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We report muon spin rotation (µSR) measurements of the temperature dependence of the absolute
value of the magnetic penetration depth and the magnetic field dependence of the vortex core size
in the mixed state of the non-symmorphic superconductor LaNiGa2. The temperature dependence
of the superfluid density is shown to be well described by a two-band model with strong interband
coupling. Consistent with a strong coupling of the superconducting condensates in two different
bands, we show that the field dependence of the vortex core size resembles that of a single-band
superconductor. Our results lend support to the proposal that LaNiGa2 is a fully-gapped, internally
antisymmetric nonunitary spin-triplet superconductor.

I. INTRODUCTION

Superconductors exhibiting nontrivial topology have
garnered significant attention in the field of condensed
matter physics. Of particular interest is the predic-
tion that topological superconductors can host Majo-
rana zero modes, which may be used as building blocks
for a quantum computer robust to environmental noise
[1, 2]. Recently, LaNiGa2 has been identified as a po-
tential topological superconductor via an investigation
of newly synthesized high-quality single crystals [1]. The
enhanced quality of the single crystals compared to pre-
viously studied polycrystalline samples has revealed a
topological electronic band structure arising from non-
symmorphic symmetries in the centrosymmetric space
group of LaNiGa2. In addition to the topological char-
acter, LaNiGa2 is believed to have an unconventional su-
perconducting order parameter that breaks time-reversal
symmetry (TRS). Zero-field (ZF) µSR measurements on
polycrystalline LaNiGa2 have detected the onset of weak
spontaneous internal magnetic fields at the supercon-
ducting transition temperature (Tc), which is a signa-
ture of a TRS breaking superconductor [4]. Furthermore,
two nodeless superconducting gaps have been inferred
from measurements of the temperature dependences of
the specific heat, upper critical field and magnetic pen-
etration depth (by a tunnel diode oscillator method) in
polycrystalline LaNiGa2 [5]. The occurrence of a node-
less two-gap superconducting state that breaks TRS has
been explained by an internally antisymmetric nonuni-
tary triplet (INT) state in which there is both spin-up
(↑↑) and spin-down (↓↓) pairing between electrons on two
different atomic orbitals [5–7].

The INT state has also been invoked to account for
fully-gapped TRS breaking in the compositionally related
noncentrosymmetric superconductor LaNiC2. Evidence
for a broken TRS superconducting state in LaNiC2 has
been observed by ZF-µSR measurements on a polycrys-
talline sample [8], although a ZF-µSR study of single

crystals observed the occurrence of weak internal mag-
netic fields only below T ∼ 2/3Tc [9]. Although different
experiments have yielded inconsistent conclusions on the
nature of the superconducting gap structure of LaNiC2

[10–16], the existence of two nodeless superconducting
gaps was recently unambiguously verified by transverse-
field (TF) µSR measurements of the low-field magnetic
penetration depth and low-temperature vortex core size
in the mixed state of single crystals [9]. The two nodeless
gaps manifest as a simultaneous crossover in the field de-
pendences of an effective magnetic penetration depth and
the vortex core size due to delocalization of the quasipar-
ticle vortex-core states associated with the smaller gap.

In stark contrast to the high-quality single crystals of
LaNiGa2 in which topological superconductivity has re-
cently been recognized [1], the electronic specific heat
of the polycrystalline LaNiGa2 sample investigated in
Ref. [5] exhibits a rather broad superconducting transi-
tion that is suggestive of significant inhomogeneity. The
shape of the broad transition and its evolution with ap-
plied magnetic field is potentially an indication of a dou-
ble phase transition. This raises the possibility of nearly
degenerate unconventional pairing states with critical
temperatures that are split by non-magnetic disorder.
Since disorder can alter the temperature dependence of
the physical quantities previously measured in polycrys-
talline LaNiGa2, further evidence of there being two
nodeless superconducting gaps is needed. Although a
single sharp superconducting transition in the temper-
ature dependence of the specific heat was reported in
single crystalline samples [1], no µSR studies have been
done on LaNiGa2 single crystals.

Here we report on a TF-µSR investigation of the su-
perconducting energy-gap structure in LaNiGa2 single
crystals. From measurements that probe the magnetic
field distribution in the vortex (mixed) state, we find
that the temperature dependence of the normalized su-
perfluid density for a magnetic field applied parallel to
the b-axis is consistent with two nodeless superconduct-
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ing energy gaps having magnitudes close to the sizes of
the two apparent gaps in LaNiC2. In contrast to LaNiC2,
however, the data for LaNiGa2 indicates strong interband
coupling. This is substantiated by the magnetic field de-
pendence of the vortex core size, which as expected for
strong coupling between two different band condensates,
resembles that of a single isotropic gap superconductor
in the clean limit.

II. EXPERIMENTAL DETAILS

Single crystals of LaNiGa2 were grown using a Ga de-
ficient self-flux technique, as described in Ref. [1]. Mag-
netic susceptibility measurements presented in the Sup-
plemental Material [17] show that bulk superconductiv-
ity occurs at Tc ∼ 2 K and all of the single crystals ex-
hibit nearly full superconducting shielding fraction. The
TF-µSR experiments were performed on the M15 sur-
face muon beamline at TRIUMF, utilizing a top-loading
dilution refrigerator. The sample consisted of multiple
b-axis aligned LaNiGa2 single crystals arranged in a mo-
saic and mounted onto a pure Ag plate of dimensions
12.5 mm × 22 mm × 0.25 mm, as shown in the inset of
Fig. 1(b). The crystals covered ∼ 70 % of the Ag plate.
To minimize the contribution to the TF-µSR signal from
muons stopping outside the sample, three thin wafers of
intrinsic GaAs were used to cover the exposed end of the
Ag backing plate. We note that GaAs does not produce
any detectable muon precession signal within the field
range considered in our study. The external magnetic
field was applied parallel to the b axis of the LaNiGa2
single crystals and perpendicular to the initial muon-spin
polarization P(t = 0). The magnetic field was applied
above Tc and the sample subsequently cooled down to the
desired temperature in the superconducting state. The
magnetic field distribution in the vortex state was probed
for each temperature and magnetic field by measuring the
time evolution of the muon-spin polarization via detec-
tion of the decay positrons from an implanted ensemble
of ∼ 15 million positive muons. Further details on the
TF-µSR method utilized in this study may be found in
Ref. [19].

III. DATA ANALYSIS AND RESULTS

Figure 1(a) displays representative TF-µSR asymme-
try spectra recorded in the normal and superconduct-
ing states of LaNiGa2 for an applied magnetic field of
H = 408 Oe. The weak damping of the TF-µSR asym-
metry spectrum in the normal state at T =2.5 K is due
to the magnetic field distribution associated with nuclear
dipole moments sensed by muons that stopped in the
sample and the exposed area of the Ag backing plate.
The larger depolarization rate of the TF-µSR signal at
0.096 K is a result of muons randomly sampling the spa-
tial distribution of magnetic field generated by the vortex
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FIG. 1. (a) TF-µSR asymmetry spectra measured above and
below Tc for a magnetic field of H=408 Oe. The oscillating
curves through the data points represent fits to Eqs. (11) and
(2) for temperatures above and below Tc, respectively. (b)
Fourier transform of the TF-µSR signal for T =0.096 K. The
large peak at 5.53 MHz is a result of muons stopping outside
the sample. Left inset: Fourier transform of the TF-µSR
signal for T = 2.5 K. Right inset: Photograph showing the
LaNiGa2 single crystals and GaAs wafers attached to the Ag
backing plate, which is anchored to the Ag sample holder of
the dilution refrigerator. The single crystals are mounted with
their b axis aligned in the direction of the applied magnetic
field, which is perpendicular to the plane of the Ag backing
plate.

lattice below Tc. Figure 1(b) shows Gaussian-apodized
Fourier transforms of the TF-µSR signals. The Fourier
transforms are only an approximate visual representation
of the magnetic field distribution detected by the muons,
because of the additional broadening by the apodization
used to remove the ringing and noise associated with
the finite time range and reduced number of muon de-
cay events at later times [19]. Below Tc, the Fourier
transform displays a distinct peak at the frequency corre-
sponding to the applied field associated with muons that
missed the sample and stopped in the Ag backing plate.
This background peak is superimposed on an asymmetric
lineshape that comes from muons that sensed the spatial
distribution of field of the vortex lattice and the nuclear
moments in the LaNiGa2 single crystals.

Above Tc, the TF-µSR asymmetry spectrum is well de-
scribed by the sum of two Gaussian-damped cosine func-



3

tions

A(t) = ase
−σ2

s t
2

cos(2πνst+ φ)

+ abge
−σ2

bgt
2

cos(2πνbgt+ φ) . (1)

The first term describes the signal from muons that
stop in the LaNiGa2 single crystals, while the second
term accounts for the signal coming from muons stop-
ping outside the sample. The precession frequencies νi
(i = s, bg) are a measure of the corresponding mean
local field Bi = 2πνi/γµ sensed by the muons, where
γµ/2π=13.5539 MHz/kG is the muon gyromagnetic ra-
tio. The parameter φ is the initial phase of the muon
spin polarization relative to the positron counters, which
depends on the degree of Larmor precession of the muon
spin in the applied field before reaching the sample.
The TF-µSR signals below Tc are well fit assuming

the following modified analytical Ginzburg-Landau (GL)
model [20] for the spatial variation of the internal mag-
netic field generated by the vortex lattice with supercur-
rents flowing in the ij (=ac) plane

B(r) =
∑

G

B0(1− b4)e−iG·r uK1(u)

λ2
ijG

2 + λ4
ij(nxxyy G4 + dG2

xG
2
y)

. (2)

Here b = B/Bc2 is the reduced field (where Bc2 =
Φ0/2πξ

2
ij is the upper critical magnetic field for a field ap-

plied perpendicular to the ij plane), B0 is the average in-
ternal magnetic field, G are the reciprocal lattice vectors
of the vortex lattice, u2=2ξ2acG

2(1 + b4)[1 − 2b(1− b)2],
K1(u) is a modified Bessel function, nxxyy and d are
dimensionless parameters arising from nonlocal correc-
tions, and λij and ξij are the magnetic penetration depth
and GL coherence length. Equation (2) accounts for po-
tential changes in the vortex lattice geometry, ranging
from hexagonal to square. The fits of the TF-µSR asym-
metry spectra below Tc were done by replacing the sam-
ple term in Eq. (11) with

As(t) = ase
−(σ2

n
+σ2

dis)t
2
∑

r

cos [γµB(r)t + φ] , (3)

where B(r) is given by Eq. (2). The depolarization rate
σn is the value of σs above Tc, which is due to the nuclear
dipoles in the sample and is independent of temperature.
The sum is over real-space positions in an ideal periodic
vortex lattice, while the depolarization rate σdis accounts
for further broadening of the internal magnetic field dis-
tribution by frozen disorder in the vortex lattice. Based
on previous µSR studies of type-II superconductors [21],
we assumed σdis is proportional to 1/λ2

ac.
Good fits to TF-µSR spectra recorded for an applied

field of H = 150 Oe were achieved for all temperatures
below Tc assuming an hexagonal vortex lattice, with
nxxyy = 0 and d = 0. The same is true for TF-µSR
spectra recorded for H≤ 400 Oe and T =0.096 K. How-
ever, for H = 800 Oe and T =0.096 K, a good fit could
not be achieved with the assumption of an hexagonal
vortex lattice. Instead, a good quality fit was achieved

by lifting this constraint, yielding n= (4.5±8.7)×10−8,
d= 0.29±0.18, and β=90±17◦, where β is the acute angle
of the rhombic unit cell of the vortex lattice. Even with-
out assuming the vortex lattice structure, we could not
achieve a good fit of an additional TF-µSR asymmetry
spectrum recorded for H=600 Oe and T =0.096 K. This
is perhaps due to a superposition of distorted hexago-
nal and square vortex lattices between the field-induced
hexagonal-to-square lattice transition. In all likelihood
the vortex-lattice transition is driven by the anisotropy
of the Fermi surface [22] in the ac plane, which is close
to having four-fold symmetry [1].
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FIG. 2. Temperature dependence of the normalized superfluid
density, λ2

ac(0)/λ
2
ac(T ). The circles denote the TF-µSR data

points for LaNiGa2 in an applied magnetic field H =150 Oe
and the error bars give the standard error at each temper-
ature. The dashed curve is the normalized superfluid den-
sity from single-band BCS theory [23] assuming the reduced
value of Tc = 1.84 K for H = 150 Oe determined from bulk
magnetic susceptibility measurements presented in the Sup-
plemental Material [17]. The upper solid curve is the total
normalized superfluid density in the two-band model for the
density of states parameter n1 = 0.2, with contributions from
the individual bands shown below it. Shaded areas denote the
1-σ uncertainty regions associated with the model fit. The fit
parameters are given in the Appendix.

As one of few techniques able to reliably probe the
absolute value of the magnetic penetration depth, µSR
correctly obtains the shape of the superfluid density
ρs(T ). We can then infer information about the mag-
nitude, anisotropy and temperature dependence of the
energy gap, and the strength and nature of the pair-
ing interaction, by fitting generalized Bardeen-Cooper-
Schrieffer (BCS) models to the superfluid density. For
LaNiGa2, the normalized low-field superfluid density,
ρs(T )/ρs(0)=λ2

ac(0)/λ
2
ac(T ), where λac(0)= 1516±4 Å,

is shown in Fig. 2. We can immediately see from Fig. 2
that the superfluid density in LaNiGa2 is distinctly dif-
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ferent from that of a single-band BCS superconductor,
in particular having larger magnitude in the upper half
of the superconducting temperature range. We will later
see that this is the experimental signature of strong in-
terband pairing in the presence of a density of states im-
balance between the bands. The value of λac(0) is much
smaller than the µSR-determined value of the effective
magnetic penetration depth λ(0) = 3500± 100 Å in a
polycrystalline LaNiGa2 sample [4]. For polycrystalline
samples, the internal magnetic field distribution mea-
sured by µSR in the vortex state is an average over all
orientations of the external magnetic field with respect
to the crystalline axes. Consequently, λ(0) is an aver-
age of the a-axis, b-axis and c-axis magnetic penetration
depths, which have been estimated to be λa = 1740 Å,
λb = 5090 Å and λc = 1890 Å from a combination of
thermodynamic critical field Hc(T ) and anisotropic up-
per critical field Hc2(T ) data for LaNiGa2 single crystals
[1]. We note that the value of λac(0) determined here
by fits of the TF-µSR asymmetry spectra with Eq. (2)
agrees with the value λac = 1512±6 Å calculated from
the second moment 〈∆B2〉 of the internal magnetic field
distribution probed by the muons, where 〈∆B2〉 is de-
termined from fits of the TF-µSR spectra below Tc to
the sum of four Gaussian-damped cosine functions (see
Fig. S2 in the Supplemental Material [17]). This alterna-
tive analysis method [2] has been employed extensively
to determine the absolute value of the magnetic penetra-
tion depth from µSR data on type-II superconductors,
but does not yield information on the vortex-core size.

To capture the behavior of the superfluid density, we
turn to a two-band BCS model, which can be viewed as
the low energy effective theory of a superconductor dis-
playing significant anisotropy of pairing over the Fermi
surface, but without nodal lines or point nodes in the en-
ergy gap. The two-band model we use has been presented
in detail in Ref. [25] and has been successfully used to de-
scribe the superconductivity in the non-centrosymmetric
material LaNiC2 (Ref. [9]) — although we note from the
outset that the inferences drawn about the pairing in-
teractions in LaNiGa2 are quite different from those in
LaNiC2, likely reflecting the different symmetry-allowed
superconducting order parameters in the two materials.

In a nutshell, the two-band model partitions the Fermi
surface into two disparate pieces, and allows for pairing
interactions within the bands (intraband pairing, charac-
terized by interaction parameters λ11 and λ22) and pair-
ing interactions between the bands (interband pairing,
characterized by interaction parameters λ12 = λ21). As
shown in Refs. [25] and [9], the usual situation is for the
intraband pairing in one of the bands to dominate, and
therefore for the interband interaction λ12 (or λ21) to be
significantly smaller than the dominant intraband inter-
action. However, when we solve the gap equation for
this model and fit to the superfluid density of LaNiGa2,
as described in the Appendix, we find that the inter-
band interaction dominates in LaNiGa2 (λ12≫λ11, λ22)
— something that has in fact been proposed theoreti-

cally for the unusual type of superconductivity thought
to exist in LaNiGa2 [5, 7].

As we can see in Fig. 2, the two-band model pro-
vides an excellent fit to the normalized superfluid density,
λ2
ac(0)/λ

2
ac(T ), and is readily able to capture an unusual

feature of the data: the significant enhancement of super-
fluid density in the upper half of the temperature range
compared to the single-band BCS curve. We note, and
it can be seen in Ref. [25], that the usual situation in the
two-band model is for the total superfluid density to fall
below the single-band BCS limit. However, the enhance-
ment of the superfluid density observed in LaNiGa2 is a
natural consequence of predominantly interband pairing,
combined with an imbalance in the density of states of
the two bands. Since the superfluid density in each band
is purely a function of ∆/T , it is possible for the total
superfluid density to exceed the BCS limit, as long as
one of the gaps is enhanced above the BCS value and the
relative superfluid weight (γ parameter in our model) is
balanced in favour of the band with the larger gap. The
energy gaps obtained from fitting the two-band model are
plotted in the Appendix (see Fig. 5) and indeed reveal
such an enhancement of the dominant gap.

BCS-type superconductivity is characterized by ther-
mally activated behaviour in low temperature properties
such as the superfluid density: accordingly, the leading
low temperature behaviour of the superfluid density (i.e.,
the temperature range over which significant T depen-
dence develops) is set by the magnitude of the subdom-
inant gap. This is particularly apparent in the lower,
band-2 curve in the decomposition of the normalized su-
perfluid density in Fig. 2. From this we obtain a gap ratio
of ∆2(0)/kBTc = 1.25 for the subdominant band. In the
two-band model, the magnitude of the dominant gap is
usually set by Tc, but here we find that the dominant
gap is larger, with ∆1(0)/kBTc = 2.7, much bigger than
the BCS gap ratio of 1.76. We note that the gap ratios
we find here are somewhat comparable to the values 1.29
and 2.04 deduced from superfluid density measurements
of polycrystalline LaNiGa2 in Ref. [5]. Within the two-
band model, the enhancement above the usual BCS gap
ratio is a direct consequence of the strong interband inter-
action. Finally, the fits reveal that the intraband pairing
in band 1 is intrinsically repulsive — i.e., it is only super-
conducting because of the interband interaction. These
results are summarized in Table 1 in the Appendix.

Figure 3 shows the dependence of λac and ξac on the
applied magnetic field for T =0.096 K. BelowH=400 Oe,
which corresponds to the reduced field b∼0.4, λac is inde-
pendent of the applied field. This is in stark contrast to
the rapid increase in λij (ij=ab, bc or ac) with increas-
ing field at low b determined by µSR in superconductors
with gap nodes [21, 26] or strong gap anisotropy [27, 28].
A strong H dependence of λij determined by µSR may
also occur at low b in weakly-coupled two-band supercon-
ductors, due to a faster suppression of the contribution
from the weaker small-gap band to the superfluid density
[29–31].
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FIG. 3. (a) Magnetic field dependence of λac in LaNiGa2
for T = 0.096 K from fits indicating hexagonal and square
vortex lattices for H≤ 400 Oe and H=800 Oe, respectively.
(b) Magnetic field dependence of ξac in LaNiGa2. The solid

curve through the data points is a fit to ξac=a+b/
√
H, where

a=374±19 Å and b=2704±269 Å·Oe1/2.

In general, an increase in the µSR-determined value
of λij with increasing magnetic field does not necessar-
ily imply a field-induced change in the superfluid density,
but may instead reflect a failure of the assumed model
for B(r) to adequately describe changes in the decay of
magnetic field around the vortices as the overlap between
vortices increases [21]. We also note that not all µSR
studies assume a theoretical model for B(r). A strong
decrease in the square root of the second moment of the
local magnetic field distribution measured by µSR in the
vortex state of various superconductors has been inter-
preted in terms of a field-induced reduction of the su-
perfluid density or increase in the “true” magnetic pene-
tration depth [32–35]. Nevertheless, the H-independent
behavior of λac in Fig. 3(a) up to H =400 Oe indicates
that the field does not induce a change in the superfluid
density below b∼0.4.

The absence of any change in λac for LaNiGa2 below
b∼0.4 rules out the presence of gaps nodes and is in stark
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FIG. 4. Comparison of the magnetic field dependences of
the fitted values of (a) λac and (b) ξac in LaNiGa2 for T =
0.096 K and H ‖b with the values of λbc and ξbc in LaNiC2

for T = 0.05 K and H ‖ a from Ref. [9]. The solid lines
through the data point in (a) are guides to the eye. The

curves through the data points in (b) are fits to rij0 =a+b/
√
H ,

where a=168(28) Å and b=5504(452) Å·Oe1/2 for the core
size rac0 in LaNiGa2. The fit to the field dependence of the
core size rbc0 for LaNiC2 is to the data at H≤400 Oe, where
a = 0 Å and b = 4986(228) Å·Oe1/2. The hexagonal and
square data symbols for LaNiGa2 indicate the geometrical
arrangement of the vortices.

contrast to the strong field dependence of λbc in the non-
centrosymmetric superconductor LaNiC2 [see Fig. 4(a)].
In LaNiC2, λbc exhibits an H-linear dependence with a
slope change above b ∼ 0.2, which is indicative of two
superconducting gaps. By contrast, the field dependence
of λac in LaNiGa2 closely resembles the behavior of the
effective magnetic penetration depth measured by µSR
in V3Si, which also exhibits an hexagonal-to-square vor-
tex lattice transition accompanied by a change in the
fitted value of λij [20]. Recent experiments suggest V3Si
has two distinct nodeless superconducting gaps [36, 37].
Consequently, the constant value of λac below b∼0.4 for
LaNiGa2 does not rule out the occurrence of two gaps.

Less ambiguous is the meaning of the field dependence



6

of ξac shown in Fig. 3(b), which except at low H , more
or less tracks the dependence of the vortex core size on
magnetic field [21]. The vortex core size (r0) is accu-
rately determined by calculating the absolute value of
the supercurrent density profile |j(r)| from the exper-
imental B(r) and defining r0 to be the distance from
the core center along the nearest-neighbor vortex di-
rection to the peak in |j(r)| [38]. It has been shown
that the field dependence of r0 measured by µSR pre-
cisely accounts for the field dependence of the electronic
thermal conductivity measured in V3Si, 2H-NbSe2 and
LuNi2B2C [21]. The physical picture is that the vor-
tex core size shrinks with increasing magnetic field as a
result of an increased intervortex transfer of quasiparti-
cles at higher fields, where the distance between vortices
is smaller [39, 40]. The increased delocalization of the
bound quasiparticle vortex core states is detected in the
electronic thermal conductivity measurements [41]. As
can be seen in Figs 3(b) and 4(b), the field dependences of
ξac and the vortex core size rac0 for LaNiGa2 are approxi-

mately described by an expression of the form a+b/
√
H,

which is the predicted behavior of the vortex core size in
clean isotropic-gapped BCS superconductors [42]. This
is distinct from the two-band behavior of the vortex core
size in LaNiC2 [see Fig. 4(b)] and that reported earlier
for 2H-NbSe2 [29], where the core size rapidly decreases
with increasing field and becomes independent of H at
higher fields — although admittedly there is insufficient
data for LaNiGa2 at higher field (because of the field-
induced vortex-lattice transition) to completely rule out
a crossover to H-independent behavior.

The gap values determined from the analysis of the
data in Fig. 2 (∆1 = 0.43 meV and ∆2 = 0.20 meV)
are comparable to the size of the two gaps in LaNiC2

(∆1 = 0.42 meV and ∆1 = 0.18 meV) determined in
Ref. [9]. Hence, the different field dependences of λij

and rij0 exhibited by LaNiGa2 and LaNiC2 in Figs. 4(a)
and 4(b) are not due to dissimilar sizes of the two gaps.
Interestingly, the low-temperature H → 0 extrapolated
value of λac for LaNiGa2 is close to the low-temperature
H → 0 extrapolated value of λbc for LaNiC2, and the
low-temperature, low-field values of rac0 for LaNiGa2 and
rbc0 for LaNiC2 are also comparable. It is possible that
with increasing field a significant anisotropy develops
for the ratios λac/λbc and rac0 /rbc0 , due to two-gap or
anisotropic single-gap superconductivity. However, the
H-independent behavior exhibited by λac in LaNiGa2 for
H≤400 Oe suggests that this is unlikely to be the origin
of the different field dependences of λij and rij0 for the
two compounds displayed in Figs. 4(a) and 4(b).

Theoretically, it has been shown that in two-band s-
wave superconductors with a significant difference in the
magnitudes of the two gaps, the spatial variation of the
superconducting order parameter near the vortex core is
the same in both bands when there is strong interband
coupling [43–45]. Consequently, the magnetic field de-
pendence of the vortex-core size in the different bands
is the same and resembles that of a single-band super-

conductor. Thus, the single-gap like field dependences
of λac and rac0 for LaNiGa2 may be attributed to the
strong interband coupling deduced from the analysis of
the temperature dependence of the normalized superfluid
density.
To summarize, we have used µSR to investigate the

temperature dependence of the superfluid density and
magnetic field dependence of the vortex core size in
LaNiGa2 single crystals. Together they are explained by
two-band nodeless gap superconductivity with strong in-
terband coupling. This lends support to the applicability
of the proposed INT pairing state [5–7] to superconduc-
tivity in LaNiGa2, which attributes the occurrence of the
two gaps to the two spin-triplet states, ↑↑ and ↓↓, asso-
ciated with Cooper pairing of electrons on two different
Ni orbitals. The strong interband pairing inferred from
our experimental results is notably inherent in the INT
state.

IV. APPENDIX: TWO-BAND

SUPERCONDUCTIVITY

A. Two-band BCS theory

In the Matsubara formalism, the temperature depen-
dent gap equation for a weak-coupling superconductor
is

∆k = 2πTN0

ω0
∑

ωn>0

〈

Vk,k′

∆k′

√

∆2
k′ + ~2ω2

n

〉

FS

(4)

where ωn = 2πT (n+ 1
2 ) are the fermionic Matsubara fre-

quencies, ∆k is the gap parameter at wave vector k, N0

is the two-spin density of states, Vk,k′ is the pairing inter-
action, 〈...〉FS denotes an average over the Fermi surface
and ω0 is a high frequency cutoff.
The two-band superconductor describes situations in

which the gap variation over the Fermi surface is approx-
imately bimodal and can be approximated by two distinct
gap scales, ∆1 and ∆2, one for each band. As discussed
in Ref. [25], the Fermi surface average is replaced by a
sum over bands, and the pairing interaction is parameter-
ized by a 2× 2 symmetric matrix λµν , with the diagonal
terms λ11 and λ22 describing intraband pairing, and the
off-diagonal terms λ12 = λ21 the interband interaction.
The gap equation then takes the simplified form

∆ν =
∑

µ=1,2

nµλνµ2πT

ω0
∑

ωn>0

∆µ
√

∆2
µ + ~2ω2

n

, (5)

where the relative densities of states for each band, nµ,
obey n1 + n2 = 1. For a given choice of parameters
{n1, λ11, λ22, λ12}, Eq. (5) is solved numerically, from
which we obtain the temperature dependence of the gap
parameters ∆1 and ∆2, as shown, for example, in Fig. 5.
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FIG. 5. Temperature dependence of the energy gaps, ∆1

and ∆2, for Tc = 1.84 K in the two-band model, for den-
sity of states parameter n1 = 0.2. Shaded areas denote the
1-σ uncertainty regions associated with the model fit. The
zero-temperature gap ratios, ∆(0)i/kBTc, are 2.7 and 1.25,
respectively.

B. Superfluid Density

Superfluid density is a thermal equilibrium property
of the superconductor and is readily obtained within the
Matsubara formalism once the energy gaps are known.
For band ν, the normalized superfluid density is

ρν(T ) =
λ2
ν(0)

λ2
ν(T )

=
∑

ωn>0

∆2
ν

(∆2
ν + ~2ω2

n)
3/2

. (6)

The total normalized superfluid density is a weighted sum
of the contributions from each band,

ρ(T ) = γρ1(T ) + (1− γ)ρ2(t) , (7)

where the weighting factor 0 < γ < 1 is determined by
the plasma frequency imbalance balance the bands. Note
that γ is distinct from the density of states parameter n1,
as it includes Fermi velocity information:

γ =
n1v

2
1

n1v21 + n2v22
, (8)

where v1 and v2 are the rms Fermi velocities of the two
bands.

C. Fitting procedure and results

A least-squares optimization is used to search for best-
fit parameters in the four-dimensional parameter space
{n1, λ11, λ22, λ12}. For each parameter choice, the band-
specific energy gaps and superfluid densities are deter-
mined at each of the experimental temperatures via nu-
merical solution of Eqs. (5) and (6). As shown in Eq. (7),

the total superfluid density is a weighted combination of
the band-specific superfluid densities. While the weight-
ing coefficient γ is formally an additional fit parameter,
a closed-form expression exists for its optimal value, so
that it need not be included in the minimization search.
γopt is found by minimizing the χ2 merit function

χ2 =

∣

∣

∣

∣

~ρexpt − ~ρmodel

~σ

∣

∣

∣

∣

2

=

∣

∣

∣

∣

~ρexpt − ~ρ2 − γ∆~ρ

~σ

∣

∣

∣

∣

2

=
γ2|∆~ρ|2 − 2γ∆~ρ · (~ρexpt − ~ρ2) + |~ρexpt − ~ρ2|2

|~σ|2
(9)

where ∆~ρ = ~ρ1 − ~ρ2. Here the vector quantities en-
code the discrete temperature dependences of the vari-
ous quantities, including experimental and model super-
fluid densities, and the measurement errors ~σ. Minimiz-
ing with respect to γ we obtain

γopt =
∆~ρ · (~ρexpt − ~ρ2)

|∆~ρ|2 . (10)

fit parameter n1 = 0.1 uncertainty n1 = 0.2 uncertainty
λ11 -0.15 ±0.039 -0.14 ±0.005
λ22 0.35 ±0.003 0.27 ±0.026
λ12 1.54 ±0.26 1.63 ±0.34
γopt 0.71 0.81

TABLE S1. Best-fit parameters and their uncertainties, for
n1 = 0.1 and n1 = 0.2.

In practice, the optimization depends only weakly on
the choice of density of states parameter n1, which we
set to fixed values. We present results in Table 1 for
n1 = 0.1 and n1 = 0.2, noting that fits are noticeably
worse for n1 < 0.1 and n1 > 0.2. Figures 2 and 5 show
the fits and gaps for n1=0.2, which are practically indis-
tinguishable from the fits for n1 = 0.1. Note that while
the λ11 parameter appears to vary strongly between the
two cases, it is the combination n1λ11 that determines
the intraband pairing strength in the first band, and this
combination remains approximately constant. From this
we conclude that while the intrinsic pairing strength in
the dominant band is actually replusive in LaNiGa2, it
is overwhelmed by the very significant interband contri-
bution to its pairing. We reiterate that the experimental
signature of this is the enhancement of ρs(T ) in the up-
per half of the superconducting temperature range, well
in excess of the single-band BCS behaviour. We note
that this is quite different from LaNiC2, which shows no
such enhancement, and has far less significant interband
pairing.
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Gradhand, B. Újfalussy, and J. Quintanilla, Quantitative
theory of triplet pairing in the unconventional supercon-
ductor LaNiGa2, Phys. Rev. B 101, 100506(R) (2020).

[8] A. D. Hillier, J. Quintanilla, and R. Cywinski, Evidence
for time-reversal symmetry breaking in the noncentrosym-
metric superconductor LaNiC2, Phys. Rev. Lett. 102,
117007 (2009).

[9] S. Sundar, S. R. Dunsiger, S. Gheidi, K. S. Akella, A. M.
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and temperature dependence of the superfluid density in
LaFeAsO1−xFx superconductors: A muon spin relaxation
study, Phys. Rev. Lett. 101, 097009 (2008).
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SUPPLEMENTAL MATERIAL

Sample Characterization

To characterize the LaNiGa2 single crystals used in
the mosaic for the µSR experiment, we estimated the
superconducting shielding fraction from zero-field cooled
(ZFC) bulk magnetic susceptibility measurements. The
data is reported in Table S1. All of the single crys-
tals show nearly full magnetic shielding. Given the ir-
regular shape of the single crystals, we did not correct
for demagnetization effects. However, the measurements
were performed with the applied magnetic field along the
basal plane of each single crystal, where demagnetiza-
tion effects are minimal. The superconducting transition
temperature (Tc) was measured for a few of the single
crystals. As shown in Fig. S1(a) the onset of the tran-
sition in bulk magnetic susceptibility is above 2 K, and
nearly complete below 1.9 K. The relatively large mag-
netic shielding observed in the field cooled (FC) measure-
ments indicate relatively low vortex pinning, which is an
indication of good sample quality.
Figure S1(b) shows bulk magnetic susceptibility

measurements performed on one of the single crystals for
different magnetic fields applied parallel to the b axis.
From these measurements the value of Tc for a magnetic
field of H = 150 Oe is estimated to be T = 1.84 K, as
shown in Fig. S1(c). This value is in agreement with
the resistivity measurements on LaNiGa2 single crystals
reported in Ref. [1].

Determination of λac from the Second Moment

of the Internal Magnetic Field Distribution

Provided λac≫ξac, λ
−4
ac is proportional to the vortex-

lattice contribution to the second moment 〈∆B2〉 of the
internal magnetic field distribution, P (B), probed by
µSR [2]. Following the method described in Ref. [3], the
TF-µSR asymmetry spectra were fit to the sum of four
Gaussian-damped cosine functions

A(t) =

3
∑

i=1

aie
−σ2

i
t2 cos(2πνit+ φ)

+abge
−σ2

bgt
2

cos(2πνbgt+ φ) ,

where the first term denotes the contribution from the
LaNiGa2 sample and the second term denotes the back-
ground contribution from muons that did not stop in the
sample.
The second moment of the internal magnetic field dis-

tribution of the LaNiGa2 sample is obtained as follows

〈∆B2〉 =
3

∑

i=1

ai
a1 + a2 + a3

[

(

σi

γµ

)2

+ (Bi − 〈B〉)2
]

,

where γµ/2π = 13.5539 MHz/kG is the muon gyromag-
netic ratio, Bi = 2πνi/γµ and 〈B〉 is the first moment

TABLE S1. Superconducting shielding fraction of the
LaNiGa2 single crystals for T =1.85 K and H=10 Oe.

Single Crystal Superconducting shielding fraction

1 95 %
2 98.6 %
3 89 %
4 88 %
5 88 %
6 89 %
7 89 %
8 87.8 %
9 88.5 %
10 94 %
11 98 %
12 99 %
13 92 %
14 91 %
15 100 %
16 92 %
17 97 %
18 91 %
19 100 %
20 96 %
21 95 %
22 94 %
23 100 %
24 100 %
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FIG. S1. (a) Temperature dependence of the bulk magnetic
susceptibility of three of the LaNiGa2 single crystals recorded
under zero-field cooled (ZFC) and field-cooled (FC) condi-
tions. (b) Measurements of the bulk magnetic susceptibility
of one of the single crystals for different values of magnetic
field applied parallel to the b axis under ZFC conditions. (c)
Temperature dependence of the upper critical magnetic field
determined from the measurements in (b). The data point
represented by an open circle is from resistivity measurements
in Ref. [1]. As shown, the value of Tc at H =150 Oe is esti-
mated to be 1.84 K.
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FIG. S2. Comparison of the temperature dependence of the
magnetic penetration depth λac in LaNiGa2 from fits of the
TF-µSR asymmetry spectra as described in the main article
(i.e., assuming an analytical model for the field profile B(r)
generated by the vortex lattice) and calculated from the sec-
ond moment 〈∆B2〉 obtained from fits of the TF-µSR spectra
to the sum of four Gaussian-damped cosine functions. The
dashed horizontal lines are fits of each data set below 0.5 K,
which yield λac(0)=1516±4 Å and λac=1512±6 Å for the
two different analysis methods.

given by

〈B〉 =
3

∑

i=1

aiBi

a1 + a2 + a3
.

The vortex lattice (VL) contribution is obtained by sub-
tracting the nuclear dipole contribution to 〈∆B2〉 as fol-
lows

〈∆B2〉VL = 〈∆B2〉 −
(

σn

γµ

)2

.

Assuming an hexagonal vortex lattice, λac is related to
〈∆B2〉VL by the following equation

λac[Å] = 104

√

4.83(1− b)[1 + 1.21(1−
√
1− b)3]

γµ〈∆B2〉1/2VL

,

where b=B/Bc2 is the reduced field for a field applied
perpendicular to the ac plane. Figure S2 shows the tem-
perature dependence of λac obtained in this way com-
pared to the results obtained by the method described in
the main article.
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