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Tree search algorithms, such as branch-and-bound, are the most widely used tools for solving combinatorial

and non-convex problems. For example, they are the foremost method for solving (mixed) integer programs

and constraint satisfaction problems. Tree search algorithms come with a variety of tunable parameters that

are notoriously challenging to tune by hand. A growing body of research has demonstrated the power of using

a data-driven approach to automatically optimize the parameters of tree search algorithms. These techniques

use a training set of integer programs sampled from an application-specific instance distribution to find a

parameter setting that has strong average performance over the training set. However, with too few samples,

a parameter setting may have strong average performance on the training set but poor expected performance

on future integer programs from the same application. Our main contribution is to provide the first sample

complexity guarantees for tree search parameter tuning. These guarantees bound the number of samples

sufficient to ensure that the average performance of tree search over the samples nearly matches its future

expected performance on the unknown instance distribution. In particular, the parameters we analyze weight

scoring rules used for variable selection. Proving these guarantees is challenging because tree size is a volatile

function of these parameters: we prove that, for any discretization (uniform or not) of the parameter space,

there exists a distribution over integer programs such that every parameter setting in the discretization results

in a tree with exponential expected size, yet there exist parameter settings between the discretized points that

result in trees of constant size. In addition, we provide data-dependent guarantees that depend on the volatility

of these tree-size functions: our guarantees improve if the tree-size functions can be well approximated by
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simpler functions. Finally, via experiments, we illustrate that learning an optimal weighting of scoring rules

reduces tree size.
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1 INTRODUCTION

Many widely used algorithms are customizable: they have tunable parameters that have an enor-
mous effect on runtime, solution quality, or both. Tuning parameters by hand is notoriously te-
dious, time-consuming, and error-prone. The challenges associated with parameter tuning are
especially evident for tree search algorithms, which are the most widely used tools for solving
combinatorial and nonconvex problems. For example, CPLEX is a popular commercial software
that uses branch-and-bound (B&B) [Land and Doig 1960], a tree search algorithm, to solve inte-
ger programs. CPLEX offers 172 parameters for the user to tune, detailed by a 170-page reference
manual [IBM ILOG Inc 2017], in addition to many internal parameters that are not readily avail-
able for the user to tune. CPLEX’s performance is sensitive to small changes in these parameters,
and particular parameter settings have varying performance across application domains. Properly
tuning these parameters has been shown to lead to significant speedups.1

A growing body of research has studied how to use a data-driven approach to automate tree
search parameter tuning [e.g., Alvarez et al. 2017; Ansótegui et al. 2009; Balcan et al. 2020c, d;
Di Liberto et al. 2016; Gasse et al. 2019; Gomes and Selman 2001; He et al. 2014; Horvitz et al. 2001;
Hutter et al. 2010, 2011, 2009, 2014; Kadioglu et al. 2010; Khalil et al. 2016, 2017; Kleinberg et al.
2017, 2019; Kruber et al. 2017; Lagoudakis and Littman 2001; Leyton-Brown et al. 2009; Liang et al.
2016; Lobjois and Lemaître 1998; Sabharwal et al. 2017; Sandholm 2013; Song et al. 2020, 2018; Tang
et al. 2020; Weisz et al. 2018, 2019; Xia and Yap 2018; Xu et al. 2011]. Many of these techniques use a
training set of typical problem instances from the particular application domain to learn parameter
settings that have strong average empirical performance over the training set. This training set is
assumed to be sampled from an unknown, application-specific distribution, such as a distribution
over winner determination problem instances from combinatorial sourcing auctions [Sandholm
2013]. These applied approaches to parameter tuning have led to breakthroughs in discrete opti-
mization.

In this article, we provide the first generalization guarantees for tree search parameter tuning.
With too few samples, a parameter setting may have strong performance on average over the
training set but poor future performance on problems from the same application domain that
are not already in the training set. Therefore, it is crucial to understand how many samples are
sufficient to ensure that this type of overfitting does not occur. The guarantees we provide bound,
for any parameter setting, the difference between the size of the search tree the algorithm builds on
average over the training set and the expected size of the tree the algorithm will build on future,

1ParamILS, for example, led to speedup factors ranging from 2 to 23 [Hutter et al. 2009].
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unseen instances. Therefore, we can be confident that no matter how we tune the parameters—
optimally or suboptimally, manually or automatically—if a parameter setting leads to small trees
on average over the training set, it will also lead to small trees on problem instances from the same
application domain that are not contained in the training set.

1.1 Our Contributions

We provide guarantees for learning tree search variable-selection policies. A tree search algorithm
systematically partitions the input problem’s feasible region to find an optimal solution. The al-
gorithm organizes this partition via a tree: the original problem is at the root and the children
of a given node represent the subproblems formed by partitioning the feasible set of the parent
node. This partition is typically defined by constraining a carefully selected variable. For example,
when solving a binary program, one set of the partition might be defined by adding the constraint
x[i] = 0 for some variable x[i], in which case, the other set of the partition would be defined by
adding the constraint x[i] = 1. A crucial question in tree search algorithm design is determining
which variable to branch on at each step. An effective variable-selection policy can have a tremen-
dous impact on the size of the tree and, therefore, the speed of the overall algorithm. For the typical
sound tree search algorithms, any variable-selection policy preserves soundness.

There is no known optimal variable-selection strategy and the vast majority of existing tech-
niques are backed only by empirical comparisons. In the worst case, finding an approximately
optimal branching variable, even at the root of the tree alone, is NP-hard [Liberatore 2000]. Most
existing variable-selection policies assign a real-valued score to each variable and select the vari-
able with the highest score. Researchers have proposed a variety of scoring rules [Achterberg 2009;
Beale 1979; Bénichou et al. 1971; Gauthier and Ribière 1977; Gilpin and Sandholm 2011; Linderoth
and Savelsbergh 1999], none of which is universally optimal.

As our main contribution, we provide generalization bounds for learning how to weight any
set of scoring rules. In other words, given any d scoring rules score1, . . . , scored , we provide
generalization bounds for learning weighted scoring rules μ1score1 + · · · + μdscored , where
μ1, . . . , μd ∈ [0, 1] are parameters that can be fine-tuned to the application domain at hand.
The tree search algorithm then branches on the variable that maximizes this weighted score.
Our results also generalize to learning weighted products score

μ1
1 · · · score

μd
d

. As we describe in
Section 3.1, prior research has investigated the empirical performance of tree search using various
scoring rules and parameter settings [Achterberg 2009; Beale 1979; Bénichou et al. 1971; Gauthier
and Ribière 1977; Linderoth and Savelsbergh 1999]. We provide the first generalization guarantees
for tuning these parameters.

In order to prove these guarantees, we analyze how these parameters impact the search tree
that the algorithm builds. This is challenging because, as we prove in Section 3.5, a tiny shift in
parameters can trigger an exponential jump in tree size. Specifically, for any discretization of the
parameter space, we identify an infinite family of distributions over mixed integer linear program-
ming (MILP) instances such that every point in the discretization results in a B&B tree with expo-
nential size in expectation, but there exist infinitely-many parameters outside of the discretized
points that result in a tree with constant size with probability 1. A small change in parameters
can thus cause a significant change in the algorithm’s behavior. This is unlike sample complexity
guarantees that are typically found in machine learning theory, where there is typically a straight-
forward connection between a function’s parameters and its value on any input. Since the tree
size of a search algorithm is a complicated and discontinuous function of its parameters, we must
carefully analyze the way in which the parameters influence each step of the procedure in order
to derive our generalization guarantees.
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Indeed, we show that there is structure governing this volatile relationship between the param-
eters and the search tree size. In particular, we prove that for any integer program, hyperplanes
partition the parameter space [0, 1]d into a finite number of regions such that in any one region,
tree search builds the same tree no matter what parameter setting it uses from that region. In
other words, tree size is a piecewise-constant function of the parameters, defined by a finite num-
ber of pieces with linear boundaries. At a high level, this means that although there are an infinite
number of parameter settings, there are only a finite number of parameter settings that lead the
algorithm to behave differently. This analysis allows us to prove our main generalization bound,
which grows logarithmically in the number of pieces that these piecewise-constant functions have.

Moreover, we show that, although the piecewise-constant tree size functions may have many
little pieces, they can often be well-approximated by piecewise-constant functions with only a
few pieces. We use this observation to prove data-dependent guarantees that improve based on
the simplicity of these approximating functions. Moreover, we show that this observation can be
used to provide data-dependent guarantees beyond the context of integer programming, applying
whenever an algorithm’s performance as a function of its parameters can be approximated by a
“simple” function. We show that if this approximation holds under the L∞- norm, we can provide
strong generalization bounds. On the flip side, if the approximation holds only under the Lp -norm
for p < ∞, it is not possible to provide meaningful sample complexity bounds in the worst case.

In our experiments section, we show that, on many datasets based on real-world NP-hard prob-
lems, different parameter settings can result in search trees of different sizes. Using an optimal
parameter for one distribution on problems from a different distribution can lead to an increase
in tree size. We additionally show via experiments that our data-dependent generalization bound
based on simple approximations of the tree size function can be significantly smaller than the
worst-case bound.

1.2 Related Research

Algorithm parameter tuning has been studied for decades, beginning with a seminal paper by Rice
[1976]. This research area studies how an algorithm’s parameters (both continuous and dis-
crete) impact its performance. In this section, we highlight related research on this topic in
roughly chronological order. Much of this research has studied how to algorithmically find high-
performing parameter settings. Later research has studied theoretical problems on topics such as
sample complexity, as in the present article.

Early research on using machine learning and data-driven approaches for algorithm design and
selection dates back to the late 1990s and early 2000s. This includes research on algorithm portfolios
and selection (that is, using the input problem instance to choose which algorithm to use from
some finite set of possibilities) [Gomes and Selman 2001; Lobjois and Lemaître 1998]; parameter
control, which addresses how to adapt the parameters of an algorithm online while solving an
input problem [Lagoudakis and Littman 2001]; and runtime prediction [Horvitz et al. 2001].

Theoretical Research onAlgorithm Scheduling. In a series of theoretical papers, Sayag et al. [2006];
Streeter et al. [2007], and Streeter and Golovin [2009] studied a learning-theoretic model for algo-
rithm scheduling, which is a similar but distinct problem from algorithm parameter tuning. In
their setup, there is a finite set of blackbox heuristic algorithms capable of computing a correct
solution to a given problem, but with different costs. The user can run multiple algorithms until
one terminates with the correct solution. Given a training set of problem instances, these papers
show how to learn a schedule with nearly minimum expected cost. In contrast, in this article, our
goal is to provide guarantees when there are infinitely-many possible parameter settings using the
structure of the branch-and-bound algorithm itself.
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Portfolio-Based Algorithm Selection. A high-level distinction among automated approaches to
parameter tuning is whether one is trying to find one parameter setting that performs well for the
entire application-specific distribution over problem instances, or one is trying to select different
parameter settings for different problem instances based on problem instance features. In this
paper, we focus on the former problem. The latter approach—known as portfolio-based algorithm
selection—has also been used to great success for a variety of applications [Kadioglu et al. 2010;
Leyton-Brown et al. 2009; Sandholm 2013; Xu et al. 2008, 2010, 2011].

Early General-Purpose Parameter Tuning Procedures. Moving on to early applied approaches to
algorithm parameter tuning, ParamILS is a general-purpose procedure proposed by Hutter et al.
[2010, 2009], which uses iterated local search to find high-performing parameter settings, employ-
ing a careful adaptive capping procedure to make sure time is not wasted evaluating bad parameter
settings. Around this time, Ansótegui et al. [2009] proposed an algorithm called GGA which relies
on genetic algorithms to find high-performing parameter settings.

ParamILS and GGA are model-free approaches, whereas the next generation of algorithm pa-
rameter tuning procedures, such as SMAC [Hutter et al. 2011], aremodel-based approaches. SMAC
iterates between fitting models that predict algorithmic performance and using those models to
select promising parameter settings to further investigate.

Fielded Applications. Automated algorithm configuration has had success in industry already.
From 2002 to 2010, it was used to configure integer programming approaches forwinner determina-
tion in $60 billion of combinatorial auctions [Sandholm 2013]. They used automated configuration
approaches both to select among modeling choices and choices within the integer programming
algorithms themselves.

Several major commercial integer programming solvers now ship with algorithm configuration
tools that allow customers to automatically tune the solver’s parameters to their specific problems,
thereby bringing automated algorithm configuration to potentially all applications of integer pro-
gramming. For example, CPLEX introduced an automated parameter tuning tool in 2007 [IBM
ILOG Inc 2007].

As another example, algorithm configuration and selection have been an integral part of the
US Federal Communications Commission’s spectrum reallocation auctions [Leyton-Brown et al.
2017]. These auctions require solving large satisfiability problems to check the feasibility of an
allocation.

Node Selection Policies. Several articles have studied machine learning approaches to the specific
task of node selection in branch-and-bound, including Sabharwal et al. [2017] and He et al. [2014],
whereas we study variable selection policies.

Piecewise-Structure in the Context of Runtime Prediction. Hutter et al. [2014] studied how to pre-
dict the runtime of SAT, MIP, and TSP solvers. Among many other results, they found that solver
runtime as a function of parameter settings could be predicted quite well by many different mod-
els, including random forests. In effect, these random forests define a partition of the parameter
space into regions where the predicted performance is fixed. The success of random forests for
this task could be seen an empirical parallel of the theoretical results we prove in this article: true
performance is a piecewise-constant function of the parameters.

Applied Approaches to Variable Selection. As in the present article, Khalil et al. [2016] and Alvarez
et al. [2017] studied variable-selection policies. Both of these articles provide strategies for learning
variable-selection strategies that mimic the behavior of the classic branching strategy known as
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strong branching while running faster than strong branching. Neither of these articles comes with
theoretical guarantees, unlike the present article.

Additional Applied Approaches to B&B Tuning beyond Variable and Node Selection. A variety of
research has studied machine learning approaches to improving additional aspects of branch-and-
bound beyond variable and node selection [e.g., Bengio et al. 2020a; Bonami et al. 2018; Di Liberto
et al. 2016; Gasse et al. 2019; Khalil et al. 2017; Kruber et al. 2017; Song et al. 2020; Tang et al. 2020].
Many recent advances are covered in the survey by Bengio et al. [2020b].

Theoretical Analyses of Variable Selection. From a theoretical perspective, Le Bodic and
Nemhauser [2017] presented a variable-selection model based on an abstraction to a simpler set-
ting in which it is possible to analytically evaluate the dual bound improvement of choosing a
given variable. Based on that model, they presented a new variable selection policy that has strong
performance on many MIPLIB instances.

Learning-Theoretic Guarantees for Data-Driven Algorithm Design. A recent, active line of re-
search has studied learning-theoretic questions related to data-driven algorithm design. Much of
this work has been related to algorithm parameter tuning [e.g., Ahmadi et al. 2022; Balcan et al.
2018a, 2022, 2017, 2020a; Bartlett et al. 2022; Blum et al. 2021; Gupta and Roughgarden 2017; Sakaue
and Oki 2022] and was synthesized in a book chapter by Balcan [2020]. In these articles, an ap-
plication domain is modeled as a distribution over problem instances, and the goal is to tune an
algorithm’s parameters using samples from that distribution.

Gupta and Roughgarden [2017] initiated this line of research by proving generalization guar-
antees for tuning the parameters of various greedy and sorting algorithms, and for tuning the
step size of gradient descent. Balcan et al. [2017] then provided guarantees for tuning the parame-
ters of clustering algorithms. They analyze families of polynomial-time clustering algorithms that
are designed to approximately optimize various objective functions—such as k-medians, k-means,
and k-center—using a linkage routine. In this context, they prove that for any data-independent
discretization of the parameter space, there exists a family of clustering instances such that any
parameter setting in the discretization will output a clustering that is significantly worse than the
optimal parameter setting. This result parallels our result for tree search but requires a completely
different proof since the algorithms are different.

Balcan et al. [2017] also analyzed parameterized approximation algorithms for integer quadratic
programming, which are based on semi-definite programming and randomized rounding. The ap-
proximation algorithm’s parameter controls the randomized rounding technique and is unrelated
to tree search.

Several articles have also studied online algorithm parameter tuning, where there is no distri-
bution over problem instances, but rather instances arrive one-by-one [Balcan et al. 2018b, 2020b,
2021b; Balcan and Sharma 2021; Cohen-Addad and Kanade 2017; Gupta and Roughgarden 2017;
Sharma et al. 2020]. Before the arrival of each instance, the learning algorithm commits to a
parameter setting. The goal is to minimize regret, which is the cumulative difference between
the performance of the best choice of a parameter setting in hindsight, and the performance of
the learner’s selected parameter settings. Minimizing regret in this context is impossible in the
worst case [Balcan et al. 2018b; Gupta and Roughgarden 2017], so these articles’ guarantees de-
pend on beyond-worst-case assumptions on the input problem instances. In contrast, we study the
batch learning model and we do not make any assumptions about the distribution over problem
instances.

Parameter Tuning via ‘Structured Procrastination”. A line of research initiated by Kleinberg et al.
[2017] has provided learning-based parameter tuning procedures with provable guarantees. Their
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algorithms return nearly optimal parameter settings from within a finite set. In that finite setting,
the primary challenge is bounding the training time. Those algorithms can also be used when the

parameter space is infinite by first sampling Ω̃(1/γ ) parameter settings for some γ ∈ (0, 1) and
then running the algorithm over this finite set. Kleinberg et al. [2017] guaranteed that the output
parameter setting will be within the top γ -quantile.

The article by Kleinberg et al. [2017] described above was subsequently built upon byWeisz et al.
[2018, 2019] and Kleinberg et al. [2019], providing improved algorithms with faster training times.
Balcan et al. [2020c] aimed to marry the research presented in this article with the research by
Kleinberg et al. [2017, 2019] andWeisz et al. [2018, 2019] described above. Balcan et al. [2020c] pre-
sented an algorithm that identifies a finite set of promising parameters within an infinite set given
sample access to a distribution over problem instances. They proved that this set contains a nearly
optimal parameter vector with high probability. The set can serve as the input to a parameter-
tuning algorithm for finite parameter spaces [Kleinberg et al. 2017, 2019; Weisz et al. 2018, 2019],
which Balcan et al. [2020c] proved will then return a nearly optimal parameter from the infinite
set.

Algorithms Aided byMachine-Learned Advice. A related line of research has designed algorithms
that are aided by “machine learned advice” [e.g., Hsu et al. 2019; Lykouris and Vassilvitskii 2018;
Mitzenmacher 2018; Purohit et al. 2018]. In essence, these algorithms use machine learning to
make predictions about structural aspects of the input. If the prediction is accurate, the algorithm’s
performance (for example, its error or runtime) is superior to the best-knownworst-case algorithm,
and if the prediction is incorrect, the algorithm performs as well as that worst-case algorithm.

Guarantees for Portfolio-Based Algorithm Selection. Balcan et al. [2021a] provided sample com-
plexity guarantees for portfolio-based algorithm selection. Portfolio-based algorithm selection,
which has seen tremendous success in practice [e.g., Xu et al. 2010, 2011], first uses the training
set to compile a portfolio of algorithm parameter settings. At runtime, a machine learning model
is used to predict which parameter setting in the portfolio will have the best performance. The
guarantees by Balcan et al. [2021a] apply whenever the algorithm’s performance on any input is a
piecewise constant function of its parameters, as we prove is the case for tree search in this article.

Heuristic Selection. Speck et al. [2021] studied how to dynamically select heuristics within heuris-
tic search. They provided theoretical guarantees proving that this approach can lead to an expo-
nential improvement in the number of states explored compared to (1) only using features of the
instance to choose a heuristic and (2) only using the timestep to choose a heuristic (as in a round-
robin approach, for example).

Branch-and-Bound on Random Instances. To better understand the strong performance of branch-
and-bound in practice, several articles have studied the algorithm’s performance on random inte-
ger programs [Dey et al. 2021a, b]. Dey et al. [2021a] proved that in polynomial time, branch-
and-bound solves integer programs with uniformly random entries and a constant number of con-
straints. Meanwhile, Dey et al. [2021b] provided lower bounds showing that there exist packing
instances, set covering instances, and Traveling Salesman Problem instances where branch-and-
bound builds a tree of exponential size, even when it branches on general disjunctions. This re-
mains true evenwhen the instances are perturbedwith randomnoise (a la smoothed analysis [Spiel-
man and Teng 2004]).

2 TREE SEARCH

Tree search is a broad family of algorithms with diverse applications. To exemplify the specifics
of tree search, we present a vast family of NP-hard problems–(mixed) integer linear programs
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(MILPs)-and describe how tree search finds optimal solutions to problems from this family. Tree
search for solving MILPs is called branch-and-bound. For ease of exposition, we present our main
results in Section 3 in terms of branch-and-bound. Later on, in Section 3.4 and Appendix D, we
describe how tree search can be used to solve constraint satisfaction problems and generalize our
results to that setting.

2.1 Mixed Integer Linear Programs

We study MILPs where the objective is to maximize c�x subject to Ax ≤ b and where some of
the entries of x are constrained to be integers. Given a MILP Q , we denote an optimal solution to
the LP relaxation of Q as x̆Q = (x̆Q [1], . . . , x̆Q [n]). Throughout this article, given a vector a, we
use the notation a[i] to denote the ith component of a. We also use the notation c̆Q to denote the
optimal objective value of the LP relaxation of Q . In other words, c̆Q = c�x̆Q .

Example 2.1 (Winner Determination). Suppose there is a set {1, . . . ,m} of items for sale and a
set {1, . . . ,n} of buyers. In a combinatorial auction, each buyer i submits bids vi (b) ∈ R for any
number of bundles b ⊆ {1, . . . ,m}. The goal of the winner determination problem is to allocate
the goods among the bidders so as to maximize social welfare, which is the sum of the buyers’
values for the bundles they are allocated. We can model this problem as a MILP by assigning a
binary variable xi,b for every buyer i and every bundle b they submit a bid vi (b) on. The variable
xi,b is equal to 1 if and only if buyer i receives the bundle b. Let Bi be the set of all bundles b that
buyer i submits a bid on. An allocation is feasible if it allocates no item more than once (for all
items j ∈ {1, . . . ,m},

∑n
i=1

∑
b ∈Bi , j �b xi,b ≤ 1) and if each bidder receives at most one bundle (for

all buyers i ∈ {1, . . . ,n},
∑
b ∈Bi xi,b ≤ 1). Therefore, the MILP is:

maximize
∑n

i=1

∑
b ∈Bi vi (b)xi,b

s.t.
∑n

i=1

∑
b ∈Bi , j �b xi,b ≤ 1 ∀j ∈ [m]∑

b ∈Bi xi,b ≤ 1 ∀i ∈ [n]
xi,b ∈ {0, 1} ∀i ∈ [n],b ∈ Bi .

2.1.1 MILP Tree Search. MILPs are typically solved using a tree search algorithm called branch-
and-bound (B&B). Given a MILP problem instance, B&B relies on two subroutines that efficiently
compute upper and lower bounds on the optimal value within a given region of the search space.
The lower bound can be found by choosing any feasible point in the region. An upper bound can
be found via a linear programming relaxation. The basic idea of B&B is to partition the search
space into convex sets and find upper and lower bounds on the optimal solution within each. The
algorithm uses these bounds to form global upper and lower bounds, and if these are equal, the
algorithm terminates, since the feasible solution corresponding to the global lower bound must be
optimal. If the global upper and lower bounds are not equal, the algorithm refines the partition
and repeats.

In more detail, suppose we want to use B&B to solve a MILPQ ′. B&B iteratively builds a search
tree T with the original MILPQ ′ at the root. In the first iteration, T consists of a single node con-
taining the MILPQ ′. At each iteration, B&B uses a node selection policy (which we expand on later)
to select a leaf node of the tree T , which corresponds to a MILP Q . It finds the solution x̆Q to the
LP relaxation ofQ . B&B then uses a variable-selection policy (which we expand on in Section 2.1.2)
to choose a variable x[i] of the MILP Q to branch on. Specifically, let Q+i (respectively, Q−

i ) be the
MILP Q with the additional constraint that x[i] ≥ �x̆Q [i]� (respectively, x[i] ≤ 
x̆Q [i]�). B&B sets
the right (respectively, left) child ofQ in T to be a node containing the MILPQ+i (respectively,Q−

i ).
B&B then tries to “fathom” these leaves: the leaf containing Q+i (respectively, Q−

i ) is fathomed if:
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(1) The optimal solution to the LP relaxation of Q+i (respectively, Q−
i ) satisfies the constraints

of the original MILP Q ′;
(2) The relaxation of Q+i (respectively, Q−

i ) is infeasible, so Q
+
i (respectively, Q−

i ) must be infea-
sible as well; or

(3) The objective value of the LP relaxation ofQ+i (respectively,Q−
i ) is smaller than the objective

value of the best known feasible solution, so the optimal solution toQ+i (respectively,Q−
i ) is

no better than the best known feasible solution.

B&B terminates when every leaf has been fathomed. It returns the best known feasible solution,
which is optimal. See Algorithm 1 for the pseudocode.

ALGORITHM 1: Branch and bound

Input: A MILP Q ′.

1 Let T be a tree that consists of a single node containing the MILP Q ′.

2 Let c∗ = −∞ be the objective value of the best-known feasible solution.

3 while there remains an unfathomed leaf in T do

4 Use a node selection policy to select a leaf of the tree T , which corresponds to a MILP Q .

5 Use a variable-selection policy to choose a variable x[i] of the MILP Q to branch on.

6 Let x̆Q be the solution to the LP relaxation of Q .

7 Let Q+i (respectively, Q−
i ) be the MILP Q with the extra constraint that x[i] ≥ �x̆Q [i]� (respectively,

x[i] ≤ 
x̆Q [i]�).

8 Set the right (respectively, left) child of Q in T to be a node containing the MILP Q+i (respectively,

Q−
i ).

9 for Q̃ ∈ {Q+i ,Q
−
i } do

10 if the LP relaxation of Q̃ is feasible then

11 Let x̆
Q̃

be an optimal solution to the LP and let c̆
Q̃

be its objective value.

12 if the vector x̆
Q̃
satisfies the constraints of the original MILP Q ′ then

13 Fathom the leaf containing Q̃ .

14 if c∗ < c̆
Q̃
then

15 Set c∗ = c̆
Q̃
.

16 end

17 else if x̆
Q̃
is no better than the best known feasible solution, i.e., c∗ ≥ c̆

Q̃
then

18 Fathom the leaf containing Q̃ .

19 else

20 Fathom the leaf containing Q̃ .

21 end

22 end

23 end

The most common node selection policy is the best bound policy. Given a B&B tree, it selects the
unfathomed leaf containing the MILPQ with the maximum LP relaxation objective value. Another
common policy is the depth-first policy, which selects the next unfathomed leaf in the tree in depth-
first order.

Example 2.2. In Figure 1, we show the search tree built by B&B given as input the following
MILP [Kolesar 1967]:

maximize 40x[1] + 60x[2] + 10x[3] + 10x[4] + 3x[5] + 20x[6] + 60x[7]
subject to 40x[1] + 50x[2] + 30x[3] + 10x[4] + 10x[5] + 40x[6] + 30x[7] ≤ 100

x[1], . . . ,x[7] ∈ {0, 1}.
(1)

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



13:10 M.-F. Balcan et al.

Fig. 1. Illustration of Example 2.2.

Each rectangle denotes a node in the B&B tree. Given a node Q , the top portion of its rectangle
displays the optimal solution x̆Q to the LP relaxation of Q , which is the MILP (1) with the ad-
ditional constraints labeling the edges from the root to Q . The bottom portion of the rectangle
corresponding to Q displays the objective value c̆Q of the optimal solution to this LP relaxation,
i.e., c̆Q = (40, 60, 10, 10, 3, 20, 60) · x̆Q . In this example, the node selection policy is the best bound
policy and the variable-selection policy selects the “most fractional” variable: the variable x[i] such
that x̆Q [i] is closest to

1
2 , i.e., i = argmax{min{1 − x̆Q [i], x̆Q [i]}}.

In Figure 1, the algorithm first explores the root. At this point, it has the option of exploring
either the left or the right child. Since the optimal objective value of the right child (136) is greater
than the optimal objective value of the left child (135), B&Bwill next explore the pink node (marked
1 ). Next, B&B can either explore either of the pink node’s children or the orange node (marked
2 ). Since the optimal objective value of the orange node (135) is greater than the optimal objective
values of the pink node’s children (120), B&B will next explore the orange node. After that B&B
can explore either of the orange node’s children or either of the pink node’s children. The optimal
objective value of the green node (marked 3 ) is higher than the optimal objective values of the
orange node’s right child (116) and the pink node’s children (120), so B&B will next explore the
green node. At this point, it finds an integral solution, which satisfies all of the constraints of the
original MILP (1). This integral solution has an objective value of 133. Since all of the other leaves
have smaller objective values, the algorithm cannot find a better solution by exploring those leaves.
Therefore, the algorithm fathoms all of the leaves and terminates.

2.1.2 Variable Selection in MILP Tree Search. Variable-selection policies typically depend on a
real-valued score per variable x[i].

Definition 2.3 (Score-Based Variable-Selection Policy). Let score be a deterministic function that
takes as input a partial search tree T , a leafQ of that tree, and an index i , and returns a real value
(score(T ,Q, i) ∈ R). For a leaf Q of a tree T , let NT,Q be the set of variables that have not yet
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been branched on along the path from the root of T to Q . A score-based variable-selection policy
selects the variable argmaxx [j]∈NT,Q

{score(T ,Q, j)} to branch on at the node Q .

We list several common definitions of the function score below. Recall that for a MILP Q
with objective function c · x , we denote an optimal solution to the LP relaxation of Q as x̆Q =
(x̆Q [1], . . . , x̆Q [n]). We also use the notation c̆Q to denote the objective value of the optimal solu-
tion to the LP relaxation ofQ , i.e., c̆Q = c�x̆Q . Finally, we use the notationQ+i (respectively,Q−

i ) to
denote the MILPQ with the additional constraint that x[i] ≥ �x̆Q [i]� (respectively, x[i] ≤ 
x̆Q [i]�).
IfQ+i (respectively,Q−

i ) is infeasible, then we set c̆Q − c̆Q+i (respectively, c̆Q − c̆Q−
i
) to be some large

number greater than | |c | |1.

Most Fractional. In this case, score(T ,Q, i) = min{�x̆Q [i]�−x̆Q [i], x̆Q [i]−
x̆Q [i]�}. The variable
that maximizes score(T ,Q, i) is the “most fractional” variable, since it is the variable such that
x̆Q [i] is farthest from �x̆Q [i]� or 
x̆Q [i]�.

Linear Scoring Rule [Linderoth and Savelsbergh 1999]. In this case, score(T ,Q, i) = (1 − μ) ·
min{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
}+μ ·max{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
} where μ ∈ [0, 1] is a user-specified parameter.

This parameter balances an “optimistic” and a “pessimistic” approach to branching: an optimistic
approach would choose the variable that maximizes max{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
}, which corresponds

to μ = 1, and a pessimistic approach would choose the variable that maximizes min{c̆Q − c̆Q+i , c̆Q −

c̆Q−
i
}, which corresponds to μ = 0.

Product Scoring Rule [Achterberg 2009]. In this case,

score(T ,Q, i) = max{c̆Q − c̆Q−
i
,γ } ·max{c̆Q − c̆Q+i ,γ },

where γ = 10−6. Comparing c̆Q − c̆Q−
i
and c̆Q − c̆Q+i to γ allows the algorithm to compare two

variables even if c̆Q − c̆Q−
i
= 0 or c̆Q − c̆Q+i = 0. After all, suppose the scoring rule simply calculated

the product (c̆Q − c̆Q−
i
) · (c̆Q − c̆Q+i ) without comparing to γ . If c̆Q − c̆Q−

i
= 0, then the score equals

0, canceling out the value of c̆Q − c̆Q+i and thus losing the information encoded by this difference.

Entropic Lookahead Scoring Rule [Gilpin and Sandholm 2011]. Let

e(x) =

{
−x log2(x) − (1 − x) log2(1 − x) if x ∈ (0, 1)

0 if x ∈ {0, 1}

and for any variable i ∈ [n] and MIP Q , let fQ,i = x̆Q [i] − 
x̆Q [i]� be the fractional part of x̆Q [i].
Set

score(T ,Q, i) = −

n∑
j=1

(
1 − fQ,i

)
· e

(
fQ−

i , j

)
+ fQ,i · e

(
fQ+i , j

)
.

Alternative Definitions of the Linear and Product Scoring Rules. In practice, it is often too slow
to compute the differences c̆Q − c̆Q−

i
and c̆Q − c̆Q+i for every variable, since it requires solving as

many as 2n LPs. A faster option is to partially solve the LP relaxations of Q−
i and Q+i , starting

at x̆Q and running a small number of simplex iterations. Denoting the new objective values as
c̃Q−

i
and c̃Q+i , we can revise the linear scoring rule to be score(T ,Q, i) = (1 − μ) · min{c̆Q −

c̃Q+i , c̆Q − c̃Q−
i
} + μ ·max{c̆Q − c̃Q+i , c̆Q − c̃Q−

i
} and the product scoring rule to be score(T ,Q, i) =

max{c̆Q − c̃Q−
i
,γ } ·max{c̆Q − c̃Q+i ,γ }. Other popular alternatives to computing c̆Q−

i
and c̆Q+i that fit

within our framework are pseudocost branching [Bénichou et al. 1971; Gauthier and Ribière 1977;
Linderoth and Savelsbergh 1999] and reliability branching [Achterberg et al. 2005]. Appendix A
reviews these two branching rules in detail.
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3 GUARANTEES FOR DATA-DRIVEN LEARNING TO BRANCH

In this section, we begin with our problem statement, formally defining the notion of sample com-
plexity in the context of branch-and-bound parameter tuning. Next, in Section 3.2, we prove our
main generalization guarantees for branch-and-bound. The main challenge we face in proving
our generalization guarantees is the volatility of the branch-and-bound search tree as a function
of the algorithm’s parameters. In Section 3.5, we illustrate this volatility by proving that for any
discretization of the parameter space, there exists a distribution such that every parameter set-
ting in the discretization leads to exponential expected tree size, yet there exist parameter settings
between the discretized points that lead to constant tree size. Our guarantees can be extended
to general tree search for constraint satisfaction problems, as we highlight later in Section 3.4.
Throughout the remainder of this article, we assume that all aspects of the tree search algorithm
except the variable-selection policy, such as the node-selection policy, are fixed.

3.1 Problem Statement

Let D be a distribution over MILPs Q . For example, D could be a distribution over clustering
problems a biology lab solves day to day, formulated as MILPs. Let score1, . . . , scored be a set
of variable-selection scoring rules, such as those in Section 2.1.2. Our high-level goal is to provide

generalization guarantees for learning convex combinations
∑d

i=1 μiscorei of the scoring rules.
More formally, let costμ be an abstract cost function that takes as input a problem instance Q

and returns some measure of the quality of B&B using
∑d

i=1 μiscorei on input Q . For example,

costμ might be the number of nodes produced by running B&B using
∑d

i=1 μiscorei on input Q .
A generalization guarantee is a function ϵ : N × δ → R such that for any number of samplesm
and δ ∈ (0, 1), with probability 1 − δ over the draw ofm samplesQ1, . . . ,Qm ∼ D, for any convex

combination
∑d

i=1 μiscorei , the average cost over the samples is ϵ(m,δ )-close to its expected cost:					 1m m∑
i=1

costμ (Qi ) − EQ∼D[costμ(Q)]

					 ≤ ϵ(m,δ ). (2)

This type of bound is useful for any algorithm that tunes the parameters using the samples
since it guarantees that the average cost of the output parameter setting is indicative of its ex-
pected cost. The bound also guarantees that if the learning algorithm finds a parameter setting
that minimizes average cost over the samples, that parameter setting will nearly minimize ex-

pected cost as well. More formally, suppose that
∑d

i=1 μ̂iscorei minimizes the average cost over
the samples: (μ̂1, . . . , μ̂d ) = argmin

∑m
j=1 costμ(Q j ). Also, suppose Equation (2) holds for all convex

combinations
∑d

i=1 μiscorei . Then
∑d

i=1 μ̂iscorei is nearly optimal overall:

EQ∼D[costμ̂(Q)] ≤ min
μ1, ...,μd ∈[0,1]

EQ∼D[costμ(Q)] + 2ϵ(m,δ ).

We also generalize our analysis to cover non-linear combinations of the form

d∏
i=1

score
μi
i . (3)

To provide generalization bounds, we will use structure exhibited by the dual functions
cost∗Q (μ), where cost∗Q (μ) = costμ(Q). When analyzing the dual functions, we fix a MILP Q

and analyze B&B’s cost as a function of the parameter vector μ.
Following prior work (e.g., Hutter et al. [2009] and Kleinberg et al. [2017]), we assume that there

is some cap κ on the size of the tree that B&B builds. For example, we may choose to terminate
the algorithm when the tree size grows beyond some bound κ. We also assume that the problem
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instances in the support of D are over n variables for some n ∈ N and that the range of costμ is
bounded in [0,H ] for some H .

Our results hold for cost functions that are tree-constant, which means that for any problem

instanceQ , so long as the scoring rules
∑d

i=1 μiscorei and
∑d

i=1 μ
′
iscorei result in the same search

tree, costμ(Q) = costμ′ (Q). For example, the size of the search tree is tree-constant.

Prior Research on Combining Scoring Rules. For decades, convex combinations of scoring rules∑d
i=1 μiscorei have been used in B&B. For example, suppose

score1(T ,Q, i) = min
{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
and score2(T ,Q, i) = max

{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
,

so by employing the scoring rule (1 − μ)score1 + μscore2, we balance an “optimistic” and “pes-
simistic” approach to branching. Over time, researchers have proposed many different candidates
for the parameter setting μ. Gauthier and Ribière [1977] proposed setting μ = 1/2. Bénichou et al.
[1971] and Beale [1979] suggested setting μ = 1. Linderoth and Savelsbergh [1999] found that
μ = 2/3 performs well. Achterberg [2009] found that experimentally, μ = 1/6 performed best
when comparing among μ ∈ {0, 1/6, 1/3, 1/2, 1}. In our experiments, we find that the best choice
of a parameter setting depends on the specific application domain at hand; no one parameter
setting is optimal overall. In Section 3.5, we also prove that no one parameter setting is always
optimal, and in fact, we prove something significantly stronger. Namely, we prove that for any
discretization of the parameter space (such as {0, 1/6, 1/3, 1/2, 1}), there exists a distribution such
that every parameter setting in the discretization leads B&B to build a tree with exponential size
in expectation. Yet, there exist parameter settings between the discretized points that lead B&B to
build a tree of constant size.

Non-linear combinations of scoring rules are also popular in B&B. SCIP [Achterberg 2009],
the best open-source solver, uses the product scoring rule score = score1score2 where
score1(T ,Q, i) = max{c̆Q − c̆Q−

i
, 10−6} and score2(T ,Q, i) = max{c̆Q − c̆Q+i , 10

−6}. This is equiv-

alent to Equation (3) with μ1 = μ2 =
1
2 . In our experiments, we show that alternative parameter

choices can outperform this baseline.

3.2 Generalization Guarantees

We now provide generalization bounds for learning combinations of scoring rules. These results

bound, for any convex combination score =
∑d

i=1 μiscorei of scoring rules, the difference be-
tween the empirical cost of using score and its expected cost. Therefore, the algorithm designer
can tune the parameters (μ1, . . . , μd ) over the samples without any further knowledge of the distri-
bution. Moreover, these guarantees apply no matter how the parameters (μ1, . . . , μd ) are tuned—
optimally or suboptimally, manually or automatically. For any parameter setting, the empirical cost
will be close to its expected cost. In Section 3.2.3, we generalize our analysis to cover non-linear

combinations of the form
∏d

i=1 score
μi
i .

In Section 3.2.1, we provide guarantees for a family of scoring rules we call path-wise, which
includes many well-known scoring rules as special cases. In this case, our bound is surprisingly
small given the complexity of these problems: it grows only quadratically with the number of
variables. In Section 3.2.2, we provide guarantees that apply to any scoring rule, path-wise or
otherwise.

3.2.1 Path-Wise Scoring Rules. In this section, we provide guarantees for MILPs where the non-
continuous variables are constrained to be binary. Later, in Sections 3.2.2 and 3.2.3, we provide
guarantees for more general MILPs with arbitrary integer constraints. The guarantees in this sec-
tion apply broadly to a class of scoring rules we call path-wise scoring rules. Given a node Q in a
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Fig. 2. Illustrations to accompany the definition of a path-wise scoring rule (Definition 3.1). If the scoring

rule score is path-wise, then for any variable x[i], score(T ,Q, i) = score(T ′,Q, i) = score(TQ ,Q, i).

search tree T , we denote the path from the root of T to the node Q as TQ . The path TQ includes
all nodes and edge labels from the root of T to Q . For example, Figure 2(b) illustrates the path TQ
from the root of the tree T in Figure 2(a) to the node labeled Q . We now state the definition of
path-wise scoring rules.

Definition 3.1 (Path-Wise Scoring Rule). The function score is a path-wise scoring rule if for all
search trees T , all nodes Q in T , and all variables x[i],

score(T ,Q, i) = score(TQ ,Q, i) (4)

where TQ is the path from the root of T to Q .2 See Figure 2 for an illustration.

Definition 3.1 requires that if the node Q appears at the end of the same path in two different
B&B trees, then any path-wise scoring rule must assign every variable the same score with respect
to Q in both trees.

Path-wise scoring rules include many well-studied rules as special cases, such as the most frac-
tional, product, and linear scoring rules, as defined in Section 2.1.2. The same is true when B&B only
partially solves the LP relaxations ofQ−

i andQ+i for every variable x[i] by running a small number
of simplex iterations, as we describe in Section 2.1.2; this is our approach in our experiments. In
fact, those scoring rules depend only on the node in question, rather than the path from the root to
the node. We present our bound for the more general class of path-wise scoring rules because this
class captures the level of generality the proof holds for. On the other hand, pseudo-cost branching
[Bénichou et al. 1971; Gauthier and Ribière 1977; Linderoth and Savelsbergh 1999] and reliability
branching [Achterberg et al. 2005], two widely used branching strategies, are not path-wise, but
our more general results from Section 3.2.2 do apply to those strategies.

In order to prove our guarantees, we make use of the following key structure, which bounds
the number of search trees B&B will build on a given instance over the entire range of parameters.
In essence, this is a bound on the intrinsic complexity of the algorithm class defined by the range
of parameters, and this bound on the algorithm class’s intrinsic complexity implies this section’s
generalization guarantee.

2Under this definition, the scoring rule can simulate B&B for any number of steps starting at any point in the tree and use

that information to calculate the score, so long as Equality (4) always holds.
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Lemma 3.2. Let costμ be a tree-constant cost function, let score1 and score2 be two path-wise

scoring rules, and let Q be an arbitrary MILP over n binary variables. There are T ≤ 2n(n−1)/2nn

intervals I1, . . . , IT partitioning [0, 1] where for any interval Ij , across all μ ∈ Ij , the scoring rule
μscore1 + (1 − μ)score2 results in the same search tree.

Lemma 3.2 implies that for any MILPQ , the dual function cost∗Q (μ) is piecewise-constant with

at most 2n(n−1)/2nn pieces.

Proof of Lemma 3.2. We prove this lemma first by considering the actions of an alternative al-
gorithmA′, which runs exactly like B&B, except it only fathoms nodes if they are feasible solutions
to the original MILP or if they are infeasible. We then relate the behavior of A′ to the behavior of
B&B to prove the lemma.

First, we prove the following bound on the number of search trees A′ will build on a given
instance over the entire range of parameters. This bound matches that in the lemma statement.
The full proof of the following claim is in Appendix B.

Claim 3.3. There areT ≤ 2n(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any interval
Ij , the search tree A′ builds using the scoring rule μscore1 + (1 − μ)score2 is invariant across all
μ ∈ Ij .

3

Proof Sketch of Claim 3.3. We prove this claim by induction. For a tree T , let T[i] be the
nodes of depth at most i . We prove that, for i ∈ {1, . . . ,n}, there are T ≤ 2i(i−1)/2ni intervals
I1, . . . , IT partitioning [0, 1]where for any interval Ij and any two parameters μ, μ ′ ∈ Ij , ifTμ andTμ′

are the treesA′ builds using the scoring rules μscore1+(1−μ)score2 and μ
′score1+(1−μ

′)score2,
respectively, then Tμ [i] = Tμ′ [i]. Suppose that this is indeed the case for some i ∈ {1, . . . ,n − 1}
and consider an arbitrary interval Ij and any two parameters μ, μ ′ ∈ Ij . Consider an arbitrary
node Q in Tμ [i] (or equivalently, Tμ′ [i]) at depth i . If Q is integral or infeasible, then it will be
fathomed no matter which parameter μ ∈ Ij the algorithm A′ uses. Otherwise, for all μ ∈ Ij , let
Tμ,Q be the state of the search tree A′ builds using the scoring rule μscore1 + (1− μ)score2 at the
point when it branches on Q . By the inductive hypothesis, we know that for any two parameter
settings μ, μ ′ ∈ Ij , the path from the root toQ in Tμ,Q is the same as the path from the root toQ in
Tμ′,Q , and we refer to this path as TQ . Given a parameter setting μ ∈ Ij , the variable x[k] will be
branched on at nodeQ so long as k = argmax�{μscore1(Tμ,Q ,Q, �)+ (1−μ)score2(Tμ,Q ,Q, �)}, or
equivalently, so long as k = argmax�{μscore1(TQ ,Q, �)+ (1− μ)score2(TQ ,Q, �)}. In other words,
the decision of which variable to branch on is determined by a convex combination of the constant
values score1(TQ ,Q, �) and score2(TQ ,Q, �) no matter which parameter μ ∈ Ij the algorithm A′

uses. Here, we critically use the fact that the scoring rule is path-wise.
Since μscore1(TQ ,Q, �) + (1 − μ)score2(TQ ,Q, �) is a linear function of μ for all �, there are

at most n intervals subdividing the interval Ij such that the variable branched on at node Q is
fixed. This is illustrated in Figure 3. Moreover, there are at most 2i nodes at depth i , and each
node similarly contributes a subpartition of Ij of size n. If we merge all 2i partitions, we haveT ′ ≤

2i (n − 1) + 1 intervals I ′1, . . . , I
′
T ′ partitioning Ij where for any interval I ′p and any two parameters

μ, μ ′ ∈ I ′p , if Tμ and Tμ′ are the trees A
′ builds using the scoring rules μscore1 + (1− μ)score2 and

μ ′score1+ (1− μ ′)score2, respectively, then Tμ [i +1] = Tμ′ [i +1]. We can similarly subdivide each
interval I1, . . . , IT . The claim then follows from counting the number of subdivisions. �

3This claim holds even when score1 and score2 are members of the more general class of depth-wise scoring rules, which

we define as follows: For any search tree T of depth depth(T) and any j ∈ [n], let T[j] be the subtree of T consisting of

all nodes in T of depth at most j . We say that score is a depth-wise scoring rule if for all search trees T, all j ∈ [depth(T)],

all nodes Q of depth j , and all variables x [i], score(T, Q, i) = score(T[j], Q, i).
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Fig. 3. Illustrations of the proof of Claim 3.3 for a hypothetical MILP Q where the algorithm can either

branch on x[1], x[2], or x[3] next. In the leftmost interval (colored pink), x[1]will be branched on next, in the

central interval (colored green), x[3]will be branched on next, and in the rightmost interval (colored orange),

x[2] next will be branched on next.

Next, we explicitly relate the behavior of B&B to A′, proving that the search tree B&B builds is
a rooted subtree of the search tree A′ builds.

Claim 3.4. Given a parameter μ ∈ [0, 1], let T and T ′ be the trees B&B and A′ build respectively,
using the scoring rule μscore1 + (1− μ)score2. For any nodeQ of T , let TQ be the path from the root
of T to Q . Then TQ is a rooted subtree of T ′.

Proof of Claim 3.4. The path TQ can be labeled by a sequence of indices from {0, 1} and a
sequence of variables from {x[1], . . . ,x[n]} describing which variable is branched on and which
value it takes on along the path TQ . Let ((j1,x[i1]), . . . , (jt ,x[it ])) be this sequence of labels, where
t is the number of edges in TQ . We can similarly label every edge in T ′. We claim that there exists
a path beginning at the root of T ′ with the labels ((j1,x[i1]), . . . , (jt ,x[it ])).

For a contradiction, suppose no such path exists. Let (jτ ,x[iτ ]) be the earliest label in the se-
quence ((j1,x[i1]), . . . , (jt ,x[it ])) where there is a path beginning at the root of T ′ with the la-
bels ((j1,x[i1]), . . . , (jτ−1,x[iτ−1])), but there is no way to continue the path using an edge labeled
(jτ ,x[iτ ]). There are exactly two reasons why this could be the case:

(1) The node at the end of the path with labels ((j1,x[i1]), . . . , (jτ−1,x[iτ−1])) was fathomed by
A′.

(2) The algorithm A′ branched on a variable other than x[iτ ] at the end of the path labeled
((j1,x[i1]), . . . , (jτ−1,x[iτ−1])).

In the first case, since A′ only fathoms a node if it is integral or infeasible, we know that B&B
will also fathom the node at the end of the path with labels ((j1,x[i1]), . . . , (jτ−1,x[iτ−1])). However,
this is not the case since B&B next branches on the variable x[iτ ].

The second case is also not possible since the scoring rules are both path-wise. In a bit more
detail, letQ ′ be the node at the end of the path with labels ((j1,x[i1]), . . . , (jτ−1,x[iτ−1])). We refer
to this path as TQ ′ . Let T̄ (respectively, T̄ ′) be the state of the search tree B&B (respectively, A′)
has built at the point it branches onQ ′. We know that TQ ′ is the path from the root toQ ′ in both of

the trees T̄ and T̄ ′. Therefore, for all variables x[k], μscore1(T̄ ,Q
′,k)+ (1− μ)score2(T̄ ,Q

′,k) =
μscore1(TQ ′,Q ′,k)+(1−μ)score2(TQ ′,Q ′,k) = μscore1(T̄

′,Q ′,k)+(1−μ)score2(T̄
′,Q ′,k). This

means that B&B and A′ will choose the same variable to branch on at the node Q ′.
Therefore, we have reached a contradiction, so the claim holds. �

Next, we use Claims 3.3 and 3.4 to prove Lemma 3.2. Let I1, . . . , IT be the intervals guaranteed
to exist by Claim 3.3 and let It be an arbitrary one of the intervals. Let μ ′ and μ ′′ be two arbitrary
parameters from It . We will prove that the scoring rules μ ′score1+ (1−μ ′)score2 and μ

′′score1+
(1 − μ ′′)score2 result in the same B&B search tree. For a contradiction, suppose that this is not
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the case. Consider the first iteration where B&B using the scoring rule μ ′score1 + (1 − μ ′)score2
differs from B&B using the scoring rule μ ′′score1 + (1− μ ′′)score2. By iteration, we mean lines 3
through 23 of Algorithm 1. Up until this iteration, B&B has built the same partial search tree T .
Since the node-selection policy does not depend on μ ′ or μ ′′, B&B will choose the same leaf Q of
the B&B search tree to branch on no matter which scoring rule it uses.

Suppose B&B chooses different variables to branch on in Step 5 of Algorithm 1 depending on
whether it uses the scoring rule μ ′score1 + (1 − μ ′)score2 or μ

′′score1 + (1 − μ ′′)score2. Let TQ
be the path from the root of T to Q . By Claim 3.3, we know that the algorithm A′ builds the same
search tree using the two scoring rules. Let T̄ ′ (respectively, T̄ ′′) be the state of the search treeA′

has built using the scoring rule μ ′score1+(1−μ
′)score2 (respectively, μ

′′score1+(1−μ
′′)score2)

by the time it branches on the node Q . By Claims 3.3 and 3.4, we know that TQ is the path of

from the root to Q of both T̄ ′ and T̄ ′′. By Claim 3.3, we know that A′ will branch on the same
variable x[i] at the node Q in both the trees T̄ ′ and T̄ ′′, so i = argmaxj {μ

′score1(T̄
′,Q, j) + (1 −

μ ′)score2(T̄
′,Q, j)}, or equivalently,

i = argmaxj
{
μ ′score1(TQ ,Q, j) + (1 − μ ′)score2(TQ ,Q, j)

}
, (5)

and i = argmaxj
{
μ ′′score1(T̄

′′,Q, j) + (1 − μ ′′)score2(T̄
′′,Q, j)

}
, or equivalently,

i = argmaxj
{
μ ′′score1(TQ ,Q, j) + (1 − μ ′′)score2(TQ ,Q, j)

}
. (6)

Returning to the search tree T that B&B is building, Equation (5) implies that

i = argmaxj {μ
′score1(T ,Q, j) + (1 − μ ′)score2(T ,Q, j)}

and Equation (6) implies that i = argmaxj {μ
′′score1(T ,Q, j) + (1 − μ ′′)score2(T ,Q, j)}. There-

fore, B&B will branch on x[i] at the node Q no matter which scoring rule it uses.
Finally, since the trees B&B has built so far are identical, the choice of whether or not to fathom

the children Q+i and Q−
i does not depend on the scoring rule, so B&B will fathom the same nodes

no matter whether it uses the scoring rule μ ′score1+ (1−μ ′)score2 or μ
′′score1+ (1−μ ′′)score2.

Therefore, we have reached a contradiction: the iterations were identical. We conclude that the
lemma holds. �

We now show how this structure implies a generalization guarantee. We formulate our guar-
antees in terms of Rademacher complexity4 [Koltchinskii 2001]. According to classic results from
learning theory, a Rademacher complexity bound immediately implies a generalization bound. The
Rademacher complexity of a function class F intuitively measures the extent to which functions
in F match random noise vectors σ ∈ {−1, 1}m and is formally defined as follows:

Definition 3.5 (Rademacher Complexity). Let F = { fμ | μ ∈ [0, 1]d } be a set of functions
mapping an abstract domain Z to [0,H ]. The empirical Rademacher complexity of F given a set
S = {z1, . . . , zm} ⊆ Z is

R̂S(F ) =
1

m
Eσ∼{−1,1}m

[
sup

μ∈[0,1]d

m∑
i=1

σi fμ (zi )

]
,

where each σi equals −1 or 1 with equal probability.

The summation
∑m

i=1 σi fμ(zi )measures the correlation between the random noise vector σ and

the vector (fμ(z1), . . . , fμ(zm)). By taking the supremum over all parameter vectors μ ∈ [0, 1]d ,
we measure how well functions in the class F correlate with σ over the sample S. Therefore,

4In Theorem B.12 of Appendix B, we also show that Lemma 3.2 implies a pseudodimension bound.
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R̂S(F ) measures how well functions in the class F correlate with random noise on average over
S. Rademacher complexity thus provides a way to measure the intrinsic complexity of F because
the more complex the class F is, the better its functions can correlate with random noise.

Classic learning-theoretic results provide guarantees based on Rademacher complexity, such as
the following:

Theorem 3.6 (e.g., Mohri et al. [2012]). For any δ ∈ (0, 1), with probability 1− δ over the draw
ofm samples S = {z1, . . . , zm} ∼ Dm , for all functions fμ ∈ F ,					 1m m∑

i=1

fμ (zi ) − E
[
fμ(z)

] 					 = O
(
R̂S(F ) + H

√
1

m
log

1

δ

)
.

Theorem 3.6 is a generalization guarantee because it measures the extent to which a function’s
empirical average value over the samples generalizes to its expected value.

Ideally, R̂S(F ) converges to zero as the sample sizem grows, so the bound in Theorem 3.6 also

converges to zero. If the class F consists of just a single function, R̂S(F ) = 0, and Theorem 3.6

recovers Hoeffding’s bound. If, for example, Z = [0, 1] and F = [0, 1][0,1], R̂S(F ) = 1
2 , and the

bound from Theorem 3.6 is meaningless.
To prove our Rademacher complexity bounds, we will use the following lemma:

Lemma 3.7 (Massart [2000]). Let A ⊆ [0,κ]m be a finite set of vectors. Then

1

m
Eσ∼{−1,1}m

[
sup
a∈A

m∑
i=1

σia[i]

]
≤ κ

√
2 ln |A|

m
.

We now provide a Rademacher complexity bound for our B&B problem.

Theorem 3.8. Let score1 and score2 be two path-wise scoring rules and let C be the set of func-
tions C = {costμ : μ ∈ [0, 1]} mapping MILPs to [0,H ]. For any set S = {Q1, . . . ,Qm} of MILPs,

R̂S ≤ H

√
2 ln

(
m

(
2n(n−1)/2nn − 1

)
+ 1

)
m

= O

(
H

√
n2 + lnm

m

)
.

Proof. We will use Massart’s lemma (Lemma 3.7) to prove this lemma. Let A ⊆ [0,H ]m be the
following set of vectors:

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
costμ (Q1)

...
costμ (Qm)

 !!" : μ ∈ [0, 1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By definition, this means that

R̂S(C) =
1

m
Eσ∼{−1,1}m

[
sup
a∈A

m∑
i=1

σia[i]

]
Moreover, by definition of the dual class,

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
cost∗Q1

(μ)
...

cost∗Qm
(μ)

 !!" : μ ∈ [0, 1]

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By Lemma 3.2, each dual function cost∗Qi

(μ) is piecewise-constant with at most 2n(n−1)/2nn pieces.

As we range μ from 0 to 1, the vector (cost∗Q1
(μ), . . . , cost∗Qm

(μ))will only change when μ crosses
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a boundary of one of them piecewise-constant functions’ boundaries, of which there are at most
m(2n(n−1)/2nn − 1). In other words, |A| ≤ m(2n(n−1)/2nn − 1) + 1. The lemma statement therefore
follows from Massart’s lemma. �

Theorems 3.6 and 3.8 immediately imply the following guarantee.

Corollary 3.9. Let score1 and score2 be two path-wise scoring rules and for all μ ∈ [0, 1], costμ
be a tree-constant cost function with range [0,H ]. For any distribution D over MILPs with at most
n binary variables and any δ ∈ (0, 1), with probability at least 1 − δ over the draw of m samples
Q1, . . . ,Qm ∼ D, for any μ ∈ [0, 1],					EQ∼D

[
costμ (Q)

]
−

1

m

m∑
i=1

costμ (Qi )

					 ≤ O

(
H

√
1

m

(
n2 + ln

m

δ

))
.

3.2.2 General Scoring Rules. In this section, we provide generalization guarantees that apply to
learning convex combinations of any set of scoring rules. These guarantees apply to MILPs with
arbitrary integer constraints, whereas in Section 3.2.1, we required the noncontinuous variables to
be binary. Unlike the guarantees in Section 3.2.1, they depend on the size of the search trees B&B
is allowed to build before terminating, which we denote as κ. The following lemma corresponds
to Lemma 3.2 for this setting. The full proof is in Appendix B.

Lemma 3.10. Let score1, . . . , scored be d arbitrary scoring rules, let costμ be a tree-constant

cost function for all μ ∈ [0, 1]d and let Q be an arbitrary MILP over n integer variables. Suppose we
limit B&B to producing search trees of size κ. There is a set H of at most κnκ+2 hyperplanes such

that for any connected component R of [0, 1]d \ H , the search tree B&B builds using the scoring rule∑d
j=1 μ jscorej is invariant across all (μ1, . . . , μd ) ∈ R. In other words, cost∗Q (μ) is constant for all

μ ∈ R.

Proof Sketch. The proof has two steps. In Claim D.7, we show that there are at most nκ dif-
ferent search trees that B&B might produce for the instance Q as we vary the mixing parameter
vector (μ1, . . . , μd ). In Claim D.8, for each of the possible search trees T that might be produced,
we show that the set of parameter values (μ1, . . . , μd )which give rise to that tree lie in the intersec-
tion of κn2 halfspaces. Of course, each of these halfspaces is defined by a hyperplane. LetH be the
union of all κn2 hyperplanes over all nκ trees, so |H | ≤ κnκ+2. We know that for any connected

component R of [0, 1]d \ H , the search tree B&B builds using the scoring rule
∑d

j=1 μ jscorej is
invariant across all (μ1, . . . , μd ) ∈ R, so the lemma statement holds. �

In the same way Lemma 3.2 implies the Rademacher complexity bound in Theorem 3.8,
Lemma 3.10 also implies a Rademacher complexity5 bound. The proof, which is in Appendix B,
is similar to that of Theorem 3.8.

Theorem 3.11. Let score1, . . . , scored be d arbitrary scoring rules and let costμ be a tree-

constant cost function for all μ ∈ [0, 1]d . Let C be the set of functions C = {costμ : μ ∈ [0, 1]d }
mapping MILPs to [0,H ]. For any set S = {Q1, . . . ,Qm} of MILPs,

R̂S(C) = O

(
H

√
d(ln(mκ) + κ lnn)

m

)
.

This Rademacher complexity bound implies the following corollary.

5It also implies a pseudodimension bound: Theorem B.15 in Appendix B.
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Corollary 3.12. Let score1, . . . , scored be d arbitrary scoring rules and let costμ be a tree-

constant cost function for all μ ∈ [0, 1]d . For any distribution D over MILPsQ with at most n integer

variables, with probability at least 1−δ over the draw ofmMILPsQ1, . . . ,Qm ∼ D, for any μ ∈ [0, 1]d ,					EQ∼D

[
costμ (Q)

]
−

1

m

m∑
i=1

costμ (Qi )

					 = O ���H
√

1

m

(
d(ln(mκ) + κ lnn) + log

1

δ

) !" .
3.2.3 Generalization to Nonlinear Combinations. In this section, we show that our analysis from

the previous sections also implies guarantees for learning nonlinear combinations of the form∏d
i=1 score

μi
i . In the following lemma, we prove that generalization bounds for learning convex

combinations of scoring rules imply generalization bounds for learning nonlinear combinations
of scoring rules. It formally shows that ifm samples are sufficient to ensure that for any convex

combination
∑d

j=1 μ jscorej , average cost over the samples is ϵ-close to expected cost, then m

samples are also sufficient to ensure the same holds for the non-convex combination
∏d

i=1 score
μi
i .

Technically, this lemma holds for anyd scoring rules score1, . . . , scored from a set Ψ that is closed
under logarithm: for any function score ∈ Ψ, log score is also in Ψ. For example, Ψ might be the
set of all scoring rules, which we study in Section 3.2.2, or the set of path-wise scoring rules, which
we study in Section 3.2.1. These sets are both closed under logarithm; for example, if score is path-
wise, then log score is also path-wise.

In this section, to clarify whether the parameters control a sum or product, we use the nota-

tion cost(Q,
∑d

j=1 μ jscorej ) to denote B&B’s cost when using the scoring rule
∑d

j=1 μ jscorej and

cost(Q,
∏d

j=1 score
μ j
j ) to denote B&B’s cost when using the scoring rule

∏d
j=1 score

μ j
j .

Lemma 3.13. Let Ψ be a set of scoring rules that is closed under logarithm. Let cost be a tree-
constant cost function. Suppose there exists a generalization function ϵΨ : N × (0, 1) → R such that
for any distribution D over MILPs, any score1, . . . , scored ∈ Ψ, any number of samples m ∈ N,
and any δ ∈ (0, 1), with probability 1 − δ over the draw of m MILPs Q1, . . . ,Qm ∼ D, for any
μ1, . . . , μd ∈ [0, 1],					 1m m∑

i=1

cost

(
Qi ,

d∑
j=1

μ jscorej

)
− EQ∼D

[
cost

(
Q,

d∑
j=1

μ jscorej

)]					 ≤ ϵΨ(N ,δ ).

Then for any score1, . . . , scored ∈ Ψ, with probability at least 1 − δ over the draw of m MILPs
Q1, . . . ,Qm ∼ D, for any μ1, . . . , μd ∈ [0, 1],					 1m m∑

i=1

cost

(
Qi ,

d∏
j=1

score
μ j
j

)
− EQ∼D

[
cost

(
Q,

d∏
j=1

score
μ j
j

)]					 ≤ ϵΨ(N ,δ ).

Proof. In Lemma D.10 in Appendix D, we prove that, for any μ1, . . . , μd ∈ [0, 1], any MILP Q ,
and any scoring rules score1, . . . , scored ,

cost

(
Q,

d∏
i=1

score
μi
i

)
= cost

(
Q,

d∑
i=1

μi log scorei

)
. (7)

This follows from the fact that for any partial tree T ′ and any MILP Q ′, if

j∗ = argmaxj

{
d∏
i=1

scorei (T
′,Q ′, j)μi

}
,
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then j∗ = argmaxj

{
log

(∏d
i=1 scorei (T

′,Q ′, j)μi
)}
, which means that

j∗ = argmaxj

{
d∑
i=1

μi log scorei (T
′,Q ′, j)

}
.

The lemma statement follows from Equation (7) and the fact that Ψ is closed under logarithm. �

This implies the following corollary for learning non-linear combinations of path-wise scoring
rules. It follows from Lemma 3.13, Corollary 3.9, and the fact that if score is path-wise, then
log score is path-wise as well.

Corollary 3.14. Let cost be a tree-constant cost function with range [0,H ], and let score1 and
score2 be two path-wise scoring rules. For any distribution D over MILPs with at most n binary
variables and any δ ∈ (0, 1), with probability at least 1− δ over the drawm MILPsQ1, . . . ,Qm ∼ D,
for any μ ∈ [0, 1],					EQ∼D

[
cost

(
Q, score

1−μ
1 score

μ
2

)]
−

1

m

m∑
i=1

cost
(
Qi , score

1−μ
1 score

μ
2

)					
=O

(
H

√
1

m

(
n2 + ln

m

δ

))
.

Finally, we prove a similar corollary for non-linear combinations of general scoring rules, which
follows from Lemma 3.13 and Corollary 3.12.

Corollary 3.15. Let score1, . . . , scored be d arbitrary scoring rules, let cost be a tree-constant
cost function with range [0,H ], and let κ be a tree size cap. For any distributionD over MILPsQ with
at most n integer variables, with probability at least 1−δ over the draw ofm MILPsQ1, . . . ,Qm ∼ D,
for any μ1, . . . , μd ∈ [0, 1],					EQ∼D

[
cost

(
Q,

d∏
j=1

score
μ j
j

)]
−

1

m

m∑
i=1

cost

(
Qi ,

d∏
j=1

score
μ j
j

)					
=O

���H
√

1

m

(
d(ln(mκ) + κ lnn) + log

1

δ

) !" .
3.3 Data-dependent Generalization Bounds via Dual Class Approximability

So far, we have proved generalization bounds by showing that the dual cost functions cost∗Q (μ)
are piecewise constant, and our bounds grow logarithmically with the number of pieces. However,
these dual functions often exhibit additional structure that we can use to strengthen our general-
ization guarantees. In particular, these dual functions are often well-approximated by piecewise
constant functions with far fewer pieces. In this section, we show how we can use the existence
of these simple approximating functions to provide stronger bounds. The results in this section
are data-dependent because they improve based on the number of pieces that define the simple
approximating functions.

In Section 3.3.1, we begin by stating our data-dependent guarantees, abstracting away from
integer programming. The results in this section apply to providing generalization bounds for any
set of functions F with dual functions that are well-approximated under the L∞-norm by some set
of simple functions (in Section 3.3.2, we prove that this dependence on the L∞-norm is necessary—
it is not possible to provide learnability guarantees if the dual functions are only approximated
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Fig. 4. Examples of dual functions f ∗z : R→ R (solid blue lines) which are approximated by simpler functions

д∗z (dotted black lines).

under the Lp -norm for some p < ∞). In a bit more detail, suppose that F is a set of functions
fμ : Z → [0,H ] mapping an abstract domain Z (for example, a set of integer programs) to an
interval [0,H ], parameterized by vectors μ from some setR. In the context of integer programming,
fμ = costμ—the cost function. The dual functions f ∗z : R → [0,H ] are defined as f ∗z (μ) = fμ(z),
just as we defined the dual function cost∗Q (μ) = costμ(Q) in Section 3.1 for any integer program

Q . We illustrate how one dual function might approximate another in Figure 4. In Section 3.3.3, we
instantiate these guarantees in the context of integer programming.

3.3.1 Generally Applicable Generalization Bounds. First, we define what it means for two sets
of dual functions to approximate each other. We use the notation F ∗ =

{
f ∗z : z ∈ Z

}
to denote the

dual class—the set of all dual functions.

Definition 3.16 ((γ ,p)-approximate). Let F = { fμ | μ ∈ R} and G = {дμ | μ ∈ R} be two sets
of functions mapping an abstract domainZ to [0,H ]. We assume that all dual functions f ∗z and д∗z
are integrable over the domain R. We say that the dual class G∗ (γ ,p)-approximates the dual class
F ∗ if for every element z ∈ Z, the distance between the functions f ∗z and д∗z is at most γ under

the Lp -norm. For p ∈ [1,∞), this means that
++f ∗z − д∗z

++
p
:= p

√∫
R
| f ∗z (μ) − д∗z (μ)|p dμ ≤ γ and when

p = ∞, this means that
++f ∗z − д∗z

++
∞

:= supμ∈R | f ∗z (μ) − д∗z (μ)| ≤ γ .

We show that if the dual class F ∗ is (γ ,∞)-approximated by the dual of a class G with small
Rademacher complexity, then the Rademacher complexity of F is also small. The full proof of the
following theorem in Appendix B.1.

Theorem 3.17. Let F = { fμ | μ ∈ R} and G = {дμ | μ ∈ R} consist of functions mapping Z to

[0,H ]. For any S ⊆ Z, R̂S(F ) ≤ R̂S(G) +
1
|S |

∑
z∈S

++f ∗z − д∗z
++
∞
.

Proof Sketch. To prove this theorem, we use the fact that for any parameter vector μ ∈ R,
any element z ∈ Z, and any binary value σ ∈ {−1, 1}, σ fμ(z) = σ f ∗z (μ) ≤ σд∗z (μ) +

++f ∗z − д∗z
++
∞
=

σдμ(z) +
++f ∗z − д∗z

++
∞
. �

If the class G∗ (γ ,∞)-approximates the class F ∗, then 1
|S |

∑
z∈S

++f ∗z − д∗z
++
∞

is at most γ . If this

term is smaller than γ for most sets S ∼ Dm , then the bound on R̂S(F ) in Theorem 3.17 will often

be even better than R̂S(G) + γ .
Theorems 3.6 and 3.17 imply that with probability 1−δ over the draw of the set S ∼ Dm , for all

parameter vectors μ ∈ R, the difference between the empirical average value of fμ over S and its
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expected value is at most Õ( 1
m

∑
z∈S

++f ∗z − д∗z
++
∞
+ R̂S(G) + H

√
1
m
). In our experiments, we show

that this data-dependent generalization guarantee can be much tighter than worst-case bounds.

Algorithm for Finding Approximating Functions. We provide a dynamic programming (DP)

algorithm (Algorithm 2 in Appendix B.1) for the common case where R = R and the dual func-
tions f ∗z are piecewise constant with a large number of pieces. Given an integer k , the algorithm
returns a piecewise-constant function д∗z with at most k pieces such that

++f ∗z − д∗z
++
∞
is minimized,

as in Figure 4(a). Letting t be the number of pieces in the piecewise decomposition of f ∗z , the DP
algorithm runs inO(kt2) time. As we describe later on in Section 3.3.3, when k and

++f ∗z − д∗z
++
∞
are

small, Theorem 3.17 implies strong guarantees. We use this DP algorithm in our experiments.

Structural Risk Minimization. Theorem 3.17 illustrates a fundamental tradeoff in machine learn-
ing. The simpler the class G, the smaller its Rademacher complexity, but—broadly speaking—the
worse functions from its dual will be at approximating functions in F ∗. In other words, the sim-
pler G is, the worse the approximation 1

m

∑
z∈S ‖ f ∗z − д∗z ‖∞ will likely be. Therefore, there is a

tradeoff between generalizability and approximability. It may not be a priori clear how to balance
this tradeoff. Structural risk minimization (SRM) is a classic, well-studied approach for optimizing
tradeoffs between complexity and generalizability which we use in our experiments.

Our SRM approach is based on the following corollary of Theorem 3.17. Let G1,G2,G3, . . . be
a countable sequence of function classes where each Gj = {дj,μ | μ ∈ R} is a set of functions
mappingZ to [0,H ]. We use the notationд∗j,z to denote the duals of the functions inGj , soд

∗
j,z (μ) =

дj,μ(z).

Corollary 3.18. With probability 1 − δ over the draw of the set S ∼ Dm , for all μ ∈ R and all
j ≥ 1, 					 1m ∑

z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 = O
(
1

m

∑
z∈S

++f ∗z − д∗j,z
++
∞
+ R̂S

(
Gj

)
+ H

√
1

m
ln

j

δ

)
. (8)

The proof of this corollary is in Appendix B.1.
In our experiments, each dual class G∗

j consists of piecewise-constant functions with at most

j pieces. This means that as j grows, the class G∗
j becomes more complex, or in other words, the

Rademacher complexity R̂S(Gj ) also grows. Meanwhile, the more pieces a piecewise-constant
function д∗z has, the better it is able to approximate the dual function f ∗z . In other words, as j
grows, the approximation term 1

m

∑
z∈S ‖ f ∗z − д∗j,z ‖∞ shrinks. SRM is the process of finding the

level j in the nested hierarchy that minimizes the sum of these two terms and therefore obtains
the best generalization guarantee via Equation (8).

Remark 3.19. We conclude by noting that the empirical average 1
m

∑
z∈S ‖ f ∗z − д∗j,z ‖∞ in

Equation (8) can be replaced by the expectation Ez∼D[‖ f ∗z − д∗j,z ‖∞]. See Corollary B.16 in

Appendix B.1 for the proof.

3.3.2 Rademacher Complexity Lower Bound. In this section, we show that (γ ,p)-approxi-
mability with p < ∞ does not necessarily imply strong generalization guarantees. We show that

it is possible for a dual class F ∗ to be well approximated by the dual of a class G with R̂S(G) = 0,
yet for the primal F to have high Rademacher complexity.

Figures 5 and 6 help explain why there is this sharp constrast between the L∞- and Lp -norms
for p < ∞. Figure 5 illustrates two dual functions f ∗z1 (the blue solid line) and f ∗z2 (the grey dotted

line). Let G be the extremely simple function class G = {дμ : μ ∈ R} where дμ (z) =
1
2 for every

z ∈ Z. It is easy to see that R̂S(G) = 0 for any set S. Moreover, every dual function д∗z is also
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Fig. 5. The dual functions f ∗z1 and f ∗z2 are well-approximated by the constant function μ �→ 1
2 under, for

example, the L1-norm because the integrals
∫
R
| f ∗zi (μ) −

1
2 | dμ are small; for most μ, f ∗zi (μ) =

1
2 . The approxi-

mation is not strong under the L∞-norm, sincemaxμ ∈R | f ∗zi (μ)−
1
2 | =

1
2 . The function class F corresponding

to these duals has a large Rademacher complexity.

Fig. 6. The dual functions f ∗z1 and f ∗z2 are well-approximated by the constant function μ �→ 1
2 under the

L∞-norm since maxμ ∈R | f ∗zi (μ) −
1
2 | is small. The function class F corresponding to these duals has a small

Rademacher complexity.

simple, because д∗z (μ) = дμ (z) =
1
2 . From Figure 5, we can see that the functions f ∗z1 and f ∗z2 are

well approximated by the constant function д∗z1 (μ) = д∗z2 (μ) =
1
2 under, for example, the L1-norm

because the integrals
∫
R
| f ∗zi (μ) −

1
2 | dμ are small. However, the approximation is not strong under

the L∞-norm, since maxμ ∈R | f ∗zi (μ) −
1
2 | =

1
2 for i ∈ {1, 2}.

Moreover, despite the fact that R̂S(G) = 0, we have that R̂S(F ) = 1
2 when S = {z1, z2}, which

makes Theorem 3.6 meaningless. At a high level, this is because, when σ1 = 1, we can ensure that
σ1 fμ (z1) = σ1 f

∗
z1
(μ) = 1 by choosing μ ∈ {μ0, μ1} and, when σ1 = −1, we can ensure that σ1 fμ (z1) =

0 by choosing μ ∈ {μ2, μ3}. A similar argument holds for σ2. In summary, (γ ,p)-approximability
for p < ∞ does not guarantee low Rademacher complexity.

Meanwhile, in Figure 6, д∗zi (μ) =
1
2 and f ∗zi (μ) are close for every parameter μ. As a result, for

any noise vector σ , supμ ∈R{σ1 f
∗
z1
(μ) + σ2 f

∗
z2
(μ)} is close to supμ ∈R{σ1д

∗
z1
(μ) + σ2д

∗
z2
(μ)}. This im-

plies that the Rademacher complexities R̂S(G) and R̂S(F ) are close. This illustration exemplifies
Theorem 3.17: (γ ,∞)-approximability implies strong Rademacher bounds.

We now prove that (γ ,p)-approximability by a simple class for p < ∞ does not guarantee low
Rademacher complexity.

Theorem 3.20. For any γ ∈ (0, 1/4) and any p ∈ [1,∞), there exist function classes F ,G ⊂

[0,H ]Z such that the dual classG∗ (γ ,p)-approximates F ∗ and for anym ≥ 1, supS: |S |=m R̂S(G) = 0

and supS: |S |=m R̂S(F ) = 1
2 .
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Proof. We begin by defining the classes F and G. Let R = (0,γ p ], and Z = [γ−p/2,∞). For
any μ ∈ R and z ∈ Z, let fμ (z) =

1
2 (1 + cos(μz)) and F = { fμ | μ ∈ R}. These sinusoidal

functions are based on the intuition from Figure 5. As in Figure 5, for any μ and z, let дμ (z) =
1
2

and G = {дμ | μ ∈ R}. Since G consists of identical copies of a single function, R̂S(G) = 0 for any
set S ⊆ Z. Meanwhile, in Lemma B.20 in Section B.1 in Appendix B, we prove that for anym ≥ 1,

supS: |S |=m R̂S(F ) = 1
2 .

In Lemma B.19 in Appendix B, we prove that the dual class G∗ (γ ,p)-approximates F ∗. To prove

this, we first show that
++f ∗z − д∗z

++
2
≤ 1

4

√
2γ p + 1

z
. Whenp = 2, we know 1

z
≤ 2γ 2, so

++f ∗z − д∗z
++
2
< γ .

Otherwise, we use our bound on
++f ∗z − д∗z

++
2
, Hölder’s inequality, and the log-convexity of the Lp -

norm to prove that
++f ∗z − д∗z

++
p
≤ γ . �

Remark 3.21. Suppose, for example, that R = [0, 1]d . Theorem 3.20 implies that even if		f ∗z (μ) − д∗z (μ)
		

is small for all z in expectation over μ ∼ Uniform(R), the function class F may not have
Rademacher complexity close to G.

3.3.3 Generalization Bounds for Integer Programming. We now describe how the tools from
Section 3.3.1 can be used to derive data-dependent generalization bounds for tuning the convex
combination of any two scoring rules μscore1 + (1 − μ)score2.

To make use of Theorem 3.17 in the context of integer programming, we must define a func-
tion class whose duals approximate the functions cost∗Q . We first define the dual class, then

the primal class. To this end, fix some integer j ≥ 1 and let Hj be the set of all piecewise-
constant functions mapping [0, 1] to [0, 1] with at most j pieces. For every IP Q , we define
д∗j,Q ∈ argminh∈Hj

‖cost∗Q − h‖
∞
, breaking ties in some fixed but arbitrary manner. We define the

dual class G∗
j to be the set of functions д∗j,Q . Therefore, the dual class G∗

j is consists of piecewise-

constant functions with at most j pieces. For every parameter μ ∈ [0, 1] and IP Q , we define
дj,μ (Q) = д

∗
j,Q (μ). Finally, we define the primal class Gj = {дj,μ | μ ∈ [0, 1]}.

To apply our results from Section 3.3.1, we must bound the Rademacher complexity of the set
Gj . Doing so is simple due to the structure of the dual class G∗

j . The following lemma is a corollary

of Lemma B.23 in Appendix B.1 (which follows by the same logic as Theorem 3.8).

Lemma 3.22. For any set S of integer programs, R̂S

(
Gj

)
≤

√
2 ln( |S |(j−1)+1)

|S |
.

This lemma together with Remark 3.19 and Corollary 3.18 imply that with probability 1 − δ
over S ∼ Dm , for all parameters μ ∈ [0, 1] and j ≥ 1, | 1

m

∑
Q ∈S costμ (Q) − EQ∼D[costμ (Q)]| is

upper-bounded by

2EQ∼D

[+++cost∗Q − д∗j,Q

+++
∞

]
+ 2

√
2 ln(m(j − 1) + 1)

m
+

√
2

m
ln

2(π j)2

3δ
. (9)

As j grows, R̂S(Gj ) grows, but the duals in G∗
j are better able to approximate the dual functions

cost∗Q . In our experiments, we optimize this tradeoff between generalizability and approximability.

3.4 Generalization to Constraint Satisfaction Problems

The generalization guarantees from Section 3.2 can be generalized to the problem of tree search for
constraint satisfaction problems (CSPs). In this section, we provide an overview of tree search for
CSPs. The generalization of our guarantees consists of a straightforward adaptation of the proofs
from Section 3.2, so we include them in Appendix D for completeness.
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Fig. 7. Illustrations of Example 3.23.

A CSP is a tuple (X ,D,C), where X = {x1, . . . ,xn} is a set of variables, D = {D1, . . . ,Dn} is a
set of domains where Di is the set of values variable xi can take on, and C is a set of constraints
between variables. Each constraint inC is a pair

( (
xi1 , . . . ,xir

)
,ψ

)
whereψ is a function mapping

Di1×· · ·×Dir to {0, 1} for some r ∈ [n] and some i1, . . . , ir ∈ [n]. Given an assignment (y1, . . . ,yn) ∈
D1 × · · · ×Dn of the variables in X , a constraint

( (
xi1 , . . . ,xir

)
,ψ

)
is satisfied ifψ

(
yi1 , . . . ,yir

)
= 1.

The goal is to find an assignment that maximizes the number of satisfied constraints.
The degree of a variable x , denoted deg(x), is the number of constraints involving x . The dynamic

degree of (an unassigned variable) x given a partial assignmenty, denoted ddeg(x ,y) is the number
of constraints involving x and at least one other unassigned variable.

Example 3.23 (Graph k-coloring). Given a graph, the goal of this problem is to color its vertices
using at most k colors such that no two adjacent vertices share the same color. This problem can be
formulated as a CSP, as illustrated by the following example. Suppose we want to 3-color the graph
in Figure 7(a) using pink, green, and orange. The four vertices correspond to the four variables
X = {x1, . . . ,x4}. The domain D1 = · · · = D4 = {pink, green, orange}. The only constraint on
this problem is that no two adjacent vertices share the same color. Therefore, we define ψ to be
the “not equal” relation mapping {pink, green, orange}×{pink, green, orange} → {0, 1} such that
ψ (ω1,ω2) = 1{ω1�ω2 } . Finally, we define the set of constraints to be

C = {((x1,x2),ψ ), ((x1,x3),ψ ), ((x2,x3),ψ ), ((x3,x4),ψ )) .

See Figure 7(b) for a coloring that satisfies all constraints (y1 = y4 = green, y2 = orange, and y3 =
pink).

3.4.1 CSP Tree Search. CSP tree search begins by choosing a variable xi with domain Di and
building |Di | branches, each one corresponding to one of the |Di | possible value assignments of x .
Next, a node Q of the tree is chosen, another variable x j is chosen, and |D j | branches from Q are
built, each corresponding to the possible assignments of x j . The search continues and a branch is
pruned if any of the constraints are not feasible given the partial assignment of the variables from
the root to the leaf of that branch.

3.4.2 Variable Selection in CSP Tree Search. As in MILP tree search, there are many variable-
selection policies researchers have suggested for choosing which variable to branch on at a given
node. Typically, algorithms associate a score for branching on a given variable xi at nodeQ in the
tree T , as in B&B. The algorithm then branches on the variable with the highest score. We provide
several examples of common variable-selection policies below.

deg/dom and ddeg/dom [Bessiere and Régin 1996]. deg/dom corresponds to the scoring rule

score(T ,Q, i) =
deg(xi )

|Di |
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and ddeg/dom corresponds to the scoring rule score(T ,Q, i) = ddeg(xi ,y)/|Di |, where y is the
assignment of variables from the root of T to Q .

Smallest Domain [Haralick and Elliott 1980]. In this case, score(T ,Q, i) = 1/|Di |.
Our theory is for tree search and applies to both MILPs and CSPs. It applies both to lookahead

approaches that require learning the weighting of the two children (the more promising and less
promising child) and to approaches that require learning the weighting of several different scoring
rules.

3.5 Volatility of Branch-and-Bound Tree Size

In this section, we illustrate the volatility of the B&B tree size as a function of the variable selection
parameters, which is one of the key challenges we faced in providing our generalization bounds.
We prove that for any discretization of the parameter space [0, 1], there exists a distribution over
MILP problem instances such that for any parameter in the discretization, the expected tree size
is exponential in n. Yet, for any other parameter setting, the tree size is just a constant (with
probability 1). The full proof of the following theorem is in Appendix B.

Theorem 3.24. Let

score1(T ,Q, i) = min{c̆Q − c̆Q+i , c̆Q − c̆Q−
i
}, score2(T ,Q, i) = max{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
},

and costμ (Q) be the size of the tree produced by B&B. For every a,b such that 1
3 < a < b < 1

2 and
for all even n ≥ 6, there exist a distribution D over MILP instances with n binary variables such that
if μ ∈ [0, 1] \ (a,b), then

EQ∼D[costμ (Q)] = Ω
(
2(n−9)/4

)
and if μ ∈ (a,b), then with probability 1, cost(Q, μscore1 + (1 − μ)score2) = O(1). This holds no
matter which node-selection policy B&B uses.

Proof Sketch. We populate the support of the distribution D by relying on two helpful the-
orems: Theorem 3.25 and B.5. In Theorem 3.25, we prove that for all μ∗ ∈ ( 13 ,

2
3 ), there exists an

infinite family Fn,μ∗ of MILP instances such that for any Q ∈ Fn,μ∗ , if μ ∈ [0, μ∗), then the scoring
rule μscore1 + (1 − μ)score2 results in a B&B tree with O(1) nodes and if μ ∈ (μ∗, 1], the scoring
rule results in a tree with 2(n−4)/2 nodes. Conversely, in Theorem B.5, we prove that there exists
an infinite family Gn,μ∗ of MILP instances such that for any Q ∈ Gn,μ∗ , if μ ∈ [0, μ∗), then the

scoring rule μscore1 + (1 − μ)score2 results in a B&B tree with 2(n−5)/4 nodes and if μ ∈ (μ∗, 1],
the scoring rule results a tree withO(1) nodes. Now, letQa be an arbitrary instance in Gn,a and let
Qb be an arbitrary instance in Fn,b . The theorem follows by letting D be a distribution such that
PrQ∼D[Q = Qa] = PrQ∼D[Q = Qb ] = 1/2. See Figure 8 for an illustration.

Throughout the proof of this theorem, we assume the node-selection policy is depth-first search.
We then prove that for any infeasible MILP, if NSP and NSP’ are two node-selection policies and
score = μscore1 + (1 − μ)score2 for any μ ∈ [0, 1], then the tree T B&B builds using NSP and
score equals the tree T ′ it builds using NSP’ and score (see Theorem B.10). Thus, the theorem
holds for any node-selection policy. �

We now provide a proof sketch of Theorem 3.25, which helps us populate the support of the
worst-case distribution in Theorem 3.24. The full proof is in Appendix B.

Theorem 3.25. Let

score1(T ,Q, i) = min
{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
, score2(T ,Q, i) = max

{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
,

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



13:28 M.-F. Balcan et al.

Fig. 8. Illustrations of the proof of Theorem 3.24.

and costμ (Q) be the size of the tree produced by B&B. For all even n ≥ 6 and all μ∗ ∈ ( 13 ,
1
2 ), there

exists an infinite family Fn,μ∗ of MILP instances such that, for any Q ∈ Fn,μ∗ , if μ ∈ [0, μ∗), then the
scoring rule μscore1 + (1 − μ)score2 results in a B&B tree with O(1) nodes and if μ ∈ (μ∗, 1], the
scoring rule results a tree with 2(n−4)/2 nodes.

Proof Sketch. The MILP instances in Fn,μ∗ are inspired by a worst-case B&B instance intro-
duced by Jeroslow [1974]. He proved that for any odd n′, every B&B algorithm will build a tree
with 2(n

′−1)/2 nodes before it determines that for any c ∈ Rn
′
, the following MILP is infeasible:

maximize c · x

subject to 2
∑n′

i=1 x[i] = n′

x ∈ {0, 1}n
′
.

We build off of this MILP to create the infinite family Fn,μ∗ . Each MILP in Fn,μ∗ combines a
hard version of Jeroslow’s instance on n − 3 variables {x[1], . . . ,x[n − 3]} and an easy version on
3 variables {x[n − 2],x[n − 1],x[n]}. B&B only needs to determine that one of these problems is
infeasible in order to terminate. The key idea of this proof is that if B&B branches on all variables in
{x[n−2],x[n−1],x[n]} first, it will terminate upon making a small tree. However, if B&B branches
on all variables in {x[1], . . . ,x[n − 3]} first, it will create a tree with exponential size before it
terminates. The challenge is to design an objective function that enforces the first behavior when
μ < μ∗ and the second behavior when μ > μ∗. Proving this is the bulk of the work.

In a bit more detail, every instance in Fn,μ∗ is defined as follows: For any constant γ ≥ 1, let

c1 = γ (1, 2, . . . ,n − 3) and let c2 = γ (0,
3
2 , 3 −

1
2μ∗ ). Let c = (c1,c2) ∈ Rn be the concatenation of c1

and c2. Let Qγ ,n be the MILP

maximize c · x
subject to 2

∑n−3
i=1 x[i] = n − 3

2 (x[n − 2] + x[n − 1] + x[n]) = 3
x ∈ {0, 1}n .

We define Fn,μ∗ = {Qn,γ : γ ≥ 1}.
For example, if γ = 1 and n = 8, then Qγ ,n is

maximize
(
1, 2, 3, 4, 5, 0, 32 , 3 −

1
2μ∗

)
· x

subject to

(
2 2 2 2 2 0 0 0
0 0 0 0 0 2 2 2

)
x =

(
5
3

)
x ∈ {0, 1}8.

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



Learning to Branch 13:29

Fig. 9. Illustrations of the construction from Theorem 3.25.

As is illustrated in Figure 9, we have essentially “glued together” two disjoint versions of Jeroslow’s
instance: the first five variables ofQ1,8 correspond to a “big” version of Jeroslow’s instance and the
last three variables correspond to a small version. Since the goal ismaximization, the solution to the
LP relaxation of Q1,8 will try to obtain as much value from the first five variables {x[1], . . . ,x[5]}
as it can, but it is constrained to ensure that 2(x[1] + · · · + x[5]) = 5. Therefore, the first five
variables will be set to (0, 0, 12 , 1, 1). Similarly, the solution to the LP relaxation of Q1,8 will set

(x[6],x[7],x[8]) = (0, 12 , 1) because
3
2 < 3 − 1

2μ∗ under our assumption that μ∗ > 1
3 . Thus, the

solution to the LP relaxation of Q1,8 is (0, 0,
1
2 , 1, 1, 0,

1
2 , 1). There are only two fractional variables

that B&B might branch on: x[3] and x[7]. Straightforward calculations show that if T is the B&B
tree so far, which just consists of the root node, μscore1(T ,Qγ ,n , 3)+(1−μ)score2(T ,Qγ ,n , 3) =

γ

2

and μscore1(T ,Qγ ,n , 7)+ (1− μ)score2(T ,Qγ ,n , 7) =
3γ
4 −

μγ

4μ∗ . This means that B&B will branch

first on variable x[7], which corresponds to the small version of Jeroslow’s instance (see Figure 9(b))

if and only if
γ

2 <
3γ
4 −

μγ

4μ∗ , which occurs if and only if μ < μ∗. We show that this first branch sets off

a cascade: if B&B branches first on variable x[7], then it will proceed to branch on all variables in
{x[6],x[7],x[8]}, thus terminating uponmaking a small tree. Meanwhile, if it branches on variable
x[3] first, it will then only branch on variables in {x[1], . . . ,x[5]}, creating a larger tree.

In the full proof, we generalize beyond eight variables to n and expand the large version of
Jeroslow’s instance (as depicted in Figure 9(a)) from five variables to n − 3. When μ < μ∗, we
simply track B&B’s progress to make sure it only branches on variables from the small version of
Jeroslow’s instance (x[n−2],x[n−1],x[n]) before figuring out theMILP is infeasible. Therefore, the
tree will have constant size. When μ > μ∗, we prove by induction that if B&B has only branched
on variables from the big version of Jeroslow’s instance (x[1], . . . ,x[n−3]), it will continue to only
branch on those variables. We also prove it will branch on about half of these variables along each
path of the B&B tree. The tree will thus have exponential size. �

4 EXPERIMENTS

In this section, we provide two sets of experiments. First, in Section 4.1, we show that the parameter
of the variable-selection policy in B&B algorithms forMILP impacts the average tree size generated
for several domains, and no parameter value is optimal across these distributions.We illustrate this
phenomenon for the specific variable selection policies we analyze in Section 3 and refer the reader
to the wealth of papers summarized in Section 1.2 that have illustrated this phenomenon for other
aspects of branch-and-bound. Our focus in Section 4.1 is to provide additional evidence that using
an automated approach to tuning these parameters can have a sizable impact on the performance
of tree search (not to propose a state-of-the-art parameter optimization algorithm).

Next, in Section 4.2, we illustrate the data-dependent bounds developed in Section 3.3.1. We
demonstrate that this data-dependent approach can lead to significantly smaller generalization
bounds than the worst-case bounds from Section 3.2.2 when the dual functions are well approxi-
mated by piecewise-constant functions with few pieces.
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Throughout this section, we use the following notation:

— scoreL(T ,Q, i) = max{c̆Q − c̆Q+i , c̆Q − c̆Q−
i
} where (as defined in Section 2.1.2) c̆Q , c̆Q−

i
, and

c̆Q−
i
are the objective values of the optimal solutions6 to the LP relaxations of Q , Q+i , and

Q−
i . Under scoreL , B&B branches on the variable leading to the Largest change in the LP

objective value.
— scoreS (T ,Q, i) = min{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
}. Under scoreS , B&B branches on the variable

leading to the Smallest change.
— scoreA(T ,Q, i) =

1
6scoreL(T ,Q, i) +

5
6scoreS (T ,Q, i). This is a scoring rule that

Achterberg recommended [Achterberg 2009]. It balances the optimistic approach to branch-
ing under scoreL with the pessimistic approach under scoreS .

— scoreP (T ,Q, i) = max{c̆Q − c̆Q+i , 10
−6} ·max{c̆Q − c̆Q−

i
, 10−6}: the Product scoring rule.

We use the C API of IBM ILOG CPLEX 12.8.0.0 to override the default variable-selection policy
using a branch callback. The CPLEX node-selection policy is set to “best bound” (aka A∗ in AI),
which is the most typical choice in MILP. All experiments were run on a 64-core machine with
512 GB of RAM.7

4.1 Impact on Tree Size by Variable Selection Policy

We begin with an overview of the experiments in this section. We first fix two scoring rules score1
and score2. Our experiments in Section 4.1.3 illustrate tree size as a function of the parameter μ
that controls the convex combination (1−μ)score1+μscore2. Given a distribution overMILPs (the
distributions we analyze are described in Section 4.1.1), we sample a set of MILPs. For each sampled
MILP Q , we compute tree size as a function of the parameter μ ∈ [0, 1] which, as we know from
Lemma 3.10, is a piecewise-constant function. We compute these piecewise-constant functions as
described in Section 4.1.2. Taking the average of these piecewise-constant functions, we plot tree
size as a function of the parameter μ on average8 over the sampled MILPs. In Section 4.1.4, we run

the same experiments, but we tune the parameter of the product score
1−μ
1 score

μ
2 .

4.1.1 Distributions of MILPs. We now detail the distributions we analyze in our experiments.

Combinatorial Auctions. We generate instances of the combinatorial auction winner determina-
tion problem under the OR-bidding language [Sandholm 2002], which makes this problem equiv-
alent to weighted set packing. The problem is NP-complete. We encode each instance as a binary
MILP (see Example 2.1). We use the Combinatorial Auction Test Suite (CATS) [Leyton-Brown
et al. 2000] to generate these instances. In Section 4.1.3, we use the “arbitrary” generator with
200 bids and 100 goods, resulting in MILPs with around 200 variables, and “regions” generator
with 400 bids and 200 goods, resulting in MILPs with around 400 binary variables. In Section 4.1.4,
we use the “arbitrary” generator with 150 bids and 100 goods, resulting in MILPs with around
150 binary variables, and “regions” generator with 300 bids and 200 goods, resulting in MILPs
with around 300 binary variables.

Clustering. Givenn points P = {p1, . . . ,pn} and pairwise distancesd(pi ,pj ) between each pair of
points pi and pj , the goal of k-means clustering is to find k centers C = {c1, . . . , ck } ⊆ P such that

6When computing c̆Q−
i
and c̆Q−

i
for all candidate variables, we limit CPLEX to run at most 10 dual steepest-edge iterations.

7Unlike the conference version of this article [Balcan et al. 2018a], we do not disable CPLEX’s cuts and primal heuristics,

and we do not disable its root-node preprocessing. The experiments in the conference version were run on a cluster of 64

c3.large Amazon AWS instances.
8In Appendix C, we also illustrate the geometric mean tree size as a function of the parameter μ , whereas the plots in this

section illustrate the arithmetic mean tree size.
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the following objective function is minimized:
∑n

i=1 minj ∈[k ] d(pi , c j )
2. In Appendix C, we show

how to formulate this problem as a MILP. We generate instances with 35 points each and k = 5.
We set d(i, i) = 0 for all i and choose d(i, j) uniformly at random from [0, 1] for i � j. These
distances do not satisfy the triangle inequality and they are not symmetric (i.e., d(i, j) � d(j, i)),
which tends to lead to harder MILP instances than using Euclidean distances between randomly
chosen points in Rd . These MILPs have 1,260 binary variables.

Agnostically Learning Linear Separators. Let p1, . . . ,pN ∈ Rd be labeled by z1, . . . , zN ∈ {−1, 1}.
Suppose we wish to learn a linear separatorw ∈ Rd that minimizes 0-1 loss, i.e.,

N∑
i=1

1{zi 〈pi ,w 〉<0} .

In Appendix C, we show how to formulate this problem as a MILP. We generate problem instances
with 100 points p1, . . . ,p100 from the 2-dimensional standard normal distribution. We sample the
true linear separatorw∗ from the 2-dimensional standard Gaussian distribution and label point pi
by zi = sign(〈w∗,pi 〉). We then choose 15 random points and flip their labels so that there is no
consistent linear separator. These MILPs have 100 binary variables.

4.1.2 Constructing the Piecewise-Constant Functions. In this section, we describe how, for any
MILP Q , we compute tree size as a function of the mixing parameter μ that controls the variable
selection policy (1− μ)score1 + μscore2. We then describe how this procedure can be generalized

to the product score
1−μ
1 score

μ
2 . From Section 3.5, we know that for any data-independent dis-

cretization of the parameter space [0, 1] (e.g., a naïve sweep {0, 0.01, 0.02, . . . , 0.99, 1}), there are
distributions where every parameter setting in the discretization will lead to exponential expected
tree size, yet there are parameter settings between the discretized points that will lead to constant
tree size. Therefore, in these experiments, we do not perform a naïve sweep, but rather, for every
sampled MILP, compute the piecewise-constant function that defines tree size as a function of the
parameter setting μ.

To do this, we use a CPLEX callback function so that given a parameter setting μ ∈ [0, 1], we
can keep track of the largest interval I ⊂ [0, 1] such that the tree CPLEX builds is identical to
the tree it would have built using any parameter μ ′ ∈ I . With this, we can enumerate all possible
behaviors of the algorithm for a single instance Q by running the algorithm with μ = 0, followed
by the smallest value of μ that will lead to a different tree, and so on, until we have covered the
entire interval [0, 1]. To see why it is possible to find the interval I , suppose we are choosing which
variable to branch on at node Q ′ of tree T . We have two scoring rules, score1 and score2, that
each rank the candidate variables inQ ′, and when we run the algorithm with parameter setting μ,
we combine these two scores as (1 − μ)score1(T ,Q

′, i) + μscore2(T ,Q
′, i). Let i∗ be the variable

chosen by the algorithm when run with parameter setting μ. For any other parameter setting μ ′

such that i∗ has the highest score, i∗ will be the branching variable at this node, regardless of if
the algorithm uses μ or μ ′. The set of all μ ′ for which i∗ is the variable of the highest score is an
interval, as illustrated in Figure 3 (and its endpoints can be found by solving a linear equation to
determine the value of μ ′ for which some other variable overtakes i∗ under the mixed score). Also,
for every parameter μ ′ outside of this interval, the algorithm would indeed branch on a different
variable, resulting in a different behavior of the tree search algorithm. By taking the intersection of
these intervals across all branching variable choices, we find the largest subset of [0, 1] for which
the algorithm would behave exactly the same, and this subset is an interval. The overhead of this
bookkeeping is only linear in the number of candidate branching variables.

In Section 4.1.4 where we analyze the generalized product rule score
1−μ
1 score

μ
2 , we use the

fact (proved Lemma D.10 from Appendix D) that for any μ ∈ [0, 1], the tree that B&B builds
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Fig. 10. The average tree size produced by B&B when run with the linear scoring rule with parameter μ
(Equation (10)).

using the scoring rule score
1−μ
1 score

μ
2 is the same as the tree B&B builds using the scoring rule

(1− μ) log score1 + μ log score2. Therefore, to construct the piecewise-constant functions, we use
the same procedure as described in the previous paragraph, though we first take the logarithm of
each scoring rule.

4.1.3 Linear Scoring Rule. For the distributions described in Section 4.1.1, Figure 10 shows the
average B&B tree size produced for each possible value of the μ parameter for the linear scoring
rule, averaged over 100 independent samples from each distribution. Specifically, the scoring rule
whose parameter we tune in Figure 10 has the form

score(T ,Q, i) = (1 − μ) · scoreS (T ,Q, i) + μ · scoreL(T ,Q, i). (10)

We use the standard error of the mean to plot uncertainty bands.
In Table 1, we specify the optimal parameter setting from each plot in Figure 10. We also in-

dicate the total number of hours it took to compute all of the piecewise-constant functions that
we average over in each plot. For example, in Figure 10(a), the parameter setting that minimizes
average tree size is μ = 0.222. It took a total of 109.16 hours to compute all 100 piecewise-constant
functions that we average over in the plot.

In Figure 11, we plot average tree size as a function of the μ parameter for the linear scoring
rule, but we use pseudo-cost branching rather than strong branching (which we use in Figure 10).
Using strong branching, B&B computes the changes in the LP relaxation objective values c̆Q − c̆Q+i
and c̆Q − c̆Q−

i
for every variable, which is time-consuming since it involves evaluating 2n LPs at

every node. Pseudocost branching instead estimates these values by averaging the LP objective
value changes across all nodes in the tree where the ith variable was chosen to branch on. In
Appendix A, we provide the formal definition of pseudocost branching. Pseudocost branching
generally leads to larger trees than strong branching. In Figures 11(a), 11(b), and 11(d), we average
over 100 randomly sampled IPs. Since Figure 11(c) is choppier than these other three, we average
over 2,000 samples.
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Table 1. For Each of the Plots in Figure 10, We Indicate the Empirically Optimal Parameter Setting

and the Number of Hours It Took to Compute All of the Piecewise-constant Functions that

We Average Over in Each Plot

Distribution Optimal parameter setting Total compute time to find

optimal parameter setting (hours)

CATS “arbitrary”:
200 bids, 100 goods

0.222 109.16

CATS “regions”:
400 bids, 200 goods

0.055 325.79

Clustering 0.020 4.51

Linear separators 0.379 45.49

Fig. 11. The average tree size produced by B&Bwhen run with the linear scoring rule with parameter μ using
pseudo-cost branching.

Table 2, like Table 1, specifies the optimal parameter setting from each plot in Figure 11 and the
total number of hours it took to compute all of the piecewise-constant functions that we average
over in each plot.

4.1.4 Product Scoring Rule. Figure 12 illustrates the average B&B tree size produced when tun-
ing the parameter of a generalized product rule, averaged over 100 samples from each distribution.
This parameterized scoring rule has the form9, 10

score(T ,Q, i) = score1(T ,Q, i)
1−μscore2(T ,Q, i)

μ , (11)

9Again, when computing c̆Q−
i
and c̆Q−

i
for all candidate variables, we limit CPLEX to run at most 10 dual steepest-edge

iterations.
10As we write in Section 2.1.2, comparing c̆Q − c̆Q−

i
and c̆Q − c̆Q+

i
to 10−6 allows the algorithm to compare two variables

even if c̆Q −c̆Q−
i
= 0 or c̆Q −c̆Q+

i
= 0. After all, suppose the scoring rule simply calculated the product min{c̆Q −c̆Q+

i
, c̆Q −

c̆Q−
i
}1−μ max{c̆Q − c̆Q+

i
, c̆Q − c̆Q−

i
}μ without comparing to 10−6. If one of these multiplicands equals 0, then the score

equals 0, canceling out the value of the other multiplicand and thus losing the information encoded by that multiplicand.
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Table 2. For Each of the Plots in Figure 11, We Indicate the Empirically Optimal Parameter Setting

and the Number of Hours It Took to Compute All of the Piecewise-Constant Functions that

We Average Over in Each Plot

Distribution Optimal parameter setting Total compute time to find

optimal parameter setting (hours)

CATS “arbitrary”:
150 bids, 100 goods

1 3948.10

CATS “regions”:
300 bids, 200 goods

0.029 4793.62

Clustering 0.009 2003.73

Linear separators 0.027 263.76

Fig. 12. The average tree size produced by B&B when run with the product scoring rule with parameter μ
(Equation (11)) using strong branching.

where

score1(T ,Q, i) = max
{
min

{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
, 10−6

}
and

score2(T ,Q, i) = max
{
max

{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
, 10−6

}
.

This scoring rule is equivalent to the product scoring rule from Section 2.1.2 when μ = 1
2 because

for any i, j ∈ [n], score1(T ,Q, i)
1
2 score2(T ,Q, i)

1
2 ≥ score1(T ,Q, j)

1
2 score2(T ,Q, j)

1
2 if and only

if max{c̆Q − c̆Q−
i
, 10−6} ·max{c̆Q − c̆Q+i , 10

−6} ≥ max{c̆Q − c̆Q−
j
, 10−6} ·max{c̆Q − c̆Q+j , 10

−6}.

As in Section 4.1.3, we also include Table 3, which specifies the optimal parameter setting from
each plot in Figure 12 and the total number of hours it took to compute all of the piecewise-constant
functions that we average over in each plot.

Discussion. The relationship between the variable-selection parameter and the average tree size
varies from application to application. This implies that the parameters should be tuned on a per-

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



Learning to Branch 13:35

Table 3. For Each of the Plots in Figure 12, We Indicate the Empirically Optimal Parameter Setting

and the Number of Hours It Took to Compute All of the Piecewise-Constant Functions that

We Average Over in Each Plot

Distribution Optimal parameter setting Total compute time to find

optimal parameter setting (hours)

CATS “arbitrary”:
200 bids, 100 goods

0.611 421.19

CATS “regions”:
400 bids, 200 goods

0.332 437.06

Clustering 0.275 7.04

Linear separators 0.961 77.35

Fig. 13. Experiments where we compare the data-dependent generalization bound from Section 3.3.3 and

the worst-case guarantee from Section 3.2.2. The blue solid line is our generalization bound: the minimum of

Equations (12) and (14) as a function of the number of training examplesm, divided by κ. The black dotted

line is the worst-case bound from Equation (12).

application basis and that no parameter value is universally effective. For example, the optimal pa-
rameter in Figures 10(b), 10(c), and 10(d) is close to 0. However, μ = 0 is suboptimal in Figure 10(a),
resulting in trees that are twice the size of the trees obtained under the optimal parameter value.

In these experiments, average tree size is typically an unimodal function of the parameters, a
phenomenon also observed by Pushak and Hoos [2018] in other algorithm parameter tuning con-
texts.We leave as an open questionwhether this structure could be used to provide data-dependent
generalization bounds.

4.2 Data-Dependent Guarantees

In this section, we show how the data-dependent generalization guarantees from Section 3.3.3 can
imply stronger bounds than the worst-case guarantees from Section 3.2.2. In this section, we again
analyze distributions that we generate using the Combinatorial Auction Test Suite (CATS) [Leyton-
Brown et al. 2000]. We use the “arbitrary” generator with 200 bids and 100 goods, resulting in IPs
with 200 about variables, and the “regions” generator with 400 bids and 200 goods, resulting in
IPs with 400 about variables. We use Algorithm 2 in Section B.1 in Appendix ?? to compute the
approximating duals.

In Figure 13, we select score1, score2 ∈ {scoreL, scoreS , scoreA, scoreP } and compare the
worst-case and data-dependent bounds, divided by κ. In Section B.1 in Appendix B, we describe
our methodology for choosing κ. First, we plot the worst-case bound implied by Corollary 3.12,
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with δ = 0.01, as a function of the number of training examplesm. This is the black dotted line in
Figure 13. With all of the proper constants, this bound is equal to

2κ

√
2 ln(m

(
n2(κ+1) − 1

)
+ 1)

m
+ 3κ

√
1

2m
ln

2

0.01
. (12)

Next, we plot the data-dependent bound, which is the blue solid line in Figure 13. To calculate
the data-dependent bound in Equation (9), we have to estimate EQ∼D[‖cost∗Q − д∗j,Q ‖∞

] for all

j ∈ [1600].11 To do so, we draw M = 6000 IPs Q1, . . . ,QM from the distribution D. We estimate
EQ∼D[‖cost∗Q − д∗j,Q ‖∞

] via the empirical average 1
M

∑M
i=1 ‖cost

∗
Qi

− д∗j,Qi
‖
∞
. A Hoeffding bound

guarantees that with probability 0.995, for all j ∈ [1600],

E

[+++cost∗Q − д∗j,Q

+++
∞

]
≤

1

M

M∑
i=1

+++cost∗Qi
− д∗j,Qi

+++
∞
+

1

40
. (13)

We prove this inequality in Lemma B.24. We thereby estimate our data-dependent bound
Equation (9) using the following bound:

min
j ∈[1600]

{
2

(
1

M

M∑
i=1

+++cost∗Qi
− д∗j,Qi

+++
∞
+

1

40

)
+ 2

√
2 ln(m(j − 1) + 1)

m
+

√
2

m
ln

(20π j)2

3

}
. (14)

The only difference between Equations (9) and (14) is that Equation (9) relies on the left-hand-
side of Equation (13) and Equation (14) relies on the right-hand-side of Equation (13) and sets
δ = 0.005.12 In Figure 13, the blue solid line equals the minimum of Equations (12) and (14) as a
function of the number of training examplesm.

In Figure 13, we see that our bound significantly beats the worst-case bound up until the point
where there are approximately 100,000,000 training instances. At this point, the worst-case guar-
antee is better than the data-dependent bound, which makes sense because it goes to zero as m
goes to infinity, whereas the term 1

M

∑M
i=1 ‖cost

∗
Qi

− д∗j,Qi
‖
∞
+ 1

40 in our bound (Equation (14)) is
a constant.

Figure 13(a) also illustrates that even when there are only 105 training instances, our bound
provides a generalization guarantee of approximately 0.1. Meanwhile, 7 ·107 training instances are
necessary to provide a generalization guarantee of 0.1 under the worst-case bound. Similarly, in
Figure 13(b), 500 times fewer samples are required to obtain a generalization guarantee of 0.1 under
our bound versus the worst-case bound. In Figure 13(c), 250 times fewer samples are required.

5 CONCLUSIONS AND BROADER APPLICABILITY

In this work, we provided the first generalization guarantees—both worst-case and data-
dependent—for tree search parameter tuning. These guarantees bound the number of samples
sufficient to ensure that the empirical cost incurred by using any mixture of scoring rules will
be close to its expected cost, where cost is an abstract measure such as tree size. Through exper-
iments, we showed that using the optimal parameter setting for one application domain when
solving problem instances from a different application domain can lead to a substantial tree-size
blow-up. We proved that this blowup can even be exponential. While we presented the theory
in the context of tree search, it also applies to other tree-growing applications. For example, it

11We choose the range j ∈ [1600] because under these distributions, the functions cost∗
Q

generally have at most 1,600

pieces.
12Like the worst-case bound, Equation (14) holds with probability 0.99, because with probability 0.995, Equation (13) holds,

and with probability 0.995, the bound from Equation (9) holds.
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could be used for learning rules for selecting variables to branch on in order to construct small
decision trees that correctly classify training examples. Similarly, it could be used for learning to
branch in order to construct a desirable taxonomy of items represented as a tree—for example, for
representing customer segments in advertising day to day.

For future research, Section 3.5 implies that for any discretization of the parameter space, an
adversary could choose a distribution over MILPs that causes the difference between the best
parameter setting within the discretization to be exponentially worse than any parameter setting
outside of the discretization. However, if the adversary is first forced to choose a distribution from
Section 3.5 and then a random sample of parameter settings is drawn, that random sample would
certainly include a good parameter setting leading to constant tree size. Are there lower bounds
that one can provide in this more challenging setup?

APPENDICES

A VARIABLE-SELECTION POLICIES

In practice, it is often too slow to compute the differences c̆Q − c̆Q−
i
and c̆Q − c̆Q+i for every variable,

since it requires solving as many as 2n LPs. Pseudocost branching is an alternative to computing
these values [Bénichou et al. 1971; Gauthier and Ribière 1977; Linderoth and Savelsbergh 1999].
To introduce pseudocost branching, we first define some notation, as presented in Achterberg’s
thesis [Achterberg 2007]. At a nodeQ , let f −Q,i = x̆Q [i] − 
x̆Q [i]� and f +Q,i = �x̆Q [i]� − x̆Q [i] denote

how far the ith component of the LP relaxation’s solution is from being integral. Let ς−Q,i and ς
+
Q,i

be the objective gains per unit change in variable x[i] at node Q after branching in each direction.
More formally,

ς−Q,i =
c̆Q − c̆Q−

i

f −
Q,i

and ς+Q,i =
c̆Q − c̆Q+i

f +
Q,i

.

Let σ−
i be the sum of ς−Q,i over all nodes Q where x[i] was chosen as the branching variable and

the LP relaxation of the nodeQ−
i has already been solved. Let η−i be the number of such nodes. Let

σ+i and η+i be the corresponding values for the upwards branches. The pseudocosts of variable x[i]
are defined as

Ψ−
i =

σ−
i

η−i
and Ψ+i =

σ+i
η+i
.

We initialize the pseudocosts using strong branching: if η−i = 0 when we are choosing which
variable to branch on at a node Q , we set

Ψ−
i =

c̆Q − c̆Q−
i

f −
Q,i

(15)

and similarly for Ψ+i .
In pseudocost branching, we estimate c̆Q − c̆Q−

i
using the value Ψ−

i f
−
Q,i and we estimate c̆Q − c̆Q+i

using the valueΨ+i f
+
Q,i . For example, the linear scoring rule with parameter μ ∈ [0, 1] using pseudo-

cost branching is defined as

score(T ,Q, i) = (1 − μ)min
{
Ψ−
i f

−
Q,i ,Ψ

+
i f
+
Q,i

}
+ μmax

{
Ψ−
i f

−
Q,i ,Ψ

+
i f
+
Q,i

}
.

Reliability branching [Achterberg et al. 2005] as a variation on pseudocost branching. Variable
i’s pseudocosts are said to be unreliable if min{η−i ,η

+
i } < ηrel, where ηrel ∈ Z is a tunable param-

eter. We set the pseudocosts of unreliable variables as in Equation (15). We refer the reader to
Achterberg’s thesis [Achterberg 2007] for guidance about how to tune the parameter ηrel.
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B PROOFS FROM SECTION 3

Notation. In the proofs in this section, we will use the following notation. Let Q be a MILP
instance. Suppose that we branch on x[i] and x[j], setting x[i] = 0 and x[j] = 1. We use the
notation Q−,+

i, j to denote the resulting MILP. Similar, if we set x[i] = 1 and x[j] = 0, we denote the

resulting MILP as Q+,−i, j .

Theorem 3.24. Let

score1(T ,Q, i) = min{c̆Q − c̆Q+i , c̆Q − c̆Q−
i
}, score2(T ,Q, i) = max{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
},

and costμ (Q) be the size of the tree produced by B&B. For every a,b such that 1
3 < a < b < 1

2 and
for all even n ≥ 6, there exist a distribution D over MILP instances with n binary variables such that
if μ ∈ [0, 1] \ (a,b), then

EQ∼D[costμ (Q)] = Ω
(
2(n−9)/4

)
and if μ ∈ (a,b), then with probability 1, cost(Q, μscore1 + (1 − μ)score2) = O(1). This holds no
matter which node-selection policy B&B uses.

Proof. We populate the support of the distribution D by relying on two helpful theorems:
Theorem 3.25 and B.5. In Theorem 3.25, we prove that for all μ∗ ∈ ( 13 ,

2
3 ), there exists an infinite

family Fn,μ∗ of MILP instances such that for any Q ∈ Fn,μ∗ , if μ ∈ [0, μ∗), then the scoring rule
μscore1 + (1 − μ)score2 results in a B&B tree with O(1) nodes and if μ ∈ (μ∗, 1], the scoring rule
results a tree with 2(n−4)/2 nodes. Conversely, in Theorem B.5, we prove that there exists an infinite
family Gn,μ∗ of MILP instances such that for any Q ∈ Gn,μ∗ , if μ ∈ [0, μ∗), then the scoring rule

μscore1 + (1 − μ)score2 results in a B&B tree with 2(n−5)/4 nodes and if μ ∈ (μ∗, 1], the scoring
rule results a tree with O(1) nodes.

Now, let Qa be an arbitrary instance in Gn,a and let Qb be an arbitrary instance in Fn,b . The
theorem follows by letting D be a distribution such that PrQ∼D [Q = Qa] = PrQ∼D [Q = Qb ] =

1/2.We know that if μ ∈ [0, 1]\(a,b), then the expected value of cost(Q, μscore1+ (1−μ)score2)
is 1

2 (O(1) + 2(n−5)/4) ≥ 2(n−9)/4. Meanwhile, if μ ∈ (a,b), then with probability 1,

cost (Q, μscore1 + (1 − μ)score2) = O(1).

Throughout the proof of this theorem, we assume the node-selection policy is depth-first search.
We then prove that for any infeasible MILP, if NSP and NSP’ are two node-selection policies and
score = μscore1 + (1− μ)score2 for any μ ∈ [0, 1], then tree T B&B builds using NSP and score
equals the tree T ′ it builds using NSP’ and score (see Theorem B.10). Thus, the theorem holds for
any node-selection policy. �

Theorem 3.25. Let

score1(T ,Q, i) = min
{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
, score2(T ,Q, i) = max

{
c̆Q − c̆Q+i , c̆Q − c̆Q−

i

}
,

and costμ (Q) be the size of the tree produced by B&B. For all even n ≥ 6 and all μ∗ ∈ ( 13 ,
1
2 ), there

exists an infinite family Fn,μ∗ of MILP instances such that, for any Q ∈ Fn,μ∗ , if μ ∈ [0, μ∗), then the
scoring rule μscore1 + (1 − μ)score2 results in a B&B tree with O(1) nodes and if μ ∈ (μ∗, 1], the
scoring rule results a tree with 2(n−4)/2 nodes.

Proof. For ease of notation in this proof, we will drop T from the input of the functions score1
and score2 since the scoring rules do not depend on T , they only depend on the input MILP
instance and variable.

For any constant γ ≥ 1, let c1 = γ (1, 2, . . . ,n − 3) and let c2 = γ (0, 1.5, 3−
1

2μ∗ ). Let c = (c1,c2) ∈

R
n be the concatenation of c1 and c2. Next, define the n-dimensional vectors a1 = 2

∑n−3
i=1 ei and
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a2 = 2
∑3

i=1 en−3+i , and let A be a matrix whose first row is a1 and second row is a2. Let Qγ ,n be
the MILP

maximize c · x
subject to Ax = (n − 3, 3)�

x ∈ {0, 1}n .

We define Fn,μ∗ =
{
Qn,γ : γ ≥ 1

}
.

Example B.1. If γ = 1 and n = 8, then Qγ ,n is

maximize
(
1, 2, 3, 4, 5, 0, 1.5, 3 − 1

2μ∗

)
· x

subject to

(
2 2 2 2 2 0 0 0
0 0 0 0 0 2 2 2

)
x =

(
5
3

)
x ∈ {0, 1}.8

For every even n ≥ 6, both of the constraints a1 ·x = 2
∑n−3

i=1 x[i] = n−3 and a2 ·x = 2
∑3

i=1 x[n−
3 + i] = 3 are infeasible for x ∈ {0, 1}n since 2

∑n−3
i=1 x[i] and 2

∑3
i=1 x[n − 3 + i] are even numbers

but 3 and n− 3 are odd numbers. The key idea of this proof is that if B&B branches on all variables
in {x[n − 2],x[n − 1],x[n]} first, it will terminate upon making a tree of size at most 23 = 8, since
at most three branches are necessary to determine that a1 ·x = 2

∑3
i=1 x[n− 3+ i] = 3 is infeasible.

However, if B&B branches on all variables in {x[1], . . . ,x[n − 3]} first, it will create a tree with
exponential size before it terminates.

Lemma B.2. Suppose μ < μ∗. Then, for any MILPQγ ,n ∈ Fn,μ∗ , μscore1 + (1− μ)score2 branches
on all variables in {x[n − 2],x[n − 1],x[n]} before branching on variables in {x[1], . . . ,x[n − 3]}.

Proof of Lemma B.2. For ease of notation, for the remainder of this proof, we drop the subscript
(γ ,n) from Qγ ,n and denote this MILP as Q . We first need to determine the form of x̆Q , which is
the optimal solution to the LP relaxation ofQ . It is easiest to see how the LP relaxation will set the
variables x[n−2], x[n−1], and x[n]. The only constraints on these variables are that 2(x[n−2]+x[n−
1]+x[n]) = 3 and that x[n − 2],x[n − 1],x[n] ∈ [0, 1]. Recall that c = (1, 2, . . . ,n − 3, 0, 1.5, 3− 1

2μ∗ )

is the vector defining the objective value of Q . Since μ∗ > 1/3, we know that 1.5 < 3 − 1
2μ∗ , which

means that c[n − 2] < c[n − 1] < c[n]. Since the goal is to maximize c · x , the LP relaxation will
set x[n − 2] = 0, x[n − 1] = 1

2 , and x[n] = 1. The logic for the first n − 3 variables is similar. In
this case, c[1] < c[2] < · · · < c[n − 3], so the LP relaxation’s solution will put as much weight as
possible on the variable x[n − 3], then as much weight as possible on the variable x[n − 4], and so
on, putting as little weight as possible on the variable x[1] since it has the smallest corresponding
objective coefficient c[1]. Since the only constraints on these variables are that 2

∑n−3
i=1 x[i] = n − 3

and x[1], . . . ,x[n − 3] ∈ [0, 1], the LP objective value can set 
 n−32 � of the variables to 1, it can set

one variable to 1
2 , and it has to set the rest of the variables to 0. Letting i = �n−32 �, this means the

LP relaxation will set the first i − 1 variables x[1], · · · x[i − 1] to zero, it will set x[i] = 1
2 , and it will

set x[i + 1], . . . ,x[n − 3] to 1. In other words,

x̆Q [j] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j ≤ 
(n − 3)/2� or j = n − 2
1
2 if j = �(n − 3)/2� or j = n − 1

1 if �(n − 3)/2� ≤ j ≤ n − 3 or j = n.

For example, if n = 8, then x̆Q = (0, 0, 12 , 1, 1, 0,
1
2 , 1). (See Figure B.1(a).) Therefore, the only candi-

date variables to branch on are x[n − 1] and x[i] where again, i = �(n − 3)/2�.
To determine when variable B&B will branch on, we need to calculate x̆Q−

i
which is the solution

to the LP relaxation of Q with the additional constraint that x[i] = 0, as well as xQ+i which is the
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Fig. B.1. Illustrations to accompany the proof of Lemma B.2 when n = 8. For each j on the x-axis, the
histogram gives the value of either x̆Q [j] (Figure B.1(a)), x̆Q−

7
[j] (Figure B.1(b)), x̆Q+7

[j] (Figure B.1(c)), x̆Q−
3
[j]

(Figure B.1(d)), or x̆Q+3
[j] (Figure B.1(e)). In this case, i = 3.

solution to the LP relaxation ofQ with the additional constraint that x[i] = 1, and xQ−
n−1

and xQ+n−1 .

First, we will determine the form of the vectors x̆Q−
n−1

and x̆Q+n−1 . Suppose we set x[n − 1] = 0.

We now need to ensure that 2(x[n − 2] + 0 + x[n]) = 3 and that x[n − 2],x[n] ∈ [0, 1]. Since
c[n − 2] = 0 < 3 − 1

2μ∗ = c[n], the solution to the LP relaxation of Q−
n−1 will set x[n − 2] = 1

2

and x[n] = 1. (See Figure B.1(b).) Similarly, if we set x[n − 1] = 1, we now need to ensure that
2(x[n − 2] + 1 + x[n]) = 3 and that x[n − 2],x[n] ∈ [0, 1]. Therefore, the solution to the LP
relaxation of Q−

n−1 will set x[n − 2] = 0 and x[n] = 1
2 . (See Figure B.1(c).) In other words, x̆Q−

n−1
=

x̆Q − 1
2en−1 +

1
2en−2 and x̆Q+n−1 = x̆Q +

1
2en−1 −

1
2en .

The argument for x̆Q−
i
and x̆Q−

i
is similar. Recall that, in x̆Q , the solution to the LP relaxation of

the original MIPQ , we have that x̆Q [i] =
1
2 since it is the median of the variables x[1], . . . ,x[n−3].

For all j > i , we have that x̆Q [j] = 1 and for all j < i , we have that x̆Q [j] = 0. Suppose we
set x[i] = 0. As before, the LP relaxation’s solution will put as much weight as possible on the
variable x[n − 3], then as much weight as possible on the variable x[n − 4], and so on, putting
as little weight as possible on the variable x[1] since it has the smallest corresponding objective
coefficient c[1]. Since it cannot set x[i] = 1

2 , it will set the next-best variable to 1
2 , which is x[i − 1].

(See Figure B.1(d).) In other words, x̆Q−
i
= x̆Q − 1

2ei +
1
2ei−1. If we set x[i] = 1, the LP relaxation’s

solution will have to take some weight away from the variables x[i + 1], . . . ,x[n− 3] since it needs
to ensure that 2

∑n−3
i=1 x[i] = n − 3. Therefore, it will set x[i + 1] to 1

2 and x[j] to 1 for all j > i + 1.

(See Figure B.1(e).) In other words, x̆Q+i = x̆Q +
1
2ei −

1
2ei+1.
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Therefore,

c̆Q−
i
= c̆Q −

1

2

⌈
n − 3

2

⌉
+

1

2

⌊
n − 3

2

⌋
= c̆Q −

γ

2
,

c̆Q+i = c̆Q +
1

2

⌈
n − 3

2

⌉
−

1

2

(⌈
n − 3

2

⌉
+ 1

)
= c̆Q −

γ

2
,

c̆Q−
n−1
= c̆Q −

3γ

4
, and

c̆Q+n−1 = c̆Q +
3

4
−

1

2

(
3 −

1

2μ∗

)
= c̆Q −

γ

4

(
3 −

1

μ∗

)
.

This means that c̆Q −c̆Q−
i
= c̆Q −c̆Q+i = γ/2, c̆Q −c̆Q−

n−1
= 3γ/4, and c̆Q −c̆Q+n−1 =

γ

4 (3−
1
μ∗
). Therefore,

μscore1(Q, i) + (1 − μ)score2(Q, i) = γ/2 and μscore1(Q,n − 1) + (1 − μ)score2(Q,n − 1) =
μγ

4 (3 − 1
μ∗
) +

3γ (1−μ)
4 =

3γ
4 −

μγ

4μ∗ . This means that μscore1(Q, i) + (1 − μ)score2(Q, i) = γ/2 <
3γ
4 −

μγ

4μ∗ = μscore1(Q,n − 1) + (1 − μ)score2(Q,n − 1) so long as μ < μ∗.

The next node B&B will explore isQ−
n−1. The vector x̆Q−

n−1
has fractional values only in positions

i and n − 2. Branching on i , we again have that c̆Q−
n−1

− c̆Q−,−
n−1,i
= c̆Q−

n−1
− c̆Q−,+

n−1,i
= γ/2. Branching

on n − 2, Q−,−
n−1,n−2 is infeasible, so c̆Q−

n−1
− c̆Q−,−

n−1,n−2
equals some large number B ≥ ||c | |1. Next,

x̆Q−,+
n−1,n−2

= x̆Q−
n−1
+ 1

2en−2 −
1
2en , so c̆Q−,+

n−1,n−2
= c̆Q−

n−1
−

γ

2 (3 −
1

2μ∗ ). Therefore, μscore1
(
Q−
n−1, i

)
+

(1 − μ)score2(Q
−
n−1, i) = γ/2 and

μscore1
(
Q−
n−1,n − 2

)
+ (1 − μ)score2

(
Q−
n−1,n − 2

)
=

μγ

2

(
3 −

1

2μ∗

)
+ (1 − μ)B

= B + μ

(
3γ

2
−

γ

4μ∗
− B

)
≥ B + μ∗

(
3γ

2
−

γ

4μ∗
− B

)
= B −

γ

4
+ μ∗

(
3γ

2
− B

)
> B −

γ

4
+

3γ/4 − B

3γ/2 − B

(
3γ

2
− B

)
= B −

γ

4
+

3γ

4
− B

=
γ

2
,

where the final inequality holds because μ∗ < 1 <
B−3γ /4
B−3γ /2 . Therefore, x[n − 2] will be branched on

next.
Since Q−,−

n−1,n−2 is infeasible, the next node B&B will explore is Q−,+
n−1,n−2. The vector x̆Q−,+

n−1,n−2

has fractional values only in positions i and n. Both MILP instances Q−,+,−
n−1,n−2,n and Q−,+,+

n−1,n−2,n are

infeasible, so μscore1(Q
−,+
n−1,n−2,n)+(1−μ)score2(Q

−,+
n−1,n−2,n) = B whereas μscore1(Q

−,+
n−1,n−2, i)+

(1 − μ)score2(Q
−,+
n−1,n−2, i) = γ/2, as before. Therefore, B&B will branch on x[n] and fathom both

children.
The next node B&B will explore isQ+n−1. The vector x̆Q+n−1 has fractional values only in positions

i and n. Branching on i , we again have that c̆Q+n−1 − c̆Q+,−n−1,i
= c̆Q+n−1 − c̆Q+,+n−1,i

= γ/2. Branching
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on x[n], x̆Q+,−n−1,n
= x̆Q+n−1 −

1
2en +

1
2en−2, so c̆Q+,−n−1,n

= c̆Q+n−1 −
γ

2 (3 − 1
2μ∗ ). Meanwhile, Q+,+n−1,n is

infeasible, so c̆Q+n−1 − c̆Q+,+n−1,n−2
= B. Therefore, μscore1(Q

+
n−1, i) + (1 − μ)score2(Q

+
n−1, i) = γ/2 and

μscore1(Q
+
n−1,n) + (1 − μ)score2(Q

+
n−1,n) =

μγ

2 (3 − 1
2μ∗ ) + (1 − μ)B > γ/2. Therefore, x[n] will be

branched on next.
The next node B&B will explore is Q+,−n−1,n . The vector x̆Q+,−n−1,n

has fractional values only in posi-

tions i and n − 2. Both MILP instances Q+,−,−n−1,n,n−2 and Q
+,−,−
n−1,n,n−2 are infeasible, so

μscore1
(
Q−,+
n−1,n ,n − 2

)
+ (1 − μ)score2

(
Q−,+
n−1,n ,n − 2

)
= B

whereas μscore1(Q
−,+
n−1,n−2, i) + (1 − μ)score2(Q

−,+
n−1,n−2, i) = γ/2, as before. Therefore, B&B will

branch on x[n − 2] and fathom both children.
At this point, all children have been fathomed, so B&B will terminate. �

Lemma B.3. Suppose μ > μ∗. Then, for any MILP Qγ ,n ∈ Fn,μ∗ , B&B with the scoring rule

μscore1 + (1 − μ)score2 will create a tree of depth at least 2(n−5)/4.

Proof of Lemma B.3. To prove this lemma, we use induction to show that on any path from the
root of the B&B tree to a node of depth i = 
(n − 3)/2�, if J are the set of indices branched on along
that path, then J ⊆ {x[1], . . . ,x[n− 3]}. Even after branching on i nodes from {x[1], . . . ,x[n− 3]},
the MILP will still be feasible, so the branch will not yet have been fathomed (since the original
MILP is infeasible, a nodewill be fathomed onlywhen it is infeasible). Therefore, B&Bwill continue
down every branch to depth 
(n − 3)/2�, thus creating a tree with 2(n−4)/2 nodes.

Claim B.4. On any path from the root of the B&B tree to a node of depth i = 
(n − 3)/2�, if J are
the set of indices branched on along that path, then J ⊆ {x[1], . . . ,x[n − 3]}.

Proof of Claim B.4. We prove this claim by induction.

Inductive Hypothesis. For j ≤ 
(n − 3)/2�, let J be the set of indices branched on along an
arbitrary path of the B&B tree from the root to a node of depth j. Then J ⊆ {x[1], . . . ,x[n − 3]}.

Base Case (j = 0). As we saw in the proof of Lemma B.2, if μ > μ∗, then B&B will first branch on
x[i] where i = �(n − 3)/2�.

Inductive Step. Let j be an arbitrary index such that 0 ≤ j ≤ i − 1. Let J be the set of indices
branched on along an arbitrary path of the B&B tree from the root to a node of depth j. We know
from the inductive hypothesis that J ⊆ {x[1], . . . ,x[n − 3]}. Let Q ′ be the MILP at that node.
Since j ≤ 
(n − 3)/2� − 1, we know that the LP relaxation of Q ′ is feasible. Let z be the number
of variables set to zero in J and let x[p1],x[p2], . . . ,x[pt ] be {x[1], . . . ,x[n − 3]} \ J ordered such
that pk < pk ′ for k < k ′. We know that the solution to the LP relaxation of Q ′ will have the first
i ′ := 
(n − 3)/2� − z variables x[p1], . . . ,x[pi′ ] set to 0, it will set x[pi′+1] to 1/2, and it will set the
remaining variables in {x[1], . . . ,x[n − 3]} \ J to 1. Thus, the fractional variables are x[pi′+1] and
x[n − 1]. Note that since z ≤ |J | ≤ 
(n − 3)/2� − 1, i ′ = 
(n − 3)/2� − z ≥ 1.

Suppose we branch on x[pi′+1]. If we set x[pi′+1] = 0, then the LP relaxation of (Q ′)−pi′+1 will set

x[pi′ ] to be 1/2 and otherwise the optimal solution will remain unchanged. Thus, c̆Q ′ − c̆(Q ′)−pi′+1
=

c̆Q ′ −(c̆Q ′ −γpi′+1/2+γpi′/2) =
γ (pi′+1−pi′ )

2 . Meanwhile, if we set x[pi′+1] = 1, then the LP relaxation
of (Q ′)−pi′+1 will set x[pi′+2] to be 0 and otherwise the optimal solution will remain unchanged. Thus,
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c̆Q ′ − c̆(Q ′)+pi′+1
= c̆Q ′ − (c̆Q ′ + γpi′+1/2 − γpi′+2/2) =

γ (pi′+2−pi′+1)

2 . Suppose that c̆Q ′ − c̆(Q ′)+pi′+1
>

c̆Q ′ − c̆(Q ′)−pi′+1
. Then

μscore1 (Q
′,pi′+1) + (1 − μ)score2 (Q

′,pi′+1) =
γ

2
(μ (pi′+1 − pi′ ) + (1 − μ) (pi′+2 − pi′+1))

≥
γ

2
(μ + (1 − μ))

=
γ

2
.

Meanwhile, suppose that c̆Q ′ − c̆(Q ′)+pi′+1
≤ c̆Q ′ − c̆(Q ′)−pi′+1

. Then

μscore1 (Q
′,pi′+1) + (1 − μ)score2 (Q

′,pi′+1) =
γ

2
(μ (pi′+2 − pi′+1) + (1 − μ) (pi′+1 − pi′ ))

≥
γ

2
(μ + (1 − μ))

=
γ

2
.

Meanwhile, as in the proof of Lemma B.2, μscore1(Q
′,n−1)+(1−μ)score2(Q

′,n−1) =
3γ
4 −

μγ

4μ∗ <
γ

2

so long as μ > μ∗. Thus, B&B will branch next on x[pi′ ]. �

�

�

Theorem B.5. Let

score1(Q, i) = min{c̆Q − c̆Q+i , c̆Q − c̆Q−
i
} and score2(Q, i) = max{c̆Q − c̆Q+i , c̆Q − c̆Q−

i
}.

For all even n ≥ 6 and all μ∗ ∈ ( 13 ,
2
3 ), there exists an infinite family Gn,μ∗ of MILP instances such

that for anyQ ∈ Gn,μ∗ , if μ ∈ [0, μ∗), then the scoring rule μscore1 + (1− μ)score2 results in a B&B

tree with Ω(2(n−5)/4) nodes and if μ ∈ (μ∗, 1], the scoring rule results a tree with O(1) nodes.

Proof. For any constant γ ≥ 1, let c1 ∈ Rn−3 be a vector such that

c1[i] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if i < (n − 3)/2

1.5 if i = �(n − 3)/2�

3 − 1
2μ∗ if i > (n − 3)/2 + 1

and let c2 = (1, 2, 3). Let c = γ (c1,c2) ∈ Rn be the concatenation of c1 and c2 multiplied with
γ . For example, if γ = 1 and n = 8, then c = (0, 0, 1.5, 3 − 1

2μ∗ , 3 − 1
2μ∗ , 1, 2, 3) Next, define the

n-dimensional vectors a1 = 2
∑n−3

i=1 ei and a2 = 2
∑3

i=1 en−3+i , and letA be a matrix whose first row
is a1 and second row is a2. Let Qγ ,n be the MILP

maximize c · x
subject to Ax = (n − 3, 3)�

x ∈ {0, 1}n .

We define Gn,μ∗ = {Qn,γ : γ ≥ 1}.

For every even n ≥ 6, Qγ ,n , both of the constraints a1 · x = 2
∑n−3

i=1 x[i] = n − 3 and a2 · x =

2
∑3

i=1 x[n−3+i] = 3 are infeasible for x ∈ {0, 1}n since 2
∑n−3

i=1 x[i] and 2
∑3

i=1 x[n−3+i] are even
numbers but 3 and n − 3 are odd numbers. The key idea of this proof is that if B&B branches on
all variables in {x[n − 2],x[n − 1],x[n]} first, it will terminate upon making a tree of size at most
23 = 8, since at most three branches are necessary to determine that a1 ·x = 2

∑3
i=1 x[n− 3+ i] = 3
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is infeasible. However, if B&B branches on all variables in {x[1], . . . ,x[n − 3]} first, it will create a
tree with exponential size before it terminates.

Lemma B.6. Suppose μ > μ∗. Then for any MILPQγ ,n ∈ Gn,μ∗ , μscore1 + (1− μ)score2 branches
on all variables in {x[n − 2],x[n − 1],x[n]} before branching on variables in {x[1], . . . ,x[n − 3]}.

Proof of Lemma B.6. For ease of notation, for the remainder of this proof, we drop the subscript
(γ ,n) fromQγ ,n and denote this MILP asQ . The optimal solution to the LP relaxation ofQ has the
following form:

x̆Q [j] =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j ≤ 
(n − 3)/2� or j = n − 2
1
2 if j = �(n − 3)/2� or j = n − 1

1 if �(n − 3)/2� ≤ j ≤ n − 3 or j = n.

For example, if n = 8, then x̆Q = (0, 0, 12 , 1, 1, 0,
1
2 , 1). Therefore, the only candidate variables to

branch on are x[n − 1] and x[i] where i = �(n − 3)/2�. Branching on x[i], we have x̆Q−
i
= x̆Q −

1
2ei +

1
2ei−1 and x̆Q+i = x̆Q +

1
2ei −

1
2ei+1. Branching on x[n−1], we have x̆Q−

n−1
= x̆Q − 1

2en−1+
1
2en−2

and x̆Q+n−1 = x̆Q +
1
2en−1 −

1
2en . Therefore,

c̆Q−
i
= c̆Q −

3γ

4
,

c̆Q+i = c̆Q +
3γ

4
−
γ

2

(
3 −

1

2μ∗

)
= c̆Q −

3γ

4

(
1 −

1

μ∗

)
,

c̆Q−
n−1
= c̆Q − γ +

γ

2
= c̆Q −

γ

2
, and

c̆Q+n−1 = c̆Q + γ −
3γ

2
= c̆Q −

γ

2
.

This means that c̆Q −c̆Q−
i
= 3γ/4, c̆Q −c̆Q+i =

γ

4 (3−
1
μ∗
), and c̆Q −c̆Q−

n−1
= c̆Q −c̆Q+n−1 = γ/2. Therefore,

μscore1(Q, i)+ (1− μ)score2(Q, i) =
μγ

4 (3− 1
μ∗
)+

3γ (1−μ)
4 =

3γ
4 −

μγ

4μ∗ and μscore1(Q,n − 1)+ (1−

μ)score2(Q,n − 1) = γ/2. This means that μscore1(Q, i)+ (1− μ)score2(Q, i) =
3γ
4 −

μγ

4μ∗ < γ/2 =

μscore1(Q,n − 1) + (1 − μ)score2(Q,n − 1) so long as μ > μ∗.
The next node B&B will explore isQ−

n−1. The vector x̆Q−
n−1

has fractional values only in positions

i and n−2. Branching on i , we again have that c̆Q−
n−1

− c̆Q−,−
n−1,i
= 3γ/4 and c̆Q−

n−1
− c̆Q−,+

n−1,i
=

γ

4 (3−
1
μ∗
).

Branching on n − 2,Q−,−
n−1,n−2 is infeasible, so c̆Q−

n−1
− c̆Q−,−

n−1,n−2
equals some large number B ≥ ||c | |1.

Next, x̆Q−,+
n−1,n−2

= x̆Q−
n−1
+ 1

2en−2 −
1
2en , so c̆Q−,+

n−1,n−2
= c̆Q−

n−1
− γ . Therefore, μscore1(Q

−
n−1, i) + (1 −

μ)score2(Q
−
n−1, i) =

3γ
4 −

μγ

4μ∗ and

μscore1
(
Q−
n−1,n − 2

)
+ (1 − μ)score2

(
Q−
n−1,n − 2

)
= μγ + (1 − μ)B

= B + μ (γ − B)

= B −
μγ

4μ∗
+ μ

(
γ +

γ

4μ∗
− B

)
> B −

μγ

4μ∗
+

3γ/4 − B

γ +
γ

4μ∗ − B

(
γ +

γ

4μ∗
− B

)
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= B −
μγ

4μ∗
+ 3γ/4 − B

=
3γ

4
−

μγ

4μ∗
,

where the final inequality holds because μ < 1 <
B−3γ /4

B−(γ+γ /(4μ∗)) . Therefore, x[n−2]will be branched
on next.

SinceQ−,−
n−1,n−2 is infeasible, the next node B&B will explore isQ−,+

n−1,n−2. The vector x̆Q−,+
n−1,n−2

has

fractional values only in positions i and n. Since both MILP instancesQ−,+,−
n−1,n−2,n andQ−,+,+

n−1,n−2,n are

infeasible, so μscore1(Q
−,+
n−1,n−2,n)+(1−μ)score2(Q

−,+
n−1,n−2,n) = B whereas μscore1(Q

−,+
n−1,n−2, i)+

(1 − μ)score2(Q
−,+
n−1,n−2, i) =

3γ
4 −

μγ

4μ∗ < B. Therefore, B&B will branch on x[n] and fathom both

children.
The next node B&B will explore isQ+n−1. The vector x̆Q+n−1 has fractional values only in positions

i and n. Branching on i , we again have that c̆Q−
n−1

− c̆Q−,−
n−1,i
= 3γ/4 and c̆Q−

n−1
− c̆Q−,+

n−1,i
=

γ

4 (3 −
1
μ∗
).

Branching on x[n], x̆Q+,−n−1,n
= x̆Q+n−1 −

1
2en +

1
2en−2, so c̆Q+,−n−1,n

= c̆Q+n−1 − γ . Meanwhile, Q+,+n−1,n is

infeasible, so c̆Q+n−1−c̆Q+,+n−1,n−2
equals some large numberB ≥ ||c | |1. Therefore, μscore1(Q+n−1, i)+(1−

μ)score2(Q
+
n−1, i) =

3γ
4 −

μγ

4μ∗ and μscore1(Q
+
n−1,n)+(1−μ)score2(Q

+
n−1,n) = μγ+(1−μ)B >

3γ
4 −

μγ

4μ∗ .

Therefore, x[n] will be branched on next.
The next node B&B will explore is Q+,−n−1,n . The vector x̆Q+,−n−1,n

has fractional values only in

positions i and n − 2. Since both MILP instances Q+,−,−n−1,n,n−2 and Q+,−,−n−1,n,n−2 are infeasible, so

μscore1(Q
−,+
n−1,n ,n − 2) + (1 − μ)score2(Q

−,+
n−1,n ,n − 2) = B whereas μscore1(Q

−,+
n−1,n−2, i) + (1 −

μ)score2(Q
−,+
n−1,n−2, i) =

3γ
4 −

μγ

4μ∗ < B, as before. Therefore, B&B will branch on x[n − 2] and

fathom both children.
At this point, all children have been fathomed, so B&B will terminate. �

LemmaB.7. Suppose μ < μ∗. Then for anyMILPQγ ,n ∈ Gn,μ∗ , B&Bwith the scoring rule μscore1+

(1 − μ)score2 will create a tree of depth at least 2(n−5)/4.

Proof. Let i = �(n − 3)/2�. We first prove two useful claims.

Claim B.8. Let j be an even number such that 2 ≤ j ≤ i − 2 and let J =

{x[i − j/2], . . . ,x[i + j/2 − 1]}. Suppose that B&B has branched on exactly the variables in
J and suppose that the number of variables set to 1 equals the number of variables set
to 0. Then B&B will next branch on the variable x[i + j/2]. Similarly, suppose J =

{x[i − j/2 + 1],x[i − j/2 + 2], . . . ,x[i + j/2]}. Suppose that B&B has branched on exactly the vari-
ables in J and suppose that the number of variables set to 1 equals the number of variables set to 0.
Then B&B will next branch on the variable x[i − j/2].

Proof. LetQ be the MILP contained in the node at the end of the path. This proof has two cases.

Case 1: J = {x[i − j/2],x[i − j/2 + 1], . . . ,x[i + j/2 − 1]}. In this case, there is a set

J< = {x[1], . . . ,x[i − j/2 − 1]}

of i − j
2 − 1 variables smaller than x[i] that have not yet been branched on and there is a set

J> = {x[i + j/2], . . . ,x[n − 3]} of n − 3 − (i + j
2 − 1) = 2i − 1 − (i + j

2 − 1) = i − j
2 variables in

{x[i+1], . . . ,x[n−3]} that have not yet been branched on. Since the number of variables set to 1 in J

equals the number of variables set to 0, the LP relaxation will set the i− j
2−1 variables in J< to 0, the
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i− j
2−1 variables in J>\{x[i+j/2]} to 1, andx[i+j/2] to

1
2 . It will also setx[n−2] = 0,x[n−1] = 1

2 , and
x[n] = 1. Therefore, the two fractional variables are x[i + j/2] and x[n−1]. Branching on x[i + j/2],
we have x̆Q−

i+j/2
= x̆Q − 1

2ei+j/2 +
1
2ei−j/2−1 and x̆Q+

i+j/2
= x̆Q +

1
2ei+j/2 −

1
2ei+j/2+1. Branching on

x[n − 1], we have that x̆Q−
n−1
= x̆Q − 1

2en−1 +
1
2en−2 and x̆Q+n−1 = x̆Q +

1
2en−1 −

1
2en . Therefore,

c̆Q−
i+j/2
= c̆Q −

γ

2

(
3 −

1

2μ∗

)
c̆Q+

i+j/2
= c̆Q

c̆Q−
n−1
= c̆Q − 1 +

1

2
= c̆Q −

γ

2

c̆Q+n−1 = c̆Q + 1 −
3

2
= c̆Q −

γ

2

This means that c̆Q − c̆Q−
i+j/2
=

γ

2 (3 −
1

2μ∗ ), c̆Q − c̆Q+
i+j/2
= 0, and c̆Q − c̆Q−

n−1
= c̆Q − c̆Q+n−1 =

γ

2 .

Therefore, μscore1(Q, i + j/2) + (1 − μ)score2(Q, i + j/2) =
γ (1−μ)

2 (3 − 1
2μ∗ ) and μscore1(Q,n −

1) + (1 − μ)score2(Q,n − 1) =
γ

2 . Since μ < μ∗ and μ∗ ∈ ( 13 ,
1
2 ), we have that

μscore1(Q, i + j/2) + (1 − μ)score2(Q, i + j/2) =
γ (1 − μ)

2

(
3 −

1

2μ∗

)
≥
γ (1 − μ∗)

2

(
3 −

1

2μ∗

)
≥
γ

2
.

Therefore, x[i + j/2] will be branched on next.

Case 2: J = {x[i − j/2 + 1],x[i − j/2 + 2], . . . ,x[i + j/2]}. In this case, there is a set

J< = {x[1], . . . ,x[i − j/2]}

of i − j
2 variables smaller than x[i] that have not yet been branched on and a set J> = {x[i + j/2 +

1], . . . ,x[n−3]} of n−3−(i+ j
2 ) = 2i−1−(i+ j

2 ) = i−
j
2 −1 variables in {x[i+1], . . . ,x[n−3]} that

have not yet been branched on. Since the number of variables set to 1 in J equals the number of

variables set to 0, the LP relaxation will set the i− j
2 −1 variables in J< \{x[i− j/2]} to 0, the i− j

2 −1

variables in J> \ {x[i + j/2]} to 1, and x[i − j/2] to 1
2 . It will also set x[n − 2] = 0, x[n − 1] = 1

2 , and
x[n] = 1. Therefore, the two fractional variables are x[i − j/2] and x[n−1]. Branching on x[i − j/2],
we have x̆Q−

i−j/2
= x̆Q − 1

2ei−j/2 +
1
2ei−j/2−1 and x̆Q+

i−j/2
= x̆Q +

1
2ei−j/2 −

1
2ei+j/2+1. Branching on

x[n − 1], we have that x̆Q−
n−1
= x̆Q − 1

2en−1 +
1
2en−2 and x̆Q+n−1 = x̆Q +

1
2en−1 −

1
2en . Therefore,

c̆Q−
i−j/2
= c̆Q

c̆Q+
i−j/2
= c̆Q −

γ

2

(
3 −

1

2μ∗

)
c̆Q−

n−1
= c̆Q − γ +

γ

2
= c̆Q −

γ

2

c̆Q+n−1 = c̆Q + γ −
3γ

2
= c̆Q −

γ

2

This means that c̆Q − c̆Q−
i−j/2
=

γ

2 (3 −
1

2μ∗ ), c̆Q − c̆Q+
i−j/2
= 0, and c̆Q − c̆Q−

n−1
= c̆Q − c̆Q+n−1 =

γ

2 as

in the previous case, so x[i − j/2] will be branched on next. �
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Claim B.9. Suppose that J is the set of variables branched on along a path of depth 2 ≤ j ≤ i − 2
where j is odd and let j ′ = 
j/2�. Suppose that J = {x[i − j ′],x[i − j ′ + 1], . . . ,x[i + j ′]}. Moreover,
suppose that the number of variables set to 1 in J equals the number of variables set to 0, plus or minus
1. Then, B&B will either branch on x[i − j ′ − 1] or x[i + j ′ + 1].

Proof. Let Q be the MILP contained a the end of the path. There are i − j ′ − 1 variables J< =
{x[1], . . . ,x[i − j ′ − 1]} that are smaller than x[i] that have not yet been branched on, andn−3−(i+
j ′) = 2i−1−(i+ j ′) = i− j ′−1 variables J> = {x[i + j ′ + 1], . . . ,x[n − 3]} in {x[i + 1], . . . ,x[n − 3]}
that have not yet been branched on. Let z be the number of variables in J set to 0 and let o be the
number of variables set to 1. This proof has two cases:

Case 1: z = o + 1. Since z + o = j, we know that z = j ′ + 1 and o = j ′. Therefore, the LP
relaxation will set the variables in J< \{x[i − j ′ − 1]} to zero for a total of |J< \ {x[i − j ′ − 1]}|+z =
i−j ′−2+j ′+1 = i−1 zeros, it will set the variables in J> to one for a total of |J> |+o = i−j ′−1+j ′ = i−1
ones, and it will set x[i − j ′ − 1] to 1

2 . It will also set x[n − 2] = 0, x[n − 1] = 1
2 , and x[n] = 1.

Therefore, the two fractional variables are x[i − j ′ − 1] and x[n − 1]. Branching on x[i − j ′ − 1],
we have x̆Q−

i−j′−1
= x̆Q − 1

2ei−j′−1 +
1
2ei−j′−2 and x̆Q+

i−j′−1
= x̆Q +

1
2ei−j′−1 −

1
2ei+j′+1. Branching on

x[n − 1], we have that x̆Q−
n−1
= x̆Q − 1

2en−1 +
1
2en−2 and x̆Q+n−1 = x̆Q +

1
2en−1 −

1
2en . Therefore,

c̆Q−
i−j′−1

= c̆Q

c̆Q+
i−j′−1

= x̆Q −
γ

2

(
3 −

1

2μ∗

)
c̆Q−

n−1
= c̆Q − γ +

γ

2
= c̆Q −

γ

2

c̆Q+n−1 = c̆Q + γ −
3γ

2
= c̆Q −

γ

2

This means that c̆Q − c̆Q−
i−j′−1

= 0, c̆Q − c̆Q+
i−j′−1

=
γ

2 (3 −
1

2μ∗ ), and c̆Q − c̆Q−
n−1
= c̆Q − c̆Q+n−1 =

γ

2 .

Therefore, μscore1(Q, i − j ′ − 1)+ (1− μ)score2(Q, i − j ′ − 1) =
γ (1−μ)

2 (3− 1
2μ∗ ) and μscore1(Q,n−

1) + (1 − μ)score2(Q,n − 1) =
γ

2 . Since μ < μ∗ and μ∗ ∈ ( 13 ,
1
2 ), we have that

μscore1(Q, i − j ′ − 1) + (1 − μ)score2(Q, i − j ′ − 1) =
γ (1 − μ)

2

(
3 −

1

2μ∗

)
≥
γ (1 − μ∗)

2

(
3 −

1

2μ∗

)
≥
γ

2
.

Therefore, x[i − j ′ − 1] will be branched on next.

Case 1: z = o−1. Since z+o = j, we know that z = j ′ and o = j ′+1. Therefore, the LP relaxation
will set the variables in J< to zero for a total of |J< | + z = i − j ′ − 1 + j ′ = i − 1 zeros, it will set the
variables in J> \ {x[i + j

′ + 1]} to one for a total of |J> \ {x[i + j ′ + 1]}|+o = i− j ′−2+ j ′+1 = i−1
ones, and it will set x[i + j ′ + 1] to 1

2 . It will also set x[n − 2] = 0, x[n − 1] = 1
2 , and x[n] = 1.

Therefore, the two fractional variables are x[i + j ′ + 1] and x[n − 1]. Branching on x[i + j ′ + 1],
we have x̆Q−

i+j′+1
= x̆Q − 1

2ei+j′+1 +
1
2ei−j′−1 and x̆Q+

i+j′+1
= x̆Q +

1
2ei+j′+1 −

1
2ei+j′+2. Branching on
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x[n − 1], we have that x̆Q−
n−1
= x̆Q − 1

2en−1 +
1
2en−2 and x̆Q+n−1 = x̆Q +

1
2en−1 −

1
2en . Therefore,

c̆Q−
i+j′+1

= c̆Q −
γ

2

(
3 −

1

2μ∗

)
c̆Q+

i+j′+1
= x̆Q

c̆Q−
n−1
= c̆Q − γ +

γ

2
= c̆Q −

γ

2

c̆Q+n−1 = c̆Q + γ −
3γ

2
= c̆Q −

γ

2

This means that c̆Q − c̆Q−
i+j′+1

=
γ

2 (3 −
1

2μ∗ ), c̆Q − c̆Q+
i+j′+1

= 0, and c̆Q − c̆Q−
n−1
= c̆Q − c̆Q+n−1 =

γ

2 .

Therefore, μscore1(Q, i + j
′+ 1)+ (1− μ)score2(Q, i + j

′+ 1) =
γ (1−μ)

2 (3− 1
2μ∗ ) and μscore1(Q,n−

1) + (1 − μ)score2(Q,n − 1) =
γ

2 . As in the previous case, this means that x[i + j ′ + 1] will be
branched on next. �

We now prove by induction that there are 2( �(n−3)/2�)−1)/2 ≥ 2(n−5)/4 paths in the B&B tree of
length at least i − 2. Therefore, the size of the tree is at least 2(n−5)/4.

Inductive Hypothesis. Let j be an arbitrary integer between 1 and i − 2. If j is even, then there
exist at least 2j/2 paths in the B&B tree from the root to nodes of depth j such that if J is the
set indices branched on along a given path, then J = {x[i − j/2],x[i − j/2 + 1], . . . ,x[i + j/2 − 1]}
or J = {x[i − j/2 + 1],x[i − j/2 + 2], . . . ,x[i + j/2]}. Moreover, the number of variables set to 0
in J equals the number of variables set to 1. Meanwhile, if j is odd, let j ′ = 
j/2�. There exist
at least 2(j+1)/2 paths in the B&B tree from the root to nodes of depth j such that if J is the set
indices branched on along a given path, then J = {x[i − j ′],x[i − j ′ + 1], . . . ,x[i + j ′]}. Moreover,
the number of variables set to 0 in J equals the number of variables set to 1, plus or minus 1.

Base Case. To prove the base case, we need to show that B&B first branches on x[i]. We saw that
this will be the case in Lemma B.6 so long as μ < μ∗.

Inductive Step. Let j be an arbitrary integer between 1 and i−3. There are two cases, one where j
is even and onewhere j is odd. First, suppose j is even. From the inductive hypothesis, we know that
there exist at least 2j/2 paths in the B&B tree from the root to nodes of depth j such that if J is the
set varibles branched on along a given path, then J = {x[i − j/2],x[i − j/2 + 1], . . . ,x[i + j/2 − 1]}
or J = {x[i − j/2 + 1],x[i − j/2 + 2], . . . ,x[i + j/2]}. Moreover, the number of variables set to 0 in
J equals the number of variables set to 1. From Claim B.8, we know that, in the first case, x[i + j/2]
will be the next node B&B will branch on. This will create two new paths:

{x[i − j/2],x[i − j/2 + 1], . . . ,x[i + j/2]}

will be the set of variables branched along each path, and the number of variables set to 0 will
equal the number of variables set to 1, plus or minus 1. Also from Claim B.8, we know that in the
second case, x[i − j/2] will be the next node B&B will branch on. This will also create two new
paths: {x[i − j/2],x[i − j/2 + 1], . . . ,x[i + j/2]} will be the set of variables branched along each
path, and the number of variables set to 0 will equal the number of variables set to 1, plus or minus
1. Since this is true for all 2j/2 paths, this leads to a total of 2j/2+1 = 2(j+2)/2 paths, meaning the
inductive hypothesis holds.

Next, suppose j is odd and let j ′ = 
j/2�. From the inductive hypothesis, we know that there
exist at least 2(j+1)/2 paths in the B&B tree from the root to nodes of depth j such that if J is the set
variables branched on along a given path, then J = {x[i − j ′],x[i − j ′ + 1], . . . ,x[i + j ′]}. Moreover,
the number of variables set to 0 in J equals the number of variables set to 1, plus or minus 1. From
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Claim B.8, we know that B&B will either branch on x[i− j ′ −1] or x[i+ j ′+1]. Suppose the number
of variables set to 0 in J is 1 greater than the number of variables set to 1. If B&B branches on
x[i − j ′ − 1], we can follow the path where x[i − j ′ − 1] = 1, and this will give us a new path where

{x[i − j ′ − 1],x[i − j ′], . . . ,x[i + j ′]}

= {x[i − (j + 1)/2],x[i − (j + 1)/2 + 1], . . . ,x[i + (j + 1)/2 − 1]}

are the variables branched on and the number of variables set to 0 equals the number of variables
set to 1. If B&B branches on x[i + j ′ + 1], we can follow the path where x[i + j ′ + 1] = 1, and this
will give us a new path where

{x[i − j ′],x[i − j ′ + 1], . . . ,x[i + j ′],x[i + j ′ + 1]}

= {x[i − (j + 1)/2 + 1],x[i − (j + 1)/2 + 1], . . . ,x[i + (j + 1)/2]}

are the variables branched on and the number of variables set to 0 equals the number of variables
set to 1. A symmetric argument holds if the number of variables set to 0 in J is 1 less than the
number of variables set to 1. Therefore, all 2(j+1)/2 paths can be extended by one edge, so the
statement holds. �

�

Theorem B.10. Let Q be an infeasible MILP, let NSP and NSP’ be two node-selection policies, and
let score be a path-wise scoring rule. The tree T B&B builds using NSP and score equals the tree T ′

it builds using NSP’ and score.

Proof. For a contradiction, suppose T � T ′. There must be a node Q0 in T where if TQ0 is the
path from the root of T to Q0, then TQ0 is a rooted subtree of T ′, but either:

(1) In T , the node Q0 is fathomed but in T ′, Q0 is not fathomed, or
(2) In T , the nodeQ0 is not fathomed, but for all childrenQ0

′ ofQ0 in T , if TQ0
′ is the path from

the root of T to Q0
′, TQ0

′ is not a rooted subtree of T ′.

We will show that neither case is possible, thus arriving at a contradiction. First, we know that
since Q is infeasible, B&B will only fathom a node if it is infeasible. Therefore, the first case is
impossible: ifQ0 is fathomed in T , it must be infeasible, so it will also be fathomed in T ′, and vice
versa. Therefore, we know that B&B must branch on Q0 in both T and T ′. Let T̄ be the state of
the tree B&B has built using NSP and score by the time it branches on Q0 and let T̄ ′ be the state
of the tree B&B has built using NSP’ and score by the time it branches onQ0. Since TQ0 is a rooted

subtree of both T̄ and T̄ ′, we know that for all variables x[i], score(T̄ ,Q0, i) = score(TQ ,Q0, i) =
score(T̄ ′,Q0, i). Therefore, B&B will branch on the same variable in both T and T ′, which is a
contradiction, since this means that for all childrenQ0

′ ofQ0 in T , if TQ0
′ is the path from the root

of T to Q0
′, TQ0

′ is a rooted subtree of T ′. �

Lemma B.11 (Shalev-Shwartz and Ben-David [2014]). Let a ≥ 1 and b > 0. Then x < a logx+
b implies that x < 4a log(2a) + 2b.

Claim 3.3. There areT ≤ 2n(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any interval
Ij , the search tree A′ builds using the scoring rule μscore1 + (1 − μ)score2 is invariant across all
μ ∈ Ij .

13

13This claim holds even when score1 and score2 are members of the more general class of depth-wise scoring rules, which

we define as follows: For any search tree T of depth depth(T) and any j ∈ [n], let T[j] be the subtree of T consisting of

all nodes in T of depth at most j . We say that score is a depth-wise scoring rule if for all search trees T, all j ∈ [depth(T)],

all nodes Q of depth j , and all variables x [i], score(T, Q, i) = score(T[j], Q, i).
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Proof. We prove this claim by induction.

InductiveHypothesis. For i ∈ {1, . . . ,n}, there areT ≤ 2i(i−1)/2ni intervals I1, . . . , IT partitioning
[0, 1]where for any interval Ij and any two parameters μ, μ ′ ∈ Ij , if T and T ′ are the treesA′ builds
using the scoring rules μscore1 + (1− μ)score2 and μ ′score1 + (1− μ ′)score2, respectively, then
T[i] = T ′[i].

Base Case. Before branching on any variables, the B&B tree T0 consists of a single root node Q .
Given a parameter μ, A′ will branch on variable x[k] so long as

k = argmax�∈[n] {μscore1(T0,Q, �) + (1 − μ)score2(T0,Q, �)} .

Since μscore1(T0,Q, �) + (1 − μ)score2(T0,Q, �) is a linear function of μ for each � ∈ [n], we
know that for any k ∈ [n], there is at most one interval I of the parameter space [0, 1] where k =
argmax�∈[n] {μscore1 + (1 − μ)score2}. Thus, there are T ≤ n = 21·(1−1)/2n1 intervals I1, . . . , IT
partitioning [0, 1] where for any interval Ij , A

′ branches on the same variable at the root node
using the scoring rule μscore1 + (1 − μ)score2 across all μ ∈ Ij .

Inductive Step. Let i ∈ {2, . . . ,n} be arbitrary. From the inductive hypothesis, we know that
there are T ≤ 2(i−2)(i−1)/2ni−1 intervals I1, . . . , IT partitioning [0, 1] where for any interval Ij
and any two parameters μ, μ ′ ∈ Ij , if T and T ′ are the trees A′ builds using the scoring rules
μscore1 + (1 − μ)score2 and μ ′score1 + (1 − μ ′)score2, respectively, then T[i − 1] = T ′[i − 1].
Consider an arbitrary node Q in T[i − 1] (or equivalently, T ′[i − 1]) at depth i − 1. If Q is in-
tegral or infeasible, then it will be fathomed no matter which parameter μ ∈ Ij the algorithm
A′ uses. Otherwise, for all μ ∈ Ij , let Tμ be the state of the search tree A′ builds using the
scoring rule μscore1 + (1 − μ)score2 at the point when it branches on Q . By the inductive hy-
pothesis, we know that across all μ ∈ Ij , the path from the root to Q in Tμ is invariant, and
we refer to this path as TQ . Given a parameter μ ∈ Ij , the variable x[k] will be branched on at
node Q so long as k = argmax�{μscore1(Tμ ,Q, �) + (1 − μ)score2(Tμ ,Q, �)}, or equivalently, so
long as k = argmax�{μscore1(TQ ,Q, �) + (1 − μ)score2(TQ ,Q, �)}. In other words, the decision
of which variable to branch on is determined by a convex combination of the constant values
score1(TQ ,Q, �) and score2(TQ ,Q, �) no matter which parameter μ ∈ Ij the algorithm A′ uses.
Here, we critically use the fact that the scoring rule is path-wise.

Since μscore1(TQ ,Q, �) + (1 − μ)score2(TQ ,Q, �) is a linear function of μ for all �, there are
at most n intervals subdividing the interval Ij such that the variable branched on at node Q is
fixed. Moreover, there are at most 2i−1 nodes at depth i − 1, and each node similarly contributes a
subpartition of Ij of size n. If we merge all 2i−1 partitions, we have T ′ ≤ 2i−1(n − 1) + 1 intervals
I ′1, . . . , I

′
T ′ partitioning Ij where for any interval I ′p and any two parameters μ, μ ′ ∈ I ′p , if T and T ′

are the treesA′ builds using the scoring rules μscore1+(1−μ)score2 and μ
′score1+(1−μ

′)score2,
respectively, then T[i] = T ′[i]. We can similarly subdivide each interval I1, . . . , IT for a total of

T̄ ≤ 2(i−1)(i−2)/2ni−1
(
2i−1(n − 1) + 1

)
≤ 2(i−1)(i−2)/2ni−1

(
2i−1n

)
= 2i(i−1)/2ni

intervals Ī1, . . . , ĪT̄ partitioning [0, 1] such that for any interval Īt , across all μ ∈ Īt and any two
parameters μ, μ ′ ∈ Īt , if T and T ′ are the trees A′ builds using the scoring rules μscore1 + (1 −
μ)score2 and μ ′score1 + (1 − μ ′)score2, respectively, then T[i] = T ′[i]. �

Theorem B.12. Let score1 and score2 be two path-wise scoring rules and let C be the set of
functions C = {costμ : μ ∈ [0, 1]} mapping MILPs to R. Then Pdim(C) = O(n2).
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Proof. Suppose that Pdim(C) =m and let S = {Q1, . . . ,Qm} be a shatterable set of MILPs. We
know there exists a set of targets r1, . . . , rm ∈ R that witness the shattering of S by C. This means
that for every S′ ⊆ S, there exists a parameter μS′ such that if Qi ∈ S, then costμS′ (Qi ) ≤ ri .

Otherwise costμS′ (Qi ) > ri . Let M = {μS′ : S′ ⊆ S}. We will prove that |M | ≤ m2n(n−1)/2nn + 1,

and since 2m = |M |, this means that Pdim(C) =m = O(log(2n(n−1)/2nn)) = O(n2) (see Lemma B.11
in Appendix B).

To prove that |M | ≤ m2n(n−1)/2nn +1, we rely on Lemma 3.2, which tells us that for any problem
instance Q , there are T ≤ 2n(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any interval
Ij , across all μ ∈ Ij , the scoring rule μscore1 + (1 − μ)score2 results in the same search tree. If we

merge allT intervals for all samples inS, we are left withT ′ ≤ m2n(n−1)/2nn+1 intervals I ′1, . . . , I
′
T ′

where for any interval I ′j and any Qi ∈ S, costμ (Qi ) is the same for all μ ∈ I ′j . Therefore, at most

one element of M can come from each interval, meaning that |M | ≤ T ′ ≤ m2n(n−1)/2nn + 1, as
claimed. �

Lemma 3.10. Let score1, . . . , scored be d arbitrary scoring rules, let costμ be a tree-constant

cost function for all μ ∈ [0, 1]d and let Q be an arbitrary MILP over n integer variables. Suppose we
limit B&B to producing search trees of size κ. There is a set H of at most κnκ+2 hyperplanes such

that for any connected component R of [0, 1]d \ H , the search tree B&B builds using the scoring rule∑d
j=1 μ jscorej is invariant across all (μ1, . . . , μd ) ∈ R. In other words, cost∗Q (μ) is constant for all

μ ∈ R.

Proof. The proof has two steps. In ClaimB.13, we show that there are atmostnκ different search
trees that Algorithm 3 might produce for the MILP Q as we vary the mixing parameter vector
(μ1, . . . , μd ). In Claim B.14, for each of the possible search trees T that might be produced, we
show that the set of parameter values (μ1, . . . , μd )which give rise to that tree lie in the intersection
of κn2 halfspaces. These facts together prove the lemma.

Claim B.13. There are only nκ different search trees that can be achieved by varying the parameter
vector (μ1, . . . , μd ).

Proof of Claim B.13. Fix any d mixing parameters (μ1, . . . , μd ) and let v1, . . . ,vκ ∈ [n] be the
sequence of branching variables chosen by B&B run with scoring rule μ1score1 + · · ·+ μdscored ,
ignoring which node of the tree each variable was chosen for. That is, v1 is the variable branched
on at the root, v2 is the variable branched on at the next unfathomed node chosen by the node-
selection policy, and so on. If Algorithm 3 with scoring rule μ1score1 + · · · + μdscored produces
a tree of size k < κ, then definevt = 1 for all t ≥ k (we are just padding the sequencev1,v2, . . . so
that it has length κ). We will show that whenever two sets of mixing parameters (μ1, . . . , μd ) and
(μ ′1, . . . , μ

′
d
) give rise to the same sequence of branching variable selections, they in fact produce

identical search trees. This will imply that the number of distinct trees that can be produced by
B&B with scoring rules of the form μ1score1 + · · · + μdscored is at most nκ , since there are only
nκ distinct sequences of κ variables v1, . . . ,vκ ∈ [n].

Let (μ1, . . . , μd ) and (μ ′1, . . . , μ
′
d
) be two sets of mixing parameters, and suppose running B&B

with μ1score1 + · · · + μdscored and μ ′1score1 + · · · + μ ′
d
scored both results in the sequence of

branching variable decisions beingv1, . . . ,vκ . We prove that the resulting search trees are identical
by induction on the iterations of the algorithm, where an iteration corresponds to Lines 4 through
22 of Algorithm 1. Our base case is before the first iteration when the two trees are trivially equal,
since they both contain just the root node. Now suppose that up until the beginning of iteration t
the two trees were identical. Since the two trees are identical, the node-selection policy will choose
the same node to branch on in both cases. In both trees, the algorithmwill choose the same variable
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to branch on, since the sequence of branching variable choices v1, . . . ,vκ is shared. Since the two
trees are identical, we will branch using the same constraint vt ≤ a for some integer a ∈ Z in
both trees. Finally, if any of the children are fathomed, they will be fathomed in both trees, since
the they are identical. It follows that all steps of B&B maintain equality between the two trees,
and the claim follows. Also, whenever the sequence of branching variables differ, then the search
tree produced will not be the same. In particular, on the first iteration where the two sequences
disagree, the tree built so far will be identical up to that point, but the next variable branched on
will be different, leading to different trees. �

Next, we argue that for any given B&B search tree T , the set of mixing parameters (μ1, . . . , μd )
giving rise to T is defined by the intersection of nκ+2 halfspaces.

Claim B.14. For a given search tree T , there are at most κn2 halfspaces such that Algorithm 3
using the scoring rule μ1score1 + · · · + μdscored builds the tree T if and only if (μ1, . . . , μd ) lies in
the intersection of those halfspaces.

Proof of Claim B.14. Let v1, . . . ,vκ be the sequence of branching variable choices that gives
rise to tree T . We will prove the claim by induction on iterations completed by B&B. Let Tt be the
state of B&B after t iterations.

Induction Hypothesis. For a given index t ∈ [κ], there are at most tn2 halfspaces such that B&B
using the scoring rule μ1score1 + · · · + μdscored builds the partial tree Tt after t iterations if and
only if (μ1, . . . , μd ) lies in the intersection of those halfspaces.

Base Case. In the base case, before the first iteration, the set of parameters that will produce the
partial search tree consisting of just the root is the entire set of parameters, which vacuously is
the intersection of zero hyperplanes.

Inductive Step. For the inductive step, let t < κ be an arbitrary tree size. By the inductive hypoth-
esis, we know that there exists a set B of at most tn2 halfspaces such that B&B using the scoring
rule μ1score1+ · · ·+ μdscored builds the partial tree Tt after t iterations if and only if (μ1, . . . , μd )
lies in the intersection of those halfspaces. Let Q ′ be the IP contained in the next node that B&B
will branch on given Tt . We know that B&B will choose to branch on variable vt+1 at this node if
and only if

μ1score1(Tt ,Q
′,vt+1) + · · · + μdscored (Tt ,Q

′,vt+1)

> max
v ′�vt+1

{μ1score1(Tt ,Q
′,v ′) + · · · + μdscored (Tt ,Q

′,v ′)} .

Since these functions are linear in (μ1, . . . , μd ), there are at most n2 halfspaces defining the region
wherevt+1 = argmax {μ1score1(T ,Q

′,v ′) + · · · + μdscored (T ,Q
′,v ′)}. Let B′ be this set of half-

spaces. B&B using the scoring rule μ1score1 + · · · + μdscored builds the partial tree Tt+1 after
t + 1 iterations if and only if (μ1, . . . , μd ) lies in the intersection of the (t + 1)n2 halfspaces in the
set B ∪ B′. �

�

Theorem 3.11. Let score1, . . . , scored be d arbitrary scoring rules and let costμ be a tree-

constant cost function for all μ ∈ [0, 1]d . Let C be the set of functions C = {costμ : μ ∈ [0, 1]d }
mapping MILPs to [0,H ]. For any set S = {Q1, . . . ,Qm} of MILPs,

R̂S(C) = O

(
H

√
d(ln(mκ) + κ lnn)

m

)
.
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Proof. We will again use Massart’s lemma (Lemma 3.7) to prove this lemma. Let A ⊆ [0,H ]m

be the following set of vectors:

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
costμ (Q1)

...
costμ (Qm)

 !!" : μ ∈ [0, 1]d

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By definition, this means that

R̂S(C) =
1

m
Eσ∼{−1,1}m

[
sup
a∈A

m∑
i=1

σia[i]

]
Moreover, by definition of the dual class,

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
cost∗Q1

(μ)
...

cost∗Qm
(μ)

 !!" : μ ∈ [0, 1]d

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By Lemma 3.10, for each dual function Qi there is a set Hi of at most κnκ+2 hyperplanes such
that for any connected component R of [0, 1]d \ H , cost∗Qi

(μ) is constant for all μ ∈ R. All of the

mκnκ+2 hyperplanes in H1 ∪ · · · ∪ Hm split [0, 1]d into O(d(mκnκ+2)d ) regions where in any one
region R, the entire vector cost∗Q1

(μ) , . . . , cost∗Qm
(μ) is fixed across all μ ∈ [0, 1]d . This means

that |A| = O(d(mκnκ+2)d ). The lemma statement therefore follows from Massart’s lemma. �

Theorem B.15. Let score1, . . . , scored be d arbitrary scoring rules and let costμ be a tree-

constant cost function for all μ ∈ [0, 1]d . Let C be the set of functions C = {costμ : μ ∈ [0, 1]d }
mapping MILPs to R. Then Pdim(C) = O (dκ logn + d logd) .

Proof. Suppose that Pdim(C) = m and let S = {Q1, . . . ,Qm} be a shatterable set of problem
instances. We know there exists a set of targets r1, . . . , rm ∈ R that witness the shattering of S by
C. This means that for every S′ ⊆ S, there exists a parameter vector

(
μ1,S′, . . . , μd,S′

)
such that

if Qi ∈ S′, then cost
(
Qi , μ1,S′score1 + · · · + μd,S′scored

)
≤ ri . Otherwise

cost
(
Qi , μ1,S′score1 + · · · + μd,S′scored

)
> ri .

Let M =
{(
μ1,S′, . . . , μd,S′

)
: S′ ⊆ S

}
. We will prove that |M | = O(d(mκnκ+2)d ), and since 2m =

|M |, this means that Pdim(C) =m = O(dκ logn + d logd) (see Lemma B.11 in Appendix B).
To prove our bound on |M |, we rely on Lemma 3.10, which tells us that for any problem instance

Q , there is a set H of at most T ≤ κnκ+2 hyperplanes such that for any connected component R
of [0, 1]d \ H , the search tree B&B builds using the scoring rule μ1score1 + · · · + μdscored is
invariant across all (μ1, . . . , μd ) ∈ R. If we merge allT hyperplanes for all samples in S, we are left
with a set H′ of T ′ ≤ mκnκ+2 hyperplanes where for any connected component R of [0, 1]d \ H ′

and any Qi ∈ S, the search tree B&B builds using the scoring rule μ1score1 + · · · + μdscored
given as input Qi is invariant across all (μ1, . . . , μd ) ∈ R. Therefore, at most one element ofM can
come from each connected component, of which there areO(d |H ′|d ) = O(d(mκnκ+2)d ). Therefore,
|M | = O(d(mκnκ+2)d ), as claimed. �

B.1 Proofs from Section 3.3

Theorem 3.17. Let F = { fμ | μ ∈ R} and G = {дμ | μ ∈ R} consist of functions mapping Z to

[0,H ]. For any S ⊆ Z, R̂S(F ) ≤ R̂S(G) +
1
|S |

∑
z∈S

++f ∗z − д∗z
++
∞
.
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Proof. Let S = {z1, . . . , zm} be an arbitrary subset of Z. Fix an arbitrary vector μ ∈ R and
index i ∈ [m]. Suppose that σi = 1. Since f ∗zi (μ) ≤ д∗zi (μ) +

++f ∗zi − д∗zi
++
∞
, we have that

σi f
∗
zi
(μ) ≤ σiд

∗
zi
(μ) +

++f ∗zi − д∗zi
++
∞
. (16)

Meanwhile, suppose σi = −1. Since f ∗zi (μ) ≥ д∗zi (μ) −
++f ∗zi − д∗zi

++
∞
, we have that

σi f
∗
zi
(μ) = −f ∗zi (μ) ≤ −д∗zi (μ) +

++f ∗zi − д∗zi
++
∞
= σiд

∗
zi
(μ) +

++f ∗zi − д∗zi
++
∞
. (17)

Combining Equations (16) and (17), we have that

sup
μ∈R

m∑
i=1

σiдμ (zi ) ≥
m∑
i=1

σiд
∗
zi
(μ) ≥

m∑
i=1

σi f
∗
zi
(μ) −

++f ∗zi − д∗zi
++
∞
. (18)

By definition of the supremum, Equation (18) implies that for every σ ∈ {−1, 1}m ,

sup
μ∈R

m∑
i=1

σiдμ (zi ) ≥ sup
μ∈R

m∑
i=1

σi fμ (zi ) −
m∑
i=1

++f ∗zi − д∗zi
++
∞
.

Therefore

Eσ∼{−1,1}m

[
sup
μ∈R

m∑
i=1

σiдμ (zi )

]
≥ Eσ∼{−1,1}m

[
sup
μ∈R

m∑
i=1

σi fμ (zi )

]
−

m∑
i=1

++f ∗zi − д∗zi
++
∞
,

so the lemma statement holds. �

Algorithm for Finding Approximating Function. We now provide a dynamic programming

(DP) algorithm (Algorithm 2) which applies in the common case where R = R and the dual func-
tions f ∗z are piecewise constant with a large number of pieces. Given an integer k , the algorithm
returns a piecewise-constant function д∗z with at most k pieces such that

++f ∗z − д∗z
++
∞
is minimized.

Letting t be the number of pieces in the piecewise decomposition of f ∗z , the DP algorithm runs in
O

(
kt2

)
time.

The algorithm takes as input the partition [a1,a2) , . . . , [at ,at+1) of the parameter space R and
values c1, . . . , ct such that for any interval [ai ,ai+1), f

∗
z (μ) = ci for all μ ∈ [ai ,ai+1). The algorithm

begins by calculating upper and lower bounds on the value of the function f ∗z across various
subsets of its domain. In particular, for each i, i ′ ∈ [t] such that i ≤ i ′, the algorithm calculates
the lower bound �i,i′ = min {ci , ci+1, . . . , ci′ } and the upper bound ui,i′ = max {ci , ci+1, . . . , ci′ }.
Algorithm 2 performs these calculations in O(t2) time.

Next, for each i ∈ [t] and j ∈ [k], the algorithm calculates a value C(i, j) which equals the
smallest �∞ norm between any piecewise constant function with j pieces and the function f ∗z
when restricted to the interval [a1,ai+1). Since R = [a1,at+1), we have that C(t ,k)—the value our

algorithm returns—equals minд∈Gk
++f ∗z − д

++
∞
, as claimed. For all i ∈ [t], C(i, 1) =

u1,i−�1,i
2 and for

all j ≥ 2,

C(i, j) = min

{
C(i, 1), min

i′ ∈[i−1]

{
C(i ′, j − 1) +

ui′+1,i − �i′+1,i
2

}}
.

Algorithm 2 performs these calculations in O(kt2) time.

Corollary 3.18. With probability 1 − δ over the draw of the set S ∼ Dm , for all μ ∈ R and all
j ≥ 1, 					 1m ∑

z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 = O
(
1

m

∑
z∈S

++f ∗z − д∗j,z
++
∞
+ R̂S

(
Gj

)
+ H

√
1

m
ln

j

δ

)
. (8)
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ALGORITHM 2: Piecewise-constant function fitting via dynamic programming

Input: Partition [a1,a2) , . . . , [at ,at+1) of R, values c1, . . . , ct , and desired number of pieces k ∈ N.

1 for i ∈ [t] do
2 Set ui,i = ci and �i,i = ci .

3 for i ′ ∈ {i + 1, . . . , t} do
4 if ci′ < �i,i′−1 then
5 Set �i,i′ = ci′ and ui,i′ = ui,i′−1.

6 else if ci′ > ui,i′−1 then
7 Set �i,i′ = �i,i′−1 and ui,i′ = ci′ .

8 else

9 Set �i,i′ = �i,i′−1 and ui,i′ = ui,i′−1.

10 end

11 end

12 for i ∈ [t] do

13 Set C(i, 1) =
u1,i−�1,i

2 .

14 end

15 for j ∈ {2, . . . ,k} do
16 for i ∈ [t] do

17 Set C(i, j) = min
{
C(i, 1),mini′ ∈[i−1]

{
C(i ′, j − 1) +

ui′+1,i−�i′+1,i
2

}}
.

18 end

19 end

Proof. We will prove that with probability at least 1 − δ over the draw of the training set
S = {z1, . . . , zm} ∼ Dm , for all parameter vectors μ ∈ R and all j ∈ N,					 1m ∑

z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 ≤ 2

m

m∑
i=1

++f ∗zi − д∗j,zi
++
∞
+ 2R̂

(
Gj

)
+ 3

√
1

2m
ln

(π j)2

3δ
.

For each integer j ≥ 1, let δ j =
6δ

(π j)2
. From Theorems 3.6 and 3.17, we know that with probability

at least 1 − δ j over the draw of the training set S =∼ Dm , for all parameter vectors μ ∈ R,					 1m ∑
z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 ≤ 2

m

m∑
i=1

++f ∗zi − д∗j,zi
++
∞
+ 2R̂

(
Gj

)
+ 3

√
1

2m
ln

2

δ j

=
2

m

m∑
i=1

++f ∗zi − д∗j,zi
++
∞
+ 2R̂

(
Gj

)
+ 3

√
1

2m
ln

(π j)2

3δ
.

Since
∑∞

i=1 δ j = δ , the corollary follows from a union bound over all j ≥ 1. �

Corollary B.16. Let F = { fμ | μ ∈ R} ⊆ [0, 1]Z be a set of functions mapping Z to [0, 1].
Let G1,G2,G3, . . . be a countable sequence of function classes, where for each j ∈ N, Gj = {дj,μ |

μ ∈ R} ⊆ [0, 1]Z is a set of functions mapping Z to [0, 1], parameterized by vectors μ ∈ R. With
probability at least 1 − δ over the draw of the training set S ∼ Dm , for all parameter vectors μ ∈ R

and all j ∈ N,					 1m ∑
z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 ≤ 2R̂
(
Gj

)
+ 2Ez∼D

[++f ∗z − д∗j,z
++
∞

]
+

√
2

m
ln

2(π j)2

3δ
.
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Proof. From Theorem 3.17, we know that for every integer j ≥ 1,

ES′∼Dm

[
R̂S′(F )

]
≤ ES′∼Dm

[
R̂S′

(
Gj

) ]
+ Ez∼D

[++f ∗z − д∗j,z
++
∞

]
.

For each integer j ≥ 1, let δ j =
6δ

(π j)2
. From Theorem 3.6 and a Hoeffding bound, we know that

with probability at least 1 − δ j over the draw of the training set S = {z1, . . . , zm} ∼ Dm , for all
parameter vectors μ ∈ R,					 1m ∑

z∈S

fμ(z) − Ez∼D
[
fμ(z)

] 					 ≤ 2R̂
(
Gj

)
+ 2Ez∼D

[++f ∗z − д∗j,z
++
∞

]
+

√
2

m
ln

4

δ j

= 2R̂
(
Gj

)
+ 2Ez∼D

[++f ∗z − д∗j,z
++
∞

]
+

√
2

m
ln

2(π j)2

3δ
.

Since
∑∞

j=1 δ j = δ , the corollary follows from a union bound over all j ≥ 1. �

Theorem B.17 (Hölder’s Ineqality). Letp0 andp1 be two values in [1,∞] such that 1
p0
+ 1

p1
= 1.

Then for all functions u andw , ‖uw ‖1 ≤ ‖u‖p0 ‖w ‖p1 .

Theorem B.18 (Interpolation). Let p and q be two values in (0,∞] and let θ be a value in (0, 1).

Let pθ be defined such that 1
pθ
= θ

p1
+ 1−θ

p0
. Then, for all functions u, ‖ f ‖pθ ≤ ‖ f ‖θp1 ‖ f ‖

1−θ
p0

.

Lemma B.19. For any γ ∈ (0, 14 ) and p ∈ [1,∞), let F and G be the function classes defined in
Theorem 3.20. The dual class G∗ (γ ,p)-approximates the dual class F ∗.

Proof. For ease of notation, let t = γ p , a = 1
2γ p , R = (0, t], and Z = [ 1

2γ p ,∞). Throughout this

proof, we will use the following inequality:++f ∗z − д∗z
++
2
=

√∫ t

0
(f ∗z (μ) − д∗z (μ))

2dμ =

√∫ t

0

(
1

2
cos(μz)

)2
dμ =

1

4

√
2t +

sin(2tz)

z
≤

1

4

√
2t +

1

z
.

(19)
First, suppose p = 2. Since t = γ 2 and 1

z
≤ 2γ 2, Equation (19) implies that

++f ∗z − д∗z
++
2
≤

1
4

√
4γ 2 < γ .
Next, suppose p < 2. We know that++( f ∗z − д∗z

)p++
1
=

∫ t

0

		 ( f ∗z (μ) − д∗z (μ)
)p 		 dμ = ∫ t

0

		f ∗z (μ) − д∗z (μ)
		p dμ =

++f ∗z − д∗z
++p
p
. (20)

From Equation (20) and Hölder’s inequality (Theorem B.17) with u =
(
f ∗z − д∗z

)p
, w the constant

functionw : μ �→ 1, p0 =
2
p
, and p1 =

2
2−p , we have that++f ∗z − д∗z

++p
p
=

++( f ∗z − д∗z
)p++

1

≤ ‖w ‖ 2
2−p

++( f ∗z − д∗z
)p++

2
p

=

(∫ t

0
dμ

) 2−p
2 ++( f ∗z − д∗z

)p++
2
p

= t
2−p
2

++( f ∗z − д∗z
)p++

2
p

= t
2−p
2

(∫ t

0

(
f ∗z (μ) − д∗z (μ)

)2
dμ

) p
2

= t
2−p
2

++f ∗z − д∗z
++p
2
.
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Therefore, ++f ∗z − д∗z
++
p
≤ t

1
p −

1
2
++f ∗z − д∗z

++
2

≤
t

1
p −

1
2

4

√
2t +

1

z
(Equation (19))

=
t

1
p

4

√
2 +

1

zt

=
γ

4

√
2 +

1

zγ p
(
t = γ p

)
< γ ,

(
z ≥

1

2γ p

)
Finally, suppose p > 2. Let θ = 1 − 2

p
, p0 = 2, and p1 = ∞. By Theorem B.18,++f ∗z − д∗z

++
p
≤

++f ∗z − д∗z
++1−θ
2

=
++f ∗z − д∗z

++ 2
p

2

≤
p

√
t

8
+

1

16z
(Equation (19))

=
p

√
γ p

8
+

1

16z

(
t = γ p

)
≤

p

√
γ p

4

(
z ≥

1

2γ p

)
< γ .

Therefore, for all p ∈ [1,∞) and all z ∈ Z,
++f ∗z − д∗z

++
p
≤ γ , so the dual class G∗ (γ ,p)-approximates

the dual class F ∗. �

In the following lemma, we denote absolute loss using the notation �(z,y, f ) = | f (z) − y |.
Given a set of samples S = {(z1,y1) , . . . , (zm ,ym)} ⊆ Z × [0, 1], we use the standard notation
LS(f ) =

1
m

∑m
i=1 | f (zi ) − yi | to denote the average empirical loss of a function f : Z → [0, 1]

and LD(f ) = E(z,y)∼D[| f (z) − y |] to denote the expected loss of f . The absolute loss func-

tion can be naturally incorporated into the definition of Rademacher complexity: R̂(� ◦ F ) =
1
m
Eσ∼{−1,1}m [supf ∈F

∑m
i=1 σi | f (zi ) − yi |]. The worst-case empirical Rademacher complexity of a

class F is defined as Rm(� ◦ F ) = supS: |S |=m R̂(� ◦ F ).

Lemma B.20. For any γ ∈ (0, 14 ) and p ∈ [1,∞), let F = { fμ | μ ∈ (0,γ p ]} be a class of functions

with domain [ 1
2γ p ,∞) such that for all μ ∈ (0,γ p ] and z ∈ [ 1

2γ p ,∞), fμ (z) =
1
2 (1+ cos(μz)). For every

m ≥ 1, Rm(� ◦ F ) = 1
2 .

Proof. This proof is similar to the proof that the VC-dimension of the function class

{z �→ sign(sin(μz)) | μ ∈ R} ⊆ {−1, 1}R

is infinite (see, e.g., Lemma 7.2 in the textbook by Anthony and Bartlett [2009]). To prove this

lemma, we will show that for every c ∈ (0, 1/2), Rm(� ◦ F ) ≥ c (Claim B.21). We also show that

Rm(� ◦ F ) ≤ 1
2 (Claim B.22). Therefore, the lemma statement follows.

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



13:58 M.-F. Balcan et al.

Claim B.21. For every c ∈ (0, 1/2), Rm(� ◦ F ) ≥ c .

Proof of Claim B.21. Letm be an arbitrary positive integer. We begin by defining several vari-
ables that we will use throughout this proof. Let R = (0,γ p ] and let α be any positive power

of 1
2 smaller than min{ 1

2π+1 ,
arccos(2c)

π+arccos(2c) }. Since 2c ∈ (0, 1), arccos(2c)
π+arccos(2c) is well defined. Also, since

α ≤
arccos(2c)

π+arccos(2c) , we have that πα
1−α ≤ arccos(2c) < π

2 . Finally, since the function cos is decreasing

on the interval [0,π/2], we have that 1
2 cos

πα
1−α ≥ c . Let zi =

α−i

2γ p and yi = 0 for i ∈ [m]. Since

α < 1, we have that zi ≥ 1
2γ p , so each zi is an element of the domain [ 1

2γ p ,∞) of the functions

in F .
We will show that for every assignment of the variables σ1, . . . ,σm ∈ {−1, 1}, there exists a

parameter μ0 ∈ (0,γ p ] such that

1

m
sup

μ ∈(0,γ p ]

m∑
i=1

σi fμ (zi ) ≥
1

m

m∑
i=1

σi fμ0 (zi ) =
1

2m

m∑
i=1

σi (1 + cos (μ0zi )) ≥ c +
1

2

m∑
i=1

σi .

This means that when S = {(z1,y1) , . . . , (zm ,ym)},

Rm(� ◦ F ) ≥ R̂(� ◦ F )

=
1

m
Eσ

[
sup
μ ∈R

m∑
i=1

σi
		fμ (zi ) − yi

		]
=

1

m
Eσ

[
sup
μ ∈R

m∑
i=1

σi
		fμ (zi )		] (yi = 0)

=
1

m
Eσ

[
sup
μ ∈R

m∑
i=1

σi fμ (zi )

] (
fμ (zi ) ≥ 0

)
≥ c +

1

2
Eσ

[
m∑
i=1

σi

]
= c .

To this end, given an assignment of the variables σ1, . . . ,σm ∈ {−1, 1}, let (b1, . . . ,bm) ∈ {0, 1}m

be defined such that

bi =

{
0 if σi = 1

1 otherwise

and let

μ0 = 2πγ p

(
m∑
j=1

α jbj + α
m+1

)
.

Since 0 < μ0 < 2πγ p
∑∞

j=1 α
j =

2πγ pα
1−α ≤ γ p , μ0 is an element of the parameter space (0,γ p ]. The

inequality
2πγ pα
1−α ≤ γ p holds because α ≤ 1

2π+1 , so
2πα
1−α ≤ 1.
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Next, we evaluate fμ0(zi ) =
1
2 (1 + cos(μ0zi )):

1

2
(1 + cos(μ0zi )) =

1

2
+

1

2
cos

(
2πγ p

(
m∑
j=1

α jbj + α
m+1

)
α−i

2γ p

)
=

1

2
+

1

2
cos

(
π

(
m∑
j=1

α jbj + α
m+1

)
α−i

)
=

1

2
+

1

2
cos

(
i−1∑
j=1

α j−iπbj + πbi +
m∑

j=i+1

α j−iπbj + α
m+1−iπ

)
=

1

2
+

1

2
cos

(
π

(
bi +

m−i∑
j=1

α jbi+j + α
m+1−i

))
. (21)

The final equality holds because, for every j < i , α j−i is a positive power of 2, so α j−iπbj is a
multiple of 2π . We will use the following fact: Since

0 <

m−i∑
j=1

α jbi+j + α
m+1−i ≤

m−i+1∑
j=1

α j <

∞∑
j=1

α j =
α

1 − α
,

the argument of cos(·) in Equation (21) lies strictly between πbi and πbi +
πα
1−α .

Suppose bi = 0. Since α ≤ 1
2 , we know that πα

1−α ≤ π . Therefore, cos(·) is monotone de-

creasing on the interval [0, πα1−α ]. Moreover, we know that 1
2 cos

πα
1−α ≥ c . Therefore, fμ0(zi ) =

1
2 (1 + cos(μ0zi )) ≥

1
2 + c . Since bi = 0, it must be that σi = 1, so σi fμ0(zi ) ≥ c + 1

2 = c + σi
2 . Mean-

while, suppose bi = 1. The function cos(·) is monotone increasing on the interval [π ,π + πα
1−α ].

Moreover, 1
2 cos(π +

πα
1−α ) = − 1

2 cos
πα
1−α ≤ −c . Therefore, fμ0(zi ) =

1
2 (1 + cos(μ0zi )) ≤

1
2 − c . Since

bi = 1, it must be that σi = −1, so σi fμ0(zi ) ≥ c − 1
2 = c +

σi
2 . Since this is true for any i ∈ [m], we

have that

1

2m

m∑
i=1

σi (1 + cos (μ0zi )) ≥ c +
1

2

m∑
i=1

σi ,

as claimed. �

We conclude this proof by showing that Rm(� ◦ F ) ≤ 1
2 .

Claim B.22. For anym ≥ 1, Rm(� ◦ F ) ≤ 1
2 .

Proof of Claim B.22. Let S = {(z1,y1), . . . , (zm ,ym)} ⊂ [ 1
2γ p ,∞) × [0, 1] be an arbitrary set of

points. For any assignment of the variables σ1, . . . ,σm ∈ {−1, 1}, since | fμ (zi ) − yi | ∈ [0, 1],

sup
μ ∈(0,γ p ]

m∑
i=1

σi
		fμ (zi ) − yi

		 ≤ m∑
i=1

1{σi=1} .

Therefore,

Rm(� ◦ F ) = sup
(z1,y1), ...,(zm,ym )

1

m
Eσ

[
sup

μ ∈(0,γ p ]

m∑
i=1

σi
		fμ (zi ) − yi

		] ≤
1

m
Eσ

[
m∑
i=1

1{σi=1}

]
=

1

2
,

as claimed. �

Together, Claims B.21 and B.22 imply that, for everym ≥ 1, Rm(� ◦ F ) = 1
2 . �
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Lemma B.23. Let G = {дμ | μ ∈ R} ⊆ [0, 1]Z be a set of functions mapping a set Z to [0, 1]

parameterized by a single real value μ ∈ R. Suppose that every function д∗z ∈ G∗ ⊆ [0, 1]R is
piecewise-constant with at most j pieces. Then, for any set S = {z1, . . . , zm} ⊆ Z,

R̂ (G) =
1

m
Eσ∼{−1,1}m

[
sup
μ ∈R

m∑
i=1

σiдμ (zi )

]
≤

√
2 ln(m(j − 1) + 1)

m
.

Proof. We will use Massart’s lemma (Lemma 3.7) to prove this lemma. Let A ⊆ [0, 1]m be the
following set of vectors:

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
дμ (z1)
...

дμ (zm)

 !!" : μ ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
By definition of the dual class,

A =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
����
д∗z1 (μ)
...

д∗zm (μ)

 !!" : μ ∈ R

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Since each function д∗zi is piecewise-constant with at most j pieces, |A| ≤ m(j − 1) + 1. The lemma
statement therefore follows from Massart’s lemma. �

Lemma B.24. Let F = { fμ | μ ∈ R} ⊆ [0, 1]Z and G = {дμ | μ ∈ R} ⊆ [0, 1]Z be two
sets of functions mapping a domain Z to [0, 1]. With probability 1 − δ over the draw ofm samples
z1, . . . , zm ∼ D,

Ez∼D

[++f ∗z − д∗z
++
∞

]
≤

1

m

m∑
i=1

++f ∗zi − д∗zi
++
∞
+

√
1

2m
ln

1

δ
. (22)

Proof. Let h : Z → [0, 1] be defined such that h(z) =
++f ∗z − д∗z

++
∞
. From Hoeffding’s inequality,

we know that with probability 1 − δ over the draw ofm samples z1, . . . ,zm ∼ D,

Ez∼D [h(z)] ≤
1

m

m∑
i=1

h (zi ) +

√
1

2m
ln

1

δ
,

which implies that Equation (22) holds. �

C ADDITIONAL INFORMATION ABOUT EXPERIMENTS

In this appendix, we begin by describing theMILP formulations of several problems from Section 4,
where we described our experiments.

Clustering. We can formulate k-means clustering as a MILP by assigning a binary variable xi to
each point pi where xi = 1 if and only if pi is a center, as well as a binary variable yi j for each pair
of points pi and pj , where yi j = 1 if and only if pj is a center and pj is the closest center to pi . We
want to solve the following problem:

min
∑

i, j ∈[n] d
(
pi ,pj

)
yi j

s.t.
∑n

i=1 xi = k∑n
j=1 yi j = 1 ∀i ∈ [n]

yi j ≤ x j ∀i, j ∈ [n]
xi ∈ {0, 1} ∀i ∈ [n]
yi j ∈ {0, 1} ∀i, j ∈ [n].
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Fig. C.1. The geometric mean tree size produced by B&B when run with the linear scoring rule with param-

eter μ (Equation (10)).

Agnostically Learning Linear Separators. We can formulate this problem as a MILP as follows:
LetM > max ‖pi ‖1.

min
∑n

i=1 xi
s.t. zi 〈pi ,w〉 > −Mxi ∀i ∈ [n]

w[i] ∈ [−1, 1] ∀i ∈ [n]
xi ∈ {0, 1} ∀i ∈ [n].

Since |〈pi ,w〉| < M , the inequality zi 〈pi ,w〉 > −Mxi ensures that if zi 〈pi ,w〉 > 0, then xi will
equal 0, but if zi 〈pi ,w〉 ≤ 0, then xi must equal 1.14

Moreover, for each of the training sets used to compute Figures C.1–C.3, we plot the geomet-
ric mean tree size as a function of the mixing parameter μ (whereas Figures 10–12 display the
arithmetic mean).

D TREE SEARCH FOR CONSTRAINT SATISFACTION PROBLEMS

In this section, we describe how our generalization bounds from Section 3.2 generalize to tree
search algorithms for solving constraint satisfaction problems (CSPs), which we introduced in
Section 3.4. A tree search algorithm takes as input a tuple Π = (X ,D, f ,д), whereX = {x1, . . . ,xn}
is a set of variables, D = {D1, . . . ,Dn} is a set of domains where Di is the finite set of values vari-
able xi can take on, f : D1× · · ·×Dn → {0, 1} is a feasibility function, and д : D1× · · ·×Dn → R is
an objective function (if the problem is a satisfiability problem, rather than an optimization prob-
lem, we set д to be the constant zero function). We usey ∈ (D1∪ {�})× · · · × (Dn ∪ {�}) to denote
a partial solution to the problem instance Π, where y[i] is an assignment of the variable xi and if
y[i] = �, it means the variable xi has not yet been assigned a value.

Tree search builds a tree of partial solutions toΠ until it finds the optimal solution.We define two
fathoming functions tree search can use to prune branches of the search tree, localFathom and

14In practice, we implement this constraint by enforcing that zi 〈pi , w 〉 ≥ −Mxi + γ for some tiny γ > 0 since MILP

solvers cannot enforce strict inequalities.
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Fig. C.2. The geometric mean tree size produced by B&B when run with the linear scoring rule with param-

eter μ using pseudocost branching.

Fig. C.3. The geometric mean tree size produced by B&B when run with the product scoring rule with

parameter μ (Equation (11)) using strong branching.

globalFathom. The function localFathom(Π,y) ∈ {fathom, explore} takes as input an instance
Π and a partial solution y and determines whether or not to fathom the node containing the
partial solutiony. Its output is only based on the local information contained in the partial solution
y, not the remainder of the search tree. For example, in MIP, localFathom(Π,y) = fathom if
the LP relaxation of the MIP given the partial solution y is integral or infeasible. The function
globalFathom(Π,y,T) ∈ {fathom, explore} takes as input an instance Π, a partial solutiony, and
a partial search tree T and determines whether or not to fathom the node in T containing the
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partial solution y. For example, in MIP, the function globalFathom covers the case where a node
is fathomed because LP relaxation’s objective value given the partial solution contained in that
node is no better than the objective value evaluated on the best-known integral solution. In a bit
more detail, suppose there is a fathomed leaf node in T containing a partial solution y∗ such that
the LP relaxation of the MIP given the partial solution y∗ is integral, and let c∗ be the objective
value. Let c be the objective value of the LP relaxation of the MIP given the partial solution y. We
know that globalFathom(Π,y,T) = fathom if c ≤ c∗.

See Algorithm 3 for the tree search pseudocode.

ALGORITHM 3: Tree search for constraint satisfaction problems

Input: A problem instance Π = (X ,D, f ,д).
1 Let T be a tree that consists of a single node containing the empty partial solution (�, . . . ,�).

2 while there remains an unfathomed leaf in T do

3 Use a node-selection policy to select a leaf of the tree T . Let y be the partial solution contained in

that leaf.

4 Use a variable-selection policy to choose a variable xi ∈ X to branch on at that leaf.

5 For all j ∈ Di , let y
(j)
i be the partial solution y except with the component y[i] = j.

6 Create |Di | children of the node containing the partial solution y, where the jth child contains the

partial solution y(j)i . Let T ′ be the resulting search tree.

7 for j ∈ Di do

8 if localFathom(Π,y(j)i ) = fathom then

9 Update T ′ so that the leaf containing the partial solution y(j)i is fathomed.

10 else if globalFathom(Π,y(j)i ,T
′) = fathom then

11 Update T ′ so that the leaf containing the partial solution y(j)i is fathomed.

12 end

13 Set T = T ′.

14 end

Output: The best known feasible solution y∗, if one exists. Otherwise, return Null.

D.1 Problem Statement

The problem statement for general tree search is nearly identical to that in Section 3.1. We state it
hear for clarity’s sake.

Let D be a distribution over problem instances Π. Let score1, . . . , scored be a set of variable-
selection scoring rules, such as those in Section 3.4.2. Our goal is to learn a convex combination
μ1score1 + · · ·+ μdscored of the scoring rules that is nearly optimal in expectation over D. More
formally, let cost be an abstract cost function that takes as input a problem instance Π and a scor-
ing rule score and returns some measure of the quality of tree search using score on input Π. We
say that an algorithm (ϵ,δ )-learns a convex combination of the d scoring rules score1, . . . , scored
if for any distribution D, with probability at least 1−δ over the draw of a sample {Π1, . . . ,Πm} ∼

Dm , the algorithm returns a convex combination score = μ̂1score1 + · · · + μ̂dscored such that
EΠ∼D[cost(Π, score)]−EΠ∼D[cost(Π, score∗)] ≤ ϵ , where score∗ is the convex combination of
score1, . . . , scored with minimal expected cost. In this work, we prove that only a small number
of samples is sufficient to ensure (ϵ,δ )-learnability.

We assume that the problem instances in the support of D are over n D-ary variables, for some
n,D ∈ N.15

15A variable is D-ary if it can take on at most D distinct values.
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Our results hold for cost functions that are tree-constant, which means that for any prob-
lem instance Π, so long as the scoring rules score1 and score2 result in the same search tree,
cost(Π, score1) = cost(Π, score2). For example, the size of the search tree is tree-constant.

D.2 Path-Wise Scoring Rules

We now slightly tweak the definition of score-based variable-selection policies and path-wise scoring
rules so that they apply to tree search more generally. The only difference is that a scoring rule
will now be defined in terms of a partial solution, rather than a MILP.

Definition D.1 (Score-Based Variable-Selection Policy). Let score be a function that takes as input
a partial search tree T , a partial solution y contained in a leaf of T , and an index i and returns a
real value (score(T ,Q, i) ∈ R). For a partial solution y contained in a leaf of a tree T , let NT,y be
the set of variables that have not yet been branched on along the path from the root of T to the
leaf. A score-based variable-selection policy selects the variable argmaxx j ∈NT,y

{score(T ,y, j)} to

branch on at the node Q .

Definition D.2 (Path-Wise Scoring Rule). Suppose y is a partial solution contained in the node of
a search tree T . We say that score(T ,y, i) is a path-wise scoring rule if the value of score(T ,y, i)
depends only on the nodeQ , the variable xi , and the path from the root of T to the node containing
y, which we denote as Ty . Specifically, score(T ,y, i) = score(Ty ,y, i).

The following lemma parallels Lemma 3.2:

Lemma D.3. Let cost be a tree-constant cost function, let score1 and score2 be two path-wise
scoring rules, and let Π be an arbitrary problem instance over n D-ary variables. There are T ≤

Dn(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1] where for any interval Ij , across all μ ∈ Ij , the
scoring rule μscore1 + (1 − μ)score2 results in the same search tree.

Proof. We prove this lemma first by considering the actions of an alternative algorithm TS ′

which runs exactly like Algorithm 3 except it does not use the function globalFathom, but rather
skips Steps 10 and 11 of Algorithm 3. We then relate the behavior of TS ′ to the behavior of Algo-
rithm 3 to prove the lemma.

First, we prove the following bound on the number of search trees TS ′ will build on a given
instance over the entire range of parameters. Note that this bound matches that in the lemma
statement.

ClaimD.4. There areT ≤ Dn(n−1)/2nn intervals I1, . . . , IT partitioning [0, 1]where for any interval
Ij , the search tree TS ′ builds using the scoring rule μscore1 + (1 − μ)score2 is invariant across all
μ ∈ Ij .

Proof. We prove this claim by induction.

Inductive Hypothesis. For i ∈ {1, . . . ,n}, there are T ≤ Di(i−1)/2ni intervals I1, . . . , IT partition-
ing [0, 1]where for any interval Ij and any two parameters μ, μ ′ ∈ Ij , if T and T ′ are the treesTS ′

builds using the scoring rules μscore1+ (1− μ)score2 and μ
′score1+ (1− μ ′)score2, respectively,

then T[i] = T ′[i].

Base Case. Before branching on any variables, the search tree T0 consists of a single root node
containing the empty partial solution y = (�, . . . ,�). Given a parameter μ, TS ′ will branch on
variable xk so long as

k = argmax�∈[n] {μscore1(T0,y, �) + (1 − μ)score2(T0,y, �)} .
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Since μscore1(T0,y, �) + (1 − μ)score2(T0,y, �) is a linear function of μ for each � ∈ [n], we know
that for any k ∈ [n], there is at most one interval I of the parameter space [0, 1] where k =
argmax�∈[n] {μscore1 + (1 − μ)score2}. Thus, there are T ≤ n = D1·(1−1)/2n1 intervals I1, . . . , IT
partitioning [0, 1] where for any interval Ij , TS

′ branches on the same variable at the root node
using the scoring rule μscore1 + (1 − μ)score2 across all μ ∈ Ij .

Inductive Step. Let i ∈ {2, . . . ,n} be arbitrary. From the inductive hypothesis, we know that there
are T ≤ D(i−2)(i−1)/2ni−1 intervals I1, . . . , IT partitioning [0, 1] where for any interval Ij and any
two parameters μ, μ ′ ∈ Ij , if T and T ′ are the trees TS ′ builds using the scoring rules μscore1 +
(1 − μ)score2 and μ ′score1 + (1 − μ ′)score2, respectively, then T[i − 1] = T ′[i − 1]. Consider an
arbitrary node containing a partial solution y in T[i − 1] (or equivalently, T ′[i − 1]) at depth i − 1.
If localFathom(Π,y) = fathom, then it will be fathomed no matter which parameter μ ∈ Ij the
algorithm TS ′ uses. Otherwise, for all μ ∈ Ij , let Tμ be the state of the search tree TS ′ builds using
the scoring rule μscore1 + (1 − μ)score2 at the point when it branches on the node containing y.
By the inductive hypothesis, we know that across all μ ∈ Ij , the path from the root to this node in
Tμ is invariant, and we refer to this path as Ty . Given a parameter μ ∈ Ij , the variable xk will be
branched on at this node so long as k = argmax�{μscore1(Tμ ,y, �) + (1 − μ)score2(Tμ ,y, �)}, or
equivalently, so long as k = argmax�{μscore1(Ty ,y, �) + (1 − μ)score2(Ty ,y, �)}. In other words,
the decision of which variable to branch on is determined by a convex combination of the constant
values score1(Ty ,y, �) and score2(Ty ,y, �) no matter which parameter μ ∈ Ij the algorithm TS ′

uses. Here, we critically use the fact that the scoring rule is path-wise.
Since μscore1(Ty ,y, �)+(1−μ)score2(Ty ,y, �) is a linear function of μ for all �, there are at most

n intervals subdividing the interval Ij such that the variable branched on at the node containing y
is fixed. Moreover, there are at most Di−1 nodes at depth i − 1, and each node similarly contributes
a subpartition of Ij of size n. If we merge all Di−1 partitions, we haveT ′ ≤ Di−1(n− 1)+ 1 intervals
I ′1, . . . , I

′
T ′ partitioning Ij where for any interval I ′p and any two parameters μ, μ ′ ∈ I ′p , if T and T ′

are the treesTS ′ builds using the scoring rules μscore1+(1−μ)score2 and μ
′score1+(1−μ

′)score2,
respectively, then T[i] = T ′[i]. We can similarly subdivide each interval I1, . . . , IT for a total of

T̄ ≤ D(i−1)(i−2)/2ni−1
(
Di−1(n − 1) + 1

)
≤ D(i−1)(i−2)/2ni−1

(
Di−1n

)
= Di(i−1)/2ni

intervals Ī1, . . . , ĪT̄ partitioning [0, 1] such that for any interval Īt , across all μ ∈ Īt and any two
parameters μ, μ ′ ∈ Īt , if T and T ′ are the trees TS ′ builds using the scoring rules μscore1 + (1 −
μ)score2 and μ ′score1 + (1 − μ ′)score2, respectively, then T[i] = T ′[i]. �

Next, we explicitly relate the behavior of Algorithm 3 toTS ′, proving that the search tree Algo-
rithm 3 builds is a rooted subtree of the search tree TS ′ builds.

Claim D.5. Given a parameter μ ∈ [0, 1], let T and T ′ be the trees Algorithm 3 and TS ′ build,
respectively, using the scoring rule μscore1 + (1 − μ)score2. For an arbitrary node of T , let y be the
partial solution contained in that node and let Ty be the path from the root of T to the node. Then Ty
is a rooted subtree of T ′.

Proof of Claim D.5. Note that the path Ty can be labeled by a sequence of indices from
{1, . . . ,D} and a sequence of variables from {x1, . . . ,xn} describing which variable is branched
on and which value it takes on along the path Ty . Let ((j1,xi1 ), . . . , (jt ,xit )) be this sequence of
labels, where t is the number of edges in Ty . We can similarly label every edge in T ′. We claim
that there exists a path beginning at the root of T ′ with the labels ((j1,xi1), . . . , (jt ,xit )).

For a contradiction, suppose no such path exists. Let (jτ ,xiτ ) be the earliest label in the se-
quence ((j1,xi1 ), . . . , (jt ,xit )) where there is a path beginning at the root of T ′ with the labels
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((j1,xi1), . . . , (jτ−1,xiτ−1 )), but there is no way to continue the path using an edge labeled (jτ ,xiτ ).
There are exactly two reasons why this could be the case:

(1) The node at the end of the path with labels ((j1,xi1 ), . . . , (jτ−1,xiτ−1 )) was fathomed by TS ′.
(2) The algorithm TS ′ branched on a variable other than xiτ at the end of the path labeled

((j1,xi1), . . . , (jτ−1,xiτ−1 )).

Let y ′ be the partial solution contained in the node at the end of the path with labels

((j1,xi1 ), . . . , (jτ−1,xiτ−1 )).

We refer to this path as Ty′ . In the first case, sinceTS ′ only fathoms the node containing the partial
solutiony ′ if localFathom(Π,y ′) = fathom, we know that Algorithm 3 will also fathom this node.
However, this is not the case since Algorithm 3 next branches on the variable xiτ .

The second case is also not possible since the scoring rules are both path-wise. Let T̄ (respec-
tively, T̄ ′) be the state of the search tree Algorithm 3 (respectively, A’) has built at the point it
branches on the node containing y ′. We know that Ty′ is the path from the root this node in both

of the trees T̄ and T̄ ′. Therefore, for all variables xk , μscore1(T̄ ,y
′,k)+ (1− μ)score2(T̄ ,y ′,k) =

μscore1(Ty′,y ′,k)+ (1− μ)score2(Ty′,y ′,k) = μscore1(T̄
′,y ′,k)+ (1− μ)score2(T̄

′,y ′,k). This
means that Algorithm 3 andTS ′ will choose the same variable to branch on at the node containing
the partial solution y ′.

Therefore, we have reached a contradiction, so the claim holds. �

Next, we use Claims D.4 and D.5 to prove Lemma D.3. Let I1, . . . , IT be the intervals guaranteed
to exist by Claim D.4 and let It be an arbitrary one of the intervals. Let μ ′ and μ ′′ be two arbitrary
parameters from It . We will prove that the scoring rules μ ′score1+ (1−μ ′)score2 and μ

′′score1+
(1 − μ ′′)score2 result in the same search tree. For a contradiction, suppose that this is not the
case. Consider the first iteration where of Algorithm 3 using the scoring rule μ ′score1 + (1 −

μ ′)score2 differs from Algorithm 3 using the scoring rule μ ′′score1 + (1 − μ ′′)score2, where an
iteration corresponds to lines 2 through 14 of Algorithm 3. Up until this iteration, Algorithm 3 has
built the same partial search tree T . Since the node-selection policy does not depend on μ ′ or μ ′′,
Algorithm 3 will choose the same leaf of the search tree to branch on no matter which scoring rule
it uses. Let y be the partial solution contained in this leaf.

Suppose Algorithm 3 chooses different variables to branch on depending on the scoring rule.
Let Ty be the path from the root of T to the node containing the partial solution y. By Claim D.4,

we know that the algorithm TS ′ builds the same search tree using the two scoring rules. Let T̄ ′

(respectively, T̄ ′′) be the state of the search tree TS ′ has built using the scoring rule μ ′score1 +
(1 − μ ′)score2 (respectively, μ ′′score1 + (1 − μ ′′)score2) by the time it branches on the node
containing the partial solution y. By Claims D.4 and D.5, we know that Ty is the path from the

root to the node containing the partial solution y of both T̄ ′ and T̄ ′′. By Claim D.4, we know
that TS ′ will branch on the same variable xi at this node in both the trees T̄ ′ and T̄ ′′, so i =
argmaxj

{
μ ′score1(T̄

′,y, j) + (1 − μ ′)score2(T̄
′,y, j)

}
, or equivalently,

i = argmaxj
{
μ ′score1(Ty ,y, j) + (1 − μ ′)score2(Ty ,y, j)

}
, (23)

and i = argmaxj {μ
′′score1(T̄

′′,y, j) + (1 − μ ′′)score2(T̄
′′,y, j)}, or equivalently,

i = argmaxj
{
μ ′′score1(Ty ,y, j) + (1 − μ ′′)score2(Ty ,y, j)

}
. (24)

Returning to the search tree T that Algorithm 3 is building, Equation (23) implies that

i = argmaxj {μ
′score1(T ,y, j) + (1 − μ ′)score2(T ,y, j)}
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and Equation (24) implies that i = argmaxj {μ
′′score1(T ,y, j) + (1 − μ ′′)score2(T ,y, j)}. There-

fore, Algorithm 3 will branch on xi at the node containing the partial solution y no matter which
scoring rule it uses.

Finally, since localFathom and globalFathom do not depend on the parameter μ, whether or
not Algorithm 3 fathoms any of the nodes in Steps 7 through 11 does not depend on μ ′ or μ ′′.

We have reached a contradiction by showing that the two iterations of Algorithm 3 are identical.
Therefore, the lemma holds. �

D.2.1 Convex Combinations of General Scoring Rules. In this section, we provide generaliza-
tion guarantees that apply to learning convex combinations of any set of scoring rules, as in
Section 3.2.2. The proofs in this section are very similar to those from Section 3.2.2; we include
them here for the sake of completeness.

Lemma D.6. Let cost be a tree-constant cost function, let score1, . . . , scored be d arbitrary
scoring rules, and let Π be an arbitrary problem instance over n D-ary variables. Suppose we limit
Algorithm 3 to producing search trees of size κ. There is a set H of at most κnκ+2 hyperplanes such
that for any connected component R of [0, 1]d \H , the search tree Algorithm 3 builds using the scoring
rule μ1score1 + · · · + μdscored is invariant across all (μ1, . . . , μd ) ∈ R.

Proof. The proof has two steps. In ClaimD.7, we show that there are at mostnκ different search
trees that Algorithm 3 might produce for the instance Π as we vary the mixing parameter vector
(μ1, . . . , μd ). In Claim D.8, for each of the possible search trees T that might be produced, we show
that the set of parameter values (μ1, . . . , μd ) which give rise to that tree lie in the intersection of
κn2 halfspaces. These facts together prove the lemma.

Claim D.7. There are only nκ different search trees that can be achieved by varying the parameter
vector (μ1, . . . , μd ).

Proof of Claim D.7. Fix any d mixing parameters (μ1, . . . , μd ) and let v1, . . . ,vκ ∈ [n] be the
sequence of branching variables chosen by Algorithm 3 run with scoring rule μ1score1 + · · · +

μdscored , ignoring which node of the tree each variable was chosen for. That is,v1 is the variable
branched on at the root, v2 is the variable branched on at the next unfathomed node chosen by
the node-selection policy, and so on. If Algorithm 3 with scoring rule μ1score1 + · · · + μdscored
produces a tree of size k < κ, then define vt = 1 for all t ≥ k (we are just padding the sequence
v1,v2, . . . so that it has length κ). We will show that whenever two sets of mixing parameters
(μ1, . . . , μd ) and (μ ′1, . . . , μ

′
d
) give rise to the same sequence of branching variable selections, they

in fact produce identical search trees. This will imply that the number of distinct trees that can be
produced by Algorithm 3 with scoring rules of the form μ1score1 + · · · + μdscored is at most nκ ,
since there are only nκ distinct sequences of κ variables v1, . . . ,vκ ∈ [n].

Let (μ1, . . . , μd ) and (μ ′1, . . . , μ
′
d
) be two sets of mixing parameters, and suppose running

Algorithm 3 with μ1score1 + · · · + μdscored and μ ′1score1 + · · · + μ ′
d
scored both results in the

sequence of branching variable decisions beingv1, . . . ,vκ . We prove that the resulting search trees
are identical by induction on the iterations of the algorithm, where an iteration corresponds to
lines 2 through 14 of Algorithm 3. Our base case is before the first iteration when the two trees are
trivially equal, since they both contain just the root node. Now suppose that up until the beginning
of iteration t the two trees were identical. Since the two trees are identical, the node-selection pol-
icy will choose the same node to branch on in both cases. In both trees, the algorithm will choose
the same variable to branch on, since the sequence of branching variable choices v1, . . . ,vκ is
shared. Finally, if any of the children are fathomed, they will be fathomed in both trees, since the
they are identical. It follows that all steps of Algorithm 3 maintain equality between the two trees,
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and the claim follows. Also, whenever the sequence of branching variables differ, then the search
tree produced will not be the same. In particular, on the first iteration where the two sequences
disagree, the tree built so far will be identical up to that point, but the next variable branched on
will be different, leading to different trees. �

Next, we argue that for any given search tree T produced by Algorithm 3, the set of mixing
parameters (μ1, . . . , μd ) giving rise to T is defined by the intersection of nκ+2 halfspaces.

Claim D.8. For a given search tree T , there are at most κn2 halfspaces such that Algorithm 3 using
the scoring rule μ1score1 + · · · + μdscored builds the tree T if and only if (μ1, . . . , μd ) lies in the
intersection of those halfspaces.

Proof of Claim D.8. Let v1, . . . ,vκ be the sequence of branching variable choices that gives
rise to tree T . We will prove the claim by induction on iterations completed by Algorithm 3. Let
Tt be the state of Algorithm 3 after t iterations.

Induction Hypothesis. For a given index t ∈ [κ], there are at most tn2 halfspaces such that
Algorithm 3 using the scoring rule μ1score1 + · · · + μdscored builds the partial tree Tt after t
iterations if and only if (μ1, . . . , μd ) lies in the intersection of those halfspaces.

Base Case. In the base case, before the first iteration, the set of parameters that will produce
the partial search tree consisting of just the root is the entire set of parameters, which vacuously
is the intersection of zero hyperplanes.

Inductive Step. For the inductive step, let t < κ be an arbitrary tree size. By the inductive
hypothesis, we know that there exists a set B of at most tn2 halfspaces such that Algorithm 3
using the scoring rule μ1score1 + · · · + μdscored builds the partial tree Tt after t iterations if
and only if (μ1, . . . , μd ) lies in the intersection of those halfspaces. Let y be the partial solution
contained in the next node that Algorithm 3 will branch on given Tt . We know that Algorithm 3
will choose to branch on variable vt+1 at this node if and only if

μ1score1(Tt ,y,vt+1) + · · · + μdscored (Tt ,y,vt+1)

> max
v ′�vt+1

{μ1score1(Tt ,y,v
′) + · · · + μdscored (Tt ,y,v

′)} .

Since these functions are linear in (μ1, . . . , μd ), there are at most n2 halfspaces defining the region
where vt+1 = argmax {μ1score1(T ,y,v ′) + · · · + μdscored (T ,y,v

′)}. Let B′ be this set of halfs-
paces. Algorithm 3 using the scoring rule μ1score1 + · · · + μdscored builds the partial tree Tt+1
after t + 1 iterations if and only if (μ1, . . . , μd ) lies in the intersection of the (t + 1)n2 halfspaces in
the set B ∪ B′. �

�

Theorem D.9. Let cost be a tree-constant cost function and let score1, . . . , scored be d arbitrary
scoring rules. Suppose we limit Algorithm 3 to producing search trees of size κ. Let C be the set of

functions {cost(·, μ1score1+· · ·+μdscored ) : (μ1, . . . , μd ) ∈ [0, 1]d }. Then Pdim(C) = O(dκ logn+
d logd).

Proof. This theorem follows from Lemma D.6 in the exact same way that Theorem B.15 follows
from Lemma 3.10. �
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D.2.2 Non-linear Combinations of Scoring Rules.

Lemma D.10. Let cost be a tree-constant cost function, let score1, . . . , scored be d arbitrary
scoring rules, and let Π be an arbitrary problem instance. Then

cost

(
Π,

d∏
i=1

score
μi
i

)
= cost

(
Π,

d∑
i=1

μi log scorei

)
.

Proof. We claim that Algorithm 3 builds the same tree using the scoring rule
∏d

i=1 score
μi
i as

it does using the scoring rule
∑d

i=1 μi log scorei . Therefore, since cost is tree-constant, the lemma
statement holds.

For a contradiction, suppose Algorithm 3 does not build the same tree using the scoring rule∏d
i=1 score

μi
i as it does using the scoring rule

∑d
i=1 μi log scorei . Consider the first round of

Algorithm 3 where the algorithm’s behavior using the scoring rule
∏d

i=1 score
μi
i differs from its

behavior using the scoring rule
∑d

i=1 μi log scorei . Let T
′ be the tree Algorithm 3 has built up

until that round and let y be the partial solution contained in the next node that Algorithm 3 will
branch on given T ′. It must be that at Step 4, the algorithm chose a different variable to branch
on depending on the scoring rule. In other words,

argmaxj

{
d∏
i=1

scorei (T
′,y, j)μi

}
� argmaxj

{
d∑
i=1

μi log scorei (T
′,y, j)

}
.

However, if j∗ = argmaxj

{∏d
i=1 scorei (T

′,y, j)μi
}
, then16

j∗ = argmaxj

{
log

(
d∏
i=1

scorei (T
′,y, j)μi

)}
,

which means that j∗ = argmaxj {
∑d

i=1 μi log scorei (T
′,y, j)}, which is a contradiction. Therefore,

Algorithm 3 builds the same tree using the scoring rule
∏d

i=1 score
μi
i as it does using the scoring

rule
∑d

i=1 μi log scorei , so the lemma statement holds. �

ACKNOWLEDGMENTS

We thank Kevin Leyton-Brown for a stimulating discussion that inspired us to pursue the research
described in Section 3.3.

REFERENCES

Tobias Achterberg. 2007. Constraint Integer Programming. Ph.D. Dissertation. Technische Universität Berlin.

Tobias Achterberg. 2009. SCIP: Solving constraint integer programs. Mathematical Programming Computation 1, 1 (2009),

1–41.

Tobias Achterberg, Thorsten Koch, and Alexander Martin. 2005. Branching rules revisited. Operations Research Letters 33,

1 (January 2005), 42–54.

Saba Ahmadi, Hedyeh Beyhaghi, Avrim Blum, and Keziah Naggita. 2022. Setting fair incentives to maximize improvement.

arXiv preprint arXiv:2203.00134 (2022).

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. 2017. A machine learning-based approximation of

strong branching. INFORMS Journal on Computing 29, 1 (2017), 185–195.

Carlos Ansótegui, Meinolf Sellmann, and Kevin Tierney. 2009. A gender-based genetic algorithm for the automatic configu-

ration of algorithms. In Proceedings of the International Conference on Principles and Practice of Constraint Programming.

Springer-Verlag, 142–157.

16For any set X ⊂ R>0, argmaxx∈X {x } = argmaxx∈X {log x }. After all, if not, then there are x1, x2 ∈ X such that

x1 < x2 but log x1 > log x2, which is a contradiction.

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



13:70 M.-F. Balcan et al.

Martin Anthony and Peter Bartlett. 2009. Neural Network Learning: Theoretical Foundations. Cambridge University Press.

Maria-Florina Balcan. 2020. Data-driven algorithm design. In Beyond Worst Case Analysis of Algorithms, Tim Roughgarden

(Ed.). Cambridge University Press. (Forthcoming).

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. 2018a. Learning to branch. In Proceedings of the

International Conference on Machine Learning (ICML) (2018).

Maria-Florina Balcan, Travis Dick, and Ellen Vitercik. 2018b. Dispersion for data-driven algorithm design, online learning,

and private optimization. In Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS’18).

Maria-Florina Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. 2022. Provably tuning the ElasticNet

across instances. In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS’22).

Maria-Florina Balcan, Vaishnavh Nagarajan, Ellen Vitercik, and Colin White. 2017. Learning-theoretic foundations of al-

gorithm configuration for combinatorial partitioning problems. In Proceedings of the Conference on Learning Theory

(COLT’17).

Maria-Florina Balcan, Travis Dick, and Manuel Lang. 2020a. Learning to link. In Proceedings of the International Conference

on Learning Representations (ICLR’20).

Maria-Florina Balcan, Travis Dick, and Wesley Pegden. 2020b. Semi-bandit optimization in the dispersed setting. In Pro-

ceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’20).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020c. Learning to optimize computational resources: Frugal

training with generalization guarantees. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’20).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2020d. Refined bounds for algorithm configuration: The knife-

edge of dual class approximability. In International Conference on Machine Learning (ICML’20).

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. 2021a. Generalization in portfolio-based algorithm selection.

In AAAI Conference on Artificial Intelligence (AAAI’21).

Maria-Florina F. Balcan, Mikhail Khodak, Dravyansh Sharma, and Ameet Talwalkar. 2021b. Learning-to-learn non-convex

piecewise-Lipschitz functions. In Proceedings of the Annual Conference on Neural Information Processing Systems

(NIPS’21).

Maria-Florina F. Balcan and Dravyansh Sharma. 2021. Data driven semi-supervised learning. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NIPS) (2021).

Peter Bartlett, Piotr Indyk, and Tal Wagner. 2022. Generalization bounds for data-driven numerical linear algebra. In Pro-

ceedings of the Conference on Learning Theory (COLT’22).

Evelyn Beale. 1979. Branch and bound methods for mathematical programming systems. Annals of Discrete Mathematics 5

(1979), 201–219.

Yoshua Bengio, Emma Frejinger, Andrea Lodi, Rahul Patel, and Sriram Sankaranarayanan. 2020a. A learning-based algo-

rithm to quickly compute good primal solutions for stochastic integer programs. In Proceedings of the International

Conference on the Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR’20).

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2020b. Machine learning for combinatorial optimization: A method-

ological tour d’horizon. European Journal of Operational Research (2020).

Michel Bénichou, Jean-Michel Gauthier, Paul Girodet, Gerard Hentges, Gerard Ribière, and O. Vincent. 1971. Experiments

in mixed-integer linear programming. Mathematical Programming 1, 1 (1971), 76–94.

Christian Bessiere and Jean-Charles Régin. 1996. MAC and combined heuristics: Two reasons to forsake FC (and CBJ?)

on hard problems. In Proceedings of the International Conference on Principles and Practice of Constraint Programming.

Springer, 61–75.

Avrim Blum, Chen Dan, and Saeed Seddighin. 2021. Learning complexity of simulated annealing. In Proceedings of the

International Conference on Artificial Intelligence and Statistics (AISTATS’21).

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. 2018. Learning a classification of mixed-integer quadratic program-

ming problems. In Proceedings of the International Conference on the Integration of Constraint Programming, Artificial

Intelligence, and Operations Research (CPAIOR’18). 595–604.

Vincent Cohen-Addad and Varun Kanade. 2017. Online optimization of smoothed piecewise constant functions. In Proceed-

ings of the International Conference on Artificial Intelligence and Statistics (AISTATS’17).

Santanu S. Dey, Yatharth Dubey, and Marco Molinaro. 2021a. Branch-and-bound solves random binary IPS in polytime. In

Proceedings of theAnnual ACM-SIAM Symposium on Discrete Algorithms (SODA’21).

Santanu S. Dey, Yatharth Dubey, and Marco Molinaro. 2021b. Lower bounds on the size of general branch-and-bound trees.

arXiv preprint arXiv:2103.09807 (2021).

Giovanni Di Liberto, Serdar Kadioglu, Kevin Leo, and Yuri Malitsky. 2016. DASH: Dynamic approach for switching heuris-

tics. European Journal of Operational Research 248, 3 (2016), 943–953.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. 2019. Exact combinatorial optimization

with graph convolutional neural networks. In Proceedings of the Annual Conference on Neural Information Processing

Systems (NIPS’19). 15554–15566.

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



Learning to Branch 13:71

Jean-Michel Gauthier and Gerard Ribière. 1977. Experiments in mixed-integer linear programming using pseudo-costs.

Mathematical Programming 12, 1 (1977), 26–47.

Andrew Gilpin and Tuomas Sandholm. 2011. Information-theoretic approaches to branching in search. Discrete Optimiza-

tion 8, 2 (2011), 147–159. Early version in IJCAI-07.

Carla Gomes and Bart Selman. 2001. Algorithm portfolios. Artificial Intelligence 126 (2001), 43–62.

Rishi Gupta and Tim Roughgarden. 2017. A PAC approach to application-specific algorithm selection. SIAM J. Comput. 46,

3 (2017), 992–1017.

Robert Haralick and Gordon Elliott. 1980. Increasing tree search efficiency for constraint satisfaction problems. Artificial

Intelligence 14, 3 (1980), 263–313.

He He, Hal Daume III, and Jason M. Eisner. 2014. Learning to search in branch and bound algorithms. In Proceedings of the

Annual Conference on Neural Information Processing Systems (NIPS’14).

Eric Horvitz, Yongshao Ruan, Carla Gomez, Henry Kautz, Bart Selman, and Max Chickering. 2001. A Bayesian approach to

tackling hard computational problems. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’01).

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. 2019. Learning-based frequency estimation algorithms. In Pro-

ceedings of the International Conference on Learning Representations (ICLR’19).

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2010. Automated configuration of mixed integer programming

solvers. In Proceedings of the International Conference on Integration of Artificial Intelligence (AI) and Operations Research

(OR) Techniques in Constraint Programming. Springer, 186–202.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Sequential model-based optimization for general algorithm

configuration. In Proc. of LION-5. 507–523.

Frank Hutter, Holger H. Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: An automatic algorithm config-

uration framework. Journal of Artificial Intelligence Research 36, 1 (2009), 267–306.

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2014. Algorithm runtime prediction: Methods and evalu-

ation. Artificial Intelligence 206 (2014), 79–111. https://doi.org/10.1016/j.artint.2013.10.003

IBM ILOG Inc. 2007. CPLEX 11.0 Release Notes.

IBM ILOG Inc. 2017. CPLEX 12.8 Parameters Reference.

Robert G. Jeroslow. 1974. Trivial integer programs unsolvable by branch-and-bound.Mathematical Programming 6, 1 (1974),

105–109.

Serdar Kadioglu, Yuri Malitsky, Meinolf Sellmann, and Kevin Tierney. 2010. ISAC-instance-specific algorithm configuration.

In Proceedings of the European Conference on Artificial Intelligence (ECAI’10).

Elias Boutros Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. 2016. Learning to branch in mixed

integer programming. In Proceedings of theAAAI Conference on Artificial Intelligence (AAAI’16).

Elias Boutros Khalil, Bistra Dilkina, George Nemhauser, Shabbir Ahmed, and Yufen Shao. 2017. Learning to run heuristics

in tree search. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17).

Robert Kleinberg, Kevin Leyton-Brown, and Brendan Lucier. 2017. Efficiency through procrastination: Approximately op-

timal algorithm configuration with runtime guarantees. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI’17).

Robert Kleinberg, Kevin Leyton-Brown, Brendan Lucier, and Devon Graham. 2019. Procrastinating with confidence: Near-

optimal, anytime, adaptive algorithm configuration. In Proceedings of the Annual Conference on Neural Information Pro-

cessing Systems (NIPS) (2019).

Peter J. Kolesar. 1967. A branch and bound algorithm for the knapsack problem. Management Science 13, 9 (1967), 723–735.

Vladimir Koltchinskii. 2001. Rademacher penalties and structural risk minimization. IEEE Transactions on Information The-

ory 47, 5 (2001), 1902–1914.

Markus Kruber, Marco E. Lübbecke, and Axel Parmentier. 2017. Learning when to use a decomposition. In Proceedings of the

International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems.

Springer, 202–210.

Michail G. Lagoudakis and Michael L. Littman. 2001. Learning to select branching rules in the DPLL procedure for satisfi-

ability. Electronic Notes in Discrete Mathematics 9 (2001), 344–359.

Ailsa H. Land and Alison G. Doig. 1960. An automatic method of solving discrete programming problems. Econometrica:

Journal of the Econometric Society (1960), 497–520.

Pierre Le Bodic and George Nemhauser. 2017. An abstract model for branching and its application to mixed integer pro-

gramming. Mathematical Programming (2017), 1–37.

Kevin Leyton-Brown, Paul Milgrom, and Ilya Segal. 2017. Economics and computer science of a radio spectrum reallocation.

Proceedings of the National Academy of Sciences 114, 28 (2017), 7202–7209.

Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. 2009. Empirical hardness models: Methodology and a case

study on combinatorial auctions. J. ACM 56, 4 (2009), 1–52.

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.

https://doi.org/10.1016/j.artint.2013.10.003


13:72 M.-F. Balcan et al.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. 2000. Towards a universal test suite for combinatorial auction

algorithms. In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC’00). Minneapolis, MN, 66–76.

Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. 2016. Learning rate based branching heuristic for

SAT solvers. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing. Springer,

123–140.

Paolo Liberatore. 2000. On the complexity of choosing the branching literal in DPLL. Artificial Intelligence 116, 1-2 (2000),

315–326.

Jeff Linderoth and Martin Savelsbergh. 1999. A computational study of search strategies for mixed integer programming.

INFORMS Journal of Computing 11 (1999), 173–187.

L. Lobjois and M. Lemaître. 1998. Branch and bound algorithm selection by performance prediction. In Proceedings of the

National Conference on Artificial Intelligence (AAAI’98). San Jose, CA, 353–358.

Thodoris Lykouris and Sergei Vassilvitskii. 2018. Competitive caching with machine learned advice. In Proceedings of the

International Conference on Machine Learning (ICML’18).

Pascal Massart. 2000. Some applications of concentration inequalities to statistics. Annales de la Faculté des Sciences de

Toulouse 9 (2000), 245–303.

Michael Mitzenmacher. 2018. Amodel for learned bloom filters and optimizing by sandwiching. In Proceedings of the Annual

Conference on Neural Information Processing Systems (NIPS’18). 464–473.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2012. Foundations of Machine Learning. MIT Press.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving online algorithms via ML predictions. In Proceedings of

the Annual Conference on Neural Information Processing Systems (NIPS’18). 9661–9670.

Yasha Pushak and Holger Hoos. 2018. Algorithm configuration landscapes. In Proceedings of the International Conference

on Parallel Problem Solving from Nature. Springer, 271–283.

John R. Rice. 1976. The algorithm selection problem. Advances in Computers 15 (1976), 65–118.

Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. 2017. Guiding combinatorial optimization with UCT. In Proceed-

ings of the International Conference on AI and OR Techniques in Constraint Programming for Combinatorial Optimization

Problems. Springer.

Shinsaku Sakaue and Taihei Oki. 2022. Sample complexity of learning heuristic functions for greedy-best-first andA* search.

In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS’22).

Tuomas Sandholm. 2002. Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence 135

(Jan. 2002), 1–54.

Tuomas Sandholm. 2013. Very-large-scale generalized combinatorial multi-attribute auctions: Lessons from conducting $60

billion of sourcing. In Handbook of Market Design, Zvika Neeman, Alvin Roth, and Nir Vulkan (Eds.). Oxford University

Press.

Tzur Sayag, Shai Fine, and Yishay Mansour. 2006. Combining multiple heuristics. In Proceedings of the Annual Symposium

on Theoretical Aspects of Computer Science. Springer, 242–253.

Shai Shalev-Shwartz and Shai Ben-David. 2014. Understanding Machine Learning: From Theory to Algorithms. Cambridge

University Press.

Dravyansh Sharma, Maria-Florina Balcan, and Travis Dick. 2020. Learning piecewise Lipschitz functions in changing en-

vironments. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS’20).

Jialin Song, Ravi Lanka, Yisong Yue, and Bistra Dilkina. 2020. A general large neighborhood search framework for solving

integer programs. In Proceedings of the Annual Conference on Neural Information Processing Systems (NIPS’20).

Jialin Song, Ravi Lanka, Albert Zhao, Aadyot Bhatnagar, Yisong Yue, and Masahiro Ono. 2018. Learning to search via

retrospective imitation. arXiv preprint arXiv:1804.00846 (2018).

David Speck, André Biedenkapp, Frank Hutter, Robert Mattmüller, and Marius Lindauer. 2021. Learning heuristic selection

with dynamic algorithm configuration. In International Conference on Automated Planning and Scheduling (ICAPS’21),

Vol. 31. 597–605.

Daniel A. Spielman and Shang-Hua Teng. 2004. Smoothed analysis of algorithms: Why the simplex algorithm usually takes

polynomial time. Journal of the ACM (JACM) 51, 3 (2004), 385–463.

Matthew Streeter and Daniel Golovin. 2009. An online algorithm for maximizing submodular functions. In Proceedings of

the Annual Conference on Neural Information Processing Systems (NIPS’09). 1577–1584.

Matthew Streeter, Daniel Golovin, and Stephen F. Smith. 2007. Combining multiple heuristics online. In Proceedings of the

AAAI Conference on Artificial Intelligence (AAAI’07).

Yunhao Tang, Shipra Agrawal, and Yuri Faenza. 2020. Reinforcement learning for integer programming: Learning to cut.

In Proceedings of the International Conference on Machine Learning (ICML) (2020).

Gellért Weisz, András György, and Csaba Szepesvári. 2018. LeapsAndBounds: A method for approximately optimal algo-

rithm configuration. In Proceedings of the International Conference on Machine Learning (ICML’18).

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.



Learning to Branch 13:73

GellértWeisz, András György, and Csaba Szepesvári. 2019. CapsAndRuns: An improvedmethod for approximately optimal

algorithm configuration. In Proceedings of the International Conference on Machine Learning (ICML’19).

Wei Xia and Roland Yap. 2018. Learning robust search strategies using a bandit-based approach. In Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI’18).

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2008. SATzilla: Portfolio-based algorithm selection for

SAT. Journal of Artificial Intelligence Research 32, 1 (2008), 565–606.

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown. 2010. Hydra: Automatically configuring algorithms for portfolio-based

selection. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI’10).

Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2011. Hydra-MIP: Automated algorithm configuration and

selection formixed integer programming. In Proceedings of the RCRAWorkshop on Experimental Evaluation of Algorithms

for Solving Problems with Combinatorial Explosion at the International Joint Conference on Artificial Intelligence (IJCAI’11).

Received 10 October 2020; revised 14 March 2023; accepted 28 September 2023

J. ACM, Vol. 71, No. 2, Article 13. Publication date: April 2024.


