder [129] presented a formula by 
replacing the total energy of each configuration in Eq. (31) by its free 
energy as follows 

Z = e− F
kB T =

∑m

k=1
Zk =

∑m

k=1
e− Fk

kB T Eq. 63  

with Ek in Eq. (31) replaced by Fk. Asta et al. [130] further discussed the 
formula and emphasized the importance to include the entropy contri
bution in fitting the cluster expansion coefficients by demonstrating its 
effects on phase diagrams obtained from the cluster variation method. 
The formula was later termed as “coarse graining of the partition 
function” [131,132], though no actual calculations were reported in the 
literature using the formula by those authors. 

The author’s group [133,134] used the same formula of the partition 
function, i.e., Eq. (63), without knowing its existence at that time. We 
predicted the magnetic phase transition of Ce and the critical point in its 
temperature-pressure phase diagram, initially with two configurations, 
i.e., the ground-state nonmagnetic (NM) configuration and high tem
perature non-ground-state ferromagnetic (FM) configuration plus a 
mean-field term accounting for spin flipping entropy [133]. In the paper 
followed [134], one additional antiferromagnetic (AFM) configuration 
was added which removed the need of the mean-field term. The free 
energies of the configurations were obtained from DFT-based calcula
tions using GGA + U. 

When applying the approach to predict the negative thermal 
expansion in Fe3Pt, the ergodicity of spin configurations in a 12 atom 
supercell with 9 Fe atoms was considered, resulting in 29 = 512 con
figurations with 37 being symmetrically distinct [135]. The Helmholtz 
energies of all configurations were obtained by the DFT-based calcula
tions using GGA without the need of +U, probably due to the ergodicity 

of configurations. Those Helmholtz energies are used to predict the 
critical phenomena and the negative thermal expansion along with its 
negative divergence at the critical point without additional models and 
fitting parameters. The applications to other materials were successfully 
performed subsequently [104,136–141] plus YNiO3 with strongly 
correlated physics [142] and ferroelectric PbTiO3 [143]. Remarkable 
agreement with experimental results has been observed with the 
first-order transitions obtained by free energy minimization and the 
second-order transitions defined by several criteria including the prob
ability of the ground-state configuration decreasing to 50%, the peak of 
heat capacity due to statistical mixing, and more recently the inflection 
point in a disordering parameter [144]. It was shown that the first and 
last criteria give better agreement with experiments than the second one 
with the heat capacity. 

Wentzcovitch’s group [145,146] worked along the same direction 
with initially two spin states of Fe in Mg1−xFexO plus a mean-field term 
[145], and then the order–disorder phase boundary between ice VII and 
VIII without the mean-field term [146]. In the latter case, the ergodicity 
of polar configurations was considered with 8100 configurations for 
16-molecule ice VII supercell consisting of 52 symmetrically distinct 
configurations, noting that Ice VII is hydrogen-disordered and para
electric, and Ice VIII is hydrogen-ordered and antiferroelectric. They 
defined the order-disorder transition by the peak of heat capacity and 
successfully applied this approach to a range of materials [147–152]. 
Recently the author learned that Allan and co-workers used similar 
approaches to study the properties of solid solutions in a number of 
materials at finite temperatures with each configuration having the 
same composition of the system [153,154]. Particularly, the Gibbs en
ergy function, i.e., Eq. (2) in both their publications [153,154] is iden
tical to Eq. (7) in the author’s publication [155] though the entropy of 
mixing among configurations was explicitly presented in the latter [155] 
and used in the more recent formulation of the zentropy theory as dis
cussed in detail in next section [16,105]. 

The success of the zentropy approach resides on the coarse graining 
of entropy. Bottom-up coarse graining studies the microscopic origins 
underlying macroscopic processes and has been broadly discussed in the 
scientific community [156], particularly in terms of the multiscale en
tropy for quantifying the complexity of physiologic time series [157, 
158]. It is also noted that Šafránek et al. [159] extended classical 
coarse-grained entropy to quantum mechanics and showed that the 
coarse graining using local energy measurements leads to an entropy in 
accord with the thermodynamic entropy. However, due to the enormous 

Fig. 2. Relationships among tracer diffusivity 
(
D*

i
)
, atomic mobility (Mi), kinetic parameters (Li), and intrinsic diffusivities 

(
Dik i and Dn

iki
)

in the lattice-fixed frame of 

reference, and kinetic parameters 
(

L’
ij

)
and chemical diffusivities 

(
Dik and Dn

ik
)

in the volume-fixed frame of reference [16]. 
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complexity of atomistic systems, statistical mechanics-driven coarse 
graining modeling has been very limited. The zentropy approach 
circumscribe this complexity by relying on the DFT-based calculations of 
ergodic ground- and non-ground-state configurations with the thermal 
electronical and vibrational entropy contributions shown by Eq. (39) 
and discussed in detail in the next section. 

7.2. Fundamentals of zentropy theory: coarse graining of entropy 

The term “zentropy” was recently suggested to represent the 
approach by the author’s group [105]. In the zentropy theory, the coarse 
graining of entropy is presented as follows [134]. 

S =
∑m

k=1
pkSk − kB

∑m

k=1
pk ln pk Eq. 64 

The entropy of configuration k, Sk, can be further extended into its 
lower-scale configurations with the same type of formula as Eq. (64), 
until the electronic configurations at the DFT scale, which thus repre
sents the bottom-up approach to compute the entropy of a configuration 
at the scale of the observation. While the Gibbs entropy, i.e., the second 
term in Eq. (64), counts the configurations from the viewpoint of the 
system, i.e., a top-down approach, to compute the entropy between 
configurations. It is thus evident that the zentropy theory integrates the 
bottom-up and top-down approaches as schematically shown in Fig. 3 
and is capable of accurately predicting the total entropy of the system, i. 
e., S =

∫ T
0

C
T dT with C being the heat capacity measured experimentally 

that represents a statistical sampling of ergodic configurations of the 
system. 

Consequently, the standard statistical mechanics in terms of Eq. (31) 
to Eq. (33) are modified to Eq. (63) plus Eq. (64) and the equations 
below 

F =
∑m

k=1
pkEk − TS =

∑m

k=1
pkFk − kBT

∑m

k=1
pk ln pk Eq. 65  

Zk = e− Fk
kB T Eq. 66  

pk =
Zk

Z
= e−Fk −F

kB T Eq. 67 

These nested formula have several key features as follows [22].  

1. Reach to the quantum regime by starting with the ground-state 
configuration of a system. 

2. Expand to ergodic non-ground-state configurations through sam
pling internal degrees of freedom of the ground-state configuration.  

3. Predict the entropies and Helmholtz energies of all configurations 
using the DFT-based calculations under the canonical (NVT) 
ensemble for each configuration.  

4. Predict observable quantities with information solely from quantum 
mechanics through partition function of ground-state and stable non- 

ground-state configurations using their individual Helmholtz en
ergies without additional models and fitting parameters.  

5. Predict the free energy landscape of a system consisting of stable 
states, instability, critical phenomena, and free energy barriers be
tween stable states as a function of internal and external variables,  

6. Potentially extensible to many more observable quantities at various 
scales [142,160]. 

As demonstrated recently, the AFM to paramagnetic (PM) transition 
in YNiO3 under ambient pressure was predicted to be 144 K and 81 K 
with or without entropy contribution for each configuration, respec
tively, i.e., Eq. (63) to Eq. (67) (zentropy theory) for the former and Eq. 
(31) to Eq. (33) (Gibbs entropy) for the latter. With the experimentally 
measured AFM to PM transition temperature being 145 K [142], this 
demonstrates the superiority of the zentropy theory. On the other hand, 
if the entropies of all configurations are identical, the probability of a 
configuration by Eq. (67) based on the zentropy theory reduces to the 
same formula by Eq. (33) in terms of the standard statistics due to the 
following relation 

Fk − F = Ek − TSk −
∑m

l=1
pl(El − TSl + kBTlnpl) = Ek

−

(
∑m

l=1
pl(El + kBTlnpl)

)

Eq. 68  

However, the Helmholtz energy of the system by the zentropy theory 
(Eq. (65)) is more negative than that by standard statistical mechanics 
(Eq. (32)) with the difference being − TSk. 

There is one important point related to feature 3 and 5 above that has 
not been explicitly stated in the previous publications. It is easy to un
derstand that all configurations must have the same temperature and 
composition, i.e., T and N or Ni, and it may be less clear that each 
configuration must also have the same volume because the system is in 
the NVT ensemble. Under given T and Ni, the Helmholtz energy of each 
configuration is a function of volume, and there is a volume corre
sponding to the lowest Helmholtz energy for each configuration. How
ever, when individual configurations are brought together statistically, 
all of them must adopt the volume of the system through either 
compression or expansion, i.e., their Helmholtz energies need to be 
evaluated at the same volume as that of the system. This enables the 
prediction of the Helmholtz energy of transitory states between two 
stable states, including the inflection points that represent the limit of 
stability and the apex of the energy landscape. The equilibrium volume 
of the system is obtained through the minimization of the Helmholtz 
energy of the system, resulting in a single-phase state above the critical 
point and the mixture of two- or more-phase states below the critical 
point where each state has its own specific statistic mixture of all con
figurations, commonly referred as miscibility gap [15,105]. 

Fig. 3. Schematic top-down and bottom-up integration of the zentropy theory.  

Z.-K. Liu                                                                                                                                                                                                                                          



Calphad 82 (2023) 102580

14

7.3. Connection between zentropy theory and entropy of black holes 

The applications of zentropy theory mentioned above include mag
netic and polar materials. In two overview articles [15,22], the author 
connected the zentropy theory to information entropy. In a recent 
perspective article [16], the author discussed quantum criticality, su
perconductivity, and the experimental observations related to quantum 
devices and the interpretation of second law of thermodynamics in the 
framework of zentropy theory, and the author’s group is actively pur
suing in-depth research in those directions [160]. Furthermore, the 
potential applicability of zentropy theory to the entropy of black hole 
[161–164] was mentioned [16,22], and some preliminary thoughts are 
elaborated in more details in the present section. 

The entropy of black hole was formally formulated by Bekenstein 
[161] and reviewed by Hawking [162] and commonly referred as 
Bekenstein-Hawking entropy in the literature. Bekenstein [161] pre
sented the law of black holes in terms of the changes of internal energy, 
d(Mc2), area, dA, angular momentum, dJ, and charge, dQ, as follows 

d
(
Mc2)

=
κc2

8πG
dA + ΩdJ + ΦdQ Eq. 69  

where M, κ and Ω are the mass, surface gravity and the angular fre
quency of rotation of the black hole, c is the speed of light, G is the 
gravitational constant, and Φ is the potential of the event horizon, i.e., 
the boundary between the black hole and outside world. Bekenstein 
compared Eq. (69) with Eq. (13), i.e., the Gibbs combined law of ther
modynamics and identified the last two terms in Eq. (69) as the work 
done on the black hole by an external agent who increases the black 
hole’s angular momentum and charge by dJ and dQ, respectively, in 
analog of −PdV in Eq. (13) or more general dW in Eq. (7). 

A critical step next was to correlate the area and entropy between Eq. 
(69) and Eq. (13). Bekenstein [161] started from the information en
tropy as shown by Eq. (30), forgo the internal configurations of a black 
hole due to their inaccessibility, and derived the entropy of a black hole 
as a linear function of area as follows 

Sbh

kB
= γ

c3

ℏG
A Eq. 70  

where ℏ is the reduced Planck constant, and γ = ln 2
8π was obtained by 

Bekenstein [161] and γ = 1
4 by Hawking [162], respectively. It is noted 

that Bekenstein [161] emphasized that “the concept of black-hole en
tropy as the measure of the inaccessibility of information (to an exterior 
observer) as to which particular internal configuration of the black hole 
is actually realized in a given case”, referring to the “equivalence class of 
all black holes which have the same mass, charge, and angular mo
mentum, rather than the thermal entropy inside the black hole”. 

In a following paper, Bekenstein [165] presented a detailed statis
tical analysis in terms of the statistical sampling of a black hole. 
Hawking [162] discussed the quantum fluctuation of internal configu
rations or quantum states of a black hole and concluded that a black hole 
radiation can take place by statistical fluctuations in black-body radia
tion and can then decay quantum mechanically with the reemission of 
radiation. Over the years, many microscopic explanations of black hole 
entropy have been developed through statistical mechanics as reviewed 
by Carlip [166,167], including entanglement entropy, string theory, 
loop quantum gravity, induced gravity, and logarithmic corrections. The 
central challenge is to define and count the internal configurations of 
black holes. 

There have been some revisions of the original derivation by 
Bekenstein [161] with one being the addition of a pressure term to the 
law of black holes [168–173] by treating the cosmological constant as a 
thermodynamic pressure and the other being the logarithmic corrections 
of entropy formula by considering the effect of thermal fluctuations 
[174–182]. It should be noted that the Gibbs combined law of 

thermodynamics was stated as the first law of thermodynamics by 
Hawking and many others in the literature, which should be the com
bined law as shown in Sections 2.3 and 3.1. This may be partially due to 
the fact that the second law of thermodynamics was removed from Gibbs 
combined law of thermodynamics as discussed in Sections 2.3 and 3.1. 
Furthermore, the Gibbs combined law of thermodynamics used by 
Bekenstein [161] and Hawking [162] is for closed systems, while a 
typical gedanken experiment involves the falling of a box, Wheeler’s cup 
of tea [166], or other items into a black hole. Consequently, it is 
necessary to use the combined law including the internal processes and 
all exchanges between a black hole and its surroundings, i.e., Eq. (7) for 
the combined law of thermodynamics and Eq. (9) for the entropy pro
duction due to internal processes. 

Combining Eq. (69) and Eq. (7) with the two revisions of pressure 
and mass exchange mentioned above results in the following equation 
similar to those in the literature [168–173]. 

dU = TdS + ΩdJ + ΦdQ − PdV +
∑c

i=1
μidNi − TdipS Eq. 71  

where dNi denotes the moles of component i added to the black hole as 
no mass escapes the black hole, and dipS the entropy production due to 
internal processes inside the black hole. It should be emphasized that dS 
is for the entropy change of the black hole and can be either positive or 
negative as shown by Eq. (5), which is not directly related to the second 
law of thermodynamics. As discussed in Section 2.2, the second law of 
thermodynamics concerns only the last term of Eq. (71) as shown by Eq. 
(4). Therefore, there is no need to introduce the generalized second law 
of thermodynamics [161,162]. In Eq. (71), −PdV is used instead of VdP 
commonly presented in the literature [168–173] in order to avoid the 
use of enthalpy on the left side of Eq. (71) though they are equivalent as 
both are fundamental characteristic functions [20]. 

Let us first discuss the logarithmic correction to the Bekenstein- 
Hawking entropy (Eq. (70)) that takes a typical form as follows 
[174–182]. 

S′
bh = Sbh + η ln(Sbh) + additional terms Eq. 72  

with η being a constant. On the other hand, Bekenstein [165] discussed a 
different statistical interpretation of the concept of black-hole entropy as 
the natural logarithm of the number of possible states of a black hole 
that are compatible with the given spinning black-hole state. Since only 
the spinning state of a black hole is observable, Bekenstein [165] arti
culated that a black hole cannot be regarded as having definite M, L, and 
Q, rather in a number of different spinning black hole solution states of 
definite M, L, and Q, each one occurring with some probability pMLQ, 
identified as the sum of probabilities for all radiation states that can 
coexist with the given spinning solution state. The following formula of 
entropy of a black hole was then obtained by Bekenstein [165] 

S′
bh =

∑

MLQ
pMLQSbh(M, L, Q) − kB

∑

MLQ
ppMLQ ln ppMLQ Eq. 73  

where Sbh(M, L, Q) is the entropy of a spinning black-hole state with the 
parameters M, L, and Q. This approach from the higher observable scale 
to the lower unobservable scale may be compared with the top-down 
approach in our multiscale entropy approach [22]. It is evident that in 
this approach, each MLQ observation represents a specific statistical 
distribution of ergodic individual configurations in the black hole 
though they are not accessible from outside and is similar to MC and MD 
sampling. 

Eq. (73) is strikingly similar to that of our zentropy theory shown by 
Eq. (64), which is also similar to that derived for entanglement entropy 
in relation to quantum criticality [183–189] where the area law domi
nates when the system is far away from its quantum critical point, and 
the logarithmic law dominates when the system is near its quantum 
critical point. Our zentropy theory was able to predict the singularity at 
critical points in Ce [133,134] and Fe3Pt [135,144] due to the magnetic 
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spin dynamics in the temperature-pressure two-dimensional space 
including the positive divergency of thermal expansion in Ce and the 
negative divergency of thermal expansion in Fe3Pt [15,16,155]. 

It is noted that Eq. (64) and Eq. (73) are capable of interpreting the 
transition from the area law to the logarithmic law when a system is 
approaching its critical point either from its ground state or a non- 
ground state far away passing the critical point. At the ground state, 
there is only one configuration in the system, i.e., the ground-state 
configuration. The entropy of the system equals to the entropy of the 
ground state, which is a function of the size of the system either in terms 
of volume or surface, thus the area law. At the non-ground state far away 
from the critical point, the probability of each configuration in the 
system is same, and Eq. (64) becomes 

S =
1
m

∑m

k=1
Sk + kB ln(m) Eq. 74 

The entropy of the system is dominated by the first term and thus the 
area law. While near the critical point, the ground-state configuration 
loses its dominance, and the system fluctuates spontaneously between 
the ground-state configuration and non-ground-state configurations, 
resulting in an inflection point on the degree of disorder derived from 
the entropy change as a function of temperature, and thus the loga
rithmic law. The system diverges at the critical point, and the fluctuation 
wavelength becomes infinite, even only with quantum information from 
supercells as small as 12 atoms for Fe3Pt [135,155]. The divergence of 
effective mass of electrons at the quantum critical point was discussed 
similarly [16]. It thus seems plausible that the zentropy theory has the 
potential to be applied to predict the properties of black holes, which 
will be explored further in our future research activities. 

Concerning the addition of −PdV to Eq. (71), there seem some in
consistences. As a volume change usually results in an area change, Eq. 
(71) is thus inconsistent with Eq. (69) since both entropy and volume are 
independent variables of the internal energy of a black hole, i.e., the 
entropy cannot be correlated with area or volume directly as Bekenstein 
[161] did. However, this issue has not been addressed in the literature 
when the pressure or volume was introduced [168–173]. On the other 
hand, the discussion in the above paragraph demonstrates that the area 
law can be rationalized through the volume or area dependence of the 
entropy of the ground-state configuration, or the statistical mixture of all 
configurations as shown by Eq. (74) without the intuitive suggestion 
between entropy and black-hole area made by Bekenstein [161]. 

Next let us correlate the Hawking radiation in the framework dis
cussed in the present work. The Hawking radiation reduces the mass and 
rotational energy of a black hole through the energy radiated from the 
black hole to its surroundings. The entropy change of the black hole may 
thus be written as follows from Eq. (5), 

dS =
dQH

T
+ dipS Eq. 75  

where dQH is the heat loss of the black hole due to the Hawking radiation 
(thus negative), and dipS is the entropy production due to the internal 
process and can be written as follows from Eq. 9 

dipS =
dipQ

T
−

∑

j
SjdNr,j + dipSconfig Eq. 76  

where dNr,j is the moles of component j converted into energy repre
sented by the heat generation dipQ inside the black hole which may be 
approximated as dipQ = c2∑

jdNr,j = −c2dM with dM being the mass 
reduction of the black hole (thus negative), and dipSconfig is the change of 
the configurations inside the black hole. Considering the black hole in a 
relatively steady state with dipSconfig ≈ 0 and c2 > TSj, one has TdipS ≈ −

c2dM > 0, in accordance with the second law of thermodynamics. The 
entropy change of the black hole with Hawking radiation and the 
reduction of black hole mass can thus be approximated as 

TdS ≈ dQH − c2dM Eq. 77  

If the entropy of a black hole remains approximately constant when the 
heat released by the Hawking radiation is balanced by the mass to en
ergy conversion inside the black hole, i.e., 

dQH = c2dM Eq. 78 

The mass of the black hole thus continuously decreases due to the 
Hawking radiation, i.e., dQH < 0 and dM < 0. 

Concerning a gedanken experiment on a box, Wheeler’s cup of tea 
[166], or other items falling into a black hole, it may be easier to 
consider the box and the black hole as one system, and the falling pro
cess is thus an internal process of the system and can be treated as an 
internal flux as discussed in Section 6.3 with the gravitational force 
being the driving force. The reaction after the item falls into the black 
hole can be either combined with the falling process as one internal 
process or considered as another internal process as they are indepen
dent of each other. At some stage inside the black hole, the mass of the 
box will convert into energy as discussed above in relation to the 
Hawking radiation. 

7.4. On deterministic vs probabilistic models 

Deterministic and probabilistic (or stochastic) models are usually 
considered as opposite to each other such as quantum mechanics vs 
Newtonian mechanics. In statistical mechanics represented by either Eq. 
(30) to Eq. (33) for pure quantum configurations or Eq. (64) to Eq. (67) 
for non-pure quantum configurations, the appearance of each individual 
configuration in the system is only a probability, indicating that the 
measurements would be very sporadic if conducted at the temporal and 
spatial resolutions that the system experiences various configurations 
which is dictated by the barriers between the configurations such as 
those between the ferroelectric configurations of PbTiO3 without a 
domain wall or with 90 or 180◦ domain walls, respectively [143]. When 
the experimental resolutions are finer than those of system switching, 
one observes ferroelectric behaviors with a tetragonal structure and 
macroscopic polarization. When it is the opposite, one observes para
electric behaviors with a cubic structure and without macroscopic po
larization. This is similar to the bird cage thaumatrope where one 
observes bird and cage separately with a slow spin speed and 
bird-in-cage for a high spin speed [246]. It is thus self-evident that the 
behaviors of individual configurations at its own scale is stochastic, 
while their collective behaviors at larger scale are deterministic, which 
is captured by statistical mechanics discussed in the present paper, 
particularly the zentropy theory that nests all the way down to the scale 
of electrons in quantum mechanics with the Heisenberg’s uncertainty 
principle. 

In discussing the passivity of metals as the key to our metals-based 
civilization, Macdonald [190] articulated that the formation of a thin 
reaction product film on the metal surface is deterministic, and there are 
physical models can account for most, if not all, experimental observa
tions and provide a robust basis for predicting the occurrence of 
passivity breakdown and the evolution of localized corrosion damage in 
a wide range of systems. It was further pointed out that the transition of 
a specific metastable event to a stable event, and hence the nucleation of 
a stable pit, is a rare probabilistic event, thus stochastic, determined by 
the kinetics of repassivation that is dependent on the chemical compo
sition of the environment, the nature of the breakdown sites, and on the 
electrochemical properties of the system. It was also discussed that a 
stochastic process incorporating short-term memory effects does indeed 
yield the experimentally observed near-normal distributions in a critical 
breakdown voltage in agreement with those derived deterministically. 

In discussing the computable universes, Schmidhuber [191–193] 
mentioned that although macroscopic properties of a system can often 
be predicted by physical laws, microscopic properties are subject to 
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fluctuations, representing additional information absent in the macro
scopic physical laws. It was further pointed out that true randomness in 
quantum mechanics means that there is no existing short algorithm that 
can compute the precise collapse of the wave function which could be 
due to the true randomness or our fundamental limited understanding of 
the universe. A profound question is whether there exists a very short 
program that can calculate the entire history and future of any systems 
and yield not only the known physical laws but also every single 
seemingly random elementary event in the systems. For efficiency and 
practicality, truncating the gradient through the long short-term mem
ory (LSTM) approach may be the way to go by enforcing constant error 
flow through constant error carousels within special units [194]. 

The present paper shows the statistical nature of entropy from the 
quantum scale in terms of electrons and phonons to the scale of black 
holes. Yet the second law of thermodynamics is deterministic in 
dictating the positive entropy production of any internal processes, 
while the entropy of a system can either increase or decrease depending 
on the interaction between the system and its surroundings. For 
example, a system under internal statistical equilibrium has all its 
macroscopic properties well-defined, while the properties of individual 
atoms inside the system are truly statistical due to Brownian motion 
which is also governed by the second law of thermodynamics. Never
theless, one may ask what if the system includes the whole universe or 
all universes [191–193]. Unfortunately, this question could not be 
answered because there would be no surroundings of the system, thus no 
observers. 

This probably reflects the foundational value of the nested formula of 
the zentropy theory, i.e., coarse graining at the scales below observation 
and truncating in terms of the current limits of our knowledge of physics 
and the infinite number of possible configurations. Our current knowl
edge of quantum systems is limited by quantum mechanics which is 
statistical in nature and can only predict the probabilities of various 
possible electron distributions. However, by coarse graining of all 
electrons, DFT prescribes that there is one unique electron density dis
tribution for the ground state of a given system at zero K, which further 
determines all observables of the system at scales higher than electrons. 
This coarse graining process results in a deterministic outcome from 
probabilistic lower-level information. By varying temperature and 
pressure, probabilities of metastable non-ground-state configurations 
become non-zero, and their statistical mixture with the ground-state 
configuration results in measurable deterministic outcomes though 
with certain uncertainty due to fluctuations of individual configurations, 
which is Eq. (73) proposed by Bekenstein [165]. In some systems, it can 
produce one or more critical points with singularity, and when such a 
critical point is close to zero K, one has a quantum critical point. In 
addition to pressure, singularity can be induced by any external vari
ables shown in the combined law of thermodynamics (Eq. (7)). 
Considering the similarity of Eq. (64) and Eq. (73), it seems plausible 
that the singularity of black holes may also be predictable by the nested 
formula of the zentropy theory through the deterministic and probabi
listic integration. 

8. Perspectives on future of thermodynamic modeling 

In the CALPHAD method, the Gibbs energies of individual phases are 
modeled as a function of temperature, pressure, and composition which 
are controlled from the surroundings and dictate the ground-state 
configuration of the system, and additional internal variables that 
represent the non-ground-state configurations. The Gibbs energy builds 
from pure element to binary and ternary systems and extrapolates to 
multicomponent systems. In this special issue, Spencer presented over
views of its development [10], and Olson and Liu [195] discussed the 
computational materials design built on the CALPHAD method. In 
addition to the monograph by Kaufman and Bernstein [8], there are two 
books [196,197] dedicated to and other books [20,21,198] discussed 
the CALPHAD method. The applications of CALPHAD databases have 

been addressed in many other publications [10,199] including those by 
the present author [15,195]. 

The author’s perspectives on the future of thermodynamic modeling 
are discussed in this section in three areas: the foundational lattice 
stability in the CALPHAD modeling, the highly accurate free energy data 
of individual phases and their efficient generation to circumvent the lack 
of phase equilibrium data for new materials, and the development of 
new tools for more automated procedures and new models to include 
contributions from external electric and magnetic fields and internal 
variables such as defects. 

8.1. Lattice stability 

As mentioned in the introduction, the digitization of thermody
namics of multicomponent multiphase materials has been accomplished 
by the CALPHAD method which models the free energy of each indi
vidual phase as a function of external and internal variables [8,15, 
195–197]. As a phase can be stable, metastable, or unstable under given 
external conditions, the CALPHAD method effectively treats the phase 
fraction, i.e., 100% for an individual phase, as an internal variable in 
addition to other internal variables in non-ground-state configurations 
such as short- and long-range ordering of atomic species and sponta
neous magnetic and electrical polarizations. One key issue identified by 
Kaufman was the modeling of a solution phase of two elements with 
different stable structures under ambient conditions, such as the bcc 
solid solution phase of Fe–Ni where the free energy of bcc-Ni must be 
defined [7,200]. The free energy difference between the stable and 
nonstable crystal structures of a pure element was subsequently termed 
as the “lattice stability” [201–203] and enabled the free energy 
modeling of individual phases across the full composition space of 
multicomponent materials [8]. 

The pivotal role of the lattice stability is its inter-dependence with 
the interaction parameters in a solution phase. Consequently, the value 
of a lattice stability must be the same for all binary systems using this 
lattice stability, and a change of its value results in the need to revise all 
those binary systems and ternary and higher-order systems built on 
those binary systems. The currently used lattice stability of pure ele
ments, commonly referred as SGTE91 204, was compiled more than 30 
years ago and has enabled the development of many commercial data
bases for multicomponent and multiphase materials [114,115,205] and 
their successful applications to computational materials design [10,206, 
207], which along with the success of the Human Genome Project [208], 
prompted the author to coin the term “materials genome”® denoting the 
individual phases as the building blocks of materials [209]. 

It was inevitable that the definition of lattice stability and its eval
uation were challenging and heavily debated from the beginning [44, 
210] because of their conceptual importance in paradigm change for 
thermodynamic modeling and at the same time many of those nonstable 
structures being unstable. The limit of stability was discussed in Section 
6.4 above. The entropy and thus free energies of unstable states could 
not be directly predicted by DFT-based calculations through Eq. (37) 
and Eq. (39) due to imaginary vibrational frequencies. While various 
theoretical approaches have been discussed in the literature [45–52], 
they all have individual strengths and weaknesses through various de
grees of compromise between practical usefulness and physical sound
ness. Common to most approaches is on the extrapolation from stable 
regions to unstable regions in terms of independent variables such as 
composition, pressure, temperature, or lattice distortion. 

van de Walle [49,50] showed that the energies at the limit of stability 
of several pure elements from DFT-based calculations agree with those 
in SGTE91. As noted by Grimvall [211], a binary solution becomes un
stable before reaching the unstable pure element. It is intuitive to think 
that the extrapolation used in developing the lattice stability in SGTE91 
was able to sense the limit of stability, thus the agreement between the 
results by van de Walle [49,50] and SGTE91. However, it is not fully 
satisfactory because if the pure element or the solution is quenched from 

Z.-K. Liu                                                                                                                                                                                                                                          



Calphad 82 (2023) 102580

17

a stable state to this unstable state, one would like to have the free en
ergy of the true unstable state at various compositions in order to un
derstand or simulate the transition from the unstable state to a stable 
state, including the spinodal decomposition in many binary and multi
component systems. It is noted that Kadkhodaei, Hong, and van de Walle 
[212] considered the occurrence of hopping between local 
low-symmetry distortions for a high-symmetry time-averaged structure 
at high temperature. To compute the free energy in such phases, they 
explored the system’s potential energy surface by discrete sampling of 
local minima through a lattice gas Monte Carlo approach and by a 
continuous sampling by means of a lattice dynamics approach in the 
vicinity of each local minimum. The bcc Ti was used as an example to 
illustrate the approach, which was further extended to study diffusion 
properties in bcc Ti and other elements [213,214]. This approach is 
similar to the zentropy theory in considering a phase as a mixture of 
local minima or configurations, but requires the information on the 
existence of such a phase at high temperature. At 0 K, local minima are 
the ground-state or non-ground-state configurations, while at high 
temperatures each local minimum has contributions from all configu
rations which reaches the extreme at the critical point between stable 
and unstable states of the high-symmetry time-averaged macroscopi
cally homogeneous structure as shown in Ce and Fe3Pt [105]. 

On the other hand, Yang et al. [51] discussed the Cr lattice stability 
derived by the CALPHAD and ab initio approaches and concluded that 
the ab initio lattice stability of fcc-Cr at zero K can be a viable approach 
as demonstrated through the modeling of the Fe–Cr and Ni–Cr binary 
systems, though the free energy of fcc-Cr at finite temperature was not 
discussed. Since the zentropy theory can predict the free energies of 
unstable states as a function of internal variables based on the statistical 
competition among stable ground-state and metastable 
non-ground-state configurations, it is reasonable to expect that the 
zentropy theory may have the potential to address this challenge. 
Consequently, those configurations may be considered as the building 
blocks instead of individual phases [209]. A recent attempt was made to 
predict the free energies of fcc, bcc, and hcp Fe including magnetic 
properties [247]. The subsequent challenge is how to obtain all the 
configurations and potentially the astronomic number of configurations 
as discussed in the next section. 

8.2. Input data for thermodynamic modeling from zentropy and machine 
learning models 

In principles, thermodynamic modeling could be performed with 
only thermochemical data as they are the derivatives of free energy. 
However, most of thermochemical data are derived from measurements 
of heat with large uncertainty, and Gibbs energies of individual phases 
thus evaluated cannot give accurate transition conditions between 
phases. Consequently, the Gibbs energy model parameters of all phases 
need to be refined simultaneously using experimentally measured phase 
transition data. This refinement step not only requires additional 
experimental input, but also make the model parameters of all phases 
dependent on each other though they may be related in principle to 
some degree as implicated by the zentropy theory discussed above. 

DFT-based calculations have provided useful input data for CAL
PAHD modeling [12]. However, as discussed in the present paper, each 
calculation is for one given configuration and does not represent the 
properties of the phase. While the zentropy theory has demonstrated its 
capability to accurately predict magnetic and ferroelectric transitions 
for stoichiometric phases, its applicability to solution phases remains to 
be tested in terms of both efficiency and accuracy. The author’s group is 
actively developing tools and data infrastructure for the zentropy 
approach and its application to solution phases. 

Since DFT-based calculations are both computing resource intensive 
and complex for free energies, the author’s group has developed the 
open source DFT Tool Kits (DFTTK) [38,39] that streamlines the cal
culations of entropy and post processes to obtain free energy. In last 

several years, machine learning (ML) models based on deep neural 
networks (DNN) have been vastly implemented into the materials sci
ence community. The author’s group has developed such a DNN ML 
model, named SIPFENN (Structure-Informed Prediction of Formation 
Energy), for predicting formation energy at zero K [215,216], which can 
be installed through PyPI by pip install pysipfenn. The author’s group is 
actively developing DNN ML models for free energy of given configu
rations, providing data for the zentropy approach. Other ML models are 
being developed by the community such as deep-learning models using 
the atomistic line-graph neural network (ALIGNN) [217,218]. It is 
anticipated that more and more ML models will be developed in the 
community to predict free energy as a function of all possible internal 
and external variables. 

Another highly desired set of data for CALPHAD modeling is the 
properties of the liquid phase. In principle, the properties of the liquid 
phase can be predicted by AIMD [121–123] including heat capacity 
[219], diffusivity [220], and enthalpy of mixing [221]. More recently, 
Hong and van de Walle [222] presented an open-source code to predict 
the melting temperature and enthalpy of fusion employing 
Born–Oppenheimer molecular dynamics techniques under the iso
baric–isothermal (NPT) ensemble and their small-size liquid-solid 
coexistence method. This has further enabled them to develop ML 
models for efficient prediction of properties of liquid of a broad range of 
materials [223,224]. These approaches have the potential to greatly 
enhance the quality of multicomponent CALPHAD databases, particu
larly for discovery and design of new materials for high temperature 
applications. 

One key factor in the zentropy theory is the number of configurations 
in materials systems. The Human Genome Project reports approximately 
22,300 protein-coding genes with about 3.1 billion base pairs [208]. 
Their ratio is in the order of 105, which is approximately equivalent to 
the number of configurations of a supercell with 11 lattice sites in a 
ternary phase, i.e., 311 ≈ 1.8 • 105, which could be lowered as some of 
configuration are equivalent due to the symmetry that can be checked, 
for example using the ATAT code [225]. These configurations cover 
three pure elements, 30 compositions in three binary systems, and 45 
ternary compositions, total 78 compositions. In addition to DFT-based 
prediction for the free energy of all those configuration, the cluster 
expansion implemented in the ATAT code [225] poses as an efficient 
approach to predict the formation energy at zero K of various atomic 
configurations for a given lattice structure and can be extended to the 
prediction of their free energies [132]. Considering the 78 elements in 
the SGTE pure element database [204], the number of ternary systems is 
C(78, 3) = 76, 076. Assuming one third of the ternary systems being 
practically useful and 10 phases per ternary system, the total number of 
configurations is roughly estimated to be in the order of tens billions. 
The author hopes that the prediction of their free energy as a function of 
temperature, pressure/stress or strain, and electric/magnetic fields may 
be available in not distant future with new physics-informed NN (PINN) 
ML models [226]. It is further noted that recent approaches such as 
supercell random approximates (SCRAPs) [227] and small set of ordered 
structures (SSOS) [228] may help to reduce the supercell sizes and the 
number of supercells needed. 

An potential future application of the zentropy theory and the theory 
of cross phenomena [16] is to predict kinetic coefficients for transition 
between two states. As shown for Ce [134] and Fe3Pt [135] with 9 and 
512 configurations, respectively, a critical point in the temper
ature/pressure and temperature/volume phase diagrams was predicted 
by the zentropy theory. Above the critical point, there is only one 
minimum on the Helmholtz energy as a function of volume, and the 
transition is 2nd order. While below the critical point, there are two 
minima on the Helmholtz energy as a function of volume, and the 
transition is 1st order between the two states of different volumes with 
different mixtures of configurations. The common tangent of the two 
minima gives the pressure of the two-state equilibrium, and their 

Z.-K. Liu                                                                                                                                                                                                                                          



Calphad 82 (2023) 102580

18

respective volumes represent the local equilibrium condition at their 
interface during transition with the maximum on the Helmholtz energy 
denoting the kinetic barrier for the transition through either spinodal 
transformation for an initially unstable state between the two inflection 
points on the Helmholtz energy curve or nucleation and growth for an 
initially metastable state outside the two inflection points. 

For diffusion processes, the author’s team used the DFT-based 
method to predict the tracer diffusivity by manually moving the atom 
along the diffusion pathway [110]. However, when the atom crosses the 
inflection point on the free energy curve, and the system becomes un
stable, the entropy could not be calculated due to imaginary frequencies 
of phonon vibration, and the transition state theory had to be used by 
imposing a constraint preventing from oscillating along the direction (in 
momentum space) parallel to the diffusion direction to effectively 
remove unstable vibrational modes. It would be an interesting research 
topic to see how the zentropy theory could be applied to this case with 
the position of the diffusion atom along the diffusion direction as an 
internal variable. 

8.3. Models and tools for thermodynamic modeling 

There are well developed commercial tools for CALPHAD modeling 
and a wide range of large CALPHAD databases for education, research, 
and industrial applications [114,115,205]. For the continuous progress 
of the field, there is a need for new tools so new thermodynamic and 
other property models can be developed, tested, and compared. 
Furthermore, the interdependence of model parameters in different 
phases mentioned above makes the improvement of modeling difficulty 
because change of one parameter necessitates the change of many other 
parameters [13,14]. 

The author’s group started to develop an automated CALPHAD 
modeling tool, Extensible Self-optimizing Phase Equilibria Infrastruc
ture (ESPEI), a while ago with limited success due to the lack of flexible 
computational engine [229]. Recently, the group developed an 
open-source software package, PyCalphad, for thermodynamic calcula
tions [230,231] and used it to develop a complete new ESPEI code [232, 
233]. Furthermore, the modified quasichemical model in quadruplet 
approximation (MQMQA) has been implemented in the software pack
ages [237] with a number of other models being programed including 
the universal quasichemical (UNIQUC) [238] model and its improved 
variants [239,240] and Peng-Robinson equation [241] widely used in 
the oil and gas community to describe critical phenomena between gas 
and liquid [242–244]. PyCalphad and ESPEI are open-source as part of 
an open source software ecosystem [236], available for scientists to 
implement and test their own models, and capable of uncertainty 
quantification [234] and sensitivity analysis [235]. 

9. Summary 

Thermodynamics is at the core of science and nature, and thermo
dynamic modeling based on the CALPHAD method has enabled the 
community to quantitatively go beyond the equilibrium applications of 
thermodynamics, understand and improve existing materials, and 
design new materials. The present overview paper further discussed the 
zentropy theory and the theory of cross phenomena for better prediction 
of data for CALPHAD modeling. Based on the integration of quantum 
mechanics and statistical mechanics, the zentropy theory provides new 
capabilities to accurately predict free energy of individual phases from 
the DFT-based calculations starting from the ground-state and non- 
ground-state configurations. In keeping the entropy production due to 
internal processes in the combined law of thermodynamics, the theory of 
cross phenomena provides fundamental understanding of interactions of 

multi-variables and mathematical approaches to predict the cross phe
nomena coefficients. The author’s perspectives on the potential appli
cations of the zentropy theory and future directions of CALPHAD 
modeling are also presented. While the future is deterministic, the 
pathways can be very stochastic and uncertain and can involve 
singularities. 
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