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ABSTRACT

Thermodynamics is a science concerning the state of a system, whether it is stable, metastable, or unstable, when interacting with its surroundings. The combined law
of thermodynamics derived by Gibbs about 150 years ago laid the foundation of thermodynamics. In Gibbs combined law, the entropy production due to internal
processes was not included, and the 2" Jaw was thus practically removed from the Gibbs combined law, so it is only applicable to systems under equilibrium, thus
commonly termed as equilibrium or Gibbs thermodynamics. Gibbs further derived the classical statistical thermodynamics in terms of the probability of configu-
rations in a system in the later 1800’s and early 1900’s. With the quantum mechanics (QM) developed in 1920’s, the QM-based statistical thermodynamics was
established and connected to classical statistical thermodynamics at the classical limit as shown by Landau in the 1940’s. In 1960’s the development of density
functional theory (DFT) by Kohn and co-workers enabled the QM prediction of properties of the ground state of a system. On the other hand, the entropy production
due to internal processes in non-equilibrium systems was studied separately by Onsager in 1930’s and Prigogine and co-workers in the 1950’s. In 1960’s to 1970’s the
digitization of thermodynamics was developed by Kaufman in the framework of the CALculation of PHAse Diagrams (CALPHAD) modeling of individual phases with
internal degrees of freedom. CALPHAD modeling of thermodynamics and atomic transport properties has enabled computational design of complex materials in the
last 50 years. Our recently termed zentropy theory integrates DFT and statistical mechanics through the replacement of the internal energy of each individual
configuration by its DFT-predicted free energy. The zentropy theory is capable of accurately predicting the free energy of individual phases, transition temperatures
and properties of magnetic and ferroelectric materials with free energies of individual configurations solely from DFT-based calculations and without fitting pa-
rameters, and is being tested for other phenomena including superconductivity, quantum criticality, and black holes. Those predictions include the singularity at
critical points with divergence of physical properties, negative thermal expansion, and the strongly correlated physics. Those individual configurations may thus be
considered as the genomic building blocks of individual phases in the spirit of the materials genome®. This has the potential to shift the paradigm of CALPHAD
modeling from being heavily dependent on experimental inputs to becoming fully predictive with inputs solely from DFT-based calculations and machine learning
models built on those calculations and existing experimental data through newly developed and future open-source tools. Furthermore, through the combined law of
thermodynamics including the internal entropy production, it is shown that the kinetic coefficient matrix of independent internal processes is diagonal with respect to
the conjugate potentials in the combined law, and the cross phenomena that the phenomenological Onsager flux and reciprocal relationships are due to the
dependence of the conjugate potential of a molar quantity on nonconjugate molar quantities and other potentials, which can be predicted by the zentropy theory and
CALPHAD modeling.

1. Introduction

This paper is based on the author’s presentation given at the CAL-
PHAD Global 2021 virtual conference on the perspectives of CALPHAD
modeling in next 50 years in view of its success in last 50 years. The
future is hard to predict due to its intrinsic uncertainty in terms of
probability of many possible events. Nevertheless, it is important to have
perspectives on how the future may look like in both short- and long-
terms based on past knowledge and anticipated trajectories. In 2020,
in celebrating the 50 anniversary of “The Bridge” published by Na-
tional Academy of Engineering, Sinnott and Liu (the present author)
attempted such an effort on “Predicted Advances in the Design of New
Materials” [1]. With the prehistory and protohistory of humanity
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divided into three ages in terms of materials of stone, bronze and iron
followed by the three industry revolutions in terms of steam power,
electricity, and computerization, we are now entering the 4th industry
revolution, i.e., Industry 4.0. Industry 4.0 is commonly thought of as the
integration of cyber-physical systems, where the physical, digital, and
biological worlds are seamlessly unified to form a system with many
autonomous subsystems enabled by advanced materials. In other words,
digitization of materials and their manufacturing into functional devices
in terms of Materials 4.0 and Manufacturing 4.0 [2]. Such digitization
will demand increasingly more efficient development and deployment
of materials with emergent properties to meet the performance re-
quirements under extreme conditions. Sinnott and Liu [1] concluded
that when this integrated system is fully implemented, the residuals
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from the design, manufacturing, service, and recycling of materials can
be drastically reduced, thus lessening the impact of materials usage on
the environment.

In the last century, digitization of materials knowledge progressed
significantly, including the digitization of the Schrodinger equation in
quantum mechanics [3,4] by the density functional theory (DFT) [5,6],
resulting in massive digital databases of material properties predicted
using high-performance computers, and thermodynamics by the
CALculation of PHAse Diagrams (CALPHAD) method [7-10], resulting
in CALPHAD databases widely used in academia and industry for edu-
cation and design of technologically important materials. Those data
together with models and mechanistic correlations are enabling the
development of artificial intelligence (AI) to connect the data through
machine learning (ML) algorithms and deep neural networks (DNNs)
[11]. While DFT-based calculations have provided important input data
for CALPHAD modeling [12], it is currently still necessary to refine the
CALPHAD model parameters using experimental data in order to accu-
rately reproduce experimental observations, particularly phase transi-
tions [13,14]. The need of such refinements significantly hinders the
computational discovery and design of materials. To fully understand
the differences between DFT-based calculations and CALPHAD
modeling, it is necessary to dive deep into their fundamentals and build
connections so that in the future the CALPHAD model parameters can be
evaluated solely from the DFT-based calculations with experiments as
the validation of predictions.

Thermodynamics is a science concerning the state of a system,
whether it is stable, metastable, or unstable, when interacting with its
surroundings. The interactions can involve exchanges of any combina-
tions of heat, work, and mass between the system and the surroundings,
defined by the boundary conditions. The typical work includes contri-
butions from the external mechanic, electric and magnetic fields.
Thermodynamics is commonly divided into four branches, i.e., classical
Gibbs thermodynamics, statistical thermodynamics, quantum thermo-
dynamics, and irreversible thermodynamics. In a recent overview article
[15], the author discussed fundamental thermodynamics, thermody-
namic modeling, and the applications of computational thermody-
namics. In another recent perspective article [16], the author focused on
irreversible thermodynamics as part of a more comprehensive frame-
work of thermodynamics.

In the present paper, the fundamentals of thermodynamics will be
reviewed through the derivation of the combined law of thermody-
namics with the entropy production due to internal processes and thus
without the constraint of equilibrium. The four branches of thermody-
namics will then be discussed individually along with their contribu-
tions to the combined law of thermodynamics and their integration into
a holistic view of thermodynamics. At the end, the author’s perspectives
on the CALPHAD modeling in the next 50 years will be discussed.

2. Review of the fundamentals of thermodynamics

The fundamentals of thermodynamics are centered on the first and
second laws of thermodynamics and their combination into the com-
bined law of thermodynamics. Since the first and second laws of ther-
modynamics are represented by an equality and an inequality,
respectively, they had remained separately until Gibbs combined them
to create the combined law of thermodynamics [17-19]. The first law of
thermodynamics describes the interactions between the system and its
surroundings and stipulates that the exchange of energy between the
system and its surroundings is balanced by the internal energy change of
the system. While the second law of thermodynamics governs the in-
ternal processes inside the system under those interactions and states
that any spontaneous internal processes are irreversible and must pro-
duce entropy. In the 1870’s Gibbs [17] combined them together to
create the combined law of thermodynamics and called it the funda-
mental thermodynamic equation [19].

However, Gibbs considered only the case when the inequality is
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replaced by an equality, i.e., when the second law of thermodynamics
vanishes for a system and was thus effectively removed from the Gibbs
combined law of thermodynamics. Furthermore, Gibbs combined law of
thermodynamics was first derived for a closed system without mass
exchange with the surroundings, which was added later into the com-
bined law of thermodynamics by introducing the chemical potential
abruptly for each independent component of the system. This has caused
considerable confusion in the literature on the concept of the chemical
potential.

In this section of the present paper, these two issues are addressed in
deriving the combined law of thermodynamics of an open system with
internal processes, and more detailed discussions can be found in these
books [20,21]. It is noted that Gibbs combined law of thermodynamics
with the internal energy of the system as a function of entropy and
volume inspired Maxwell to construct manually a three-dimensional
model to represent the internal energy surface as a function of entropy
and volume with one copy sent to Gibbs [19] and one kept in Cavendish
Laboratory at the University of Cambridge as shown in Fig. 1.

2.1. First law of thermodynamics

To properly introduce chemical potential in the combined law of
thermodynamics, let us consider a system that is free to exchange heat,
work, and mass with the surrounding and write the first law of ther-
modynamics as follows

dU=dQ+dW + ) UdN; Eq. 1
where dU is the internal energy change of the system, dQ, dW, and dN;
are the exchanges of heat, work, and moles of component i from the
surroundings to the system, with the work including mechanical, elec-
tric, and magnetic work, c is the number of independent components,
and U; is the partial internal energy of component i defined as follows,

aUu
U,‘ == < >
oN, i/ dQ=0dW=0.N;,;

It is noted that the first law of thermodynamics does not prescribe
whether the system is in internal equilibrium or not, i.e., independent of
what happens inside the system. Consequently, the value of U; in the
system may be different from that in the surroundings, while the ex-
changes of heat and work are independent of the state of the system. As
shown below, the inclusion of mass exchange in the first law of ther-
modynamics enables the nature introduction of chemical potential.

Eq. 2

2.2. Second law of thermodynamics

Gibbs [17] followed Clausius’ definition of entropy exchange (d,S)
between an equilibrium system and its surrounding with only reversible
heat exchange as follows

dQ

dQS:—

Eq.
T a3

For a nonequilibrium system, the second law of thermodynamics stip-
ulates that an irreversible internal process (ip) inside the system gen-
erates positive entropy production, d;,S, as follows

dpS >0 Eq. 4
where the equality represents that there are no internal processes in the
system, indicating that the system is either at equilibrium or under a
freezing-in condition as discussed by Hillert [20] and to be further dis-
cussed below.

For an open system with mass exchange between the system and its
surroundings, each mass exchange carries entropy exchange at the same
time. Consequently, the total entropy change of the system can be
written as follows [15,16,20,21].
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Fig. 1. Photo of the three-dimensional model in Cavendish Laboratory at the University of Cambridge made by Maxwell to represent the internal energy surface as a

function of entropy and volume.

c dQ c
dS=doS+ | SiN;+dyS ==+ 7 SdN; +d;S Eq. 5
where S; is the partial entropy of component i defined as
)
S = (—S) Eq. 6
oN, i/ dQ=0.d;pS=0.N;;

The work exchange between the system and its surroundings does
not enter Eq. (5) directly, but indirectly affects the entropy change of the
system by introducing internal processes. It is important to note that the
first two terms in Eq. (5) concern the exchanges between the system and
its surroundings, while the third term does not, so that the total entropy
change contains the contributions from both internal processes and ex-
changes between the system and its surroundings. Therefore, dS can be
either positive or negative, which is not in contradiction with the second
law of thermodynamics as the second law of thermodynamics concerns
only the entropy production of an independent internal process repre-
sented by Eq. (4) or the last term in Eq. (5).

2.3. Combined law of thermodynamics

Consequently, the combined law of thermodynamics form with in-
ternal processes can be obtained by combining Eq. (1) and Eq. (5) as
follows [15,16,20,21].

dU=TdS +dW +Y . wdN; —Td,S = > Y'dX" — Td,,$ Eq. 7

ou

— Eq. 8
oN, i ) d;pS=0,X*4N;

ﬂi=U,‘—TSi=(

where y; is the chemical potential of component i, n is the total number
of independent contributions to the internal energy of the system
controlled from the surroundings, i.e., the number of external variables,
and Y? and X“ represent the pairs of conjugate variables with Y for
potentials, such as temperature, stress or pressure, electrical and mag-
netic fields, and chemical potential, and X? for molar quantities, such as
entropy, strain or volume, electrical and magnetic displacements, and
moles of components. The concept of the chemical potential is thus
naturally introduced by Eq. (8), containing the contributions from both
partial internal energy and partial entropy of the component. The use of
superscript in Y* and X is to indicate that they are related to the ex-
change between the system and its surroundings, thus external vari-
ables, though entropy contains both internal and external contributions
as shown by Eq. (5). The constraint of constant entropy production in
Eq. (8) with heat exchange between the system and its surroundings
signifies its difference from Eq. (2) which is for an adiabatic system even
though both are for the change of internal energy with respect to the
change of the amount of the component i.

In a system, there can be many independent internal processes. Each
of them must result in a positive entropy production, which can be
divided into four parts: (1) heat generation (d;Q), (2) consumption of
some components as reactants (dN;;), (3) production of some compo-
nents as products (dN,x), and (4) reorganization of its configurations
(dpS°oe), as follows [16,22],
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dl',Q confi; D
dyS==1% ~ zj:S/dN, i+ zk:sde,)_k +dy S = de Eq. 9

where S; and Sy are the partial entropies of reactant j and product k of the
internal process. The last part of Eq. (9) is based on the linear propor-
tionality approximation with D and d¢ being the driving force and
progress of the internal process that is represented by a molar quantity
or a combination of molar quantities involved in the internal process. In
reality, internal processes do not obey linear proportionality, but in
principle, one can always select a small enough d¢ so the higher-order
terms are less important and then perform integrations along the path-
ways to obtain overall entropy production. On the other hand, to study
the stability of an internal process or a system such as the limit of
instability and critical points, one would need to include higher order
terms beyond linear proportionality. The second law of thermodynamics
prescribes that any spontaneous process with dé > 0 must have a posi-
tive driving force, i.e., D > 0, to result in a positive entropy production.
The internal energy is thus a function of all X? and internal variables of &,
i.e., U(X%,¢&), so are all the potentials, i.e., Y¢(X?, £) where X® denotes all
molar quantities including X“. It is noted that this is not in contradiction
to the early statement that the first law of thermodynamics does not
concern the state of the systems, i.e., £, and the dependence of internal
energy on ¢ is introduced due to the dependence of entropy on ¢ for a
non-equilibrium system.

For equilibrium systems, Eq. (5) and Eq. (7) are reduced to the
following equations

dQ .
s ===+ > SN Eq. 10

du=>y"" ydx* Eq. 11

The internal energy is thus a function of all X* only, i.e., U(X*), and
the internal variables of £ become dependent variables as functions of X*
obtained from the condition of Ddé = 0. It is noted that at equilibrium
with D = 0, the external variables determines all the internal variables,
i.e., £ becomes a dependent variable. For systems under a freezing-in
condition with d¢ = 0 and D > 0, ¢ is an independent variable.

3. Classical Gibbs thermodynamics
3.1. Combined law of thermodynamics for equilibrium systems

Gibbs [17,18] first considered closed equilibrium systems under
hydrostatic pressure (P), i.e., dN; = 0 and d;;S = 0, and Eq. (10) and Eq.
(11) are thus reduced to the following equations as shown in all
textbooks

dQ
== Eq. 12
das T q
dU=TdS — PdV Eq. 13

where the negative sign in front of pressure is because — PdV is the work
added to the system with P and V changing in opposite directions in a
stable system as discussed below. The internal energy is thus a function
of entropy and volume, i.e., U(S, V), which is the model that Maxwell
constructed as shown in Fig. 1.

For open systems, Gibbs directly added the chemical potential term
to Eq. (13) as follows

dU=TdS —PdV +Y . udN; Eq. 14

The internal energy is thus a function of entropy, volume, and moles
of each component, i.e., U(S, V,N;), which are all molar quantities and
termed as natural variables of U. By virtual internal processes of moving
infinitesimal amount of S, or V, or N; at various locations inside the
system, it can be shown that the equilibrium is reached when the driving
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force for each internal process is zero [21]. As the driving force is
denoted by the difference of the conjugate potential of the internal
process, every potential, i.e., T, P, and y;, which are the first partial
derivatives of U with respect to its natural variables, is homogeneous
everywhere in the system at equilibrium. The derivatives above and
throughout the paper are all partial derivatived and performed with
other natural variables kept constant unless specified otherwise. The
stability of the equilibrium is further dictated by the second derivatives
of U, i.e., the first derivative between conjugate potentials and molar
quantities, as follows

;U  FU  ore

= ==_>0

652 0(X”)2 .G

Eq. 15

While the internal processes with dé = dS and dé = dV can be inde-
pendently carried out, the internal process with df = dN; cannot be
performed independently because it will carry the changes of entropy
and volume simultaneously as follows

dS=S,dN; Eq. 16

dV =VdN; = a—VdN,-

Eq. 1
N a- 17

where §; is defined by Eq. (6), and V; is the partial volume of component
i. These will induce two additional internal processes in opposite di-
rections if the homogenous temperature and pressure are to be main-
tained in the system under equilibrium. This complication can be
simplified by defining the Gibbs energy and re-writing the combined law
of thermodynamics as follows

dG=d(U—TS+PV)= —SdT+VdP+y " udN; Eq. 18

Gibbs energy is thus with T, P and N; as its natural variables with two
being potentials, i.e., G(T,P,N;).

3.2. Gibbs-Duhem equation

From Eq. (14), it is easy to show the following equation for a ho-
mogeneous equilibrium system

U=TS—PV+» " wNi Eq. 19
By moving TS to the left side of Eq. (19), one defines the Helmholtz
energy with the corresponding combined law of thermodynamics shown
below

dF =d(U+PV)= —SdT —PdV + . pdN; Eq. 20
Helmholtz energy is thus with T, V and N; as its natural variables with
one being potential, i.e., F(T, V,N;). By moving TS and —PV to the left
side, one obtains the Gibbs energy as shown by Eq. (18). It is noted that
“free” is not used here for Gibbs energy and Helmholtz energy as rec-
ommended by International Union of Pure and Applied Chemistry
(IUPAC) [23,24], while in the present work, the free energy is used to
denote all energies derived from the internal energy.

If all terms in the right-hand side of Eq. (19) are moved from right to
left, one obtains

o=U-— (TS —PV+ Z:]MN,) =0

The differentiation of Eq. (21) together with Eq. (14) gives the Gibbs-
Duhem equation

Eq. 21

dd= —SdT + VAP~ Nidu; =0 Eq. 22

The natural variables of @ are thus all potentials, i.e., ®(T,P,y;) = 0. Itis
tempting to call this free energy as the Duhem energy even though it is
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zero, which can be written in a more general form as

dd=d <U > Y"dX”) ==Y X'dy'=0

It also needs to emphasize that the Gibbs-Duhem equation is only
applicable to a homogeneous equilibrium system or a portion of the
equilibrium system, such as a homogeneous phase discussed in the next
section.

Eq. 23

3.3. Gibbs phase rule

The significance of Eq. (22) or Eq. (23) is that the potentials in a
homogeneous equilibrium system are not independent of each other. In
a system with n pairs of conjugate variables, i.e., X* and Y?, there are n
independent variables. They can be all molar quantities such as the in-
ternal energy shown by Eq. (11) or some combinations of potentials and
molar quantities such as Gibbs energy (Eq. (18)) with two potentials and
Helmbholtz energy (Eq. (20)) with one potential. If n independent vari-
ables are all potentials, one obtains the Gibbs-Duhem equation (Eq. 23)
or Duhem energy with the value being zero. This indicates that at least
one independent variable of an equilibrium system must be a molar
quantity.

For a heterogeneous system with two or more homogeneous phases
in equilibrium with each other, Gibbs [17,18] discussed the geometry of
phase relations with the axes being molar quantities. Since phase equi-
libria are defined by homogeneous potentials in the system, it is easier to
understand phase relations if potentials are used as axis variables. Let us
consider a homogeneous phase, say f, and apply the Gibbs-Duhem
equation to it as follows

do=—"" xldY,=0 Eq. 24
where the subscripts represent the properies of a phase inside the sys-
tem.

For a system with p phases co-existing in equilibrium, Eq. (24) needs
to be applied to each phase, resulting in p equations of Eq. (24), noting
that the molar quantities are different in individual phases. The number
of potentials that can be varied independently without changing the
number of phases in equilibrium is thus

v=n-—-p Eq. 25

The maximum number of phases that can co-exist in equilibrium
with v = 0 is then

Eq. 26

Pmax =n

It should be emphasized that in many textbooks, v is termed as de-
grees of freedom or independent variables of the system. This is inac-
curate or at least not rigorous because the number of independent
variables in the system is always n as defined by the combined law, while
v defines the number of independent potentials without changing the
number of phases in equilibrium. For a system with p = p,,.. = n thus
v =0, all n X? can still be changed independently within certain ranges
that will change the relative amounts of each phase but not the number
of phases co-existing in equilibrium.

3.4. Phase diagrams

As discussed above, every potential has the same value in all phases
co-existing in equilibrium, and phase diagrams with potentials as axes
are thus important. Eq. (24) depicts that each phase is represented by a
(n-1)-dimensional feature in the space of n potentials. A two-phase
equilibrium is thus the (n-2)-dimensional feature where two (n-1)-
dimensional features intersect each other. Following the Gibbs phase
rule, a (Dmax = n)-phase equilibrium is 0-dimension point where n (n-1)-
dimensional features intersect each other, commonly referred as
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invariant point because the values of all potentials are fixed. It is thus
evident that Gibbs phase rule can be directly applied to potential phase
diagrams.

To display more information about phases, it is useful to change one
or more potentials to their conjugate molar quantities. Since a molar
quantity has different values in different phases, the dimensionality of
each phase region discussed above increases by one when one potential
is replaced by its conjugated molar quantity until the dimension reaches
n. The phases in equilibrium are then connected by tie-lines with their
ends represent the values of their respective molar quantities. When all
axes of the phase diagram are converted to molar quantities, the
dimension of every phase region is the same and equals to the number of
axes, i.e., n, and any features with lower dimensionality are termed as
phase boundaries. The molar properties of individual phases are con-
nected through the lever rule as follows

0 _ P hxeh
X0 = Zﬁ:] X7 Eq. 27

where X9 and X? are the values of the over-all X, in the system and in the
p phase where the subscript is used for quantities of a phase inside the
system similar to Eq. (24), respectively, and f# the mole fraction of the
phase g with summation going over all phases in equilibrium in the
system.

One has to section a multidimensional phase diagram in order to
visualize it in two dimensions. Sectioning a potential diagram decreases
the total number of potentials and does not change the features of the
resulting phase diagram. The Gibbs phase rule thus becomes

vV=n-—p—n Eq. 28

Pmax =N — N Eq. 29
where n; denotes how many times the potential diagram is sectioned, i.
e., the number of potentials being fixed. However, sectioning a phase
diagram with molar quantities does not change py. and v and is thus
more complicated because tie lines are usually not in the resulting phase
diagram, which is discussed in detail by Hillert [20].

Commonly used phase diagrams are the T — P potential phase dia-
gram for one component systems, T — xg under constant P for binary
systems with xp being the mole fraction of component B, xg — X¢ section
under constant T and P for ternary systems with xz and x¢ being the
mole fractions of component B and C (termed as isothermal sections),
and T — x; section of ternary or multi-component systems under constant
P and compositions of other components (termed as isopleth). It is noted
that the lever rule, i.e., Eq. (27), cannot be directly used in an isopleth as
the tie-lines are typically not in the phase diagram. When tie lines
happen to be in the isopleth, the isopleth is often called pseudo-lower-
order phase diagram such as pseudo-binary or pseudo-ternary phase
diagrams as they behavior like binary or ternary systems.

4. Gibbs and quantum statistical thermodynamics

Statistical mechanics was introduced by Gibbs in 1901 [25] based on
the foundations established by Clausius, Boltzmann, and Maxwell. Gibbs
considered “a great number of independent systems (states) of the same
nature (of a system), but differing in the configurations and velocities
which they have at a given instant, and differing not merely infinitesi-
mally, but it may be so as to embrace every conceivable combination of
configuration and velocities” [25]. He thus broadened the early statis-
tical mechanics from the consideration of the particles of a system to
independent systems (configurations of a system). Gibbs systematically
discussed the fundamental equation of statistical mechanics in terms of
the principle of conservation of probability, applied it to the theory of
errors in the calculated state of a system and the integration of the dif-
ferential equations of motion, and studied the system under statistical
equilibrium with ensembles in which the logarithm of the probability of
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state is a linear function of the energy. A differential equation relating to
average values in the ensemble was found to be identical in form with
the fundamental differential equation of thermodynamics with the
average index of probability of state corresponding to the entropy with
change of sign and the modulus to temperature. By using the combined
law of thermodynamics in terms of the internal energy [19] and
differentiating the internal variables in the system and the external
variables from the surroundings, Gibbs [25] considered the internal
variable entropy due to the distribution of various microstates in the
system but not the entropy of each microstate itself. Gibbs was then able
to define the probability and the now-named partition function of each
configuration in the system.

In formulating statistical mechanics in the framework of quantum
mechanics, Landau and Lifshitz [26] considered a closed system in
complete statistical equilibrium by dividing it into a large number of
macroscopic subsystems. They emphasized that the entropy of a closed
system in complete statistical equilibrium can also be defined directly,
without dividing the system into subsystems by imagining that the
system considered is actually only a small part of a fictitious very large
system. Landau and Lifshitz [26] introduced the number of quantum
states corresponding to the energy interval equal in the order of
magnitude to the mean fluctuation of energy of the system and showed
the entropy of the system in terms of the tracer of each quantum state. By
correlating the number of quantum states with the particle states in the
limit of the classical theory, they obtained the entropy of a system as
follows

S=—ksy . prinp Eq. 30
where m is the number of configurations, the probability p* of config-
uration k was denoted by w, in their Egs. (7) and (10), and kg is added
here to be consistent with the current convention.

Landau and Lifshitz [26] thus obtained the Gibbs distribution and
presented the partition function of the system, Z, in relation to the
Helmholtz energy of the system, F, and the internal energy of each
quantum state, EX, in their Eqs. (31.1) to (31.4), which are re-written as
follows

m o m
F= —kgTInZ + ksT (Z:lp,‘ Inz*— Z’k":lpk In zk)
T DTS S Ba. 32
ZF 67% EF
=== =e Rl Eq. 33

It is important to emphasize that Landau and Lifshitz [26] used
quantum states in the above equations, while Gibbs did not do so as
quantum mechanics was not developed at that time. Let us consider a
hypothetical system with only one configuration, Eq. (32) thus becomes

F=Ft Eq. 34

Since F = EX — TS by definition, Eq. (34) gives S* = 0 at finite
temperature, indicating the configurations in Eq. (30) to Eq. (33) are all
pure quantum states with only one configuration each as envisioned by
Landau and Lifshitz [26]. For systems of practical interest, the number of
pure quantum states is very large, and their complete sampling is in
general intractable. The current available solution is their coarse
graining through DFT [5,6] as discussed below, resulting in a non-zero
entropy for each configuration at finite temperature and the necessity
to modify the formula of the partition function as discussed in Section 7
in terms of zentropy theory.

It is noted that the statistical equilibrium of a closed system is usually
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discussed in terms of thermal equilibrium between the system and a
thermal bath (surroundings). As pointed out recently by the author [16],
thermal fluctuation in a closed statistically equilibrated system is an
internal process and results in the heat or work exchange between the
system and its surroundings. The entropy production of thermal fluc-
tuation can be represented by Eq. (9) as follows

d;
d,S= 0
T

+d;p S > 0 Eq. 35

The thermal fluctuation either releases heat (d;,Q > 0) and makes the
system more ordered (dipSC""ﬁg < 0) or absorbs heat (dQ < 0) and
makes the system more disordered (d;,S®"¢ > 0) with the corresponding
amount of heat exchange (dQ = —d;,Q) between the system and its sur-
roundings to maintain d;,S = 0. For an isolated system without a ther-
mal bath, dQ = 0, the system reaches the internal statistical equilibrium
with the equality in Eq. (35), i.e., all internal processes are reversible
with the following relation between the heat production and the change
of internal configurations of each thermal fluctuation to give d;;S = 0,

dpQ= — Td;, 5" Eq. 36

One example of thermal fluctuation is the Brownian motion. The
internal process releases hear with d;;Q > 0 when the atoms return to
their equilibrium positions, while absorbes heat with d;;Q < 0 is when
the atoms fluctuate away from their equilibrium positions. In the former
case, the released heat can be extracted through an external effort to
perform certain amount of work, which unfortunately has been
considered in the literature as the evidence of the microscopic ‘violation
of second law of thermodynamics’. The misunderstanding is because the
d;pS©¥€ was missed in counting the entropy changes of the internal
processes as discussed in detail by the author recently [16].

5. Quantum thermodynamics in the framework of density
functional theory

Quantum mechanics provides a description of the physical properties
of nature at the scale of atoms and subatomic particles. A solid can be
thought of as a collection of interacting positively charged nuclei and
negatively charged electrons and can theoretically be treated by solving
the many-body Schrodinger quantum mechanics equation involving
both the nuclei and the electrons [4]. However, it is extremely difficult
to solve the equation due to its many-body nature with too many elec-
trons. On the other hand, DFT developed in 1960’s [5,6] aims to
represent the outcome of those interactions by a single wave function of
one electron and articulates that there is a ground state in each system at
zero K defined by a unique electron density. The widely used DFT-based
calculations represents the state-of-the-art solution of the multi-body
Schrodinger equation with several approximations as follows [12].

o Adiabatic or Born-Oppenheimer approximation [27]. The nuclei that
are much heavier than the electrons are assumed to be “frozen” and
only contribute to an external potential for the electrons. The elec-
trons are always in an instantaneous ground state with the nuclei.

Independent-electron approximation. Each electron moves inde-
pendently of the others in an average effective potential collectively
determined by the nuclei and all electrons. DFT by Hohenberg and
Kohn [5] is formulated as an exact theory of many-body systems. It
articulates that for an interacting electron gas there exists a universal
functional of the density such that the energy is at its minimum
value, i.e., the ground-state energy with a unique ground-state
electron density. The Kohn-Sham approach [6] explicitly separates
the independent-electron kinetic energy and long-range Coulomb
interaction energy and replaces the many-body electron problem
using independent electrons with an exchange-correlation functional
of the electron density and an associated exchange-correlation en-
ergy and potential, i.e., coarse graining of electrons. Consequently, the
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exchange-correlation energy can be approximated as a local func-
tional of the electron density.

Exchange-correlation functional approximation by the local spin
density approximation (LSDA) [28,29] and the generalized gradient
approximation (GGA) [30-32]. In LSDA, the exchange-correlation
energy density at each point in space is assumed to be the same as
in a homogenous electron gas with the same electron density. While
in GGA, the exchange-correlation energy density depends addition-
ally on the gradient of the electron density.

Replacement of the strong Coulomb potential of the nucleus and the
tightly bound core electrons by a pseudopotential. This pseudopo-
tential represents an effective potential acting on valence electrons
and is obtained from atomic calculations. Since it is not unique, it is
tailored to simplify calculations such as the commonly used ultrasoft
pseudopotentials and the projector augmented wave (PAW) method
[33].

With above approximations, the DFT-based first-principles calcula-
tions solve a set of one-electron Schrodinger’s equations, one for each
valence electron in the system with supercells of atomic structures and
periodic boundary conditions, to obtain the ground-state electron den-
sity, which is used to obtain ground-state energy and other properties of
the system at 0 K. Additional calculations at volumes around that of the
ground-state configuration can be performed to obtain the equation of
states (EOS) along with the bulk modulus and its derivative with respect
to volume by fitting the energy as a function of volume using various
EOS models [34].

As the third law of thermodynamics postulates, the entropy of a
system equals zero at 0 K, so is the entropy of the ground-state config-
uration at 0 K. At finite temperature, electronic structures will change,
and nuclei will vibrate, resulting in the increase of entropy. Kohn and
Sham [6] used the finite temperature generalization of ground-state
energy of an interacting inhomogeneous electron gas by Mermin [35]
and formulated the entropy of thermal electrons at finite temperature.
Wang et al. [36] added the vibrational contribution and presented the
free energy as follows

FE— ERO 4 phel  phoib — pk _ gk Eq. 37
E* = RO 4 prel 4 phvib Eq. 38
Sk = gkel 4 ghvip Eq. 39

where FX, F*, and S* are the Helmholtz energy, internal energy, and
entropy of configuration k, F*¢, F*¢l and Skl are the contributions of
thermal electron to Helmholtz energy, internal energy, and entropy of
configuration k based on the Fermi-Dirac statistics for electrons, and
Flvib - pkvib - and Skvib are the vibrational contributions to Helmholtz
energy, internal energy, and entropy of configuration k based on the
Bose-FEinstein statistics for phonons, respectively. The vibrational con-
tributions can be obtained by either phonon calculations or Debye
model with the former being more accurate and the latter more efficient
[36,37] through the high throughput DFT Tool Kits (DFTTK) [38,39].
The detailed equations for these quantities can be found in the literature
[21,36]. For vibration-induced dipole-dipole long-range interactions,
we have developed a mixed-space approach with the short-range in-
teractions accounted for by supercells in the real space, the analytical
solution for the origin in the reciprocal space which represents the
infinite in the real space, and an interpolation scheme between them
[40-42].

Non-ground-state configurations can be created by systematically
varying the internal degrees of freedom of the ground-state configura-
tion of the system. For stable non-ground-state configurations, Eq. (37)
to Eq. (39) can be used to predict their Helmholtz energies. For unstable
non-ground-state configurations, there will be imaginary frequencies in
their phonon dispersion curves, and their Helmholtz energies can thus
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not be directly predicted by means of phonon calculations. Even though
the Debye model does not explicitly concern whether the configuration
is stable or unstable, the physical significance of those predictions needs
to be further investigated [43]. This is the central topic in integrating the
DFT-based calculations into the CALPHAD modeling [15,44-52], which
will be further discussed in Sections 8.

There have been continued efforts in improving DFT methods to
obtain better electron density and total energy [53-60] include
time-dependent DFT (TDDFT) [61-63], random phase approximation
(RPA) [64,65], density-matrix functional theory (DMFT) [66-69], DFT
+ U [70-72], dynamical mean-field theory [73,74], benchmarking with
experimental measurements [75], deep neural network machine
learning models [76-78], and some other hybrid methods [79]. These
approaches primarily aim to improve the calculations for the
ground-state configuration through approximations for the exchange
correlation functional, i.e., Eq. (37) to Eq. (39). However, they may not
be able to capture the statistical contributions from non-ground-state
configurations reflected by experimental observations performed at
finite temperatures as shown by Eq. (31) to Eq. (33). This will be further
discussed in Section 7.

It is noted that recently Perdew and co-workers pointed out that
symmetry breaking can arise when a wave-like fluctuation drops to zero
frequency [80]. By considering approximate density functional for ex-
change and correlation that breaks symmetry, they demonstrated that
symmetry breaking with an advanced density functional might reliably
describe strong correlation and can thus be more revealing than an exact
functional that does not [80,81]. They discussed that the ground-state
total energy of a system of interacting electrons has contributions
from fluctuations of various wavevectors, including the nonnegative
zero-point energies of its collective excitations. For the uniform electron
gas, they developed a new approximate density functional that includes
the time-dependent fluctuations using the fluctuation-dissipation theo-
rem as discussed in detail in Ref. [80], which is currently not practical
for real systems due to the need to sum over all unoccupied and occupied
orbitals to find the non-interacting linear response function and the lack
of reliable exchange-correlation kernel. It is noted that the ground-state
and non-ground-state configurations discussed above do have different
symmetries.

6. Irreversible thermodynamics in terms of internal processes
6.1. Classical and extended irreversible thermodynamics

Typical approaches to irreversible thermodynamics in the literature
start from the Gibbs thermodynamics, i.e., Eq. (13) or Eq. (14) for closed
systems with hydrostatic pressure or Eq. (11) in general. For example,
Onsager used the microscopic reversibility that requires that if @ and g
be two quantities which depend only on the configuration of molecules

and atoms, the event a = a followed some seconds later by g = § will

occur as often as the event f = ﬂ , followed later by a = a. It also re-
quires the same if @ and $ depend on the velocities of elementary par-
ticles in such a manner that they are not changed when the velocities are
reversed. Onsager noted that “the principle of microscopic reversibility
is less general than the fundamental laws of thermodynamics”, which is
shown below to be incompatible with irreversible processes. Based on
the principle of microscopic reversibility, Onsager further derived the
reciprocal relation among kinetic coefficients of fluxes which will be
discussed in Section 6.3.

While more often, as shown by de Groot and Mazur [82], Kondepudi
and Prigogine [83], and in most textbooks, the combined law by Gibbs
with djS = 0 is used directly to derive formulas for irreversible ther-
modynamics with Eq. (14) re-written as, neglecting convection and
volumetric flow [83],

1 ¢ Hi _
dS=_dU—3 | "LdNi=d.S

Eq. 40
T q
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where the last portion was added in the present work with d.S being the
entropy change or entropy current between the system and its sur-
roundings as used by Kondepudi and Prigogine [83] who also used the
symbol J§, or between an internal process and its surrounding inside the
system. Its time-dependent form can be written as

Bty ty -

- Eq. 41
d T =T d

The time-dependent first law of thermodynamics was then formu-
lated in a flux form, re-arranged, and inserted back to Eq. (41),

U=0+)Y  UN=-Ve (JQ+Z:']U,-J,-> =-Ve(y) Eq. 42

S v (S M e (f) - e ()
Eq. 43

where Jy and J; are the fluxes of heat and component i, respectively.
This is a circular operation, resulting in the second law of thermody-
namics with the first law of thermodynamics effectively removed from
the combined law, i.e., Eq. (10), as follows
S = %Q +3 0 SNi=S Eq. 44

This in principle should not result in any new information related to
irreversible processes or the second law of thermodynamics as discussed
below.

It should be emphasized that the first law of thermodynamics rep-
resented by Eq. (42) is applicable to both equilibrium and non-
equilibrium systems with internal processes when it was introduced in
Eq. (1), while Eq. (40) and Eq. (41) are for equilibrium systems only
without internal processes, so Eq. (43) is only applicable to equilibrium
systems. To solve this problem of circular operation, the common next
step in the literature is to separate Eq. (43) into two contributions with
the first term for entropy change or entropy current and the combination
of the second and third terms as the entropy production due to internal
processes i.e.,

S=,8=,5+,8 Eq. 45

where ,.pS is the entropy production rate due to irreversible internal

processes, written as iS‘ or ¢ by Kondepudi and Prigogine [83]. This is
evidently incorrect because one cannot start with the equation appli-
cable to equilibrium systems without internal processes and end up with
an equation for non-equilibrium systems with internal processes because
Eq. (45) implies that ip$ =0.

The problem is due to the circular use of the first law of thermody-
namics and the artificial separation of contributions because the internal
energy change does not concern the internal processes, but only the
exchange between the system and its surroundings as defined by the first
law of thermodynamics. This is shown by Eq. (7) in which Td;,S is added
into TdS in Eq. (5), and it should thus be emphasized that the internal
processes do not change the internal energy of the system. The second
law of thermodynamics concerns exclusively the entropy production due
to irreversible internal processes.

Another development in thermodynamics is the extended irrevers-
ible thermodynamics [84,85], which aims to describe phenomena at
frequencies comparable to the inverse of the relaxation times of the
fluxes by including the fast variables among the set of basic independent
variables. This is in analogy to keep the entropy production term as
shown in Eq. (7), which can be re-arranged as follows
. 1. 1. ¢ . . .

§= TU B TW B Z[:]?N,- tpS =S5+, Eq. 46
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The central question is then how to formulate d;,S or l.pS. In the
extended irreversible thermodynamics, d;,S is formulated as a function
of fluxes, and iPS is then related to the divergency of fluxes [84,85]. Since
the unit of d;,S does not contain time, it seems awkward to include fluxes
as its independent variable. As shown below, it is more natural to

formulate iPS as a function of flux instead.

6.2. Formulation of internal processes

As discussed above, irreversible thermodynamics concerns the
formulation of internal processes. Based on the second law of thermo-
dynamics, all kinetics processes in a nonequilibrium system are irre-
versible and contribute to the total entropy change as shown by d;,S in
Eq. (7) and Eq. (9). For multiple independent internal processes, each can
be represented by the last part of Eq. (9) and contributes to the internal
energy of the system as follows for m independent internal processes

dU = Z:Zl Yedxe — EZ’:lDbdg,,

Dydé, >0

Eq. 47

Eq. 48

where D, and &, are a pair of conjugate variables in analogy to Y* and X¢,
denoted by Y, and X, with X, for internal variables as used in Section 3.
For example, considering the diffusion of component i as an internal
process, i.e., dé=dc; with ¢; =N;/V being the concentration of
component i in terms of moles per volume, the driving force is the
decrease of the chemical potential of the component, i.e., D = — Ay;.
This is the same as y; and dN; in the combined law. With the internal
energy as a function of X* and &,, i.e., U(X?,&,), the dependent variables
Y? and Dy are also the functions of those independent variables, i.e.,
Y%(X?, &) and Dy(X?, &), respectively. When free energy functions are
introduced with some molar quantities, X¢, replaced by their conjugate
potentials, Y¢, the dependent potentials will follow the same as Y*(X?,
Y¢ &) and Dy (X, Y€, &), respectively.

When an internal process involves the change of several molar
quantities simultaneously, such as chemical reactions involving several
components, the entropy production of the internal process can be
written as the sum of the entropy production of the change of each
component. For a generic chemical reaction written as

> NaA. =) NyB,
r P

Eq. 49

with N4, moles of reactant A, and Np, moles of product By, its entropy
production can be written as follows

Ddé= — (ZNB,,”B,, ENA'”A'>d§
) r

Eq. 50

where d¢ represents the degree of the chemical reaction, i.e., (>_,Na,)dé
moles of reactants forming (3,Np)d¢ moles of products. The driving
force D for the chemical reaction equals to the minus of weighted sum of
products’ chemical potentials subtracted by the weighted sum of the
reactants’ chemical potentials. It should be noted that there are internal
variables that are related to microstructure such as grain size [86] and
phase morphologies [87], which can be formulated into the combined
law of thermodynamics with additional internal variables, but will not
be discussed further in the present article because they do not directly
appear in the combined law of thermodynamics.

6.3. Formulation of flux equations

One important type of internal processes is the transport of the molar
quantity between neighboring positions in a system, i.e., its flux. Ons-
ager [88,89] phenomenologically formulated a set of flux equations for
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each molar quantity by postulating its linear dependence on the gradi-
ents of all potentials and articulated that the matrix of the linear co-
efficients is symmetrical, commonly referred to as the Onsager
reciprocal relationship. Prigogine and co-workers further developed the
flux equation by including chemical reactions [90-92] and presented a
unified formulation of dynamics and thermodynamics through equa-
tions of motion in terms of dynamics of correlations and instability in
dissipative systems [93-95].

As discussed by the present author recently [16], there are four
fundamental questions concerning Onsager’s phenomenological theo-
rem as follows.

1. As a symmetric matrix can be diagonalized to obtain its eigen values
(kinetic coefficients) and the eigen vector (the set of independent
driving forces), what is the eigen vector?

2. When D, = 0, d&, may not be zero because the Onsager flux equation
relates d&, to driving forces for all internal processes, indicating that
the internal processes are not truly independent.

3. The entropy production for the above scenario is zero as shown by
Eq. (48), i.e., the flux of d&, does not produce entropy, which is in
conflict with the second law of thermodynamics since any internal
processes are irreversible and must result in a positive entropy
production.

4. If the microscopic reversibility and Gibbs combined law hold locally,
so does the Gibbs-Duhem equation as shown by Eq. (22), signifying
that not all potentials or their gradients could be varied indepen-
dently, and at least one of them must be a molar quantity.

Some of the above issues have been discussed in the literature as
detailed by the author recently [16], particularly those by Truesdell and
co-workers [96,97]. From the combined law of thermodynamics by Eq.
(7), it is evident that only the product of each pair of conjugate variables
enters the equation, and there are no cross-terms between non-conjugate
pairs. The volumetric entropy production rate of an internal process, d&,
can thus be written as

T d,S Dy di, AV, X,

0o b T DR vy,
AV dr  AAz dt boX

Az A= Eq. 51
where AV is the volume of the transport with area (A) and Az the dis-
tance between neighboring sites (Az), Y, and X, are a pair of conjugate
variables with the subscript denoting the internal variables inside the
system as mentioned in Section 3, and Jx, is the flux of X},. Consequently,
in accordance with the combine law of thermodynamics, the change of a
molar quantity is solely controlled by its conjugate potential gradient,
and the flux equation of an internal process must be presented as follows
[16]

]X/, = - LX/>VYI7 Eq 52
where Ly, is the kinetic coefficient for the transport of X, with — VY} as
its driving force. The entropy production can thus be written as

0=,8=Ly,(VY) >0 Eq. 53

As discussed in details by the present author [16], Eq. (51) to Eq. (53)
resolve the four questions to the Onsager flux equations presented
above. For a complex internal process involving more than one X, rep-
resented in the combined law, its driving force is similarly combined by
their conjugate potentials, such as the chemical reactions discussed in
Section 6.2 above. In dissipative systems [93,94], the transport and
chemical reactions take place simultaneously.

6.4. Theory of cross phenomena

The central feature that the Onsager flux equations aimed to repre-
sent is the cross phenomena [88], i.e., the experimental observations of
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transport of a molar quantity driven by the non-conjugate potentials
such as migration of electrons by temperature gradient (thermoelectric,
Seebeck coefficient) or stress gradient (electromechanical effect), or
diffusion of atoms or molecules by temperature gradient (thermodiffu-
sion, Soret coefficient). However, these observations do not provide
information on the microscopic characteristics of underline physics. This
is similar to the case of the Fick’s first law of diffusion that correlates the
atomic diffusion to its concentration gradient, but fails to represent the
uphill diffusion where atoms migrate from low concentration regions to
high concentration regions [16,98,99]. The diffusion of a component is
driven by its chemical potential gradient which is not only a function of
its own concentration gradient, but the concentration gradients or
chemical potentials of all other elements in the system [16,100-103].
It is realized that an internal process can be affected by all inde-
pendent variables in the system because its driving force is a function of
all those independent variables as shown by the discussion in relation to
Eq. (47) and Eq. (48). However, the unit process of the internal process
remains the same, i.e., the migration of a molar quantity over a barrier
from one state to the next state either in terms of neighboring locations
such as diffusion or different structures such as chemical reactions or
phase transitions. It is noted that the kinetic coefficient, i.e., Lx, in Eq.
(52), is also a function of all those Independent variables, i.e., Yx, (Xp, Xq,
Y.) and Ly, (Xp, X4, Yc) with X, and Y. denoting the other independent
molar quantity and potentials. Consequently, the gradient of Y, can be
written as the gradients of other independent variables as follows

6Yb ()Yb 0Yb
Yy, (Xp, Xy, Yo) ==-VX, —VX Y. Eq.
VY, (X0, X, Vo) = VX 3 GiVXG 4 D SV q. 54
a#b c#a#b
Eq. (52) is then written as
0Y, 0Y, 0y,
Jy, = — Ly, | =2VX, + Av) e by, Eq. 55
0X,, X, Gaty%e

Eq. (55) demonstrates the cross phenomena. It overcomes the four
shortcomings of the Onsager theorem discussed above and represents
the fundamentals of cross phenomena. The first three shortcomings are
resolved by Eq. (51) to Eq. (53), while the fourth shortcoming is
addressed by Eq. (54) and Eq. (55), showing that at least one of the
independent gradient is that of a molar quantity, i.e., the conjugate
molar quantity of the potential. For example, in a system initially with V
X, = 0, there is a driving force for X, to migrate due to the gradients of
VX, and VY, as they induce a non-zero value of VYj. The flow of X
tends to transport X, in the opposite direction of VY. If the system is
closed with respect to Xp, i.e., no exchange of X, with the surroundings,
eventually the three terms on the right-hand side of Eq. (55) balance
each other to result in zero driving force for X; to flow, i.e., VY, = 0 and
Jx, = 0, with a nonuniform X}, (VX; # 0) in the system. Consequently,
the values of X}, are higher than that of the original value at some regions
and lower at other regions in the system, i.e., a transport phenomenon
against VX, commonly referred to as uphill transport.

It is evident that the significances of cross phenomena depend on the
signs and magnitudes of the three sets of derivatives in Eq. (55) as dis-
cussed below.

e The first set of derivatives is between two conjugate variables and is
positive for a stable system, i.e., g%‘; > 0, shown by the diagonal
quantities in Table 1 [16]. It becomes zero at the limit of stability of
the system or the internal process if there are more than one internal
process, and its inverse diverges positively, i.e., STYZ = +0 and g% =+
0.

The second set of derivatives is between a potential and a non-
conjugate molar quantity, representing many quantities from
typical experimental measurements as shown by the off-diagonal
quantities in Table 1 [16]. Since they are not required to be posi-
tive, they can be sometimes negative such as the negative thermal
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Table 1
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Physical quantities related to the first directives of molar quantities (first column) to potentials (first row), symmetrical due to the Maxwell relations [16,106].

T, Temperature o, Stress

E, Electrical field

A, Magnetic field #;, Chemical potential

S, Entropy Heat capacity Piezocaloric effect

&, Strain Thermal expansion Elastic compliance

0, Electrical displacement Pyroelectric coefficient Piezoelectric moduli

B, Magnetic induction Pyromagnetic coefficient Piezomagnetic moduli

Nj, Moles Thermoreactivity Stressoreactivity

Electrocaloric effect Magnetocaloric effect oS
Oy
Converse piezoelectricity Piezomagnetic moduli i
Oy
Permittivity Magnetoelectric coefficient 9D;
Oy
Magnetoelectric coefficient Permeability 0B;
Oty
Electroreactivity Magnetoreactivity ON;
ow

expansion observed experimentally and predicted by the zentropy
theory [104,105], which will be discussed further in Section 7.
Table 1 is symmetrical due to the Maxwell relation with the ones at
low-left side more easily measurable experimentally and the ones at
up-right side more easily predicted theoretically [16,106]. The
quantities in the last row and column of the table can be related to
quantum criticality as discussed by the author [16]. At the limit of
% ==+0and $ ”X = + co.
This derivative provides fundamental understandlng of uphill
diffusion where the diffusion of a component from a low concen-
tration region to a high concentration region is driven by the
gradient of another component, such as the carbon diffusion (u.)
driven by silicon (cs;) as reported by Darken [16,98,99] due to the

stability, they may diverge negatively, i.e.,

large negative value of gg—sf
The third set of derivatives is between two potentials. While the
second set of derivatives discussed above can be considered as cross
phenomena, this third set represents the commonly referred cross
phenomena in the literature where an externally controlled potential
gradient, such as temperature and stress gradients and electric and
magnetic fields, results in an internal VY, that drives the flows of X,
and other molar quantities inside the system. These derivatives are
listed in Table 2 [16,107]. Since they are not commonly seen in the
literature, further discussions will be presented below.

As shown above, the derivatives between potentials play a central
role in understanding the observation of typical cross phenomena. Their
missing in the literature is probably partially because the scientific
community is deeply rooted by the Onsager’s phenomenological flux
equation and the Onsager reciprocal relationship that stipulate the ki-
netic characteristics of cross phenomena and partially due to the lack of
data to evaluate them. Furthermore, direct experimental measurements
or kinetic simulations of cross phenomena give the products of kinetic
coefficient and the derivative, i.e., LX,, v, or LdeYb in Eq. (55), which
indeed contains the kinetic coefficient of the internal process, but not a
new kinetic coefficient.

In the interest of further discussion of the kinetic coefficient matrix,
let us consider the migrations of only 2 molar quantities using Eq. (55) as
follows,

Table 2

0Yb 0Yb
—L X Y, Eq.
Jx,] X, <0XV b+d Vv > q 56
Y. oY,
Jx{ = — Lx(, <6Y VY;, + F) CVXL-) Eq 57

It is evident that the kinetic coefficient matrix is not symmetrical in
general as LX,, and Ly, are independent of each other, i.e.,

Lx,,ay” AL X Eq. 58
Alternatively, the flux equations can be written as

Jy, = — Ly, (g;”vxh +%vx ) Eq. 59
Jx, = — Ly, (gXbVXb + SY:VXL) Eq. 60
Again, one obtains the following inequality,

Ly, g;b #L x Eq. 61

This was pointed by the present author in a recently published
comment [102]. It should be mentioned that the two sides in Eq. (58) or
Eq. (61) could be made equal if Ly, and Lx, are not independent from
each other, which means that X, and X, are not independent variables
and should thus be combined to form a new independent variable. This
is the case for diffusions in ionic systems where the charge neutrality
constrains the equality of Eq. (58) and Eq. (61) as discussed in Ref. [102]
and references cited therein. This was also the case that Onsager focused
on as discussed in his Nobel lecture [245] though not true in general.

To validate our above theory of cross phenomena, we calculated the
electronic Helmholtz energy as a function of temperature using the
Mermin formula [35] as shown in the work by Kohn and Sham [6] and
Wang et al. [36] and predicted the Seebeck coefficients for a number of
thermoelectric materials, showing remarkable agreement with experi-
mental measurements [108,109]. In typical experiments, one starts with
an initially homogeneous system without gradients for any molar

Cross phenomenon coefficients represented by derivatives between potentials, symmetrical due to the Maxwell relations [16,107].

T, Temperature o, Stress E, Electrical field Z, Magnetic field ;> Chemical potential
T 1 9 _ s _%s _% Partial entro
T o T 9B a Py
e i 1 % i ® Partial strain
T 00 0B 0 ci
E OE OE 1 00 00 . . .
pee = -5 e Partial electrical displacement
x o ox Ll 1 9B Partial magnetic induction
oT do OE dci &
Hi oy; ou; ou; ou; ) oc Dy
% Thermodiffusion % Stressmigration % Electromigration 0% Magnetomigration 3—;‘; = 70—2 = 5; Crossdiffusion

10
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quantities or potentials, i.e., V¢, =0, Vi, =0, VS =0, and VT = 0,
where e denotes electron. When a small external temperature gradient, i.
e.,, VY® = VT, is imposed to the system, it induces a heat conduction in
the system and results in an internal temperature gradient in the system,
i.e., VY, = VT. Itis noted that in principles that this process takes some
time to establish the internal temperature gradient, which is one of the
topics that the extended irreversible thermodynamics aims to address, i.
e., relaxation time [84,85]. Due to the temperature difference, the
chemical potentials of electrons become inhomogeneous in the system, i.
e., Vu, # 0, inducing a driving force for electrons to migrate from high
chemical potential regions to low chemical potential regions and
resulting in an inhomogeneous distribution of electrons, i.e., Vc, # 0. In
typical experiments, the two ends of the system are not connected so
electrons do not leave the system. The redistribution of electrons thus
decreases Vy, until it becomes zero, i.e., Vi, = 0, while the inhomo-
geneous electron distribution with Ve, # 0 results in an internal voltage,
VV.. The ratio of VV,/VT gives the experimentally measured Seebeck
coefficient, noting that VV, and VT have different signs so the Seebeck
coefficient is negative for n-type thermoelectric materials. For p-type
thermoelectric materials, the voltage due to the gradient of holes has the
same sign as VT, giving positive Seebeck coefficient.

In typical computer simulations to evaluate Seebeck coefficients, the
heat and electron fluxes are measured by imposing either temperature
gradient or electric field, and the evaluation of Seebeck coefficient thus
requires the simultaneous estimation of electrical and thermal conduc-
tivity coefficients as mentioned above. Our theory of cross phenomena
and computational approach avoids the evaluations of electrical and
thermal conductivity coefficients in predicting the Seebeck coefficients,
demonstrating better agreement with experiment measurements [108,
109]. It is noted that the calculations of electrical and thermal con-
ductivity coefficients are still needed in order to get the diagonal terms
of the kinetic coefficient matrix including atomic mobilities for mass
transport [108,110,111]. Furthermore, one possible next step is to
combine internal processes of both transport and chemical reactions to
understand and predict the properties of dissipative systems involving
critical phenomena or bifurcations [95].

6.5. Maxwell-Stefan diffusion equation

In the Maxwell-Stefan diffusion equation [112,113], the chemical
potential gradient of a component is expanded through the Maxwell—-
Stefan diffusion coefficients, flux, and concentration of all diffusion
components as follows

Vi

c Cj J/- J,- 1 c 1 Cj
= . -] =— —\(Ji——=;
RT Zj,l,ycr})ij (c]- c; Ctzj;l.y})ij [

where c; is the total molar concentration, and bj; the Maxwell-Stefan
diffusion coefficient. Complex relations between Maxwell-Stefan and
commonly used diffusion coefficients have been worked out in the
literature with a number of approximations for multi-component sys-
tems, relying on the Onsager reciprocal relation [112,113]. It seems that
the Maxwell-Stefan approach reduces the total number of diffusion
coefficients as D;; is not needed, but the Maxwell-Stefan diffusion co-
efficients are not based on measurable quantities and have to be esti-
mated [113].

On the other hand, as shown by Eq. (52), one only needs one kinetic
coefficient for diffusion of component i, i.e., L;, which is in the lattice-
fixed frame of reference. As presented elegantly by Andersson and
i\gren [100], L; can be related to the atomic mobility (M;) through
diffusion mechanisms and further to the tracer diffusivity (D;”) through
the Einstein relation. By changing the chemical potential gradient to
concentration gradients in the lattice-fixed frame of reference, one ob-

tains the intrinsic diffusivity (D, = LisT"k*) of component i with respect to

Eq. 62

the concentration gradient of component k, thus no longer diagomal. It
is noted that the chemical potential of a component depends on the
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. o -
concentrations of all components where ﬁ is commonly referred to as

the thermodynamic factor.
On the other hand, if one switches to the volume-fixed frame of
reference considering the lattice drifting due to transport of vacancy,

one obtains a complex non-diagonal kinetic coefficient matrix Lu so that

the flux J; in the volume-fixed frame of reference depends on the
chemical potential of all components as shown by Andersson and Agren
[100]. When the chemical potential gradients are further changed into
concentration gradients, one obtains the chemical diffusivity of
component i with respect to the concentration gradient of component

(Dik = ZjL;j%). The relationships among these diffusion coefficients

and kinetic coefficients are shown in Fig. 2 where ‘DI, and D!, are the
reduced intrinsic and chemical diffusivity of component i with respect to
the concentration gradient of component k with component n as the
dependent component [16,100]. D} can be evaluated through concen-

tration profiles in diffusion experiments, while the evaluation of iDﬁ
needs the information on inert marker movement.

The above discussion indicates that the number of independent
diffusion kinetic coefficients equals to the number of independent
diffusion components. The complexity in the Maxwell-Stefan diffusion
equation and its diffusion coefficients thus seems redundant as they are
related to the atomic mobility and thermodynamic factors. Large scale
atomic mobility databases have been developed in terms of the method
shown in Fig. 2 by Andersson and Agren [100] and broadly used in
diffusion simulations [114,115].

7. Zentropy theory for coarse graining of entropy
7.1. Overview of zentropy theory

It is evident from the above discussions that all theories require ac-
curate free energy as a function of both internal and external variables.
The key challenge in theoretical predictions of free energy of a phase is
because only one or a few configurations are typically considered in
computational approaches, whereas experimental measurements stem
from sampling all possible configurations at all scales simultaneously.
This challenge becomes acute for systems with phase transitions, which
is often where the most fascinating transformative properties exist. This
is reflected by the following gaps between statistical mechanics and
quantum mechanics out of the discussions presented in Sections 4 and 5.

i. Typical DFT-based calculations are focused on the ground-state
configuration of a system, while experimental observations
include both ground-state and non-ground-state configurations
through statistical mechanics. It is thus not surprising that in
general DFT-based calculations are not able to show good quan-
titative agreements with the experimental observations obtained
at high temperature.

ii. The total energy of each configuration in statistical mechanics in
Eq. (31) to Eq. (33) should be represented by Eq. (38) in quantum
mechanics. However, many DFT-based calculations are per-
formed at 0 K and thus provide only E which is only part of the
total energy of a configuration.

iii. The ground-state and non-ground-state configurations have non-
zero entropies as shown by Eq. (39) and are thus not pure
quantum states, rather coarse-grained representations of multi-
body interactions of electrons and phonons for each configura-
tion. They are thus incompatible with the existing statistical
mechanics shown by Eq. (31)-(33).

The first gap has been extensively addressed in the literature through
the development of an effective Hamiltonian fitted to DFT-based cal-
culations of ground-state and some non-ground-state configurations
[116-120] followed by molecular dynamics (MD) and Monte Carlo (MC)
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Fig. 2. Relationships among tracer diffusivity (D; ), atomic mobility (M;), kinetic parameters (L;), and intrinsic diffusivities (Dg; and Di) in the lattice-fixed frame of

reference, and kinetic parameters (LU) and chemical diffusivities (Dy and D;}() in the volume-fixed frame of reference [16].

simulations. There are also approaches that directly couple DFT with
MD and MC such as ab initio molecular dynamics (AIMD) [121-123] and
quantum Monte Carlo (QMC) [124-128]. All those simulations try to
sample as many configurations as possible and present the properties of
a system by averaging properties of a set of well converged configura-
tions. The selections of model, truncation, and parameter fitting in the
effective Hamiltonian approach limit the quantitative predicative ca-
pabilities of MD and MC simulations in addition to the usual use of DFT
data from O K in the fitting. Another challenge is to ensure that all
important configurations are sampled in the MD and MC simulations,
particularly those symmetry-breaking configurations.

The second and third gaps above are related and are not widely
addressed in the literature. Ceder [129] presented a formula by
replacing the total energy of each configuration in Eq. (31) by its free
energy as follows

_F mo m
Z=e BT = g 75 = E e kT
k=1 k=1

with EX in Eq. (31) replaced by F¥. Asta et al. [130] further discussed the
formula and emphasized the importance to include the entropy contri-
bution in fitting the cluster expansion coefficients by demonstrating its
effects on phase diagrams obtained from the cluster variation method.
The formula was later termed as “coarse graining of the partition
function” [131,132], though no actual calculations were reported in the
literature using the formula by those authors.

The author’s group [133,134] used the same formula of the partition
function, i.e., Eq. (63), without knowing its existence at that time. We
predicted the magnetic phase transition of Ce and the critical point in its
temperature-pressure phase diagram, initially with two configurations,
i.e., the ground-state nonmagnetic (NM) configuration and high tem-
perature non-ground-state ferromagnetic (FM) configuration plus a
mean-field term accounting for spin flipping entropy [133]. In the paper
followed [134], one additional antiferromagnetic (AFM) configuration
was added which removed the need of the mean-field term. The free
energies of the configurations were obtained from DFT-based calcula-
tions using GGA + U.

When applying the approach to predict the negative thermal
expansion in FegPt, the ergodicity of spin configurations in a 12 atom
supercell with 9 Fe atoms was considered, resulting in 2° = 512 con-
figurations with 37 being symmetrically distinct [135]. The Helmholtz
energies of all configurations were obtained by the DFT-based calcula-
tions using GGA without the need of +U, probably due to the ergodicity

Eq. 63
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of configurations. Those Helmholtz energies are used to predict the
critical phenomena and the negative thermal expansion along with its
negative divergence at the critical point without additional models and
fitting parameters. The applications to other materials were successfully
performed subsequently [104,136-141] plus YNiO3 with strongly
correlated physics [142] and ferroelectric PbTiO3 [143]. Remarkable
agreement with experimental results has been observed with the
first-order transitions obtained by free energy minimization and the
second-order transitions defined by several criteria including the prob-
ability of the ground-state configuration decreasing to 50%, the peak of
heat capacity due to statistical mixing, and more recently the inflection
point in a disordering parameter [144]. It was shown that the first and
last criteria give better agreement with experiments than the second one
with the heat capacity.

Wentzcovitch’s group [145,146] worked along the same direction
with initially two spin states of Fe in Mg;_,Fe,O plus a mean-field term
[145], and then the order-disorder phase boundary between ice VII and
VIII without the mean-field term [146]. In the latter case, the ergodicity
of polar configurations was considered with 8100 configurations for
16-molecule ice VII supercell consisting of 52 symmetrically distinct
configurations, noting that Ice VII is hydrogen-disordered and para-
electric, and Ice VIII is hydrogen-ordered and antiferroelectric. They
defined the order-disorder transition by the peak of heat capacity and
successfully applied this approach to a range of materials [147-152].
Recently the author learned that Allan and co-workers used similar
approaches to study the properties of solid solutions in a number of
materials at finite temperatures with each configuration having the
same composition of the system [153,154]. Particularly, the Gibbs en-
ergy function, i.e., Eq. (2) in both their publications [153,154] is iden-
tical to Eq. (7) in the author’s publication [155] though the entropy of
mixing among configurations was explicitly presented in the latter [155]
and used in the more recent formulation of the zentropy theory as dis-
cussed in detail in next section [16,105].

The success of the zentropy approach resides on the coarse graining
of entropy. Bottom-up coarse graining studies the microscopic origins
underlying macroscopic processes and has been broadly discussed in the
scientific community [156], particularly in terms of the multiscale en-
tropy for quantifying the complexity of physiologic time series [157,
158]. It is also noted that Safrdnek et al. [159] extended classical
coarse-grained entropy to quantum mechanics and showed that the
coarse graining using local energy measurements leads to an entropy in
accord with the thermodynamic entropy. However, due to the enormous
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complexity of atomistic systems, statistical mechanics-driven coarse
graining modeling has been very limited. The zentropy approach
circumscribe this complexity by relying on the DFT-based calculations of
ergodic ground- and non-ground-state configurations with the thermal
electronical and vibrational entropy contributions shown by Eq. (39)
and discussed in detail in the next section.

7.2. Fundamentals of zentropy theory: coarse graining of entropy

The term “zentropy” was recently suggested to represent the
approach by the author’s group [105]. In the zentropy theory, the coarse
graining of entropy is presented as follows [134].

S:Z:;pksk - k’*zrzlpk np*

The entropy of configuration k, S¥, can be further extended into its
lower-scale configurations with the same type of formula as Eq. (64),
until the electronic configurations at the DFT scale, which thus repre-
sents the bottom-up approach to compute the entropy of a configuration
at the scale of the observation. While the Gibbs entropy, i.e., the second
term in Eq. (64), counts the configurations from the viewpoint of the
system, i.e., a top-down approach, to compute the entropy between
configurations. It is thus evident that the zentropy theory integrates the
bottom-up and top-down approaches as schematically shown in Fig. 3
and is capable of accurately predicting the total entropy of the system, i.

Eq. 64

e,S= fOT £dT with C being the heat capacity measured experimentally
that represents a statistical sampling of ergodic configurations of the
system.

Consequently, the standard statistical mechanics in terms of Eq. (31)
to Eq. (33) are modified to Eq. (63) plus Eq. (64) and the equations
below

_ Mmook k _ mekk mek k
F=Y"" PE =TS=> " p'F —ksT» " p“inp Eq. 65
k
ZE=e T Eq. 66
k
o :Z? — Eq. 67

These nested formula have several key features as follows [22].

. Reach to the quantum regime by starting with the ground-state
configuration of a system.

. Expand to ergodic non-ground-state configurations through sam-
pling internal degrees of freedom of the ground-state configuration.

. Predict the entropies and Helmholtz energies of all configurations
using the DFT-based calculations under the canonical (NVT)
ensemble for each configuration.

. Predict observable quantities with information solely from quantum
mechanics through partition function of ground-state and stable non-

Top

Down

Zentropy

Sl

Bottom
Up

System

Entropy: S

SZ

Calphad 82 (2023) 102580

ground-state configurations using their individual Helmholtz en-
ergies without additional models and fitting parameters.

. Predict the free energy landscape of a system consisting of stable
states, instability, critical phenomena, and free energy barriers be-
tween stable states as a function of internal and external variables,

. Potentially extensible to many more observable quantities at various
scales [142,160].

As demonstrated recently, the AFM to paramagnetic (PM) transition
in YNiO3 under ambient pressure was predicted to be 144 K and 81 K
with or without entropy contribution for each configuration, respec-
tively, i.e., Eq. (63) to Eq. (67) (zentropy theory) for the former and Eq.
(31) to Eq. (33) (Gibbs entropy) for the latter. With the experimentally
measured AFM to PM transition temperature being 145 K [142], this
demonstrates the superiority of the zentropy theory. On the other hand,
if the entropies of all configurations are identical, the probability of a
configuration by Eq. (67) based on the zentropy theory reduces to the
same formula by Eq. (33) in terms of the standard statistics due to the
following relation

F—F=E'~T8" =Y " p'(E' = TS'+ ks Tinp') = E*

However, the Helmholtz energy of the system by the zentropy theory
(Eq. (65)) is more negative than that by standard statistical mechanics
(Eq. (32)) with the difference being — TS.

There is one important point related to feature 3 and 5 above that has
not been explicitly stated in the previous publications. It is easy to un-
derstand that all configurations must have the same temperature and
composition, i.e., T and N or Nj, and it may be less clear that each
configuration must also have the same volume because the system is in
the NVT ensemble. Under given T and N;, the Helmholtz energy of each
configuration is a function of volume, and there is a volume corre-
sponding to the lowest Helmholtz energy for each configuration. How-
ever, when individual configurations are brought together statistically,
all of them must adopt the volume of the system through either
compression or expansion, i.e., their Helmholtz energies need to be
evaluated at the same volume as that of the system. This enables the
prediction of the Helmholtz energy of transitory states between two
stable states, including the inflection points that represent the limit of
stability and the apex of the energy landscape. The equilibrium volume
of the system is obtained through the minimization of the Helmholtz
energy of the system, resulting in a single-phase state above the critical
point and the mixture of two- or more-phase states below the critical
point where each state has its own specific statistic mixture of all con-
figurations, commonly referred as miscibility gap [15,105].

m

Eq. 68
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Fig. 3. Schematic top-down and bottom-up integration of the zentropy theory.

13



Z.-K. Liu
7.3. Connection between zentropy theory and entropy of black holes

The applications of zentropy theory mentioned above include mag-
netic and polar materials. In two overview articles [15,22], the author
connected the zentropy theory to information entropy. In a recent
perspective article [16], the author discussed quantum criticality, su-
perconductivity, and the experimental observations related to quantum
devices and the interpretation of second law of thermodynamics in the
framework of zentropy theory, and the author’s group is actively pur-
suing in-depth research in those directions [160]. Furthermore, the
potential applicability of zentropy theory to the entropy of black hole
[161-164] was mentioned [16,22], and some preliminary thoughts are
elaborated in more details in the present section.

The entropy of black hole was formally formulated by Bekenstein
[161] and reviewed by Hawking [162] and commonly referred as
Bekenstein-Hawking entropy in the literature. Bekenstein [161] pre-
sented the law of black holes in terms of the changes of internal energy,
d(Mc?), area, dA, angular momentum, dJ, and charge, dQ, as follows
d(Mc*) = L +QdJ + ©dQ Eq. 69

872G

where M, x and 2 are the mass, surface gravity and the angular fre-
quency of rotation of the black hole, c is the speed of light, G is the
gravitational constant, and @& is the potential of the event horizon, i.e.,
the boundary between the black hole and outside world. Bekenstein
compared Eq. (69) with Eq. (13), i.e., the Gibbs combined law of ther-
modynamics and identified the last two terms in Eq. (69) as the work
done on the black hole by an external agent who increases the black
hole’s angular momentum and charge by dJ and dQ, respectively, in
analog of —PdV in Eq. (13) or more general dW in Eq. (7).

A critical step next was to correlate the area and entropy between Eq.
(69) and Eq. (13). Bekenstein [161] started from the information en-
tropy as shown by Eq. (30), forgo the internal configurations of a black
hole due to their inaccessibility, and derived the entropy of a black hole
as a linear function of area as follows
Sy ¢

_ Eq.
ks #G a. 70

n2

where 7 is the reduced Planck constant, and y = %2 was obtained by

Bekenstein [161] and y = 1 by Hawking [162], respectively. It is noted
that Bekenstein [161] emphasized that “the concept of black-hole en-
tropy as the measure of the inaccessibility of information (to an exterior
observer) as to which particular internal configuration of the black hole
is actually realized in a given case”, referring to the “equivalence class of
all black holes which have the same mass, charge, and angular mo-
mentum, rather than the thermal entropy inside the black hole”.

In a following paper, Bekenstein [165] presented a detailed statis-
tical analysis in terms of the statistical sampling of a black hole.
Hawking [162] discussed the quantum fluctuation of internal configu-
rations or quantum states of a black hole and concluded that a black hole
radiation can take place by statistical fluctuations in black-body radia-
tion and can then decay quantum mechanically with the reemission of
radiation. Over the years, many microscopic explanations of black hole
entropy have been developed through statistical mechanics as reviewed
by Carlip [166,167], including entanglement entropy, string theory,
loop quantum gravity, induced gravity, and logarithmic corrections. The
central challenge is to define and count the internal configurations of
black holes.

There have been some revisions of the original derivation by
Bekenstein [161] with one being the addition of a pressure term to the
law of black holes [168-173] by treating the cosmological constant as a
thermodynamic pressure and the other being the logarithmic corrections
of entropy formula by considering the effect of thermal fluctuations
[174-182]. It should be noted that the Gibbs combined law of
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thermodynamics was stated as the first law of thermodynamics by
Hawking and many others in the literature, which should be the com-
bined law as shown in Sections 2.3 and 3.1. This may be partially due to
the fact that the second law of thermodynamics was removed from Gibbs
combined law of thermodynamics as discussed in Sections 2.3 and 3.1.
Furthermore, the Gibbs combined law of thermodynamics used by
Bekenstein [161] and Hawking [162] is for closed systems, while a
typical gedanken experiment involves the falling of a box, Wheeler’s cup
of tea [166], or other items into a black hole. Consequently, it is
necessary to use the combined law including the internal processes and
all exchanges between a black hole and its surroundings, i.e., Eq. (7) for
the combined law of thermodynamics and Eq. (9) for the entropy pro-
duction due to internal processes.

Combining Eq. (69) and Eq. (7) with the two revisions of pressure
and mass exchange mentioned above results in the following equation
similar to those in the literature [168-173].

dU =TdS + QdJ + ®dQ — PdV + > wdN; — Td;,S Eq. 71
where dN; denotes the moles of component i added to the black hole as
no mass escapes the black hole, and d;,S the entropy production due to
internal processes inside the black hole. It should be emphasized that dS
is for the entropy change of the black hole and can be either positive or
negative as shown by Eq. (5), which is not directly related to the second
law of thermodynamics. As discussed in Section 2.2, the second law of
thermodynamics concerns only the last term of Eq. (71) as shown by Eq.
(4). Therefore, there is no need to introduce the generalized second law
of thermodynamics [161,162]. In Eq. (71), —PdV is used instead of VdP
commonly presented in the literature [168-173] in order to avoid the
use of enthalpy on the left side of Eq. (71) though they are equivalent as
both are fundamental characteristic functions [20].

Let us first discuss the logarithmic correction to the Bekenstein-
Hawking entropy (Eq. (70)) that takes a typical form as follows
[174-182].

S;Jh =S +1 In(Sp,) + additional terms Eq. 72
with 7 being a constant. On the other hand, Bekenstein [165] discussed a
different statistical interpretation of the concept of black-hole entropy as
the natural logarithm of the number of possible states of a black hole
that are compatible with the given spinning black-hole state. Since only
the spinning state of a black hole is observable, Bekenstein [165] arti-
culated that a black hole cannot be regarded as having definite M, L, and
Q, rather in a number of different spinning black hole solution states of
definite M, L, and Q, each one occurring with some probability pmiq,
identified as the sum of probabilities for all radiation states that can
coexist with the given spinning solution state. The following formula of
entropy of a black hole was then obtained by Bekenstein [165]

Sbh = § :lMLQSbh (M7 L7 Q) — kg § :pI’MLQ In Pruio

MLQ MLQ

Eq. 73

where Sy (M, L, Q) is the entropy of a spinning black-hole state with the
parameters M, L, and Q. This approach from the higher observable scale
to the lower unobservable scale may be compared with the top-down
approach in our multiscale entropy approach [22]. It is evident that in
this approach, each MLQ observation represents a specific statistical
distribution of ergodic individual configurations in the black hole
though they are not accessible from outside and is similar to MC and MD
sampling.

Eq. (73) is strikingly similar to that of our zentropy theory shown by
Eq. (64), which is also similar to that derived for entanglement entropy
in relation to quantum criticality [183-189] where the area law domi-
nates when the system is far away from its quantum critical point, and
the logarithmic law dominates when the system is near its quantum
critical point. Our zentropy theory was able to predict the singularity at
critical points in Ce [133,134] and FesPt [135,144] due to the magnetic
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spin dynamics in the temperature-pressure two-dimensional space
including the positive divergency of thermal expansion in Ce and the
negative divergency of thermal expansion in FegPt [15,16,155].

It is noted that Eq. (64) and Eq. (73) are capable of interpreting the
transition from the area law to the logarithmic law when a system is
approaching its critical point either from its ground state or a non-
ground state far away passing the critical point. At the ground state,
there is only one configuration in the system, i.e., the ground-state
configuration. The entropy of the system equals to the entropy of the
ground state, which is a function of the size of the system either in terms
of volume or surface, thus the area law. At the non-ground state far away
from the critical point, the probability of each configuration in the
system is same, and Eq. (64) becomes
s:%Z’::lsk + kg In(m) Eq. 74

The entropy of the system is dominated by the first term and thus the
area law. While near the critical point, the ground-state configuration
loses its dominance, and the system fluctuates spontaneously between
the ground-state configuration and non-ground-state configurations,
resulting in an inflection point on the degree of disorder derived from
the entropy change as a function of temperature, and thus the loga-
rithmic law. The system diverges at the critical point, and the fluctuation
wavelength becomes infinite, even only with quantum information from
supercells as small as 12 atoms for FesPt [135,155]. The divergence of
effective mass of electrons at the quantum critical point was discussed
similarly [16]. It thus seems plausible that the zentropy theory has the
potential to be applied to predict the properties of black holes, which
will be explored further in our future research activities.

Concerning the addition of —PdV to Eq. (71), there seem some in-
consistences. As a volume change usually results in an area change, Eq.
(71) is thus inconsistent with Eq. (69) since both entropy and volume are
independent variables of the internal energy of a black hole, i.e., the
entropy cannot be correlated with area or volume directly as Bekenstein
[161] did. However, this issue has not been addressed in the literature
when the pressure or volume was introduced [168-173]. On the other
hand, the discussion in the above paragraph demonstrates that the area
law can be rationalized through the volume or area dependence of the
entropy of the ground-state configuration, or the statistical mixture of all
configurations as shown by Eq. (74) without the intuitive suggestion
between entropy and black-hole area made by Bekenstein [161].

Next let us correlate the Hawking radiation in the framework dis-
cussed in the present work. The Hawking radiation reduces the mass and
rotational energy of a black hole through the energy radiated from the
black hole to its surroundings. The entropy change of the black hole may
thus be written as follows from Eq. (5),

dQy

ds="2 4 d,S

= Eq. 75

where dQy is the heat loss of the black hole due to the Hawking radiation
(thus negative), and d;,S is the entropy production due to the internal
process and can be written as follows from Eq. 9

di Q confi
dypS =15~ ZdeNr J + dyy S Eq. 76

where dN;; is the moles of component j converted into energy repre-
sented by the heat generation d;,Q inside the black hole which may be
approximated as dpQ = ¢?) ;dN,; = —c*dM with dM being the mass
reduction of the black hole (thus negative), and dl-pSm"ﬁg is the change of
the configurations inside the black hole. Considering the black hole in a
relatively steady state with d;,S®V¥ ~ 0 and ¢2 > TS;, one has TdjS ~ —
¢2dM > 0, in accordance with the second law of thermodynamics. The
entropy change of the black hole with Hawking radiation and the
reduction of black hole mass can thus be approximated as
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TdS ~dQy — ¢*dM Eq. 77
If the entropy of a black hole remains approximately constant when the
heat released by the Hawking radiation is balanced by the mass to en-
ergy conversion inside the black hole, i.e.,

dQy = c*dM Eq. 78

The mass of the black hole thus continuously decreases due to the
Hawking radiation, i.e., dQy < 0 and dM < 0.

Concerning a gedanken experiment on a box, Wheeler’s cup of tea
[166], or other items falling into a black hole, it may be easier to
consider the box and the black hole as one system, and the falling pro-
cess is thus an internal process of the system and can be treated as an
internal flux as discussed in Section 6.3 with the gravitational force
being the driving force. The reaction after the item falls into the black
hole can be either combined with the falling process as one internal
process or considered as another internal process as they are indepen-
dent of each other. At some stage inside the black hole, the mass of the
box will convert into energy as discussed above in relation to the
Hawking radiation.

7.4. On deterministic vs probabilistic models

Deterministic and probabilistic (or stochastic) models are usually
considered as opposite to each other such as quantum mechanics vs
Newtonian mechanics. In statistical mechanics represented by either Eq.
(30) to Eq. (33) for pure quantum configurations or Eq. (64) to Eq. (67)
for non-pure quantum configurations, the appearance of each individual
configuration in the system is only a probability, indicating that the
measurements would be very sporadic if conducted at the temporal and
spatial resolutions that the system experiences various configurations
which is dictated by the barriers between the configurations such as
those between the ferroelectric configurations of PbTiO3 without a
domain wall or with 90 or 180° domain walls, respectively [143]. When
the experimental resolutions are finer than those of system switching,
one observes ferroelectric behaviors with a tetragonal structure and
macroscopic polarization. When it is the opposite, one observes para-
electric behaviors with a cubic structure and without macroscopic po-
larization. This is similar to the bird cage thaumatrope where one
observes bird and cage separately with a slow spin speed and
bird-in-cage for a high spin speed [246]. It is thus self-evident that the
behaviors of individual configurations at its own scale is stochastic,
while their collective behaviors at larger scale are deterministic, which
is captured by statistical mechanics discussed in the present paper,
particularly the zentropy theory that nests all the way down to the scale
of electrons in quantum mechanics with the Heisenberg’s uncertainty
principle.

In discussing the passivity of metals as the key to our metals-based
civilization, Macdonald [190] articulated that the formation of a thin
reaction product film on the metal surface is deterministic, and there are
physical models can account for most, if not all, experimental observa-
tions and provide a robust basis for predicting the occurrence of
passivity breakdown and the evolution of localized corrosion damage in
a wide range of systems. It was further pointed out that the transition of
a specific metastable event to a stable event, and hence the nucleation of
a stable pit, is a rare probabilistic event, thus stochastic, determined by
the kinetics of repassivation that is dependent on the chemical compo-
sition of the environment, the nature of the breakdown sites, and on the
electrochemical properties of the system. It was also discussed that a
stochastic process incorporating short-term memory effects does indeed
yield the experimentally observed near-normal distributions in a critical
breakdown voltage in agreement with those derived deterministically.

In discussing the computable universes, Schmidhuber [191-193]
mentioned that although macroscopic properties of a system can often
be predicted by physical laws, microscopic properties are subject to
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fluctuations, representing additional information absent in the macro-
scopic physical laws. It was further pointed out that true randomness in
quantum mechanics means that there is no existing short algorithm that
can compute the precise collapse of the wave function which could be
due to the true randomness or our fundamental limited understanding of
the universe. A profound question is whether there exists a very short
program that can calculate the entire history and future of any systems
and yield not only the known physical laws but also every single
seemingly random elementary event in the systems. For efficiency and
practicality, truncating the gradient through the long short-term mem-
ory (LSTM) approach may be the way to go by enforcing constant error
flow through constant error carousels within special units [194].

The present paper shows the statistical nature of entropy from the
quantum scale in terms of electrons and phonons to the scale of black
holes. Yet the second law of thermodynamics is deterministic in
dictating the positive entropy production of any internal processes,
while the entropy of a system can either increase or decrease depending
on the interaction between the system and its surroundings. For
example, a system under internal statistical equilibrium has all its
macroscopic properties well-defined, while the properties of individual
atoms inside the system are truly statistical due to Brownian motion
which is also governed by the second law of thermodynamics. Never-
theless, one may ask what if the system includes the whole universe or
all universes [191-193]. Unfortunately, this question could not be
answered because there would be no surroundings of the system, thus no
observers.

This probably reflects the foundational value of the nested formula of
the zentropy theory, i.e., coarse graining at the scales below observation
and truncating in terms of the current limits of our knowledge of physics
and the infinite number of possible configurations. Our current knowl-
edge of quantum systems is limited by quantum mechanics which is
statistical in nature and can only predict the probabilities of various
possible electron distributions. However, by coarse graining of all
electrons, DFT prescribes that there is one unique electron density dis-
tribution for the ground state of a given system at zero K, which further
determines all observables of the system at scales higher than electrons.
This coarse graining process results in a deterministic outcome from
probabilistic lower-level information. By varying temperature and
pressure, probabilities of metastable non-ground-state configurations
become non-zero, and their statistical mixture with the ground-state
configuration results in measurable deterministic outcomes though
with certain uncertainty due to fluctuations of individual configurations,
which is Eq. (73) proposed by Bekenstein [165]. In some systems, it can
produce one or more critical points with singularity, and when such a
critical point is close to zero K, one has a quantum critical point. In
addition to pressure, singularity can be induced by any external vari-
ables shown in the combined law of thermodynamics (Eq. (7)).
Considering the similarity of Eq. (64) and Eq. (73), it seems plausible
that the singularity of black holes may also be predictable by the nested
formula of the zentropy theory through the deterministic and probabi-
listic integration.

8. Perspectives on future of thermodynamic modeling

In the CALPHAD method, the Gibbs energies of individual phases are
modeled as a function of temperature, pressure, and composition which
are controlled from the surroundings and dictate the ground-state
configuration of the system, and additional internal variables that
represent the non-ground-state configurations. The Gibbs energy builds
from pure element to binary and ternary systems and extrapolates to
multicomponent systems. In this special issue, Spencer presented over-
views of its development [10], and Olson and Liu [195] discussed the
computational materials design built on the CALPHAD method. In
addition to the monograph by Kaufman and Bernstein [8], there are two
books [196,197] dedicated to and other books [20,21,198] discussed
the CALPHAD method. The applications of CALPHAD databases have
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been addressed in many other publications [10,199] including those by
the present author [15,195].

The author’s perspectives on the future of thermodynamic modeling
are discussed in this section in three areas: the foundational lattice
stability in the CALPHAD modeling, the highly accurate free energy data
of individual phases and their efficient generation to circumvent the lack
of phase equilibrium data for new materials, and the development of
new tools for more automated procedures and new models to include
contributions from external electric and magnetic fields and internal
variables such as defects.

8.1. Lattice stability

As mentioned in the introduction, the digitization of thermody-
namics of multicomponent multiphase materials has been accomplished
by the CALPHAD method which models the free energy of each indi-
vidual phase as a function of external and internal variables [8,15,
195-197]. As a phase can be stable, metastable, or unstable under given
external conditions, the CALPHAD method effectively treats the phase
fraction, i.e., 100% for an individual phase, as an internal variable in
addition to other internal variables in non-ground-state configurations
such as short- and long-range ordering of atomic species and sponta-
neous magnetic and electrical polarizations. One key issue identified by
Kaufman was the modeling of a solution phase of two elements with
different stable structures under ambient conditions, such as the bcc
solid solution phase of Fe-Ni where the free energy of bcc-Ni must be
defined [7,200]. The free energy difference between the stable and
nonstable crystal structures of a pure element was subsequently termed
as the “lattice stability” [201-203] and enabled the free energy
modeling of individual phases across the full composition space of
multicomponent materials [8].

The pivotal role of the lattice stability is its inter-dependence with
the interaction parameters in a solution phase. Consequently, the value
of a lattice stability must be the same for all binary systems using this
lattice stability, and a change of its value results in the need to revise all
those binary systems and ternary and higher-order systems built on
those binary systems. The currently used lattice stability of pure ele-
ments, commonly referred as SGTE91 %%, was compiled more than 30
years ago and has enabled the development of many commercial data-
bases for multicomponent and multiphase materials [114,115,205] and
their successful applications to computational materials design [10,206,
2071, which along with the success of the Human Genome Project [208],
prompted the author to coin the term “materials genome”® denoting the
individual phases as the building blocks of materials [209].

It was inevitable that the definition of lattice stability and its eval-
uation were challenging and heavily debated from the beginning [44,
210] because of their conceptual importance in paradigm change for
thermodynamic modeling and at the same time many of those nonstable
structures being unstable. The limit of stability was discussed in Section
6.4 above. The entropy and thus free energies of unstable states could
not be directly predicted by DFT-based calculations through Eq. (37)
and Eq. (39) due to imaginary vibrational frequencies. While various
theoretical approaches have been discussed in the literature [45-52],
they all have individual strengths and weaknesses through various de-
grees of compromise between practical usefulness and physical sound-
ness. Common to most approaches is on the extrapolation from stable
regions to unstable regions in terms of independent variables such as
composition, pressure, temperature, or lattice distortion.

van de Walle [49,50] showed that the energies at the limit of stability
of several pure elements from DFT-based calculations agree with those
in SGTE91. As noted by Grimvall [211], a binary solution becomes un-
stable before reaching the unstable pure element. It is intuitive to think
that the extrapolation used in developing the lattice stability in SGTE91
was able to sense the limit of stability, thus the agreement between the
results by van de Walle [49,50] and SGTE91. However, it is not fully
satisfactory because if the pure element or the solution is quenched from
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a stable state to this unstable state, one would like to have the free en-
ergy of the true unstable state at various compositions in order to un-
derstand or simulate the transition from the unstable state to a stable
state, including the spinodal decomposition in many binary and multi-
component systems. It is noted that Kadkhodaei, Hong, and van de Walle
[212] considered the occurrence of hopping between local
low-symmetry distortions for a high-symmetry time-averaged structure
at high temperature. To compute the free energy in such phases, they
explored the system’s potential energy surface by discrete sampling of
local minima through a lattice gas Monte Carlo approach and by a
continuous sampling by means of a lattice dynamics approach in the
vicinity of each local minimum. The bee Ti was used as an example to
illustrate the approach, which was further extended to study diffusion
properties in bcc Ti and other elements [213,214]. This approach is
similar to the zentropy theory in considering a phase as a mixture of
local minima or configurations, but requires the information on the
existence of such a phase at high temperature. At 0 K, local minima are
the ground-state or non-ground-state configurations, while at high
temperatures each local minimum has contributions from all configu-
rations which reaches the extreme at the critical point between stable
and unstable states of the high-symmetry time-averaged macroscopi-
cally homogeneous structure as shown in Ce and FegPt [105].

On the other hand, Yang et al. [51] discussed the Cr lattice stability
derived by the CALPHAD and ab initio approaches and concluded that
the ab initio lattice stability of fcc-Cr at zero K can be a viable approach
as demonstrated through the modeling of the Fe-Cr and Ni-Cr binary
systems, though the free energy of fcc-Cr at finite temperature was not
discussed. Since the zentropy theory can predict the free energies of
unstable states as a function of internal variables based on the statistical
competition = among stable ground-state and  metastable
non-ground-state configurations, it is reasonable to expect that the
zentropy theory may have the potential to address this challenge.
Consequently, those configurations may be considered as the building
blocks instead of individual phases [209]. A recent attempt was made to
predict the free energies of fcc, bec, and hep Fe including magnetic
properties [247]. The subsequent challenge is how to obtain all the
configurations and potentially the astronomic number of configurations
as discussed in the next section.

8.2. Input data for thermodynamic modeling from zentropy and machine
learning models

In principles, thermodynamic modeling could be performed with
only thermochemical data as they are the derivatives of free energy.
However, most of thermochemical data are derived from measurements
of heat with large uncertainty, and Gibbs energies of individual phases
thus evaluated cannot give accurate transition conditions between
phases. Consequently, the Gibbs energy model parameters of all phases
need to be refined simultaneously using experimentally measured phase
transition data. This refinement step not only requires additional
experimental input, but also make the model parameters of all phases
dependent on each other though they may be related in principle to
some degree as implicated by the zentropy theory discussed above.

DFT-based calculations have provided useful input data for CAL-
PAHD modeling [12]. However, as discussed in the present paper, each
calculation is for one given configuration and does not represent the
properties of the phase. While the zentropy theory has demonstrated its
capability to accurately predict magnetic and ferroelectric transitions
for stoichiometric phases, its applicability to solution phases remains to
be tested in terms of both efficiency and accuracy. The author’s group is
actively developing tools and data infrastructure for the zentropy
approach and its application to solution phases.

Since DFT-based calculations are both computing resource intensive
and complex for free energies, the author’s group has developed the
open source DFT Tool Kits (DFTTK) [38,39] that streamlines the cal-
culations of entropy and post processes to obtain free energy. In last
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several years, machine learning (ML) models based on deep neural
networks (DNN) have been vastly implemented into the materials sci-
ence community. The author’s group has developed such a DNN ML
model, named SIPFENN (Structure-Informed Prediction of Formation
Energy), for predicting formation energy at zero K [215,216], which can
be installed through PyPI by pip install pysipfenn. The author’s group is
actively developing DNN ML models for free energy of given configu-
rations, providing data for the zentropy approach. Other ML models are
being developed by the community such as deep-learning models using
the atomistic line-graph neural network (ALIGNN) [217,218]. It is
anticipated that more and more ML models will be developed in the
community to predict free energy as a function of all possible internal
and external variables.

Another highly desired set of data for CALPHAD modeling is the
properties of the liquid phase. In principle, the properties of the liquid
phase can be predicted by AIMD [121-123] including heat capacity
[219], diffusivity [220], and enthalpy of mixing [221]. More recently,
Hong and van de Walle [222] presented an open-source code to predict
the melting temperature and enthalpy of fusion employing
Born-Oppenheimer molecular dynamics techniques under the iso-
baric-isothermal (NPT) ensemble and their small-size liquid-solid
coexistence method. This has further enabled them to develop ML
models for efficient prediction of properties of liquid of a broad range of
materials [223,224]. These approaches have the potential to greatly
enhance the quality of multicomponent CALPHAD databases, particu-
larly for discovery and design of new materials for high temperature
applications.

One key factor in the zentropy theory is the number of configurations
in materials systems. The Human Genome Project reports approximately
22,300 protein-coding genes with about 3.1 billion base pairs [208].
Their ratio is in the order of 10°, which is approximately equivalent to
the number of configurations of a supercell with 11 lattice sites in a
ternary phase, i.e., 3'! ~ 1.8 ¢ 10°, which could be lowered as some of
configuration are equivalent due to the symmetry that can be checked,
for example using the ATAT code [225]. These configurations cover
three pure elements, 30 compositions in three binary systems, and 45
ternary compositions, total 78 compositions. In addition to DFT-based
prediction for the free energy of all those configuration, the cluster
expansion implemented in the ATAT code [225] poses as an efficient
approach to predict the formation energy at zero K of various atomic
configurations for a given lattice structure and can be extended to the
prediction of their free energies [132]. Considering the 78 elements in
the SGTE pure element database [204], the number of ternary systems is
C(78,3) = 76,076. Assuming one third of the ternary systems being
practically useful and 10 phases per ternary system, the total number of
configurations is roughly estimated to be in the order of tens billions.
The author hopes that the prediction of their free energy as a function of
temperature, pressure/stress or strain, and electric/magnetic fields may
be available in not distant future with new physics-informed NN (PINN)
ML models [226]. It is further noted that recent approaches such as
supercell random approximates (SCRAPs) [227] and small set of ordered
structures (SSOS) [228] may help to reduce the supercell sizes and the
number of supercells needed.

An potential future application of the zentropy theory and the theory
of cross phenomena [16] is to predict kinetic coefficients for transition
between two states. As shown for Ce [134] and FesPt [135] with 9 and
512 configurations, respectively, a critical point in the temper-
ature/pressure and temperature/volume phase diagrams was predicted
by the zentropy theory. Above the critical point, there is only one
minimum on the Helmholtz energy as a function of volume, and the
transition is 2" order. While below the critical point, there are two
minima on the Helmholtz energy as a function of volume, and the
transition is 1% order between the two states of different volumes with
different mixtures of configurations. The common tangent of the two
minima gives the pressure of the two-state equilibrium, and their
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respective volumes represent the local equilibrium condition at their
interface during transition with the maximum on the Helmholtz energy
denoting the kinetic barrier for the transition through either spinodal
transformation for an initially unstable state between the two inflection
points on the Helmholtz energy curve or nucleation and growth for an
initially metastable state outside the two inflection points.

For diffusion processes, the author’s team used the DFT-based
method to predict the tracer diffusivity by manually moving the atom
along the diffusion pathway [110]. However, when the atom crosses the
inflection point on the free energy curve, and the system becomes un-
stable, the entropy could not be calculated due to imaginary frequencies
of phonon vibration, and the transition state theory had to be used by
imposing a constraint preventing from oscillating along the direction (in
momentum space) parallel to the diffusion direction to effectively
remove unstable vibrational modes. It would be an interesting research
topic to see how the zentropy theory could be applied to this case with
the position of the diffusion atom along the diffusion direction as an
internal variable.

8.3. Models and tools for thermodynamic modeling

There are well developed commercial tools for CALPHAD modeling
and a wide range of large CALPHAD databases for education, research,
and industrial applications [114,115,205]. For the continuous progress
of the field, there is a need for new tools so new thermodynamic and
other property models can be developed, tested, and compared.
Furthermore, the interdependence of model parameters in different
phases mentioned above makes the improvement of modeling difficulty
because change of one parameter necessitates the change of many other
parameters [13,14].

The author’s group started to develop an automated CALPHAD
modeling tool, Extensible Self-optimizing Phase Equilibria Infrastruc-
ture (ESPEI), a while ago with limited success due to the lack of flexible
computational engine [229]. Recently, the group developed an
open-source software package, PyCalphad, for thermodynamic calcula-
tions [230,231] and used it to develop a complete new ESPEI code [232,
233]. Furthermore, the modified quasichemical model in quadruplet
approximation (MQMQA) has been implemented in the software pack-
ages [237] with a number of other models being programed including
the universal quasichemical (UNIQUC) [238] model and its improved
variants [239,240] and Peng-Robinson equation [241] widely used in
the oil and gas community to describe critical phenomena between gas
and liquid [242-244]. PyCalphad and ESPEI are open-source as part of
an open source software ecosystem [236], available for scientists to
implement and test their own models, and capable of uncertainty
quantification [234] and sensitivity analysis [235].

9. Summary

Thermodynamics is at the core of science and nature, and thermo-
dynamic modeling based on the CALPHAD method has enabled the
community to quantitatively go beyond the equilibrium applications of
thermodynamics, understand and improve existing materials, and
design new materials. The present overview paper further discussed the
zentropy theory and the theory of cross phenomena for better prediction
of data for CALPHAD modeling. Based on the integration of quantum
mechanics and statistical mechanics, the zentropy theory provides new
capabilities to accurately predict free energy of individual phases from
the DFT-based calculations starting from the ground-state and non-
ground-state configurations. In keeping the entropy production due to
internal processes in the combined law of thermodynamics, the theory of
cross phenomena provides fundamental understanding of interactions of
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multi-variables and mathematical approaches to predict the cross phe-
nomena coefficients. The author’s perspectives on the potential appli-
cations of the zentropy theory and future directions of CALPHAD
modeling are also presented. While the future is deterministic, the
pathways can be very stochastic and uncertain and can involve
singularities.
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