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Abstract

This paper presents a novel method for learning time-varying dynamic Bayesian

networks. The proposed method breaks down the dynamic Bayesian network learning

problem into a sequence of regression inference problems and tackles each problem

using the Markov neighborhood regression technique. Notably, the method demon-

strates scalability concerning data dimensionality, accommodates time-varying network

structure, and naturally handles multi-subject data. The proposed method exhibits

consistency and offers superior performance compared to existing methods in terms of

estimation accuracy and computational efficiency, as supported by extensive numeri-

cal experiments. To showcase its effectiveness, we apply the proposed method to an

fMRI study investigating the effective connectivity among various regions of interest

(ROIs) during an emotion-processing task. Our findings reveal the pivotal role of the

subcortical-cerebellum in emotion processing.
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1 Introduction

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that provides

a noninvasive measure of neuronal activity in the human brain by evaluating changes in

blood oxygenation levels. When a particular stimulus activates a brain area, the local oxy-

gen consumption increases rapidly, and oxygen-rich blood flows to that area, leading to an

increase in oxyhemoglobin and a decrease in deoxyhemoglobin in the activated region. The

blood oxygenation-level dependent (BOLD) signal measures the difference between the levels

of oxyhemoglobin and deoxyhemoglobin in local blood flow. Typically, fMRI experiments

involve collecting massive BOLD time series data from spatially distinct brain locations. 1

Learning brain connectivity networks2 is an important task in fMRI studies as it can

help people understand how different brain regions collaborate to address specific cognitive

processes.3 This task can be addressed statistically by learning a dynamic graphical model,

where each node represents a region of interest (ROI) and each edge represents the brain

connectivity among the ROIs. From fMRI data, two types of brain connectivity can be

inferred: undirected functional connectivity and effective connectivity.4

Undirected functional connectivity refers to the temporal correlation or dependence

among ROIs, revealing general patterns of communication among brain regions.5;6 In the

literature, a variety of methods have been developed to infer undirected dynamic functional

connectivity, such as sliding window analysis,7 hidden Markov modeling,8 and joint estima-

tion of multiple graphical models.9–13 Unfortunately, these analyses only provide information

on the functional connectivity between brain regions while losing the direction of information

flow between them.

Effective connectivity analysis reveals the direction of the information flow during brain

activity and can determine whether one brain region communicates downstream to another

brain region or vice versa. Typically, effective connectivity varies over time during brain

activities14. The vector auto-regression (VAR) model4;15 and dynamic Bayesian network16;17

have often been used for inferring effective connectivity in fMRI studies. However, these

methods are often less scalable with respect to the data dimension (i.e., the number of ROIs)

due to the computational complexity involved in large-scale matrix inversion4;18 or intensive
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MCMC simulations16. As a result, they can only handle small brain connectivity networks.

Additionally, the use of these methods can be limited by the stationarity assumption for

the time series and the availability of subject-level data. In particular, these methods often

assume that the underlying model parameters remain constant within a task4;19, and the

analysis often focuses on a single subject8;20. How to efficiently perform effective connectivity

analysis for time-varying, high-dimensional, and multi-subject fMRI data has posed a great

challenge to the existing methods.

In this paper, we address the challenge by developing a new dynamic Bayesian network

learning method that is scalable with respect to the data dimension, allows for time-varying

underlying models, and naturally handles multi-subject data. The proposed method breaks

down the dynamic Bayesian network learning problem into a series of high-dimensional statis-

tical inference problems. At each time point and for each ROI, the directly dependent ROIs

are identified using the Markov neighborhood regression (MNR) method21, and the Markov

neighborhoods required for each of the regression tasks involved are identified using a Joint

multiple Gaussian Graphical Models (JGGM) estimation method.22 Since each regression

task is based on observations from two neighboring time points only, the proposed method

allows the underlying dynamic system to vary significantly over time. The MNR breaks down

the high-dimensional inference problems into a series of low-dimensional inference problems

based on the graph theory of Markov blankets, thereby avoiding high-dimensional matrix

inversion. The JGGM method breaks down the high-dimensional graphical model construc-

tion problems into a series of low-dimensional conditional independence tests based on an

equivalent measure of partial correlation coefficient23. The appealing dimension reduction

feature of both the MNR and JGGM methods enables the proposed method to be scalable

with respect to the data dimension. The proposed method is illustrated through an fMRI

study of emotion processing24, and our results suggest that the subcortical-cerebellum plays

a crucial role in emotion processing. Additionally, we find that there is increased activity

in the inter-modular connectivity among the subcortical-cerebellum, motor, visual II, and

visual association modules during the period of emotion processing.

The remaining part of this paper is organized as follows. Section 2 gives a brief in-

troduction to the MNR method. Section 3 describes the time-varying dynamic Bayesian
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network model for effective connectivity analysis. Section 4 describes the proposed method

for learning time-varying dynamic Bayesian networks. Section 5 provides a brief introduc-

tion to task-based fMRI data and then assesses the performance of the proposed method via

simulated fMRI data. Section 6 learns dynamic Bayesian networks for a real fMRI dataset

of emotion processing. Section 7 concludes the paper with a brief discussion.

2 Markov Neighborhood Regression

The MNR method was first proposed by Liang et al21 for high-dimensional inference and

constructing the causal graph structure around the response variable Y in high-dimensional

regression. Compared to other high-dimensional inference methods, such as desparsified

Lasso,25–27 the MNR successfully decomposes the high-dimensional inference problem into

a series of low-dimensional inference problems and it produces more accurate estimates for

confidence intervals and p-values. A brief review of the MNR method is provided below.

Suppose that a set of n independent samples Dn = {(Y (i),X(i))ni=1} have been collected

from the linear regression with a random design:

Y = β0 +X1β1 + . . .+Xpβp + ε, (1)

where ε follows the normal distribution N(0, σ2), and the covariates X = (X1, . . . , Xp)

follows a multivariate normal distribution Np(0,Σ). Let $∗ = {Xj : βj 6= 0} denote the set

of true variables of the model (1). Suppose that X is represented by a Gaussian graphical

model (GGM) denoted by G = (V ,E), where V = {1, 2, . . . , p} is the set of p vertices, and

E = (eij) represents the adjacency matrix. Here, eij = 1 indicates a link between nodes i

and j, while eij = 0 indicates the absence of a link.

LetXA = {Xk : k ∈ A} denote a set of features indexed by A ⊂ V . Let ξj = {k : ejk = 1}

denote the neighboring set of Xj in G. It follows from the Markov property of the GGM that

Xj ⊥ Xi|Xξj for any i ∈ V \ ξj, where Xa ⊥ Xb|Xc denotes the conditional independence

of Xa and Xb given Xc. The set ξj is called the minimum Markov neighborhood of Xj in

G. The minimum Markov neighborhood is also termed as the Markov blanket in graphical

theory. Any subset D̃j is a Markov neighborhood of Xj if ξj ⊆ D̃j ⊆ V \{j}. The conditional
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independence relationships implied by the Markov neighborhood form the basis for statistical

inference in the MNR method.

Without loss of generality, we let D̃1 = {2, . . . , d} ⊇ ξ1 ∪$∗ \ {1} denote a Markov

neighborhood of X1, let Σd denote the covariance matrix of {X1} ∪ XD̃1
, and partition

Θ = Σ−1 as

Θ =

 Θd Θd,p−d

Θp−d,d Θp−d

 . (2)

Following from the well known property of the GGM,28 for any variables Xi and Xj,

Xj ⊥ Xi|XV \{i,j} ⇐⇒ θij = 0, (3)

where θij denotes the (i, j)-th entry of Θ. Therefore, the first row of Θd,p−d and the first

column of Θp−d,d in (2) are exactly zero, as X1 ⊥ XV \({1}∪D̃1)
|XD̃1

holds. Inverting Θ,

we have Σd = (Θd − Θd,p−dΘ
−1
p−dΘp−d,d)

−1, which is equal to the top d × d-submatrix of Σ.

Therefore,

Σ−1d = Θd −Θd,p−dΘ
−1
p−dΘp−d,d. (4)

Since the first row of Θd,p−d and the first column of Θp−d,d are exactly zero, the (1, 1)-th

element of Θd,p−dΘ
−1
p−dΘp−d,d is exactly zero. Therefore, the (1, 1)-th entry of Θd (and Θ)

equals to the (1, 1)-th entry of Σ−1d . This suggests that the statistical inference for β1 can be

made based on the subset regression:

Y = β0 +X1β1 +X2β2 + . . .+Xdβd + ε. (5)

Since D̃1 forms a Markov neighborhood of X1 in the GGM, the method is called Markov

neighborhood regression (MNR).

Let ξ̂j denote an estimate of ξj, let $̂∗ denote an estimate of $∗, and let Dj = {j} ∪

ξ̂j ∪ $̂∗. Liang et al21 established the validity of the MNR method under the assumptions:

$̂∗ ⊇ $∗, (6)

ξ̂j ⊇ ξj, ∀j ∈ {1, 2, . . . , p}, (7)

|Dj| = |{j} ∪ ξ̂j ∪ $̂∗| = o(
√
n). (8)

For the validity of these assumptions, please refer to Section 2.1 of Liang et al. 21 For each

j ∈ V , if the conditions (6)-(8) are satisfied, then
√
n(β̂j − βj) ∼ N(0, σ2θjj) as shown in
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Liang et al21, where θjj is the (j, j)-th entry of the precision matrix Θ, and β̂j is the ordinary

least square (OLS) estimate of βj obtained by regressing Y on XDj
.

For the case that n is finite, one can use the student-t(n − |Dj| − 1) distribution to

approximate the distribution of
√
n

β̂j−βj√
σ̂2
nθ̂jj

; that is, the estimate, p-value (for the test of the

hypothesis βj = 0 based on β̂j) and confidence interval of βj can be calculated from a subset

regression as in conventional low-dimensional multiple linear regression.

The estimate $̂∗ can be obtained using a variable selection method that is consistent

or possesses the screening property, such as SCAD29, MCP30, and Lasso31;32. If the sample

size is reasonably large, one can even employ a sure independence screening method33 here.

The estimates ξ̂j’s can be obtained using a graphical modeling method, such as ψ-learning23,

nodewise regression34, and graphical Lasso35, all of which satisfy the required neighborhood

screening property. However, compared to the latter two methods, ψ-learning provides a

more explicit way for controlling the false discovery rate of the procedure. The MNR method

is summarized in Algorithm 1.

In addition to the linear regression (5), the MNR method can be easily extended to other

models. For instance, Liang et al21 have extended the method to logistic regression and Cox

regression, assuming that the explanatory variables follow a multivariate Gaussian distri-

bution. More recently, Sun and Liang36 relaxed the normality assumption for explanatory

variables, enabling the method to be applied to mixed data.

3 Effective Connectivity Modeling via Time-Varying

Dynamic Bayesian Networks

Task-based fMRI data modeling is an important problem in fMRI studies. During the past

two decades, it has been addressed by quite a few groups of authors.4;8;15;37;38 A popular

way is to decompose the fMRI signal into two parts, activation, and effective connectivity.

Mathematically, they expressed the model as

Y
(i)
t = µ(i) +

K∑
k=1

W k(t) ◦ γ(i)
k +X

(i)
t , i = 1, 2, . . . , nt, (9)
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Algorithm 1 Markov Neighborhood Regression

Input: The random design matrix X and the response vector Y for a high-dimensional

regression.

1. (Variable selection) Conduct variable selection for the model (1) to get a consistent

estimate of $∗. Denote the estimate by $̂∗.

2. (Markov blanket estimation) Construct a graphical model for X and obtain a

consistent estimate of the Markov blanket for each variable. Denote the estimates

by ξ̂j for j = 1, 2, . . . , p.

3. (Subset regression) For each variable Xj, j = 1, . . . , p, let Dj = {j}∪ ξ̂j ∪ $̂∗ and

run an ordinary least square (OLS) regression with the features given by XDj
, i.e.,

Y = β0 +XDj
βDj

+ ε,

where ε ∼ N(0, σ2In) and In is an n× n-identity matrix. Conduct inference for βj,

including the estimate, confidence interval, and p-value, based on the output of the

subset regression.

Output: The p-values for each variable Xj for j = 1, 2, · · · , p.
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where Y
(i)
t ∈ Rp represents the BOLD signal collected from subject i at time t, p denotes

the number of ROIs, µ(i) ∈ Rp represents the baseline mean value, W k(t) ∈ Rp represents

a design vector for the k-th stimulus and is common for all subjects, γ
(i)
k = (γ

(i)
1k , · · · , γ

(i)
pk )T

is a p-vector representing the stimulus-specific regression coefficients for subject i, ◦ denotes

Hadamard product, and X
(i)
t ∈ Rp represents Gaussian random error from which effective

connectivity can be inferred. As a generic notation for all subjects, we express X t as X t =

(Xt,1, Xt,2, . . . , . . . , Xt,p)
T , where Xt,v represents the Gaussian random error variable for the

v-th ROI at time t. For convenience, we also refer to Xt,v as an ROI.

In the model (9), the baseline mean value µ(i) describes the baseline signal without

any stimulus for subject i. As in other works4;8;15, we assume that the BOLD signal is

characterized by a hemodynamic delay function (HRF), which explains the lapse of time

between stimulus initiation and vascular response.14 Therefore, we can model each element

of W k(t) = (W1k(t),W2k(t), . . . ,Wpk(t))
T as the convolution of the stimulus pattern with a

HRF hr(t), i.e.,

Wrk(t) =

∫ t

0

wk(τ)hr(t− τ)dτ, t = 1, 2, · · · , T, r = 1, 2, · · · , p, (10)

where wk(τ) represents the external time-dependent stimulus function for the k-th stimulus.

In this paper, the canonical HRF is used, which is a common choice for modeling motor-

based, visual-based, and emotion-based fMRI data.14;15;38;39 The random error X
(i)
t contains

the effective connectivity information and can be spatially and temporally dependent.

We propose to model X
(i)
t by a time-varying dynamic Bayesian network, given by

X
(i)
t =

L∑
l=1

At,lX
(i)
t−l + εi(t), (11)

where εi(t) ∼ Np(0,Σ), Σ = diag{σ2
1, σ

2
2, · · · , σ2

p} is a p × p-diagonal matrix, l represents

the lagging order, and At,l ∈ Rp×p is a time-varying transition matrix for time t. It is

important to note that the autoregressive structure of (11) implies that different components

of X
(i)
t can be generally dependent, although they are mutually independent conditioned on

{X(i)
t−l : l = 1, 2, . . . , L}. Through the estimation of the time-varying transition matrices

At,l’s, we will be able to infer the interactions among the ROIs and the information flow

among brain regions, helping to uncover the working mechanism of the human brain. In
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our analysis, we will first estimate γik’s in equation (9) using the method by Friston et

al,40 thereby regressing out the strength of the activation term, and then learn the time-

varying dynamic Bayesian network in equation (11) based on the residual term. Friston et

al’s method can be used for solving general linear models that allow for autocorrelations in

the error terms, and it works well for fMRI data.

A Bayesian network is a directed acyclic graph (DAG) that can be used to infer the

directed structure of a dynamic system consisting of a large set of random variables. However,

during the past two decades, most research on Bayesian networks has focused on static

networks, which involves inferring the network structure using data collected at a single

time point41–43. In practice, there is often a need to infer the directed structure for a

dynamic system. For this purpose, the time-varying dynamic Bayesian network becomes a

powerful tool. It allows for the inference of the evolving structure of the system over time,

accommodating the changing relationships between variables.

For the time-varying dynamic Bayesian network, or more generally, a dynamic DAG, we

assume that it satisfies the directed Markov property and faithfulness44. The dynamic DAG,

as defined by the model (11), is said to satisfy the directed Markov property if and only if

each ROI Xt,v in X t and its older ancestors in {Xk : k = t − L − 1, . . . , 1}, denoted by

X t,an(v)\pa(v), are conditionally independent given its parents in {Xk : k = t− 1, . . . , t− L},

denoted by X t,pa(v), i.e.,

Xt,v |=X t,an(v)\pa(v)|X t,pa(v).

Thus, the dynamic DAG prescribes a set of conditional independence relations on the ROIs

comprising the graph. Faithfulness ensures that we can read off all conditional independence

relations from the graphical concept of separation. In addition to the dynamic DAG, we have

also assumed the Markov property and faithfulness properties for the Gaussian graphical

models for the ROIs at each time point t. See Liang et al.23 for further discussions on this

issue. In summary, the Markov property and faithfulness assumptions warrant a systematic

statistical framework for the proposed dynamic DAG to infer the effective connectivity of

ROIs using fMRI data.
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4 Learning Time-Varying Dynamic Bayesian Networks

Consider a sequence of datasets: {X(i)
t : i = 1, 2, . . . , nt} for t = 1, 2, . . . , T , where {X(i)

t :

t = 1, 2, . . . , T} forms a time series collected from subject ‘i’. However, for each subject, it

is not required to be observed at all time points. As a result, the sample size ‘nt’ can be

different at different time points. For the time being, we assume that each observation X
(i)
t

is drawn from a Gaussian distribution. The extension of the proposed methods to other

distributions will be discussed at the end of the paper.

To learn a time-varying dynamic Bayesian network from the datasets, we propose a two-

stage method. The first stage is to jointly estimate multiple Gaussian graphical models across

all T time points using an accelerated hybrid Bayesian integrative analysis method22; and

the second stage is to infer the time-varying dynamic Bayesian network using Markov neigh-

borhood regression (MNR)21, where the Markov neighborhood of each variable is formed

based on the multiple Gaussian graphical models obtained in the first stage. For simplicity,

we coined the proposed method as ‘joint Gaussian graphical model plus Markov neighbor-

hood regression’ or JGGM+MNR in short. Figure 1 depicts the pipeline of the proposed

method. The details are provided in the following subsections.

Notation: In the rest of the paper, we will use X = {X1, X2, · · · , Xp} to represent p variables

or nodes of a Bayesian network. Conceptually, X
(i)
t can be regarded as a realization of X.

4.1 Joint Estimation of Multiple Graphical Models

We have developed an accelerated hybrid Bayesian integrative analysis method, which is

an extension of Jia et al,22 for jointly estimating multiple Gaussian graphical models at a

large number of time points. The proposed method consists of three steps: edgewise score

evaluation, Bayesian data integration, and joint edge detection. In the first step, we evaluate

a conditional independence test score for each potential edge in the multiple graphical models.

Then, in the second step, we refine the conditional independence test scores within a Bayesian

framework by integrating data information from different time points. Finally, in the third

step, we jointly test the significance of the refined scores using a multiple-hypothesis testing

procedure. The first and third steps follow Jia et al22; while in the second step, we utilize
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a stochastic EM algorithm45;46 for Bayesian edge clustering. This extension enables us to

handle problems with a large number of time points. We will provide a detailed description

for each of the three steps in what follows.

4.1.1 Edgewise Score Evaluation

In this step, a conditional independence test score is evaluated for each potential edge in the

multiple graphical models at each time point. Since the assessments are performed separately

for each time point, we will describe the procedure for a single time point for the sake of

simplicity, with the time point index suppressed.

Consider a graphical model with p nodes given by X = {X1, X2, · · · , Xp}. Suppose that

the graphical models satisfy the Markov and faithful properties. Let Sj denote the Markov

blanket of Xj. As implied by the total conditioning property47 of Markov blankets, the two

events Xj ⊥ Xi|X\{Xi, Xj} and Xj ⊥ Xi|Sj\{Xi, Xj} are equivalent in the sense

δVij = 1⇐⇒ δij = 1, (12)

where δVij and δij denote, respectively, the indicator functions of Xj ⊥ Xi|X\{Xi, Xj} and

Xj ⊥ Xi|Sj\{Xi, Xj}. In a graphical model, for any random variable Xj, its Markov blanket

is any subset S ⊂ X \ {Xj} conditioned on which other variables are independent of Xj.

If Sj is replaced by a Markov blanket of Xi, denoted as Si, (12) also holds. If Xi and

Xj are independent conditioned on Sj\{Xi, Xj}, then there is no link between Xi and Xj.

Otherwise, Xi and Xj are linked in the graph.

Let S̃j(⊃ Sj) represent a super-Markov blanket of Xj. In general, the super-Markov

blanket can be obtained by a simple and fast marginal correlation screening method, and

its size can be limited to O(n/ log(n)).33 Let δ̃ij denote the indicator function of the event

Xj ⊥ Xi|S̃j\{Xi, Xj}. Under the faithfulness assumption, Xu et al48 showed that the two

events Xj ⊥ Xi|Sj\{Xi, Xj} and Xj ⊥ Xi|S̃j\{Xi, Xj} are equivalent in the sense

δij = 1 ⇐⇒ δ̃ij = 1.

Also, they suggested using the Sure Independence Screening (SIS) approach49 to determine

the super-Markov blanket for each node. That is, for each variable, SIS is conducted with
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respect to the remaining variables and the selected variables from its super-Markov blanket.

This leads to Algorithm 2 for edgewise score evaluation. Since both the marginal correlation

screening and the conditional independence test only need to be performed once for each

ordered pair of nodes. Therefore, the computational complexity of Algorithm 2 is O(p2),

which remains independent of the underlying structure of the graphical model.

Other than the SIS approach, the nodewise regression approach34 can also be used for the

construction of super-Markov blankets due to the screening properties of the Lasso method.

In applications, Algorithm 2 can be implemented using the R package SIS.51

4.1.2 Bayesian Data Integration

As mentioned previously, the proposed method works under the scenario that multiple ob-

servations of X t are available at each time point. That is, the observations form a three-

dimensional set {X1,X2, · · · XT}, where T denotes the total number of different time points,

Xt = {X(1)
t ,X

(2)
t , . . . ,X

(nt)
t } denotes nt observations of X t, and each observation X

(i)
t ∈ Rp

(for i = 1, 2, . . . , nt) is a p-dimensional vector.

Suppose z-scores have been calculated for each possible edge at each time point by using

Algorithm 2. Then we have the scores stored in an N × T -matrix Z = (zij), where N =

p(p − 1)/2 denotes the number of z-scores calculated at each time point. In the following,

we describe how the scores are fine-tuned by integrating information from the data collected

at different time points under the Bayesian framework.

For each edge l, we denote the vector el = (e
(1)
l , e

(2)
l , . . . , e

(T )
l )T as the corresponding

status (existence or absence) at T time points. Specifically, e
(t)
l = 1 indicates the existence

of the edge at time t, and 0 otherwise. To enhance the similarity of the edge across different

time points, we impose a temporal prior distribution on el:

P(el|q) =
1

2
q
∑T−1

t=1 1−ct(1− q)
∑T−1

t=1 ct ,

where we set the prior probability P(e
(1)
l = 1) = P(e

(1)
l = 0) = 1

2
; ct = |e(t+1)

l − e
(t)
l |, for

t = 1, 2, · · · , T − 1, indicates the change of the status of the edge l from the time point

t to the time point t + 1, and q is the prior probability of an edge maintaining its status

unchanged from one time point to the next. In this paper, we assume that q follows a
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Beta(a1, b1) distribution, where a1 = 10 and b1 = 1 are the default values specified for the

prior hyperparameters. This setting results in a prior mean of 0.909 for q, enhancing the

structural stationarity of the Bayesian networks across different time points.

Following Jia et al,52 we assume that the z-scores z
(t)
l ’s are mutually independent condi-

tioned on el, and each follows a two-component mixture Gaussian distribution,

P(z
(t)
l |e

(t)
l ) =

N(µl0, σ
2
l0) if e

(t)
l = 0,

N(µl1, σ
2
l1) if e

(t)
l = 1,

for l = 1, 2, · · ·N and t = 1, 2, · · ·T . That is, we will cluster the z-scores into two clus-

ters, corresponding to the cases where the edge exists and where the edge does not exist,

respectively. Let zl = {z(1)l , z
(2)
l , · · · z(T )l }. The conditional likelihood function of zl is given

by

P(zl|el) =
∏

{t:e(t)l =0}

φ(z
(t)
l |µl0, σ

2
l0)

∏
{t:e(t)l =1}

φ(z
(t)
l |µl1, σ

2
l1), (13)

where φ(·|µ, σ2) is the density function of the Gaussian distribution with mean µ and variance

σ2. Taking a product of the likelihood function (13) over all edges l = 1, 2, · · ·N , we will

get the joint likelihood function for all z-scores. In some cases, a three-component mixture

Gaussian distribution might be required to model the z-scores. For example, when an edge is

present in multiple graphs, but its partial correlation coefficients have different signs across

those graphs. As elaborated in Jia et al,22 this extension can be easily implemented.

Jia et al22 considered the case that T is small. In this case, by integrating other pa-

rameters, the marginal posterior probability of each of 2T possible configurations of el can

be evaluated exactly. For the case that T is large, they suggest an MCMC approach, but

which is too slow. Inspired by the imputation-regularized optimization (IRO) algorithm, 53

we propose a new Bayesian clustering method for simulating samples of el, with the detail

given by Algorithm 3.

Let θl,k = (µ̂
(k)
l0 , σ̂

(k)
l0 , µ̂

(k)
l1 , σ̂

(k)
l1 ) denote the parameter estimate obtained for the edge l at

iteration k of Algorithm 3. Similarly, we let el,k denote the sample of el imputed at iteration

k of the algorithm. For each edge l, Algorithm 3 leads to two interleaved Markov chains

θl,0 → el,0 → θl,1 → el,1 → · · · → θl,k → el,k → · · · ,
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which can converge very fast, usually within tens of iterations. According to the convergence

theory established by Liang et al53, under mild conditions, θl,k will converge in probability

to θl,∗, the maximum a posteriori (MAP) estimate of (µl0, σl0, µl1, σl1); and el,k will converge

weakly to the posterior distribution π(el|θl,∗, zl). In this paper, for simplicity, we assume

that the parameters (µl0, σl0, µl1, σl1) are subject to an improper prior π(µl0, σl0, µl1, σl1) ∝ 1,

resulting in the maximum likelihood estimates for these parameters within each cluster. For

cases that T is small, we recommend Jeffreys’ prior π(µl0, σl0, µl1, σl1) ∝ 1/(σ2
l0σ

2
l1) or the

inverse Gamma prior as used in Jia et al.22

Let el,1, el,2, . . . , el,m denote m samples simulated using Algorithm 3 for edge l. For each

sample el,j, we calculate the integrated z-scores using Stouffer’s meta-analysis method.54;55

That is, for t = 1, 2, . . . , T , we define the integrated z-score as

z̄
(t)
l,j =


∑
{i:e(i)l,j=0}wiz

(i)
l,j /

√∑
{i:e(i)l,j=0}w

2
i if e

(t)
l,j = 0,∑

{i:e(i)l,j=1}wiz
(i)
l,j /

√∑
{i:e(i)l,j=1}w

2
i if e

(t)
l,j = 1,

where the weights wi’s can be assigned to account for the time-varying property of the

dynamic system. For example, they can be assigned according to the size or quality of the

data collected at different time points. In this paper, we set wi = 1 for i = 1, 2, · · ·T in

our numerical studies. Then the Bayesian integrated z-scores, also called Bayesian Stouffer

integrated z-scores, are given by

ẑ
(t)
l =

m∑
j=1

z̄
(t)
l,j /m, l = 1, 2 · · · , N and t = 1, 2, · · · , T.

Alternative to Stouffer’s meta-analysis method, Fisher’s method and Pearson’s method 56

can also be applied here with minor modifications.

4.1.3 Joint Edge Detection

In this step, we conduct multiple hypothesis tests to identify the Bayesian integrated z-

scores that are significantly larger than the others and set the edges accordingly. More

precisely, we use ẑ
(t)
l as the test statistic for the existence of edge l ∈ {1, 2, . . . , N} at time

t ∈ {1, 2, . . . , T} in the multiple hypothesis test. In this paper, we adopted the empirical

Bayesian method,57 which allows general dependency between the test statistics. More
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related research on empirical Bayesian methods in the context of multiple hypothesis testing

includes references58–60.

4.2 Time-Varying Dynamic Bayesian Network Learning

Utilizing the methods of joint estimation of multiple graphical models and the MNR method,

the latter introduced in Section 2 and outlined in Algorithm 1, we can construct the time-

varying dynamic Bayesian network as described in Algorithm 4.

Algorithm 4 contains two important free parameters, namely, the significance levels used

in two multiple-hypothesis tests. One test is for joint edge detection in the step of ‘joint

estimation of multiple graphical models’, and the other test is for the step of ‘joint link

detection’. We denote the significance level of the former test by α1 and that of the latter

by α2. For both tests, we adopt the empirical Bayesian method,57 where the significance of

the test is measured in Storey’s q-value.61 To ensure the minimum Markov neighborhood ξj

is covered by Dj for each node j and at each time point t, we suggest a large value of α1,

e.g., 0.1 or 0.2, to be used. In this paper, the default values α1 = 0.2 and α2 = 0.05 are

used unless stated otherwise. We note that α1 and α2 play the same role as regularization

parameters in a regularization method. Specifically, they function as the regularization

parameter in a JGGM method: α1 controls the size of the estimated Markov neighborhoods,

while α2 controls the sparsity of the resulting multiple Bayesian networks. It is evident that

a large value of α1 reduces the risk of missing important features in the estimated Markov

neighborhood, but induces higher uncertainty in the subsequent MNR estimation.

Tips for Tuning the values of α1 and α2. As α1 governs the size of the Markov neigh-

borhoods used in the MNRs, we recommend selecting its value to ensure that each MNR

encompasses some features with big p-values, which implies the Markov neighborhood has

been sufficiently large to include some false features. Sensitivity studies have been conducted

with respect to α1 for a simulated example as well as the real data set, see the supplement

Table S8 and Figures S8 for the detail. The choice of α2 can be simply determined based on

the desired density of edges in the resulting Bayesian networks.

In addition to α1 and α2, the algorithm contains a few other parameters, including the
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parameters used in sure independence screening for super-Markov blankets construction, the

number of iteration steps used in Bayesian clustering, and the algorithm and parameters

used in high-dimensional variable selection in the MNR step. In this paper, we adopted the

SIS method33 with `1 penalty to estimate the super-Markov blanket for each node, which

was implemented using the R-package SIS51 under their default settings. For Bayesian edge

clustering, we set the default number of iterations to K = 200, where the samples produced

in the last 20 iterations were used for inference.

Algorithm 4 is highly attractive in computation. In the step of ‘joint estimation of

multiple graphical models’, the edgewise scores can be computed in parallel for all edges,

and Bayesian edge clustering and data integration can be performed in parallel for all edges

as well. Similarly, the step of Markov neighborhood regression can be executed in parallel

for all nodes at each time point t = 2, 3, . . . , T . For joint edge detection and joint link

detection, the empirical Bayesian method57 utilizes the stochastic gradient descent (SGD)

method to estimate the mixture distribution of the z-scores, which is subsequently used for

false discovery rate (FDR) evaluation. Therefore, these two steps can be accelerated using

the mini-batch strategy.

Remark 4.1. In the case that the Gaussian random noise in the model (11) is spatially

dependent, i.e., Σ is non-diagonal, the MNR method for the high-dimensional regression

(14) of Algorithm 4 only needs to be slightly modified by further expanding the super Markov

blanket of each variable Xt−1,k (for any k ∈ {1, 2, . . . , p}) to include the neighboring variables

of Xt,j in the graph Gt. This construction of the MNR can be justified by the structural

equation representation of a Gaussian graphical model, see e.g. Bühlmann and van de Geer

(p.436).32 Note that in this case the edges learned from the graph Gt are no longer directed,

and the resulting network cannot be interpreted as a Bayesian network anymore. Refer to

Section S2.3 of the supplement for a numerical study for this extension of the method.

Remark 4.2. In this paper, we have assumed that the sample size nt can be different at

different time points. However, the MNR step involves a subject-matching issue in forming

the high-dimensional regression. Therefore, for the MNR step, only a subset of the samples

taken from the common subjects at time t− 1 and t can be used. Allowing different sample
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sizes at different time points enables us to use more data for learning the graphical models

G1,G2, . . . ,GT .

Remark 4.3. The consistency of Algorithm 4 for dynamic Bayesian network learning can be

justified based on the consistency of the MNR method21 for identifying the directed structure

around the response variable. Refer to Section S1 of the supplement for the details.

5 Synthetic Examples

This section demonstrates the effectiveness of the proposed method using two synthetic

examples. The first example showcases the performance of the new method compared to

the Bayesian nodewise selection (BANS) method62 on a small-scale dataset. The BANS

method was originally designed for learning multilayered Gaussian graphical models, with

directed edges between layers and undirected edges within the same layer. Consequently,

it can be applied to learn time-varying dynamic Bayesian networks within the context of

this paper. BANS employs Bayesian variable selection priors for each of the regressions

to jointly select both undirected and directed edges that point to a node. BANS is widely

recognized as a state-of-the-art method for learning time-varying dynamic Bayesian networks.

To demonstrate the proposed method’s ability to model whole-brain networks, we test it on

high-dimensional and large-scale datasets in the second example. The sensitivity analysis

for the proposed method is provided in the supplement. For each synthetic example, the

proposed method was tested on 10 independent datasets and run in parallel with 20 threads

on a personal computer equipped with an i9-10900K CPU@3.6GHz and 128GB of memory.

5.1 A Comparison with the BANS method

To mimic the real task-based fMRI data, we generated data from equations (9) to (11) with

a lag order of L = 1, where γirk for r = 1, 2, . . . , p is drawn from the uniform distribution

U(0, 5), µ(i) = 1 for each subject, εi(t) ∼ Np(0,Σ) with Σ = diag{σ2
1, σ

2
2, · · · , σ2

p} and each

σ2
j is drawn from the uniform distribution U(0.9, 1.2). See Section S2.1 of the supplement

for the detailed setting of data generation.
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During the data analysis stage, we first eliminated the strength of activation for the

nodes through regression and then proceeded to learn the dynamic Bayesian network with

the residuals (11). To evaluate the performance of the methods, we used the precision-

recall curve. The results are summarized in Table 1 and Figure 2. We considered n = 400

and different numbers of nodes (p = 20, 30, 50). Compared to the BANS method, the

proposed method is not only superior in the identification of dynamic network structure but

also computationally more efficient. The performance of the proposed method was further

assessed in the supplement under other scenarios, including weak signals, spatial correlations,

and varying connection strengths for different subjects. In all of these cases, the proposed

method consistently outperforms the BANS method.

Time Complexity We approximated the time complexity of the proposed method by

a linear regression model with respect to the sample size n and the node size p. Under

the settings n = 200, 300, 400 and p = 16, 20, 24, 30, 40, and T = 60, we ran the proposed

method and BANS to acquire their respective computational time. Figure 3 presents the

curves for the computational time when the number of variables p varies, where different

colors represent different sample sizes. When p is fixed and n increases, the computational

time of the new method does not vary much, while that of BANS increases significantly.

Please refer to the supplement for the details of the experiments. This study shows that the

BANS method is only capable of learning small dynamic Bayesian networks when T is large.

5.2 High-Dimensional and Large-Scale Data Case

In this subsection, we conducted simulation studies under the large p and large n scenarios

to demonstrate the potential of the proposed method for learning whole brain networks. The

data generation procedures and simulation settings are the same as described in Section 5.1.

Two cases were considered here: (i) n = 800, p = 300, and T = 60, (ii) n = 400, p = 500 and

T = 60. Case (i) represents a large dataset, whose scale is close to a real fMRI dataset, while

case (ii) represents a small-n-large-p dataset. In case (ii), to illustrate the robustness of the

proposed method, we simulated the transition matrices with varying connection strengths

for different subjects (see Section S2.4 of the supplement). For both cases, we simulated

18



data under the strong signal setting.

For both cases, we compared the proposed method with some existing regularization

methods, including Lasso,31 Elastic Net,63 and MCP,30 which fit a high-dimensional linear

regression separately for each ROI from t − 1 to t. The numerical results are summarized

in Figure S1 (in the supplement), which suggests that the proposed JGGM+MNR method

outperforms regularization methods significantly in both cases. The existing literature con-

sistently shows that the MNR exhibits superior performance in variable selection compared

to regularization methods, see references21;36;50 for the detail. Furthermore, in stage one, the

proposed method provides an accurate estimator Ŝj,t for the Markov neighborhood of each

node j at each time point t.

6 An fMRI Study of Emotion Processing

This section presents the results of the proposed method in an fMRI study of emotion

processing. Unfortunately, the BANS method does not apply to this study due to its high

time complexity. As a means of partially validating our results, we carried out sensitivity

analyses, which are detailed in the supplement.

6.1 Data Acquisition and Pre-processing

The data set we used is publicly available from the S1200 Data Release of the Human Con-

nectome Project (HCP).64 We specifically selected the subjects who had complete data for

all four 3T MRI modalities in the HCP protocol: structural images (T1w and T2w), resting-

state fMRI (rsfMRI), task fMRI (tfMRI), and high angular resolution diffusion imaging

(dMRI). A total of 867 subjects aged between 22 and 35 years were included in our analyses,

comprising 409 males and 458 females. The fMRIs were acquired using a whole-brain multi-

band gradient-echo (GE) echoplanar (EPI) sequence with the following parameters: TR/TE

= 720/33.1 ms, flip angle = 52◦, FOV = 208×180 mm, matrix = 104×90 (RO × PE), multi-

band factor = 8, echo spacing = 0.58 ms, and slice thickness = 2 mm. The resulting normal

voxel size was 2.0× 2.0× 2.0 mm. Additional information about the S1200 Data Release of

HCP can be found in the reference manual at https://www.humanconnectome.org.
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Specifically, we focused on the emotion processing task fMRI with left-to-right encoding.

The task was adapted from the study conducted by Hariri et al. (2006)24 As illustrated

by Figure 4, the participants underwent six blocks of trials, consisting of either face or

shape matching. Among these blocks, three were face blocks, and three were shape blocks.

The faces displayed either angry or fearful expressions. Each block lasted for 21 seconds,

including a cue phase with six repetitions of the same task, followed by a 2-second stimulus

presentation and a one-second inter-trial interval (ITI). The total duration of the task was

2 minutes and 16 seconds, with 176 frames acquired for each subject.

The fMRI we used from the HCP has undergone a minimal pre-processing pipeline, which

encompassed gradient distortion correction, head motion correction, image distortion cor-

rection, spatial normalization to the standard Montreal Neurological Institute (MNI), and

intensity normalization.65 Additionally, we implemented standard pre-processing steps to

reduce biophysical and other noise in the minimally processed fMRI data. These proce-

dures involved eliminating the linear components associated with the 12 motion parameters

(including the original motion parameters and their first-order derivatives), removing linear

trend, and applying band-pass filtering (0.01 − 0.25 Hz).66 The band-pass filtering with a

range of 0.01−0.25 Hz was applied to achieve two objectives in this data: 1) eliminating the

scanner drift and linear trends by high-pass filtering, and 2) attenuating respiratory noise

and cardiac signal through low-pass filtering.67

For a better understanding of the behavior of different brain regions, we extracted 268

regions of interest (ROIs) based on the functional atlas provided by Finn et al. (2015). 66 We

averaged the values of all voxels that belonged to each ROI. Furthermore, we divided the 268

ROIs into 8 functional networks (FN) modules (see Figure S7 in the supplement) including

Medial Frontal (Med F), Frontoparietal (FP), Default Mode (DMN), Subcortical-cerebellum

(Sub-Cer), Motor (Mt), Visual I (Vis I), Visual II (Vis II) and Visual Association (Vis Assn)

as in Cai et al.67

6.2 Parameter Settings

In the joint estimation of multiple graphical models, we set α1 = 0.2. Then, we tried

α2 = 0.05 and 0.1 to select important variables for constructing the time-varying dynamic
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Bayesian network. We considered the lag orders L = 1 and L = 2. We summarized the

results with α2 = 0.1 and L = 1 in the main paper and left other results to the supplement.

6.3 Results

We have acquired 175 dynamic DAGs. Within each block, the task duration was 18s,

resulting in 25 DAGs. Therefore, we obtained 75 DAGs to describe the directed functional

connectivity (FC) in emotion processing (case), and 75 estimations for the shape processing

(control). To better highlight the differences between the emotion and shape tasks, we

summarized the networks from four aspects, namely characteristic edges, functional network

modules, significant ROIs (hubs), and network differences.

6.3.1 Task-related Networks under Emotion Processing and Shape Processing

In Figure 5, we present the chord plots of the mean of the dynamic DAGs over time, arranged

by functional network modules, and the characteristic edges for each task. A characteristic

edge is defined as an edge whose total number of appearances is at least two standard devia-

tions higher than the mean number (which is 9 for both tasks). The chord plots depicting the

functional network modules for the two tasks exhibit overall similarities, with variations in

inter-modular connectivity and appearance at different locations. Regarding the character-

istic edges, we identified 14 edges for emotion processing and 10 edges for shape processing.

Among them, 6 edges were found in both tasks, which are the connectivity between the left

and right hemispheres in the motor strip and limbic areas, as well as connectivity involv-

ing the parietal lobe. Notably, the cerebellum demonstrated more activity during emotion

processing compared to shape processing.

6.3.2 Emotion-Related Intra- and Inter-Modular Connectivity

We examined intra-modular and inter-modular connectivity for the emotion and shape tasks,

as well as the differences between the two conditions (see Figure 6). In the heat maps,

the rows indicate the beginning of the arrows, and the columns indicate the end of the

arrows. The significant differences in intra-modular and inter-modular connectivity depicted
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in Figure 6 were selected based on the visualized heat map and the statistical modeling

analysis.

By considering the difference in mean edge degrees between the emotion and shape tasks

and the sensitivity result of the Poisson HRF (available in the supplement), we identified

some differences in the intra- and inter-modular connectivities under the two tasks.

In the emotion task, compared to those in the shape task, the intra-modular connectivity

in the Subcortical-cerebellum networks is less active, while the inter-modular connectivity

among the Subcortical-cerebellum networks, motor networks, visual II, and visual association

networks is more active.

The results (see Figure 5) confirmed the central role of the Subcortical-cerebellum area

in the coordination of Motor behavior and cognitive processing.68 The study found that

in the Subcortical-cerebellum module, there is a significant difference between the emotion

and shape tasks (see Figure 6). Subcortical structures refer to a group of diverse neural

formations located deep within the brain, including the diencephalon, pituitary gland, lim-

bic system, and basal ganglia. They are involved in complex activities such as memory,

emotion, pleasure, and hormone production. The limbic system regulates autonomic and

endocrine functions in response to emotional stimuli.69 The results also provide evidence of

the cerebellum’s contribution to complex network processing, emotional facial expression,

and enhanced emotional recognition of facial anger and sadness.70 The cerebellum’s connec-

tion to the emotional processing task has been well-studied in the literature.71–73 Our results

further showed that during emotion processing, there were more active connections in the

pathways of Sub-Cer ↔ Motor, Sub-Cer → Vis II, and Sub-Cer → Vis Assn than during

shape processing.

6.3.3 Identification of Emotion-related ROIs

To gain more insights into the emotion circuits, an analysis was conducted on the degree

distribution of the nodes, leading to the identification of a hub ROI that exhibited differential

performance under the emotion and shape tasks. Row degrees were calculated to determine

the total number of edges coming out of a node, and the significance of information trans-

mission was assessed using the Wilcoxon signed-rank test. The test suggests that the row
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degrees of ROI 32 vary significantly under different tasks. Figure S9 in the supplement dis-

plays this variation along with the time, which tends to have higher connectivity under the

emotion task than under the shape task. Detailed information on the test can be found in

the supplement. A literature review reveals that the region BA6, to which ROI 32 belongs,

may play an important role in facial emotion processing.74;75

6.3.4 Network Comparison

To examine the structural variation of the dynamic Bayesian networks learned by the pro-

posed method, a multiple-hypothesis test was conducted on the edges of the networks using

the method of ψ-learning.23 Specifically, considering two dynamic Bayesian networks under

comparison, we define the test statistic for each pair of possible edges as zij =
z
(1)
ij −z

(2)
ij√

2
, where

the subscript ‘ij’ specifies a possible edge, and the superscript ‘k’ (for k = 1, 2) specifies a

Bayesian network. The comparisons were done for the dynamic Bayesian networks learned

from time t to t + 1 and from time t + 1 to t + 2 within each of the emotion and shape

tasks. At a significance level of 0.1, the proposed method identified 137 and 130 differential

edges within the shape and emotion tasks, respectively, with L = 1; and it identified 22 and

37 differential edges within the shape and emotion tasks, respectively, with L = 2. Addi-

tionally, we examined the structural variation of the dynamic Bayesian network during the

transitions between the emotion and shape tasks, identifying 24 and 9 differential edges with

L = 1 and L = 2, respectively. This result suggests that the transition matrices At,l are

time-varying within each of the emotion and shape tasks, providing evidence to support our

assumption of time-varying connectivity. Compared to the case of L = 1, fewer differences

in connectivity were detected in the case of L = 2, which suggests a high-order Markovian

nature of brain activity.

7 Discussion

In this paper, we have proposed a new method for learning time-varying dynamic Bayesian

networks with multiple samples observed for a dynamic system at a large number of time

points. We have established its consistency for dynamic Bayesian network construction. The
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proposed method has been successfully applied to an fMRI study for emotion processing.

We found that during the emotion task, the modular subcortical-cerebellum plays a key role,

and significant differences are presented by comparing it to the shape task.

The proposed method provides a general framework for learning causal graphs from

spatio-temporal data. It comprises two stages: JGGM, which extracts spatial-type struc-

tural information from the data; and MNR, which determines the structure of dynamic

Bayesian networks by incorporating both the temporal information and the spatial infor-

mation extracted by JGGM. We implemented the JGGM using the fast hybrid Bayesian

integrative analysis (FHBIA) method22. As mentioned in the Introduction, several JGGM

estimation methods are available in the literature, including fused Lasso11;12 and Bayesian

modeling via a Markov random field13. The former enforces temporal homogeneity through

a fused Lasso penalty, but an issue with the method is its assumption of independence among

observations at different temporal points, which is challenging to satisfy. The latter enforces

temporal homogeneity using a Markov random field prior, but it involves repeated inversions

of covariance matrices, rendering it impractical for large-size networks. The FHBIA method

successfully addresses these issues. As described in the paper, it first employs the ψ-learning

method23, a frequentist method, to transform the original data into edge-wise z-scores. The

z-score serves as an equivalent measure of the partial correlation coefficient, providing a

concise summary of the graph structure information within the data under each condition.

Subsequently, it employs a Bayesian method to model the z-scores for edge clustering and

applies a meta-analysis technique to integrate data information across distinct conditions.

Since FHBIA comprises both frequentist and Bayesian components, it is hybrid and so is

the proposed one in the paper. Compared to the fully Bayesian method13, the use of the

z-score transformation allows us to avoid inversions of high-dimensional covariance matrices,

significantly enhancing the computational efficiency of the proposed method. Compared to

the fused Lasso method11;12, the Bayesian edge clustering step enables the incorporation of

prior information to enhance the temporal homogeneity flexibly, while accounting for the de-

pendent nature of the data in temporal modeling. Furthermore, the MNR method provides

a natural way to integrate spatial and temporal information in determining the structure of

the dynamic Bayesian network.
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The proposed method has a striking feature in uncertainty quantification. Specifically,

it learns a z-score for each possible link, including both identified and non-identified links,

in the dynamic Bayesian network. These z-scores allow us to assess the reliability of the

learned network, a capability beyond the reach of regularization methods, such as applying

the nodewise regression34 to the problem.

The proposed method is also very attractive in computation, which has a time complexity

of O(p2) under the assumptions p � n and p � T . Furthermore, almost all steps of the

method can be run in parallel, and the joint edge detection and joint link detection steps

can be accelerated using the mini-batch strategy. An R-package has been developed for the

proposed method, which can be run on a multi-core computer in parallel. The package will

be made available to the public upon publication of the paper.

Finally, we note that a limitation of the current version of the proposed method is its

requirement for the data to be multivariate Gaussian. However, extending the proposed

method to mixed data is straightforward. In this case, the joint estimation of multiple

graphical models can be done as described in Jia and Liang,52, and Markov neighborhood

regression for mixed data can be done as described in Sun and Liang.36 Many of the as-

sumptions used in the paper can also be relaxed. For example, the weight of each subject

is not necessarily equal. In this case, although the effective connectivity is assumed to be

equal across all subjects, the weight of each subject can be incorporated into the proposed

method by replacing each Markov neighborhood regression with its weighted version (i.e.,

weighted linear regression). In addition, the stationarity of the time series is unnecessary

due to the time-wise analysis nature of the proposed method. As a slight extension of the

proposed model, task information can be used in both steps of graphical model construction

and Bayesian network structure determination. For the former, task information can be

used as an external variable, and ψ-scores can be computed by accounting for its effect as

prescribed in Liang et al23 For the latter, it can always be included as a predictor of each

Markov neighborhood regression.
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Table 1: Comparison of JGGM+MNR and BANS for the simulated examples with the

sample size n = 400, varying numbers of nodes (p = 20, 30, 50), and the number of time

points T = 60. † Average AUC values produced with hyper-parameters (a1, b1) = (3, 1),

(5, 1), and (10, 1); ‡ average computational time measured in minutes on a computer with

i9-10900K CPU@3.6GHz and 128GB of memory, running in parallel with 20 threads.

JGGM+MNR BANS

Parameter a1 = 3, b1 = 1 a1 = 5, b1 = 1 a1 = 10, b1 = 1 -

p = 20
AUC† 0.959(0.007) 0.959(0.007) 0.959(0.007) 0.839(0.008)

Time‡ 5.18 5.064 5.268 47.93

p = 30
AUC† 0.952(0.005) 0.952(0.004) 0.952(0.005) 0.766(0.006)

Time‡ 5.891 5.786 5.792 96.22

p = 50
AUC† 0.944(0.004) 0.945(0.003) 0.945(0.004) -

Time‡ 7.478 7.723 7.676 > 12 hours
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Figure 1: Workflow of the proposed method for construction of a dynamic Bayesian network:

The upper block represents the first step, which outputs a Markov blanket for each node at

each time point; the lower two blocks represent the second step, where a p-value is calculated

for each possible edge of the dynamic Bayesian network using Markov neighborhood regres-

sion and, subsequently, a multiple hypothesis test is performed on the p-values to identify

the significant edges of the dynamic Bayesian network.
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Figure 2: Precision-recall curves produced by JGGM+MNR and BANS for the simulated

examples under the settings: (a) p = 20, n = 400, T = 60; (b) p = 30, n = 400, T = 60;

(c) p = 50, n = 400, T = 60, for which BANS is time-consuming (with computational time

> 12 hours) and thus omitted for comparison.
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Figure 3: Time complexity curves of JGGM+MNR and BANS for the simulated examples

with varying sample sizes n = 200, 300, 400, varying numbers of nodes p = 16, 20, 24, 30, 40,

and the number of time points T = 60.
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Figure 4: Illustration of the fMRI experimental design under the emotion processing task.
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Figure 5: Chord plots arranged by eight functional network modules for emotion process-

ing (upper left) and shape processing (upper right), and characteristic edges for emotion

processing (down left) and shape processing (down right).
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Figure 6: Heat maps for the mean edge (functional module-wise) difference between the

emotion and shape tasks, identified under the settings (a) (α1, α2) = (0.05, 0.1), (b)

(α1, α2) = (0.1, 0.1), and (c) (α1, α2) = (0.2, 0.1).
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Algorithm 2 Edgewise Score Evaluation

Input: The observations in a three-dimensional set {X1,X2, · · · XT}, where T denotes

the total number of different time points and each Xt is nt × p data matrix.

Step 1. (Super-Markov Blankets Construction) For each variable, treat it as the

response variable to conduct sure independence screening33 with respect to the remaining

variables, and limit its super-Markov blanket size to the order O(n/ log(n)). In practice,

the super-Markov blanket size is n/cn log(n), where cn is a tunable parameter with a

default value of 1.

Step 2. (Conditional Independence Tests) For each ordered pair of variables

(Xt,i, Xt,j), i = 1, 2, · · · p and j = i + 1, i + 2, . . . , p, t = 1, 2, · · · , T , conduct the con-

ditional independence test:

Xt,i ⊥ Xt,j | S̃t,ij\{Xt,i, Xt,j}, i, j = 1, 2, · · · , p, t = 1, 2, · · · , T,

where S̃t,ij = S̃t,i if |S̃t,i\{Xt,i, Xt,j}| ≤ |S̃t,j\{Xt,i, Xt,j}| and S̃t,ij = S̃t,j otherwise, and

denote the p-values of the test by p
(t)
ij . For multivariate Gaussian data, the relationships

among conditional distributions, partial correlation coefficients, and precision matrix, see

Liang and Jia50 (p.2) or Bühlmann and van de Geer32 (p.436), this test can be performed

by regressing Xt,i = βt,jXt,j + βt,S̃S̃t,ij + εt,i and then testing the hypothesis H0 : βt,j = 0

versus H1 : βt,j 6= 0.

Step 3. (z-scores Calculation) Convert the p-values of the conditional independence

tests to z-scores by the probit transformation

z
(t)
ij = Φ−1(1− p(t)ij ), t = 1, 2, · · · , T,

where Φ−1 is the Gaussian inverse transformation and p
(t)
ij is the p-value of the conditional

independence test for the pair (Xt,i, Xt,j).

Output: The z-scores for each ordered pair of variables (Xt,i, Xt,j) of each data set Xt,

where t = 1, 2, · · · , T .
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Algorithm 3 Bayesian Edge Clustering

Input: Randomly initialize e
(1)
l,0 in {0, 1}, and then draw e

(t)
l,0 according to the Bernoulli

distribution P (e
(t)
l,0 = e

(t−1)
l,0 |e(t−1)l,0 ) = q and P (e

(t)
l,0 = 1−e(t−1)l,0 |e(t−1)l,0 ) = 1−q, t = 1, 2, · · · , T .

for l = 1, 2, . . . , N do

for k = 0, 1, . . . ,K do

Optimization: Cluster z
(1)
l , z

(2)
l , . . . , z

(T )
l according to el,k; estimate the mean

and variance of each cluster, denoting the respective estimates by (µ̂
(k)
l0 , σ̂

(k)
l0 ) and

(µ̂
(k)
l1 , σ̂

(k)
l1 ); find the values of n1 = |{t : e

(t)
l,k = e

(t−1)
l,k }| and T − n1 − 1 = |{t : e

(t)
l,k =

1− e(t−1)l,k }|, and estimate q by the mean of Beta(a1 + n1, b1 + T − n1 − 1).

Imputation: Update el,k by using the Gibbs sampler in the following steps.

Step 1. For t = 1, calculate

S
(0)
1,k = N (z

(1)
l ; µ̂

(k)
l0 , σ̂

(k)
l0 )× q1−c

(0)
1,k(1− q)c

(0)
1,k ,

S
(1)
1,k = N (z

(1)
l ; µ̂

(k)
l1 , σ̂

(k)
l1 )× q1−c

(1)
1,k(1− q)c

(1)
1,k ,

where c
(0)
1,k = |e(2)l,k − 0| and c

(1)
1,k = |e(2)l,k − 1|.

Step 2. For t = 2, 3, · · · , T − 1, calculate

S
(0)
t,k = N (z

(t)
l ; µ̂

(k)
l0 , σ̂

(k)
l0 )× q2−(c

(0)
t−1,k+c

(0)
t,k)(1− q)c

(0)
t−1,k+c

(0)
t,k ,

S
(1)
t,k = N (z

(t)
l ; µ̂

(k)
l1 , σ̂

(k)
l1 )× q2−(c

(1)
t−1,k+c

(1)
t,k)(1− q)c

(1)
t−1,k+c

(1)
t,k ,

where c
(0)
t−1,k = |0−e(t−1)l,k |, c

(1)
t−1,k = |1−e(t−1)l,k |, c

(0)
t,k = |e(t+1)

l,k −0|, and c
(1)
t,k = |e(t+1)

l,k −1|.

Step 3. For t = T, calculate

S
(0)
T,k = N (z

(T )
l ; µ̂

(k)
l0 , σ̂

(k)
l0 )× q1−c

(0)
T,k(1− q)c

(0)
T,k ,

S
(1)
T,k = N (z

(T )
l ; µ̂

(k)
l1 , σ̂

(k)
l1 )× q1−c

(1)
T,k(1− q)c

(1)
T,k ,

where c
(0)
T,k = |0− e(t−1)l,k | and c

(1)
T,k = |1− e(t−1)l,k |.

Step 4. Draw e
(t)
l,k+1 for t = 1, 2, . . . , T according to the distribution:

P(e
(t)
l,k+1 = 0|e(t−1)l,k , e

(t+1)
l,k ) =

S
(0)
t,k

S
(0)
t,k + S

(1)
t,k

, P(e
(t)
l,k+1 = 1|e(t−1)l,k , e

(t+1)
l,k ) =

S
(1)
t,k

S
(0)
t,k + S

(1)
t,k

.

end for

end for

Output: Estimates for the status of the edges {el : l = 1, 2, · · · , N}.
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Algorithm 4 Time-Varying Dynamic Bayesian Network Learning

Input: The dataset {X1,X2, . . . ,XT}, where Xt is an nt × p-matrix and each row of Xt
follows a multivariate Gaussian distribution Np(0,Σt) for t = 1, 2, . . . , T .

1. Joint estimation of multiple graphical models. Apply the accelerated hybrid

Bayesian integrative analysis method to the data set to jointly estimate T Gaussian

graphical models. Denote the graphical models by G1,G2, . . . ,GT .

2. Markov neighborhood regression. For t = 2, 3, . . . , T and j = 1, 2, . . . , p, con-

duct statistical inference for the high-dimensional regression

Xt,j = β
(0)
t,j + β

(1)
t,j Xt−1,1 + β

(2)
t,j Xt−1,2 + · · ·+ β

(p)
t,j Xt−1,p + εt,j, εt,j ∼ N(0, σ2

t,j), (14)

using the MNR method for which the Markov blanket estimate is obtained from Gt−1;

and denote the p-values corresponding to the variables Xt−1,1, Xt−1,2, . . . , Xt−1,p by

q
(t)
1,j, q

(t)
2,j, . . . , q

(t)
p,j, respectively.

3. Joint Link Detection. Transform the p-values obtained in the MNR step to z-

scores by setting

z
(t)
i,j = Φ−1(1− q(t)i,j ), i, j = 1, 2, . . . , p, and t = 2, 3, . . . , T,

and conduct multiple hypothesis tests for all z
(t)
i,j ’s to detect the values that are

significantly larger than others. The p-values will be adjusted by using the empir-

ical Bayesian method.57 Set the elements of the adjacency matrix of the dynamic

Bayesian network to 1 if the corresponding z-scores are significantly larger than

others and 0 otherwise.

Output: The adjacency matrix of the dynamic Bayesian network from t− 1 to t, where

t = 2, 3, · · · , T .
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The Supplement for “Time-Varying Dynamic Bayesian

Network Learning for an fMRI Study of Emotion

Processing”

Lizhe Sun, Aiying Zhang and Faming Liang ∗

§1 Theoretical Justification

The consistency of Algorithm 4 for dynamic Bayesian network learning can be justified

based on the consistency of the MNR method for the identification of the directed structure

around the response variable, as established in Liang et al.1 As implied by equations (6)-(8)

in the main text, we require the conditions that ensure the consistency of high-dimensional

variable selection for each node at each time point, the conditions that ensure the consistency

of the joint estimates of the multiple Gaussian graphical models, as well as the conditions

that guarantee the sparsity of the dynamic Bayesian network and the multiple Gaussian

graphical models. The conditions for the consistency of the joint estimation of multiple

Gaussian graphical models and their sparsity have been specified in Jia et al.2 The conditions

for the consistency of variable selection in each MNR and its sparsity have been provided in

Liang et al.1 To ensure the paper self-contained, we summarize these conditions and provide

a brief justification for the consistency of Algorithm 4 in the following. To indicate the

dependency of the dimension p on the sample size n, we denote it by pn.

∗To whom correspondence should be addressed: F. Liang. Liang is Distinguished Professor (email: fm-

liang@purdue.edu), Department of Statistics, Purdue University, West Lafayette, IN 47907. Sun is Postdoc,

Beijing International Center for Mathematical Research, Peking University and Department of Statistics,

Purdue University. Zhang is Assistant Professor, School of Data Science, University of Virginia.
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(A0) Let n = min{n1, n2, · · · , nT}; and let the dimension pn = O(exp(nδ)) for some constant

0 ≤ δ < 1/2.

(A1) For any t ∈ {1, 2, . . . , T}, X t satisfies the following conditions:

(i) The joint distribution P (X t) is multivariate Gaussian, and it satisfies the Markov

property and adjacency faithfulness condition with respect to the undirected un-

derlying graph G(X t).

(ii) The correlation coefficients satisfy min{|rij|; eij = 1, i, j = 1, . . . , pn, i 6= j} ≥

c0n
−κ for some constants c0 > 0 and 0 < κ < (1 − δ)/2, and max{|rij|; i, j =

1, . . . , pn, i 6= j} ≤Mr < 1 for some constants 0 < Mr < 1.

(iii) There exists constants c1 > 0, 0 < κ′ ≤ κ, and 0 ≤ τ < 1 − 2κ′ such that

λmax(Σx,t) ≤ c1n
τ , where Σx,t denotes the covariance matrix of X t.

(iv) The ψ-partial correlation coefficients, as defined in Liang et al.3, satisfy inf{ψij :

ψij 6= 0, i, j = 1, . . . , pn, i 6= j, |Sij| ≤ qn} ≥ c2n
−d, where qn = O(n2κ′+τ ), 0 <

c2 < ∞, 0 < d < (1− δ)/2 are some constants, and Sij denotes the conditioning

set used in calculating ψij. In addition, sup{ψij : i, j = 1, . . . , pn, i 6= j, |Sij| ≤

qn} ≥ c6n
−d ≤Mψ < 1 for some constants 0 < Mψ < 1.

(A2) maxt∈{1,2,...,T},j∈{1,...,pn} |ξt,j| = o(n1/2), where ξt,j denotes the Markov blanket of node j

at time t with respect to the Gaussian graphical model formed by the data Xt.

(A3) There exist constants c3 > 0 and c4 > 0 such that mint∈{2,...,T},j∈{1,2,...,pn},i∈S∗t,j |β
(i)
t,j | ≥

c3n
−κ and mint∈{2,...,T},j∈{1,2,...,pn},i∈S∗t,j |cov((β

(i)
t,j )
−1Xt,j, Xt−1,i)| ≥ c4, where S∗t,j = {i :

β
(i)
t,j 6= 0, i ∈ {1, 2, . . . , pn}} denotes the set of true variables of the linear regression

model

Xt,j = β
(0)
t,j + β

(1)
t,j Xt−1,1 + β

(2)
t,j Xt−1,2 + · · ·+ β

(pn)
t,j Xt−1,pn + εt,j, (S1)

and εt,j ∼ N(0, σ2
t,j) denotes a zero-mean Gaussian random error.

(A4) maxt∈{2,...,T},j∈{1,2,...,pn} |S∗t,j| = o(n1/3).

(A5) Other assumptions in Theorem 2 of Fan and Peng4 for each regression (S1) with

t ∈ {2, . . . , T} and j ∈ {1, 2, . . . , pn}.
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(A6) Other assumptions in Theorem 1 of Fan et al5 (the case of random design) for each

regression (S1) with t ∈ {2, . . . , T} and j ∈ {1, 2, . . . , pn}.

(A7) The number of distinct conditions Tn = O(nδ+2d+ε−1) for some constant ε > 0 such

that δ + 2d+ ε− 1 ≥ 0, where δ is as defined in (A0) and d is as defined in (A1)-(iv).

Theorem S1. Let n = min{n1, n2, · · · , nT}. Suppose that conditions (A0)-(A7) (given in

the supplementary material) hold. Then the dynamic Bayesian network estimator resulting

from Algorithm 4 is consistent.

Proof. With conditions (A0), (A1), and (A7), we can apply Theorem 1 of Jia and Liang2 to

prove that P (ξ̂t,j = ξt,j) = 1− o(1) for all j = 1, . . . , pn and t = 1, 2, . . . , T . With conditions

(A0), (A1)-(iii) and (A3)-(A5), we can apply Theorem 5 of Fan and Lv6 to prove that

P (Ŝ
∗
t,j = S∗t,j) = 1− o(1), j = 1, 2, · · · , pn, t = 2, · · ·T, as n→∞.

where Ŝ
∗
t,j denotes the estimator of S∗t,j obtained by using the SIS-SCAD method.6

With conditions (A2) and (A4), for any t ∈ {2, 3, . . . , T} and any predictors i, j ∈

{1, 2, . . . , pn}, we have D
(i)
t,j = {i}∪ ξ̂t−1,i∪Ŝ

∗
t,j and P (|D(i)

t,j | = |{i}∪ ξ̂t−1,i∪Ŝ
∗
t,j| = o(n1/2)) =

1− o(1), where D
(i)
t,j denotes the Markov neighborhood of predictor i in the regression (S1).

Following from Lemma 1 of Liang et al,1 we can derive the asymptotic distribution of β̂
(i)
t,j . By

condition (A6), we can get the consistency of σ̂2
t,j based on Theorem 1 of Fan et al5 and the

asymptotic P (|D(i)
t,j | log(pn) = o(n)) = 1− o(1) for any t ∈ {2, . . . , T} and j ∈ {1, 2, . . . , pn}.

Finally, based on Slutsky’s theorem, we can conclude that
√
n
β̂
(i)
t,j−β

(i)
t,j√

σ̂2
t,j θ̂t,jj

∼ N(0, 1) for any t ∈

{2, . . . , T}, j ∈ {1, 2, . . . , pn} and i ∈ {1, 2, . . . , pn}, where σ̂2
t,j denotes an OLS estimate of σt,j

from the regression (S1), θ̂t,jj is the (j, j)-th entry of the matrix

[
1
n

∑n
k=1 X̃

(k)

D
(i)
t,j

(X̃
(k)

D
(i)
t,j

)T
]−1

,

and X̃
(k)

D
(i)
t,j

denotes the kth-row of X
D

(i)
t,j

and X
D

(i)
t,j

denotes a submatrix of X t−1 formed with

the columns belonging to D
(i)
t,j . Further, following the arguments given in Section 4.1 of Liang

et al,1 we can conclude that the causal structure of the dynamic Bayesian network can be

identified by the proposed method.
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§2 More Results on Simulation Studies

§2.1 Data Generation

To mimic the real task-based fMRI data, we generated data from equations (9) to (11) of the

main text with a lag order of L = 1, where γ
(i)
rk for r = 1, 2, . . . , p is drawn from the uniform

distribution U(0, 5), µ(i) = 1 for each subject, ε
(i)
t ∼ Np(0,Σ) with Σ = diag{σ2

1, σ
2
2, · · · , σ2

p}

and each σ2
j is drawn from the uniform distribution U(0.9, 1.2). In this simulation, the

canonical HRF hr(t) is used to model the stimulus, as defined in equation (10) of the main

text.

We designed a session comprising two tasks separated by a break. Each task lasted for

25 seconds, while the break lasted for 10 seconds. Consequently, we assigned time points as

follows: t = 1, 2, · · · , 25 for task one, t = 26, 27, · · · , 35 for the break, and t = 36, 37, · · · , 60

for task two. In addition, we defined the ROIs 1 : (p/2) as blocked module one and ROIs

(p/2 + 1) : p as blocked module two, where p is the number of total ROIs. Each module rep-

resents a functional network composed of selected ROIs, which may be specifically activated

by certain tasks. In this simulation, we assumed that only module one was activated during

the first task, and only module two was activated during the second task. During the break

time, neither of the modules was active.

We generated the transition matrix At,l in the following procedure. First, we generated

an initialized A0,l as follows:

(A0,l)i,j =



1, if |i− j| = 0, i = 1, 2, · · · p,

ρ, if |i− j| = 1, i = 1, 2, · · · , p− 1,

ρ2, if |i− j| = 2, i = 1, 2, · · · , p− 2,

0, others,

where ρ = 0.9 for the case of strong signal and ρ = 0.5 for the case of weak signal. Sec-

ond, we employed the following procedure to generate the time-varying transition matrix

At,l, t = 1, 2, · · · , 60. For task one, we added additional 10% non-zero parameters in the

blocked submatrix of initialized transition matrix A0,l[1 : p/2, 1 : p/2]. These parameters

are drawn uniformly from the interval [−0.9,−0.6]
⋃

[0.6, 0.9] for the case of strong signal
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and [−0.5,−0.3]
⋃

[0.3, 0.5] for the case of weak signal. During the period of task one,

t = 1, 2, · · · , 25, we changed 5% entries to zero and another 5% entries to non-zero in this

blocked submatrix of transition matrix At,l[1 : p/2, 1 : p/2] from t to t+1, except diagonal el-

ements. The non-zero elements are drawn uniformly from the interval [−0.9,−0.6]
⋃

[0.6, 0.9]

for the case of strong signal and [−0.5,−0.3]
⋃

[0.3, 0.5] for the case of weak signal. Then,

during the resting stage t = 26, 27, · · · 35, let the transition matrix At,l = A0,l. For task

two, we added 10% extra connections in the blocked submatrix of initialized transition ma-

trix A0,l[(p/2 + 1) : p, (p/2 + 1) : p], in which the parameters are drawn uniformly from

[−0.9,−0.6]
⋃

[0.6, 0.9] for the case of strong signal and [−0.5,−0.3]
⋃

[0.3, 0.5] for the case

of weak signal. During the period of task two, t = 36, 37, · · · , 60, we changed 5% entries

to zero and another 5% entries to non-zero in this blocked submatrix of transition matrix

At,l[(p/2+1) : p, (p/2+1) : p] from t to t+1, except for the diagonal elements. The non-zero

elements are drawn uniformly from the interval [−0.9,−0.6]
⋃

[0.6, 0.9] for strong signal case

and [−0.5,−0.3]
⋃

[0.3, 0.5] for weak signal case. All off-diagonal elements are changeable

during tasks.

In analyzing the data, we regressed the strength of activation for all nodes and then

learned dynamic Bayesian networks from the residual term by using our proposed method,

as presented in equation (11) of the main text. The performance of the proposed method is

evaluated by using precision-recall curves. We presented AUC values and running time for a

sample size of n = 400 and different numbers of nodes p = 20, 30, 50. We fixed the parameter

α1 = 0.2 in all simulations and varied α2 to construct the precision-recall curve. For the

Beta prior of q, we conducted a sensitivity analysis by setting a1 = 3, 5, 10 and b1 = 1. The

numerical results of AUC values for strong signals were presented in Table 1 of the main

text, and the numerical results of sensitivity analysis were presented in this supplementary

material. Each simulation experiment was independently run 10 times (a different dataset

was generated each time) on the same personal computer with i9-10900k CPU@3.6GHz and

128G memory, with 20 threads running in parallel.

The precision and recall are defined as follows:

precision =
TP

TP + FP
, recall =

TP

TP + FN
,
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where TP, FP, and FN denote true positives, false positives, and false negatives, respectively,

as defined in Table S1.

Table S1: Outcomes of Binary Decision

True False

Predicted Positive True Positive(TP) False Positive(FP)

Predicted Negative False Negative(FN) True Negative(TN)

In the following subsections, we assessed the performance of the proposed method un-

der different scenarios, including large-scale and high-dimensional cases, weak signals, non-

stationary connection strengths for each subject, and spatial correlations. In all of these

cases, the proposed method consistently outperforms the BANS method.

§2.2 Weak Singals

In this subsection, we assessed the performance of the proposed method in the case of weak

signals. In this particular case, we set ρ = 0.5, and drew the signal strength parameters

uniformly from the interval [−0.5,−0.3] ∪ [0.3, 0.5]. The results were presented in Table S2.

§2.3 Spatial Correlations

In this subsection, we assessed the performance of the proposed method under the scenario of

spatially correlated random errors, i.e., Σ in equation (11) of the main text is non-diagonal.

We generated data under a strong signal setting with ρ = 0.9 and the signal strength

parameters being drawn uniformly from the interval [−0.9,−0.6]
⋃

[0.6, 0.9]. The random

noise ε
(i)
t in equation (11) of the main text follows a multivariate normal distribution Np(0,Σ),
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Table S2: Comparison of JGGM+MNR and BANS for the simulated example under the

scenario of weak signals, where the data were simulated with the sample size n = 400,

varying numbers of nodes (p = 20, 30, 50), and the number of time points T = 60; the

average AUC was produced with the hyper-parameters (a1, b1) = (3, 1), (5, 1), and (10, 1);

and the average computational time was measured in minutes on a computer with i9-10900K

CPU@3.6GHz and 128GB of memory, running in parallel with 20 threads.

JGGM+MNR BANS

Parameter a1 = 3, b1 = 1 a1 = 5, b1 = 1 a1 = 10, b1 = 1 -

p = 20
AUC 0.924(0.005) 0.923(0.005) 0.924(0.005) 0.774(0.005)

Time 5.286 5.311 5.298 45.19

p = 30
AUC 0.898(0.003) 0.898(0.003) 0.898(0.004) 0.691(0.002)

Time 5.972 5.896 5.905 81.48

p = 50
AUC 0.871(0.003) 0.872(0.003) 0.872(0.003) -

Time 7.618 7.648 7.281 > 12 hours

and Σ is the covariance matrix with the block structure:

Σ =



σ2
1 0 γ13 γ14 ... 0 0

0 σ2
2 0 0 ... 0 0

γ31 0 σ2
3 γ34 ... 0 0

γ41 0 γ43 σ2
4 ... 0 0

...
...

...
...

. . .
...

...

0 0 0 0 ... σ2
p−1 γ(p−1)p

0 0 0 0 ... γp(p−1) σ2
p


,

where each diagonal element σ2
j follows the uniform distribution U(0.9, 1.2), and γij appears

in the blocked modules Σ[1 : p/2, 1 : p/2] and Σ[(p/2 + 1) : p, (p/2 + 1) : p] by a completely

random pattern. In this experiment, we set p = 50. Each γij is drawn from a uniform

distribution U(0, 0.25) and γij = γji is enforced to ensure that Σ of the main text is symmetric

and positive definite. The parameter γij = γji 6= 0 represents the ROI i and ROI j are

spatially correlated. We assume that the ROIs in module one are not spatially correlated

7



with those in module two. In our real data experiment, the ROIs were generated using the

method of Shen et al.7 Therefore, the spatial correlations among the ROIs are very weak.

Additionally, some ROIs might not be spatially correlated, for instance, an ROI in the left

hemisphere is not correlated with an ROI in the right hemisphere.

In this simulation study, the average AUC values we presented in Table S3 were calculated

based on the simulated dynamic Bayesian networks. Since the undirected edges at time point

t were not inferred based on Σ, we only considered the estimation accuracy of the directed

edges from nodes Xt−1,k’s to the nodes Xt,j’s, where k, j ∈ {1, 2, . . . , p}. See Table S3 for

the numerical results.

Table S3: Comparison of JGGM+MNR and BANS for the simulated example under the

scenario of spatial correlations, where the data were generated with the sample size n = 400,

the number of nodes p = 50, and the number of time points T = 60; the average AUC was

produced with the hyper-parameters (a1, b1) = (3, 1), (5, 1), and (10, 1); and the average

computational time was measured in minutes on a computer with i9-10900K CPU@3.6GHz

and 128GB of memory, running in parallel with 20 threads.

JGGM+MNR BANS

Parameter a1 = 3, b1 = 1 a1 = 5, b1 = 1 a1 = 10, b1 = 1 -

p = 50
AUC 0.915(0.004) 0.915(0.004) 0.916(0.004) -

Time 7.371 7.798 7.639 > 12 hours

§2.4 Varying Connection Strengths for Different Subjects

In this subsection, we assessed the performance of the proposed method under the scenario of

varying connection strengths for different subjects. In this case, we relaxed the assumption

stated in the main text by assuming that all subjects share the same effective connections

but with different connection strengths. Similar simulation studies were done in Smith et

al.8 Here, we set n = 400, p = 50, and T = 60. A strong signal setting was used for

the simulation with ρ = 0.9 and the parameters being drawn uniformly from the interval
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[−0.9,−0.6]
⋃

[0.6, 0.9]. Then, the transition matrix At,l ∈ Rp×p was generated in the proce-

dure given in the section §2.1. For each subject i, we added a random noise e
(i)
t ∼ N(0, 0.25)

to each non-zero entry of At,l at each point time t. We denoted by A
(i)
t,l the transition matrix

for subject i, for i = 1, 2, . . . , nt.

The data sets were generated from equations (9) to (11) of the main text with L = 1 and

ε
(i)
t ∼ Np(0,Σ), where Σ = diag{σ2

1, σ
2
2, · · · , σ2

p}, and each σ2
j was drawn from the uniform

distribution U(0.9, 1.2). The numerical results were summarized in Table S4.

Table S4: Comparison of JGGM+MNR and BANS for the simulated example under the

scenario of varying connection strengths for different subjects, where the data were generated

with the sample size n = 400, the number of nodes p = 50, and the number of time points

T = 60; the average AUC was produced with the hyper-parameters (a1, b1) = (3, 1), (5, 1),

and (10, 1); and the average computational time was measured in minutes on a computer

with i9-10900K CPU@3.6GHz and 128GB of memory, running in parallel with 20 threads.

JGGM+MNR BANS

Parameter a1 = 3, b1 = 1 a1 = 5, b1 = 1 a1 = 10, b1 = 1 -

p = 50
AUC 0.950(0.004) 0.950(0.004) 0.950(0.004) -

Time 7.776 7.405 7.478 > 12 hours

§2.5 Computational Complexity

This subsection provides detailed reports on the time complexity regressions discussed in

Section 5.1 of the main text. The results reveal that for the BANS method, both the sample

size n and the dimension p have a significant impact on the fitted time complexity regression.

However, for the JGGM+MNR method, only the dimension p is found to be significant.

These findings suggest that the time complexity of the proposed method is not sensitive to

the sample size n and demonstrates excellent scalability in relation to the dimension p.

9



Table S5: Reports for the time complexity regression: for BANS, the regression is given by

log(Time) = −1.189+0.007n+0.104p with R2 = 0.985; and for JGGM+MNR, the regression

is given by Time = 3.466 + 0.0003n+ 0.078p with R2 = 0.983.

Method parameter Coefficient (Standard Deviation) p-value

BANS
n 0.007 (0.00045) 3.28× 10−9

p 0.104 (0.0044) 2.61× 10−11

JGGM+MNR
n 0.0003 (0.00031) 0.376

p 0.078 (0.003) 6.33× 10−12

§2.6 High-Dimensional and Large-Scale Data Case

In this subsection, we conducted simulation studies under the large p and large n scenarios

to demonstrate the potential of the proposed method for learning whole brain networks. The

data generation procedures and simulation settings are the same as described in Section §2.1.

Two cases were considered here: (i) n = 800, p = 300, and T = 60, (ii) n = 400, p = 500 and

T = 60. Case (i) represents a large dataset, whose scale is close to a real fMRI dataset, while

case (ii) represents a small-n-large-p dataset. In case (ii), to illustrate the robustness of the

proposed method, we simulated the transition matrices with varying connection strengths

for different subjects (see Section §2.4). For both cases, we simulated data under the strong

signal setting.

For both cases, we compared the proposed method with some existing regularization

methods, including Lasso,9 Elastic Net,10 and MCP,11 which fit a high-dimensional linear

regression separately for each ROI from t− 1 to t. The numerical results are summarized in

Figure S1, which suggests that the proposed JGGM+MNR method outperforms regulariza-

tion methods significantly in both cases.

§2.7 Network Structure Estimation

In this subsection, we compared the true and estimated Bayesian networks for some time

points, see Figure S2 and Figure S3.
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Figure S1: Precision-recall curves produced by JGGM+MNR, MCP, Lasso, and Elastic Net

for the simulated examples: (a) results with p = 300, n = 800 and T = 60, where the

average AUCs produced by JGGM+MNR, MCP, Lasso, and Elastic Net are 0.972(0.001),

0.844(0.002), 0.842(0.005), and 0.840(0.005), respectively. The average computational time

is 1.24 hours for JGGM+MNR and 0.12 hours for Lasso, Elastic Net, and MCP; (b) results

with p = 500, n = 400 and T = 60, where the average AUCs produced by JGGM+MNR,

MCP, Lasso, and Elastic Net are 0.874(0.001), 0.772(0.002), 0.827(0.004), and 0.827(0.004),

respectively. The average computational time is 2.34 hours for JGGM+MNR, 0.42 hours for

MCP, and 0.22 hours for Lasso and Elastic Net.

Figure S2: Dynamic Bayesian networks for the transition from T = 7 to T = 8, where the

data were generated with ρ = 0.9, p = 20, and n = 400: (Left) true Bayesian network;

(right) estimated Bayesian network.
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Figure S3: Dynamic Bayesian networks for the transition from T = 59 to T = 60, where the

data were generated with ρ = 0.9, p = 20, and n = 400: (left)true Bayesian network; (right)

estimated Bayesian network.

§2.8 A Simulation Study for Lag Order L = 2

The data sets were simulated using equations (9) to (11) of the main text with the lag order

L = 2. We assume that there was one task only. Consequently, all the connections were

generated among the regions of interest (ROIs) 1 : p/2. We set n = 1000, p = 50, and

T = 61. The transition matrix A0,l was initialized with ρ = 0.9. Then we employed the

procedures described in section 5.1 of the main text to generate the time-varying transi-

tion matrices At,l’s for l = 2, 3, . . . , T . We added extra 10% non-zero connections in the

blocked submatrix A0,l[1 : p
2
, 1 : p

2
]. The parameters were drawn uniformly from the interval

[−0.9,−0.6]
⋃

[0.6, 0.9]. During the task period for t = 1, 2, · · · , 61, we changed 5% entries

of the blocked submatrix At,l[1 : p
2
, 1 : p

2
] to zero and another 5% of its entries to non-zero,

except for the diagonal elements. The non-zero elements were drawn uniformly from the

interval [−0.9,−0.6]
⋃

[0.6, 0.9]. The random errors ε
(i)
t were drawn from Np(0,Σ), where

Σ = diag{σ2
1, σ

2
2, · · · , σ2

p} and each σ2
j ∼ U(0.9, 1.2). In particular, when generating the

parameter matrix At,2 for lag order L = 2, we considered the following 2 cases:

Let Bt,1 = {(i, j) : At,1
(i,j) 6= 0, i, j = 1, 2, . . . , p} and Bt,2 = {(i, j) : At,2

(i,j) 6= 0, i, j =

1, 2, . . . , p} be the set of locations of non-zero elements in the transition matrix At,1 and

At,2, respectively. The first case is Bt,2 ⊂ Bt,1 and the second case is Bt,1 ∩Bt,2 = ∅. The

numerical results were summarized in Table S6, and the AUC curves were shown in Figure

S4. The performance of the proposed method is better in the case Bt,1∩Bt,2 = ∅. However,
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from the biological side, we do believe that Bt,2 ⊂ Bt,1 is a more reasonable assumption for

brain functional connectivity.

Table S6: Performance of JGGM+MNR for the simulated examples with L = 2, n = 1000,

p = 50, and T = 61. The average AUC was produced with hyper-parameters a1 = 10 and

b1 = 1, and the average computational time was measured in minutes on a computer with

i9-10900K CPU@3.6GHz and 128GB of memory, running in parallel with 20 threads.

Bt,2 ⊂ Bt,1 Bt,1 ∩Bt,2 = ∅

p = 50
AUC 0.764(0.004) 0.790(0.008)

Time 16.07 15.41

Figure S4: Precision-recall curves produced by JGGM+MNR for simulated examples with

L = 2, n = 1000, p = 50, and T = 61.

§2.9 A Simulation Study for Less Sparse Transition Matrices

This subsection assesses the effect of sparse levels of the transition matrix on the performance

of the proposed method. In Table 1 of the main text, we evaluated the performance of the

proposed method with the sparsity level of the transition matrix set to 10%. In what follows,

we conducted an experiment with the sparsity level of the transition matrix set to 20%.

In the simulation, we exchanged 10% of the entries of the transition matrix between zero

and nonzero values. This exchange corresponds to changes in the true network structure.
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Additionally, we set L = 1, n = 400, p = 50, and T = 60 under the strong signal case

with ρ = 0.9. The data was generated as described in section §2.1 of the supplementary

material. The numerical results were summarized in Table S7, which indicates that the

method performs reasonably well even with more dynamic changes in the network structure

at each time point.

Table S7: Average AUCs produced by JGGM+MNR for the simulated examples with p = 50,

n = 400, T = 60, and ρ = 0.9, under the hyperparameter settings α1 = 0.2 and (a1, b1) =

(3, 1), (5,1), and (10,1). The average computational time was 8.498 minutes, measured on

a computer with i9-10900k CPU@3.6GHz and 128G memory, running in parallel with 20

threads.

Parameter a1 = 3, b1 = 1 a1 = 5, b1 = 1 a1 = 10, b1 = 1

AUC 0.927(0.002) 0.927(0.003) 0.926(0.003)

§2.10 Sensitivity Analysis for α1

This subsection assessed the sensitivity of the proposed method with respect to the choice

of α1. We tried α1 = 0.05, 0.1, 0.2, 0.25, 0.3. Additionally, we set the percentage of non-zero

entries of the transition matrix to 20%, and exchanged 10% entries between zero and nonzero

at each time t; we set L = 1, n = 600, p = 50, and T = 60 under the strong signal case with

ρ = 0.9. The data was generated as described in section §2.1 of the supplementary material.

The numerical results were summarized in Table S8, which suggests that the performance

of the proposed method is very robust to the choice of a1, while it can be affected by the

choice of α1. As analyzed in the main text, a slightly large value of α1, such as 0.2, is

recommended. An excessively large value of α1 will incur a higher computational cost while

providing only marginal improvement in estimation accuracy.
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Table S8: Average AUCs produced by JGGM+MNR for the simulated examples with p = 50,

n = 600, T = 60, and ρ = 0.9, under the hyperparameter settings α1 = 0.05, 0.1, 0.2, 0.25, 0.3

and (a1, b1) = (5, 1), (10, 1), and (15, 1). The average computational time was 8.252 minutes,

measured on a computer with i9-10900k CPU@3.6GHz and 128G memory, running in parallel

with 20 threads.

Parameter a1 = 5, b1 = 1 a1 = 10, b1 = 1 a1 = 15, b1 = 1

α1 = 0.05 0.944(0.006) 0.943(0.006) 0.943(0.006)

α1 = 0.1 0.948(0.005) 0.948(0.005) 0.947(0.005)

α1 = 0.2 0.954(0.004) 0.954(0.004) 0.953(0.005)

α1 = 0.25 0.956(0.004) 0.956(0.004) 0.956(0.004)

α1 = 0.3 0.958(0.004) 0.957(0.004) 0.957(0.004)

§2.11 Histograms for Z-scores

This subsection presents some histograms of the z-scores calculated for a simulated example

with p = 50 and T = 200. Figure S5 shows the histograms of the z-scores for two selected

edges, which indicate that it is reasonable to assume that the z-scores of each edge follow a

two-component mixture Gaussian distribution.

Additionally, we plotted the histogram of the z-scores for all edges in Figure S6. It indi-

cates that the z-scores of each edge following a two-component mixture Gaussian distribution

is indeed a reasonable assumption. Furthermore, it also indicates that the mean value of

the non-zero mean component can be different for different edges. This aligns well with the

assumption we made in the paper.
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Figure S5: Histograms of the z-scores for two selected edges in a simulated example with

p = 50 and T = 200.

Figure S6: Histogram of the z-scores for all edges in a simulated example with p = 50 and

T = 200.

16



§3 An fMRI Study of Emotion Processing

This subsection presents the results of the proposed method under different parameter set-

tings, which can be viewed as the sensitivity analysis for the proposed method. The 268

ROIs are divided into 8 functional networks (FN) modules (see Figure S7) including Medial

Frontal (Med F), Frontoparietal (FP), Default Mode (DMN), Subcortical-cerebellum (Sub-

Cer), Motor (Mt), Visual I (Vis I), Visual II (Vis II) and Visual Association (Vis Assn) as

in Cai et al.12

(a) Medial Frontal (b) Frontoparietal (c) Default Mode (d) Subcortical-

Cerebellum

(e) Motor (f) Visual I (g) Visual II (h) Visual Associa-

tion

Figure S7: Visualizations of the ROIs in eight functional networks.

§3.1 Results with Different Choices of α1

Figure S8 shows the heat map of the mean edge (functional module-wise) difference between

the emotion and shape tasks with a significance level of α1 = 0.05, 0.1, 0.2 and α2 = 0.05

being used in joint edge detection. Compared to the case with α2 = 0.1 (presented in the

main text), fewer connections are detected with α2 = 0.05. However, the conclusion we

draw at α2 = 0.1, i.e., the intra-modular connectivity of Sub-Cer and the inter-modular

connectivity Sub-Cer to Mt, Sub-Cer to Vis II and Sub-Cer to Vis Assn are different under
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the emotion and shape tasks, still holds. Additionally, the conclusion holds for different

choices of α1.

Figure S8: Heat maps of the mean edge (functional module-wise) difference between the

emotion and shape tasks, which were identified with (a) (α1, α2) = (0.05, 0.05), (b) (α1, α2) =

(0.1, 0.05), and (c) (α1, α2) = (0.05, 0.2).

§3.1.1 Identification of Emotion-related ROIs

The ROI was identified using the Wilcoxon signed-rank test with a significance level of

α = 0.05. For the learned dynamic Bayesian networks, we summarized the edges stemming

from each ROI at each time t and under each task. Therefore, for each ROI, we obtained

a sequence of edge numbers under each of the emotion and shape tasks. For each ROI,

we tested the median difference of the two sequences using the Wilcoxon signed-rank test.

Then, we adjusted the p-values by a multiple-hypothesis test using the empirical Bayesian

method of Liang and Zhang (2008),13 which is available in the R package equSA14. The ROI

32 shows a small Storey’s q-value15 of q = 0.000131, which indicates that this ROI performs
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differentially under the emotion and shape tasks. Notably, ROI 32 was the only ROI with a

Storey’s q-value less than 0.05 in our test. The location information about ROI 32 is given

in Table S9 and Figure S9 displays the variation of row degrees along with the time, which

tends to have higher connectivity under the emotion task than under the shape task.

Finally, we note that the Wilcoxon rank-sum test can be used in the test if we ignore the

time correspondence between the two tasks.

Figure S9: Numbers of coming-out-edges from ROI 32 in the time-varying dynamic Bayesian

networks learned by JGGM+MNR for different tasks.

Table S9: Anatomical location, functional network module, and MNI coordinates of the

identified hub ROIs.

MNI

Index Lobes Region X Y Z Network

32 R-MotorStrip BA6 32 -5.4 52.1 Sub-Cer
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§3.2 Results with Poisson HRF

Other than the Canonical HRF function, we also tried the Poisson HRF16 by setting hλv =

exp(−λv)λtv/t!, where the parameter λv is drawn from U(0, 8). The results are summarized

in Figure S10, which are similar to those obtained with canonical HRF.

Figure S10: Heat maps of the mean edge difference (functional module-wise) between emo-

tion and shape tasks with Poisson HRF (λv = 0.739), where the left plot was obtained with

α2 = 0.05, and the right plot was obtained with α2 = 0.1.

§3.3 Results with the Lag Order L = 2

Following the data analysis pipeline as described in Section 6.3, we re-analyzed the data

with the lag order L = 2. Figure S11 shows the resulting heat maps. Our results indicate

that less connectivity is detected with L = 2, which suggests the high-order Markov nature

of brain activity.

However, even with L = 2, we found that the difference in the intra-connectivity of the

subcortical cerebellum can still be detected. This suggests consistent temporal differences

between shape and emotion tasks.

§3.4 Results by Regularized Methods

For the regularization methods, the regularization parameter λ was chosen to ensure the

number of connections selected at each time point is similar to those selected by the proposed

method. The regularized methods were implemented with the R package ncvreg,17 and the
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Figure S11: Heat maps for the mean edge difference (functional module-wise) under the

emotion and shape tasks, which were obtained with L = 2: (left) heat map for the difference

of connectivity from t− 1 to t, and (right) heat map for the difference of connectivity from

t− 2 to t.

results were summarized in Figure S12, which suggests that the connectivity between the

emotion and shape tasks is not much different, except for the intra-connectivity in the Vis

Assn module.
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Figure S12: Heat maps for the mean edge difference (functional module-wise) between emo-

tion and shape tasks by the regularized methods: Lasso, Elastic Net, and MCP.
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