Causal Semantic Communication for Digital

Twins: A Generalizable Imitation Learning
Approach

Christo Kurisummoottil Thomas, Member, IEEE and Walid Saad, Fellow, IEEE,
and Yong Xiao, Senior Member, IEEE

Abstract—A digital twin (DT) leverages a virtual repre-
sentation of the physical world, along with communication
(e.g., 6G), computing (e.g., edge computing), and artificial
intelligence (AI) technologies to enable many connected in-
telligence services. In order to handle the large amounts of
network data based on digital twins (DTs), wireless systems
can exploit the paradigm of semantic communication (SC) for
facilitating informed decision-making under strict communi-
cation constraints by utilizing Al techniques such as causal
reasoning. In this paper, a novel framework called causal
semantic communication (CSC) is proposed for DT-based
wireless systems. The CSC system is posed as an imitation
learning (IL) problem, where the transmitter, with access
to optimal network control policies using a DT, teaches the
receiver using SC over a bandwidth-limited wireless channel
how to improve its knowledge to perform optimal control
actions. The causal structure in the transmitter’s data is
extracted using novel approaches from the framework of deep
end-to-end causal inference, thereby enabling the creation of
a semantic representation that is causally invariant, which in
turn helps generalize the learned knowledge of the system to
new and unseen situations. The CSC decoder at the receiver is
designed to extract and estimate semantic information while
ensuring high semantic reliability. The receiver control poli-
cies, semantic decoder, and causal inference are formulated as
a bi-level optimization problem within a variational inference
framework. This problem is solved using a novel concept
called network state models, inspired from world models
in generative Al, that faithfully represents the environment
dynamics leading to data generation. Furthermore, the pro-
posed framework includes an analytical characterization of
the performance gap that results from employing a suboptimal
policy learned by the receiver that uses the transmitted
semantic information to construct a model of the physical
environment. The CSC system utilizes two concepts, namely
the integrated information theory principle in the theory of
consciousness and the abstract cell complex concept in topol-
ogy, to precisely express the information content conveyed
by the causal states and their relationships. Through this
analysis, novel formulations of semantic information, semantic
reliability, distortion, and similarity metrics are proposed,
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which extend beyond Shannon’s concept of uncertainty. Sim-
ulation results demonstrate that the proposed CSC system
outperforms conventional wireless and state-of-the-art SC
systems by achieving better semantic reliability with reduced
bits and enabling better control policies over time thanks to
the generative AI architecture.

I. INTRODUCTION

Digital twins (DTs) are replicas of the physical world [1]
created through the use of simulation software, data ana-
lytics, and sensor data. These virtual replicas rely on real-
time data and advanced algorithms to model and predict the
behavior and performance of physical systems, enabling
better decision-making and improved efficiency across a
range of industries, such as manufacturing, healthcare,
transportation, and aerospace. DTs can also be used to
assist wireless systems [2] to enable self-configuration,
proactive online learning, and support for connected intel-
ligence (CI) applications such as haptics, brain-computer
interaction, flying vehicles, extended reality (XR), and
the metaverse. In order to create a DT within a wireless
system (e.g., at a base station or mobile edge computing
server), there is need for significant computing resources
and transmission of large volumes of data. Additionally,
the DT data collected at the base station will be employed
to develop a model of the physical world, which can assist
in making better control decisions or aiding CI applications.
Transmitting such a staggering amount of information back
from the base station to the end users can be highly
inefficient from a resource utilization perspective, leading
to increased latency, high power consumption, and reduced
spectrum efficiency. To meet the demands of high-rate,
high-reliability, and time-criticality for the aforementioned
CI applications, DT-powered 6G systems could transmit
only essential information relevant to the end-user. This
concept forms the basis of semantic communication (SC)
systems [3]-[5]. Clearly, integrating DTs with SC offers
a more effective solution for handling large amounts of
data and optimizing resource utilization. Moreover, by
employing SC, DTs can leverage contextual knowledge to
better interpret and process data generated from diverse
sources, leading to more precise predictions for event
monitoring, optimal control decisions, and improved au-



tonomous agent capabilities. However, integrating DTs with
SCs poses unique challenges particularly on the SC side.
For instance, the transmitter that manages the DT must
ensure that the model is trained on representative data,
which can be challenging in non-stationary and dynamic
wireless environments. In addition, transmitting data from
a DT-enabled transmitter to facilitate real-time prediction,
control, or reconstruction tasks at the end-users can be
challenging due to the need for ultra-low-latency and ultra-
reliable communication. To address the challenges of DT-
based semantic communication, one promising approach
is to extract the causal structure inherent in the network
data. This enables the development of an accurate physical
environment model at the transmit and receive nodes with
fewer training samples. By leveraging generative artificial
intelligence (AI) methods, this approach ultimately enables
real-time prediction, reconstruction, and control.
A. Prior Works

Despite recent Al-based SC designs [6]-[11], these prior
works failed to address a few critical aspects that hinder
the integration of DT and SC. Firstly, most of these
designs ignore the need for a rigorous formulation of
semantics, instead considering the semantic concepts as
being mapped to data via a probabilistic transformation [6].
For a DT, this probabilistic design could lead to inaccurate
physical models at the end nodes, which in turn would
lead to inaccurate decisions. Second, the solutions of [6]—
[11] suffer from limited generalizability to scenarios not
encountered during training. These approaches typically use
variational auto-encoders (VAEs) or transformers without
structure extraction, which may reduce the ability to han-
dle unseen wireless environments. This lack of general-
izability necessitates significant retraining efforts, leading
to increased communication overheads and delays, which
can hinder real-time prediction, reconstruction, and control
under communication constraints for DT-based wireless
systems. Meanwhile, the works in [12]-[17] investigated
the use of DTs to enhance the performance of wireless
systems. For instance, the authors in [12] proposed a
distributed DT-powered federated learning framework to
support edge computing in industrial IoT, while the work
in [13] suggested constructing DTs at edge networks by
using blockchain and federated learning. In a recent work
[14], the authors investigated the joint synchronization of
DTs and sub-metaverses within a distributed metaverse
framework. Despite being interesting, the prior art [12]-
[17] has not adequately addressed modeling the envi-
ronment dynamics that capture the data observed at the
DT side. The only exception is the work in [18] that
proposed the use of a DT that builds a Bayesian model of
the communication system environment using conventional
signal processing techniques. While the Bayesian modeling
approach presented is intriguing, the solution of [18] is not
generalizable, i.e., it is limited to the specific data distri-
bution used to create the DT, and thus it cannot generalize

to multiple wireless environment. Moreover, an important
aspect missing in the prior art [12]-[18] is the efficient
transmission of network state and control information from
DT-based nodes to edge users, which poses a challenge
to achieving the high-reliability and low-latency goals of
future wireless networks. To the authors’ knowledge, this
work will be the first to combine SC and DTs to address
the aforementioned challenges.

B. Contributions

In contrast to the state-of-art that lacks a rigorous def-
inition of semantics and generalizable SC system design,
the main contribution of this paper is a novel framework
for designing a causal SC (CSC) system consisting of two
components: 1) a transmitter (called teacher) based on DTs
that identifies the semantic content elements (SCEs) present
in the data and performs causal discovery of the state tran-
sitions being transmitted, and 2) a receiver node (acting as
apprentice) that learns the environment dynamics using the
history of transmitted semantic representations and designs
better control policies to maximize semantic effectiveness.
While imitation learning (IL) [19] is a promising method
for implementing this envisioned teacher-apprentice frame-
work for SC [20], practical challenges arise when imple-
menting existing IL. methods [21] in DT-based SC systems.
These challenges stem from the resource-intensive nature
of demonstration data available at the DT side and the
imperfections that may arise when transmitting data over
a wireless channel, leading to inaccurate policy learning.
The authors in [20] used model-free reinforcement learning
(MFRL) to infer implicit semantic entities and relations
from explicit semantics or observables. However, the testing
performance of this approach is dependent on the specific
data distribution used during training, and thus not gener-
alizable. To overcome these issues, we propose to advance
IL utilizing model-based RL (MBRL) thereby enabling
the development of a model of the wireless environment
dynamics using structural causal models (SCM) [22]. The
proposed Al-based components in the SC chain rely on
novel semantic information measures inspired by the con-
cept of integrated information theory (IIT) in the literature
on the theory of consciousness [23]. IIT measures help
identify distinct SCEs, which hold meanings or semantics
and are present within the network states observed by the
DT. In summary, our key contributions include:

e We introduce novel information measures for the
learned SCM at the imitator, inspired from the IIT
measures [24]. We also propose a new semantic state
abstraction concept that utilizes the intrinsic informa-
tion concept from IIT. Semantic state abstraction plays
a crucial role as it helps eliminate irrelevant informa-
tion observed at the transmitter side, thus reducing
transmitted information. Moreover, it enhances the
ability of the agent to generalize to previously unseen
areas of the state space, which could correspond to



different wireless environments. This allows us to
develop generalizable native Al-based wireless SC

systems. o
« We use the concept of abstract simplical complexes

in topology to theoretically characterize causal rela-
tions among SCEs in the data observed at the DT.
Moreover, we demonstrate that the SCEs and their
associations can be algebraically defined as a cell
complex structure. By defining the SCEs in accordance
with IIT, these topological characterizations enable
us to define semantic metrics such as similarity and
information that go beyond conventional information
theory concepts. This capability enables the creation
of DT-based SC systems that can precisely identify
the causal structure and consequently develop causally

invariant semantic representations.
o At the receiver, we create a “network state model”

similar to the concept of world models in generative
Al [25]. We design a semantic decoder that extracts
the maximum semantic information. However, due to
limited computing resources at the imitator node, the
model learns a sub-optimal version of the environment
dynamics. This model is then used to learn imitator
policies for controlling communication tasks. To solve
for the neural network (NN) parameters, we propose a
bi-level optimization method within an MBRL frame-
work. This approach enables us to learn both the state

transition model and the imitator policy.
« We analytically characterize the performance shortfall

(compared to the expert agent’s policy) in terms of the
quality-of-experience (QoE) associated with the sub-
optimal network state models created at the receiver
node. The QOoE is defined as a function of the semantic
effectiveness resulting from the transmitted semantic

representation.
« Simulation results demonstrate the superiority of the

proposed CSC in semantic reliability and throughput
delivered by a DT-based SC system, in contrast to
similar wireless systems that rely on traditional AI ap-
proaches. Furthermore, even when the channel quality
is very poor, the proposed CSC achieves a semantic
reliability that is 3.4 times better than classical DT-
based SC systems due to its generative Al architecture
at the receiver that allows it to reconstruct data. The
simulations conducted in our study provide further
evidence that the proposed CSC can adapt quickly
to non-stationary conditions in wireless environments.
The CSC requires approximately 3K fewer samples
for retraining, which validates its generalizability.

The rest of this paper is organized as follows. In Section
II, we present the proposed CSC system model. Section
IIT describes the proposed IIT measures for quantifying
the semantic information. Section IV introduces the MBRL
based IL for learning the transmitter and receiver modules.
Section IV provides simulation results. Finally, conclusions

are drawn in Section VI'.

Notations: Lower-case letter a is a scalar, boldface
lower-case a and upper-case letter A represent a vector
and a matrix, respectively. A set (either discrete or con-
tinuous entries) or a topological space is represented using
Calligraphic font X. R™ represents an M —dimensional
vector whose entries belong to real numbers R. [a,b]
represents the real number range between a and b. A© A
represents the element-wise multiplication of two matrices.
|a| represents the absolute value of a.

II. SYSTEM MODEL

Consider a point-to-point SC system that employs a DT
to aid in making control decisions. This system can capture
many practical applications. For example, in the context of
6G and open radio access network (ORAN) systems, a net-
work DT located at a cloud data center would replicate vari-
ous latent aspects of a network, including signals, coverage,
interference, traffic behavior, and user mobility, across
different frequency layers. The DT optimizes sensitive
parameters, such as radiated power or multi-user schedul-
ing, by providing a safe simulation environment without
any actual risks to the real network. Within the ORAN
architecture, the radio unit (RU) component is located at
the base station and has limited computational power [26].
To compensate for this, the RU relies on the transmission
of information from the control unit (CU) component that
implements the DT. The CU has more knowledge about
the network architecture and user profiles, aided by the
cloud data center, and can transmit this information to
the RU via a fronthaul wireless link. By implementing a
network DT-based SC system over the fronthaul link, the
network’s efficiency (bandwidth utilization) and security
can be significantly enhanced, making it an essential tool
for network management. Another key example that is
captured by our model is in CI applications, where DTs
can improve user experience in various autonomous wire-
less services, such as robotic surgery, telehealth, driverless
vehicles, and industrial robotic manufacturing sites. By
creating a virtual representation of the physical system,
a DT can simulate and predict its behavior in real-time,
enabling proactive decision-making and optimized system
performance to enhance the user experience. For instance, a
DT can reduce latency and ensure reliable communication
in telehealth services, or enhance safety and efficiency
in driverless vehicles and industrial robotic manufacturing
sites.

The functionalities of the DT are summarized in Fig. 1.
The DT is created by an expert agent who analyzes obser-
vations from various sensing elements (defined as (s?, 8))
in the wireless environment. These observations are used

IThis paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the author. The material includes
all the appendices that derive the proofs of Lemmas and Theorems in the
paper. Contact christokt@vt.edu for further questions about this work.
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Fig. 1: Illustration of our digital twin model showing expert (transmitter that has access to different sensor observations)

and imitator agent interactions.

to model the physical and logical state of the network
represented by the transition probability p(s'™! | s, 0, a’),
which is then used to formulate optimal control decisions
a'. The expert agent communicates either a condensed
version of the network state or the optimal control deci-
sions defined as z! to the imitator agent. Subsequently,
the imitator extracts the state information and performs
the necessary low-level actions. The interactions between
expert and imitator agents in the SC system, as described
here, can be classified as an example of IL. By utilizing a
DT, accurate physical system models and real-time data can
be made available to inform decision-making, facilitating
effective control decisions. We next explain the details of
our DT-based SC system as shown in Fig. 2. The source
side of the transmission consists of a resource-constrained
node aided by an edge server with significant computational
and memory capabilities. The source user and the edge
server together act as the expert agent (that implements the
DT) to teach an apprentice or imitator agent, serving as
the receiver, with no prior knowledge of the expert’s data.
Here, one naturally wonders whether communicating only
the expert actions determined using the policy evaluated
by the DT could be sufficient. While communicating only
actions may be relevant when the imitator agent has limited
capabilities, for cases in which the agent must possess
more advanced intelligence, additional information beyond
actions may be necessary for effective imitation. In the case
of a SC system, building an intelligent imitator agent is

crucial. For instance, during channel outages lasting over
several communication time slots, the receiver must still
generate policy information by leveraging the historical
states received over the network and potentially using
limited sensing information. Merely communicating the
actions does not offer significant information about the
observed states at the transmitter, which, in turn, fails to
facilitate the environment modeling at the imitator. This,
in turn, motivates designing systems that communicate
meaningful semantic representations of the states observed
at the expert agent to the imitator. Further, the imitator
can utilize the potential of generative Al algorithms [27]
to reconstruct the network states. Next, we outline the
different Al-based components present in the proposed SC
system.

A. Causal imitation learning for digital twin-based SC

systems
Given the IL model, we implement the SC functionalities

as follows. We divide the transmissions into training and
communication phases. During training, the source user
samples random initial states from a particular distribution,
p(sY). The sampler implements this functionality during
training while the states are observable from the environ-
ment during the communication phase. Given the initial
state, the state transition is determined by the action of
the source, and it is sampled using the expert policy,
al ~ mg(at | st,0). The optimal action a’ depends on
the state at the current time ¢ and confounding variables
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Fig. 2: Proposed SC system framework based on IL. The figure also illustrates an example application as an autonomous wireless
system that includes a DT designed explicitly for a smart manufacturing environment. The application is based on sensing information
gathered at the central node and is tailored to the proposed system model.

(from various sensing devices) 6 that could represent
background information about the communication envi-
ronment accessible only to the edge server. The expert
agent computes the future state s'*! ~p(st*! | st al,0),
using the information from @ and the current state s;. In
our DT-based system, efficient transmission is of utmost
importance due to the vast amounts of data the expert agent
processes. To address this issue, the expert agent could
exploit a causal discovery AI method [28] to extract data
structure (inherent in the state transition dynamics) while
identifying the SCEs. In this setup, a potential question is
how to identify the SCEs (defined as u') comprised in any
subset of the state s!. SCEs are entities in the source data
that hold meaning (semantics) or significance, aiming to
improve the knowledge learned by the imitator. We aim to
identify the SCEs in the data and characterize the semantic
information in the causal structure. Causality is apt here
since it helps with generalization in SC. It allows the com-
municating nodes to understand the underlying mechanisms
and processes that drive the relationships between network
variables rather than just observing their associations. This
deeper understanding of the underlying causal relationships
can help the nodes to make more accurate predictions or
control decisions and develop more robust models that can
generalize well to new, unseen data. To represent the causal

structure that underlies the transition from st to st*!,
our CSC system employs an MBRL approach. The causal
model underlying the state transitions based on Pearl’s
representation of causality [22] is defined next.

Definition 1. An SCM is a collection of elements rep-
resented as < U,V ,F,P(U) >, where V represents
endogenous variables (cause and effect variables), and U
represents exogenous variables (random, unknown noise).
The set of structural functions F maps each f, € F to
v € V such that f,(Pa,,u,) determines v where the
set of parents Pa, C V and u, C U. The exogenous
distribution P(U) determines the values of U, and thus
the distribution of endogenous variables V.

The apprentice (imitator) can observe only a subset of
endogenous variables, partitioned into O and L, where
O = s (in reality, an encoded version communicated by
the teacher) and L = @ (learned by the apprentice). Here,
st € RP. The marginal distribution P(O) is called the ob-
servational distribution. MBRL allows communicating the
causal state abstraction (i.e., the “semantic representation’)
2% at any given time over a wireless channel susceptible to
errors. The confounding variables are not transmitted due
to the communication and memory constraints associated
with the wireless channel and imitator, respectively. The



design of the semantic encoder (that maps the states to
actual transmit signals) must be done in a way to reduce
the amount of data transmitted while maintaining semantic
effectiveness, defined as a measure of the accuracy of
the actions performed using the semantic reconstruction
process at the imitator’s end.

1) MBRL Model: Next, we formulate the problem of
expert policy computation as sequential decision-making in
a finite-horizon episodic Markov decision process (MDP),
defined as M = (S, A, R, T,p(s"), H,0). Here, 0 is a
vector of confounding variables that the imitator does not
have access to and P(0) is the probability distribution
of 6. 0 is fixed within each episode but can vary across
different episodes. The M —dimensional vector 6 represents
the sensing information available from M sensors which
may provide different modality information to supplement
the optimal policy. The MDP framework comprises a set of
states S, a set of actions A, a deterministic reward function
R :S x A — [0,1] that provides evaluative feedback to
the imitator agent, a transition function 7 : & x A —
A(S) that describes the distribution of future states, an
initial state distribution p(s”) € A(S), and a maximum
episode length or horizon H. The unit interval constraint
for the reward function is adopted for ease of analysis,
and our framework can handle general reward functions.
The imitator agent cannot access neither the transition
function 7 nor the reward function R; hence, both are
treated as random variables (known as the environment).
The N-dimensional causal state description s € S C RY
is extracted from raw observations and represented as an
SCM. Let M* be the true MDP that the agent interacts
with and attempts to solve over K episodes, with the
environment model £ = (R*, T*, 8). However, the imitator
agent’s computing capabilities and time constraints limit
the accuracy of the true envirogl\nent that can be learned,
resulting in a learned MDP M (the respective learned
environment is £). Each episode involves the agent taking
exactly H steps, starting from an initial state s ~ p(s°).
For each h € {1,---, H}, the agent observes the current
state s" € S, selects an action a ~ (") (. | s") € A,
receives a reward 7, = R(s",a") € [0,1], and transitions
to the next state s"™! ~ T(- | sh a") € S. We let
Tk = (S (a7 5 S(hyr @iy Ty S(ay ) be the
random variable that represents the trajectory experienced
by the agent in the episode k. Hy = (11, ,Tp—1) € Hi
is the random variable representing the entire history of
the agent’s interaction with the environment at the start
of the episode k. The regret of the RL algorithm over K
episodes is: ry(K, 70, ... 7K £x) = Vg, | — VSZ(Z),
with the value function Vg’t(,lk) =Equnt(s) [Qg,h(s, a)}.
The associated action-value function is QF (s,a) =

H ’ ’
E {Z R(s",a") | s" = s,a" = a|, where the expecta-
h/

tion integrates over randomness in the action selections

and transition dynamics. The Bayesian regret is defined
as the expected value of the sum of the episodic regrets:
ro(K, w0, w0, 80y = B[S, (Ve - VEY ]
Note that the regret is a random variable due to the uncer-
tainty in £. However, we emphasize again here that using a
classical MFRL algorithm is not generalizable to multiple
wireless environments, which necessitates us revisiting the
SC design approach using causal machine learning (ML)
tools as explained in later sections. To incorporate causality,
the IL framework can be reformulated using an MBRL
approach, as proposed in [29]. Compared to MFRL, MBRL
is generally more efficient, making it particularly well-
suited for SC. This is because MBRL employs a learned
model of the environment p(s‘*! | 3 a’,0) (part of
the imitator’s job here), aided by a history of received
information, to plan and update its policy. However, similar
to other supervised learning methods, MBRL faces the
challenge of generalization. The data used for training may
not match the one encountered during testing, and even
small inaccuracies in the dynamics model or changes in
the control policy can lead to exploring new parts of the
state space. Thus, we need new models that have strong
generalization capabilities in MBRL. To achieve the SC
goal of improved resource efficiency, we propose to bridge
this gap in the literature for IL by developing generalizable
(across several wireless environments) solutions that are
causality aware.

The mismatch in knowledge between expert agent ()
and imitator agent (£) that gets learned using MBRL
can lead to incorrect inferences due to auto-suggestive
delusions [30], i.e., false beliefs generated within one’s
mind. To address this issue, we present a novel approach
by applying a new IL principle, in which we treat actions
as causal interventions, as described in [22]. In supervised
learning, one can condition or intervene on data using
factual and counterfactual error signals, respectively, which
helps resolve auto-suggestive delusions. To account for
imperfections in the imitator’s model, we employ confound-
ing variables in causality. We begin by using SCMs to
exploit sparsity in state transitions, which helps generalize
to unseen parts of the state-action space. We then extend the
IL framework to include some variables 8 € ® observed
by the expert but not the imitator. This setup, introduced
in [21] for RL, allows modeling of the unknown part of
the environment that the imitator learns from its previous
state-action sequences. The method in [21] assumes that
the imitator has perfect knowledge of s, which differs
from our SC system. Also, their Al approach relies on
conventional data-driven techniques, such as VAE (without
any structure extraction), that may not be sufficient to
achieve generalizable wireless systems. Given the MBRL
model, in the next step, we discuss how the expert agent
computes its expert policy using the state and confounding
variables to which it has access. Additionally, we will



explore how a causally invariant semantic language is
defined.

2) Expert policy and causally invariant semantic lan-
guage: The source user does not know the confound-
ing variables because it is a computationally constrained
node. In this case, the source user communicates the state
information to the edge server. Along with confounding
variables, the edge server computes an optimal policy,
called the expert policy, mg. mg is computed to maximize

the average reward over time, 7}, = argmaxE[R(s)],
TE
where R(s) = Egrpy(at|st,0)R(S,a). T is communi-

cated to the source user via a highly reliable backhaul
connection. Using 7, the source user samples transitioned
state information. Now, the source user must extract the
causality between the state transitions which can be com-
puted as the distribution (see [31] for more details on causal
representation as posterior factorization):

P, : Compute p(s't! | s a’,0) = I |p(sf+1 | Pa(st))
1= Y
v Causal graph structure

subject to a' = 75 (a’ | ', ).

The factorization of the transition probability in (1) re-
sults from causal discovery. This concept of identifying
causal features is closely linked to sparsity, which is a
form of inductive bias that shapes the behavior of the
learning agent. An important aspect of this approach is
the continuous improvement of the learning policy, which
helps us achieve both causal invariance and sparsity [32].
With this in mind, we can ask whether we can leverage
the sparsity of transition dynamics to develop a model
that generalizes better to unseen parts of the state-action
space. Moreover, using the associational, interventional,
and counterfactual levels of reasoning, the source user can
generalize to distinct data distributions. Training AI models
to generalize over the wireless environment, rather than
specializing in fitting specific conditions (e.g., a single cell),
provides the necessary robustness to deploy a single Al
model for a given task across the entire network. This
improves scalability and reduces the complexity (in terms
of training + distinct Al models) of the AI functionalities
and operations. Additionally, we establish the semantic
representation that emerges from the proposed semantic
language, which is defined below.

Definition 2. A semantic language L = (st z'), is a

mapping from the observed states s?, to their corresponding
semantic representation z!, based on the identified SCEs
and the causal graph. This mapping is described as the
encoder probability distribution p(z? | st, st1).

To achieve the goal of reducing transmission in the SC
system, it is optimal to compute the encoder distribution
by determining the NN parameters W that result in the
maximum received semantic information at the imitator
node, as follows:

Py:  argmax I(s';y")
pw(2(st,s+1)) (2)
subject to I(s*; 2") < Ty,

where I, represents the bandwidth limitations of the wire-
less channel. The information measures above correspond
to the novel semantic information measures detailed in
Section III (see equation (7) and (9)). The abstracted state
information z¢ depends on two factors: 1) the IIT, which
helps identify SCEs and rigorously formulate semantic in-
formation, and 2) semantic awareness, which is determined
by user-defined key performance indicators (KPIs) such as

QoE. We next define the QoE metric below.
3) Semantic effectiveness as QoE metric: On the imita-

tor’s side, the semantic decoder module should be designed
to maximize semantic effectiveness defined based on our
work [33]. We thus introduce the metric C';, which captures
the causal impact of the expert agent’s message (via the
imitator’s actions) as observed through a channel with a
response characterized using p(y® | z') (this distribution
could capture the fading and interference in the wireless
environment). In other words, C; measures the semantic
effectiveness (inversely proportional to C;) of the trans-
mitted message to the end-user. We define Cy(s’,s?) in
(3), where KLD(p || ¢q) represents the KL divergence
between p and ¢. m,(a’ | %, 0") is the sub-optimal policy
computed by the imitator using the limited information
it received over the air. p(s' | y') denotes the semantic
decoder distribution. The decoder component can thus be
designed using the game-theoretic framework we developed
in [33]. The second term in the quantity C is an average
measure across the channel realization. Since the semantic
effectiveness metric in (3) captures the channel effect on the
transmitted semantics, the learned policy (for the imitator)
parameters is robust to the channel errors (in terms of
the best the imitator can do). The semantic effectiveness
measure is the distance in the semantic space (distance
between policy distributions) and not a conventional metric
like Euclidean distance. However, computing the semantic
effectiveness at the imitator requires it to know 7g. This
necessitates communicating the imitator policy to the edge
server via the backhaul. Subsequently, the edge server as-
sesses Cy and transmits it to the imitator, which then adapts
its policy based on the quality of semantic effectiveness.
The communication link between the imitator and the edge
server is assumed to be highly reliable compared to the
wireless connection to the source user.

Having defined semantic effectiveness, we look at how
to define the reward signal mentioned earlier. The agent
may encounter extremely sparse or entirely absent extrinsic
rewards in numerous real-world situations [34]. In these
cases, the intrinsic reward signal based on semantic effec-
tiveness can be used to facilitate collaborative exploration
and communication skill learning (specifically, semantic en-
coder and decoder) between the expert and imitator agents.
This skill becomes helpful in subsequent communication
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phases. Motivated by these considerations, we can define
re = ri + r¢, where 7§ is the extrinsic reward which
is mostly (if not always) zero and the intrinsic reward,
ri = m By incorporating semantic effectiveness
when computing 7g, the prediction of state transitions and
causal structure is improved. This leads to a better design of
the semantic encoder on the expert side, which adjusts its
transmission strategy to maximize the semantic information
extracted by the receiver. Having outlined the different IL
components for CSC, we next develop a novel semantic
information measure that helps us identify the SCEs and
that is critical in formulating various objective functions
(P1,P2 in (1) and (2)) elaborated in Section IV.

III. CHARACTERIZING SEMANTIC CONCEPTS VIA
INTEGRATED INFORMATION THEORY

An SCM with respect to the formulations in IIT can be
described as a stochastic system U = {Uy,---,U,} of n
interacting units (atomic) with state space %, = [[, Qu,,
where 2y, CR, and the current state is u € (Y. Each net-
work state s! in (1) that is observed at DT can be composed
of multiple such atomic units, whose state space we denote
as 5, C Q. Our system is updated in discrete steps such
that the state space )y, is finite, and the individual random
variables U; € U are conditionally independent given the
preceding state of U: p(u'*! | ut) = [[, p(ui™ | u?). The
IIT-based concept of semantic information draws inspira-
tion from the theory of consciousness measures proposed
by [35]. This concept is constructed on the fundamental
principles of intrinsic information, information integration,
and exclusion, which we elaborate on next.

A. Intrinsic Information for State Abstraction

In T, intrinsic information refers to the inherent cause-
and-effect structure within a system that produces the
particular set of observed states and transitions. Put simply,
it is the semantic information built into our DT-based
system that leads to the shift from one state (s*) to the
next (st1). Moreover, in IIT, information present in s’
is considered to be causal only if it has selective causes
and selective effects within the system. This selective
nature of information distinguishes it from mere correlation
or statistical association between variables (which is the
extrinsic notion of information used in Shannon’s theory
of communication), which may not be causal in nature. We
now proceed to analytically define intrinsic information.
The amount of information that the current state s’ (which
represents any subset of causal variables part of the SCM)
specifies about the past, i.e., its cause information I, is
measured as the distance between the cause repertoire

> p(2! | sY)ply | 2)p(8" | y")p(8" | Hy)my(al | é‘tﬁt)) . 3)

p(si™" | st) and the unconstrained past repertoire p(s! '),
and is defined as follows:

I(s;i ' | s)=D(p(si ' |s)llp(si). @
Just like cause information I, the effect information I, of
st is quantified as the distance between the effect repertoire
of st and the unconstrained future repertoire p(s*') and
written as

Le(si™ | ) =D (p(si™ Is}) [Ip(s771)) . 9
Next, we define an appropriate measure for D). The
Kullback-Leibler divergence (KLD) is a useful metric from
classical information theory, but it is not a true metric (it
is not symmetric) and it is unbounded. Additionally, KLLD
only measures how ‘“sharp” a distribution is compared to
another, without taking into account whether some states
of the system are closer than others (in the sense of the
Euclidean distance metric). Compared to the literature in
IIT [23], a more appropriate measure that aligns better
with the IIT notion of information as “differences that
make a difference” is the earth mover’s distance (EMD)
or Wasserstein distance. This distance is formulated in the
context of optimal transport problems as follows:

Definition 3. For any two probability measures g, i+,
the optimal cost of transporting from us to p; can be
formulated as the Wasserstein distance WP (s, i) =
Héin |z = yl|” v(z,y)dzdy, where Q, and Q, are

Qo Xy,
the domain of us and p, respectively. P is the set of joint

probability distributions.

WP (ps, p1¢) is symmetric and bounded. Finally, having
calculated I, and I., the total amount of cause-effect

information I.. specified by s! over the purview defined
as {siT sI71 st

Lee(si™, st | st) = min(L, L). (6)
From the intrinsic information perspective, each causal
mechanism (includes the causes and effects of any state) in
the system acts as an information bottleneck. This means
that its cause information only exists for the system to
the extent that it also specifies effect information, and vice
versa.

Lemma 1. We define the intrinsic information learned
by the expert and imitator as 1E, and 17,, respectively.
In the presence of confounding variables 0, the imitator
learns less intrinsic information, 11, < 1E compared to the
expert. Under the assumption of perfect st being extracted
by the imitator; the difference |1, —1Z | can be shown to be
strictly smaller than e when Dy (p(0 | Hy),59(6°)) < e,
where Drvy is the total variation distance (see Appendix
A) and 6¢0(0) is the Dirac-delta distribution, with 0° the

true value.



Proof: See Appendix B. ]
Lemma 1 emphasizes the significance of precise model-
ing of the confounding variables (known at the DT side)
at the imitator to extract the relevant semantics. Moreover,
we introduce the following concept, which enables the DT-
enabled transmitter to generate a semantic representation
that captures only the relevant and distinctive causal states
with nonzero intrinsic information.

Definition 4. We define the causal-invariant state ab-
straction as the D—dimensional embedding of the states,
¢; 8 = RP. ¢; is causal-invariant if Vs, s., 1,82 € S,
a € A, ¢;(s1) = ¢i(s2) if and only if the cause and
effect set are same for both s1, so while satisfying P(s; |
Se,a) = P(sa ] sc,a), P(se | s1,a) = P(s. | s2,a).

From Definition 4 we can conclude the following: if
©i(s1) = ¢i(s2), then the intrinsic information conveyed
by s; and ss is the same. In other words, from an SC
perspective, state abstraction enables a unique represen-
tation for states that share comparable cause-and-effect
repertoires. This leads to a reduction in the amount of
semantic information conveyed compared to systems that
do not employ state abstraction. The concept of state
abstraction presented here differs significantly from the
traditional ML definitions such as those in [32] and [36].
Next, using the intrinsic information concept, we analyze
the information content provided by a state s! composed
of several SCEs U; € U.

B. Information Integration (via Compositionality, for Iden-
tifying Semantic Content Elements)

At the level of an individual causal mechanism (state +
its cause and effect mechanisms), the integration postulate
[35] states that only mechanisms that specify integrated
information can contribute to consciousness. Inspired by
this, integrated information for an SCM is information
that is generated by the whole mechanism beyond the
information generated by its parts, meaning that the mech-
anism is irreducible with respect to information. Similar to
cause-effect information, integrated information (denoted
by I;) is calculated as the Wasserstein distance between
two probability distributions.

To compute the quantity of information that is integrated
across the m parts of a system, we can partition the system
into m parts such as M?{ MZ --- M . This partition
pr € Pg (the set of all partitions of S) is defined such
that U;M{ = s} and M} N M; = (. The measure
of integrated information with respect to the cause and
effect mechanisms can be expressed as (7). The integrated
information for partition p; will be:

1% = min(I5*,, I5:, ). (8)
I, satisfies 0 < I, < min (L. (s{ ";st),L (s st)).

1 K3 (2
Thus, the SCM is reducible if at least one partition p;, € Pg
makes no difference to the cause or effect probability, i.e.,

Hg’“ = 0. If it is zero, then the partition does not contribute

any shared information to the system as a whole. Next, we
define the integrated information of an SCM as given by it
irreducibility over its minimum partition p; € Pg:
Ty = 1%,

P
s.t. p; = argmin %kﬂpf ©)

Pr P, €EPg
The normalization above is over the maximum possible
value that Hg’“ could take for any partition.

Having defined the integrated information measure, we
consider the IL setup. The imitator relies on the prob-
ability distributions obtained from the received semantic
information to measure its Is. To extract the maximum
information, the decoding must be performed optimally
using the “true” conditional distribution, which is also a
function of confounding variables.
p(si 0 | 5571) = p(Mf7 T 7an, 0 | Mf717 e ,an_l).

(10)
To decode sffl, tAhe imitator uses a “false” conditional
distribution, q(s¢,0 | si™') (false, since @ is unknown at
the imitator), and hence it is an instance of “mismatched”
decoding. st is the received semantic information. To quan-
tify integrated information, we specifically consider the
mismatched decoding that uses the “partitioned” probability
distribution ¢(8¢,0 | s'™') = p,(0 | Hy)p(s! | sf_l,BA).
Similarly, we can define the probability distribution (s}, 6
SEH). The imitator should learn (see Section IV) these
cause and effect probabilities to extract the semantic in-
formation (not just look to reconstruct the current state s!
from y?). The corresponding learned integrated informa-
tion, defined as ]Ig, is called as the extrinsic information
(measured using the imitator’s observations, which are the
received signals). Next, we quantitatively analyze the error
in Iy between expert and imitator agents for our DT-based
SC system.

Lemma 2. The error between the true integrated informa-
tion and the extrinsic information learned by the imitator
can quantified as the bias of the learned estimator of
cause and effect entropy at the imitator. Here, H refers
to Shannon’s entropy, which is a measure of uncertainty.
Ige—15,=Eq (H(s{"|s5,0) —H(s;'|s,9))).

Ige =15, =Eq (H(si*" | st,0) —H(s{*' | s, 9))).
(11)

Proof: See Appendix C. [ ]
Lemma 2 means that the error in integrated information
is the minimum of the estimator (of entropy, with respect
to the mismatched probability distribution ¢) bias among
cause and effect transitions. In other words, the error in
semantic information at the imitator is the same as the error
in the transition (7, part of £) modeling.

C. Semantic Concepts using Exclusion
A maximally irreducible cause-effect repertoire (MICE)
is specified by a subset of elements, referred to as a
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concept. To find the core cause of any state s!, we compute
(M}~ | st) for all possible partitions M;, and take the
maximum among them. That is, I (s?) = max T.(M}™" |

st). Similarly, we can compute the maximum [™(s!) in
the effect direction. The partitions that represent the max-

imum of those values are m’ = argmaxI.(M;™" | st)

K
and m! = argmaxI. (M} | s!). The core cause and
M

effect of mechanism s! are m, and m,, respectively.
Together, they specify the “what” of the concept of s.
A mechanism that specifies MICE constitutes a concept, or
more specifically, a core concept. A concept s! is composed
of several atomic units U,, referred as SCEs.

Definition 5. A semantic content element can be formally
defined as an atomic mechanism, with possible minimum
integrated information among all partitions p;.

1) Sub-Optimal Strategy for SCE lIdentification: To
correctly compute (7), it is necessary to know the true
transition probabilities that are used in the evaluation of
intrinsic information. However, since the true transition
dynamics are unknown, we must rely on estimating an
empirical distribution from the available data. As a result,
the approach outlined here represents a suboptimal scheme
for identifying the SCEs. We define the input data as a
sequence of entities, each of which is represented by a
d—dimensional value, with each entity being e; € U.
To extract the entities, we can utilize the [-VAE [37]
which is a promising approach (the discussion of which is
beyond the scope here) to extract statistically independent
entities present in the data. We store the entities for further
processing. Further, we define a function f4 to compute
the integrated information for a given subset of entities,
u C U. The function should take the subset of entities u
as input and return the integrated information, Iy ., as in
(8). To calculate the integrated information, the procedure
utilizes the analytical approach outlined in Section III-B.
First, we define a function to generate all possible partitions
of a given subset of entities. The function should take
the subset of entities as input and return a list of all
possible partitions. Further, we iterate over all partitions and
compute the integrated information for each partition as in
(7) by calling the function fy. This returns the identified
SCEs, which consist of subsets of entities with non-zero
integrated information and their corresponding partitions.
Among the partitions with nonzero integrated information
Hg’ju, we compute the maximally irreducible partition s.
The concept as captured by s, and its constituent atomic
units, U;, form the SCEs. The computation of the integrated
information and generation of partitions can be computa-
tionally expensive for large datasets, so it may be necessary

(3 (3
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to optimize these functions for performance.
The amount of integrated information generated by con-
cept s’ is the minimum between past and future:

I3 (s!) = min (I™ (m} | s4), 12 (m; | s)).  (12)

The set of all concepts within an SCM constitutes its
conceptual structure, which can be represented in concept
space. Concept space is a high-dimensional space, with one
axis for each possible past and future state of the system.
In this space, each concept is represented as a “star,” with
its coordinates given by the probability of past and future
states in its cause-effect repertoire. The size of the star
represents the value of its I3 (s}). If I3*(s}) is zero, the
concept does not exist and if it’s small, the concept exist to
a minimal extent. The observed state s at the DT-based
expert agent comprises various semantic concepts, each
designated as st. Even though previous literature, e.g., [38],
has briefly mentioned the data observed at the transmitter
as composed of multiple concepts, purely as a probabilistic
transformation, the proposed rigorous formulation based on
theory of consciousness described in this section is the
first of its kind. Up to this point, we have identified the
SCEs present in the data and analyzed the information they
contain. Our next step is to comprehend the associations
between the different SCEs and how they collectively form
a semantic concept, ultimately creating a causal graph that
gives structure to the data.

D. Defining Causal Relationships via Topological Perspec-
tive

For simplicity, we remove the dependence on ¢ in this
subsection. Any concept m C s with I4(m) > 0 specifies
a candidate distinction d(m) = (m,z*,I4(m)) within
the system S in state s. z* = {2z}, 2!} represents the
maximal cause-effect pair for m. For any state s, the
causal distinctions that represent its subsets with nonzero
integrated information are defined as (13), where d(m) is
the set of nonzero integrated information for m and s’ =
{s., s} is the maximal cause-effect pair for the system as
a whole. Causal relationships refer to the way in which the
causes and/or effects of a set of distinctions D(7g, s) in a
complex system overlap. In the same way that a distinction
m identifies which units/states constitute a cause and the
resulting effect, a relationship identifies which units/states
correspond to which units/states among the purviews of
a set of distinctions. These relationships reflect how the
cause-and-effect power of its concepts is interconnected
within the complex system. In short, they help to attribute
meaning (semantics) to the state s. Understanding causal
relationships is crucial, as these models enable DT-based
wireless systems to distill knowledge and experiences,



D(Ts; ) = {d(m) :m C s,15(m) > 0,2.(m) C s;, z.(m) C 5.},

similar to the human mind, to make reliable predictions,
generalizations, and analogies. These qualities are essential
for enabling compositional and counterfactual reasoning,
active intervention in the world to test hypotheses, and
the ability to articulate one’s understanding to others. We
now look at how to quantify the causal relationships for
our system. The degree of irreducibility resulting from
this binding of cause-and-effect power is measured by the
irreducibility of the relationships, denoted by (I, > 0). In
the presence of confounding variables, the learned causal
distinctions by the imitator follows the relation, D(7s, s |
0) C D(Ts,s | 0). As in [24], the relations between any
two distinctions can be defined as follows. For any state s,
consider two causal distinctions d(m4) and d(ms), that
have a possibly non-empty overlapping atomic units as
their constituents. The relation between d(m4) and d(ms)
can be defined as the maximally irreducible subset that is
common to both of them. For each candidate overlap, the
intrinsic difference is assessed at the maximum information
partition (MIP) for each partition, and summed together,
which represents the irreducibility measure. If we consider
a specific set of distinctions d C D(Tg, s), it is possible
that there are multiple sets of causes and/or effects, denoted
as z, such that

z:2N{z(d),z;(d)} #0Vd € d,Nyez # 0, |2] > 1,

with maximal overlap (called the “faces” of the relatigrﬁ),
0*(2) = N.ezz # 0. A relation r(d) thus consists of a
set of distinctions d C D(Tg, s), with an associated set of
faces f(d) = {f(z)}q and irreducibility measure ¢, > 0
and can be written as w(d) = (d, f(d), ¢,) . w(d) can be
topologically represented as shown below.

Lemma 3. The structure of causes and effects in an SCM
can be represented using an abstract simplical complex
[39], in which causes and effects are the vertices and the
relations are simplices; relations between pairs of causes
and effects are represented as 2-simplices (edges); relations
between trios are represented as 3-simplices (faces) and so
on.

The Lemma 3, whose proof follows directly from its
definition states that a relation r(d) can be topologically
characterized as a |d|-simplex, where |d| is the order of
a relation. Relations between two purviews are known as
2-relations, relations involving three purviews are referred
to as 3-relations and so on. More details on simplex is
provided in Appendix A. The degree of a relation is defined
as the number of causal distinctions present in d. The
“faces” of the relation is same as the concept of faces
in simplical homology. Further, we look at defining the
irreducibility measure ¢,. For any relation w € W, the
irreducibility can be defined as

13)

$(R]0) =2 do(Si),

where O represents a candidate overlap between two causal
distinctions, S; represents a particular partition of O and
do(S;)) = D(p(O) || p(S;)). Hence, do(S;) represents
the information the partition S; provides within a specific
overlap O. Finally, the maximally irreducible overlap is the
O that maximizes ¢:

Omax = argmax ¢(S | O).
1)
¢R = ¢(8 ‘ Omax)~

We now formally define semantics using the abstract sim-
plical complex-based definition of causal relations.

1) Topological characterization of semantics: Semantics
are represented using the relations defined in the previous
subsection, as follows:

5)

(16)

Theorem 1. An abstract cell complex C = (D, <,,,dim) is
a set D of abstract SCEs, which are the cells here, equipped
with a bounding relation <,, and a dimension function
assigning to each d € D a non-negative integer (dim),
satisfying the following properties
. lfdl <w do and dy <, ds, then dy <., d3 (called
as the transitivity property)
o if di <y do, then dim(d;) < dim(dz) (called as the
monotonicity property).

Proof: The proof is given in Appendix D. [ ]
Further, we look at what Theorem 1 entails for the
DT-based SC system. d € D represents a causal mecha-
nism (concept) with non-zero integrated information. The
dimension of d, denoted dim(d), represents the number
of distinct SCEs part of d. The relation between two
causal mechanisms d; and ds can be defined as the
causal relationship (the overlap in the causal distinctions)
between them. The usefulness of the Theorem 1 for our
DT-based SC system can be two-fold: Firstly, just like in
natural language, where syntax refers to the grammatical
forms used to express content and semantics refers to
the meaning attributed to those syntactic expressions, in
communication between intelligent agents, the encoded
representation refers to the syntax part [33]. The trans-
mit encoders, which form a component of the semantic
language used to convey meaning, can be connected to
the specific problem formulation. The design of the Al
architecture employed for this purpose may be constrained
by the complexity of the transmitter, such as the maximum
number of parameters or layers it can support. Regardless
of this dependency on language, if the receiver can extract
the semantic content defined using a topological construct
such as a cell complex, it should be able to communicate
seamlessly with multiple transmitters without requiring
any protocol changes. In other words, regardless of the



encoded representations used to convey the states observed
at DT, the topological characterization of semantics acts
as a “bridge” [40] that unifies different semantic contents
and facilitates communication between intelligent agents.
The abstract cell complex structures in Theorem 1 can be
seen as “universal translators” and bridges across different
knowledge representations. Additionally, the topological
characterization presented in Theorem 1 allows a rigorous
formulation of semantic metrics, such as similarity and
reliability, as defined in Section IV-A, compared to the
current state of the art. Having defined SCEs present in
the observed states, we further move on to discovering the
causal structure in the data using novel Al tools.

IV. CAUSAL DISCOVERY AND INFERENCE VIA
IMITATION LEARNING AND MODEL BASED
REINFORCEMENT LEARNING

In the context of DT-based SC, the causal dynamics
model p(s'™! | st al,0) cannot be accessed by the imi-
tator due to hidden confounding variables (known only to
DT). Instead, the imitator can only estimate the transition
distribution based on its interactions with the expert. To
enable the imitator to make better control decisions, it must
have the ability to develop representations of the world
based on past experiences (received semantics from the DT
node), which allow for generalization to novel situations.
To achieve this, the transmitter design must incorporate
causal discovery, state transition probability, and semantic
encoding such that the QoE is maximized (i.e., expected

H
imagined rewards E( > 4" !r.)), as discussed next.
T=t

A. Causal Imitation Learning Problem: Transmitter Design

Herein, at the expert node, our objective is to throw away
irrelevant state variables while learning the causal dynam-
ics and hence design an abstract causal state description
(represented using p(z! | s', s*1)) which gets transmitted.
Towards this objectives, we adopt the concept of deep end-
to-end causal inference (DECI) from [28]. We specifically
selected DECI because other contemporary works treat
causal discovery and causal inference as distinct problems.
In contrast, DECI is the only approach that simultaneously
addresses both problems by conducting causal discovery
through the estimation of a sparse directed graph and
performing causal inference by estimating specific quan-
tities based on a given set of inputs (interventions) — such
as estimating s'T! in this particular case. Note that the
objectives for causal inference in an SC system differ
from those in [28]. In contrast to [28], we suggest a
constrained optimization approach to achieve a minimum
QoE. DECI employs a Bayesian perspective in its causal
discovery process, where the causal graph G is modeled
in conjunction with the observations s’, s‘*!. First, we
look at the joint distribution (17), where G is defined as
the adjacency matrix (corresponding to the graph G), with

entries G;; € {0,1} indicating the presence of an edge
from 7 — <. ¥ is the set of NN parameters. The causal
relationships can be modeled using a non-linear additive
noise model (ANM) as follows: si™' = fi(st, Pa;) + n,,
where m; is an exogenous noise variable that is inde-
pendent of all other variables. We propose a flexible NN

parameterization that satisfies the graph adjacency con-

7

straints by setting f;(s{') = ¢; [ 3 Gk (sh) | , where
J

the each entry of {; and k; are multilayer perceptrons
(MLPs). Our objective is to use observational data (that
involves network state s?) to fit the parameters ¥ of our
non-linear ANM. After fitting the model, the posterior
pw(G | s, st al,0) reflects our understanding of the
causal structure. The graph prior p(G) should characterize
the graph as a directed acyclic graph (DAG). We choose
it as p(G) < exp(—As |G||* — ph(G)? — o h(G)), where
the DAG penalty h(G) = tr(e¢®F) — D, which is non-
negative and zero only if G is a DAG. Variables « and p
represent the weights for the DAG penalty [41], and they
are optimized during training as in [28, Appendix B]. The
prior knowledge about graph sparseness is modeled by the
term A, |G||>, where X, is a fixed known quantity. The
model has two difficulties: first, the actual posterior over G
cannot be computed efficiently, and second, the maximum
likelihood approach cannot be applied to estimate the model
parameters due to the presence of the latent variable G.
To address both challenges simultaneously, we employ
variational inference, as suggested in previous literature
[42]. Specifically, we introduce a variational distribution
g (G) to approximate the intractable posterior pg (G |
2t st st1 al, @), and utilize it to construct the evidence
lower bound (ELBO) given by (18). Here x is the NN
parameters for the py (z(™) | G). (18) can be rewritten as
(19). The causal discovery architecture includes a graph
NN (GNN) [43] which accepts as input s’ and propagates
information across a fully connected graph G = {V,}.
This graph includes vertices v; € V for each s, and each
pair of vertices (v;,v;) is connected by an edge whose
embedding is represented by the MLP e; ; = f; j(s}, s}),
and:

pw (G| st st a’,0) = Softmax(e; ; | T), (20)

where T represents the softmax temperature variable [44].
DECI aims to demonstrate that the optimization of the vari-
ational objective in equation (18) can recover the ground
truth data generation mechanism. To establish this statistical
guarantee under the correct specification of DECI, which
assumes the existence of x? and G that correspond to the
true data generating process and the absence of unobserved
confounding variables, two technical assumptions must be
satisfied. Firstly, function f; must be non-invertible (since
a DAG), 3rd-order differentiable, and not constant with
respect to any of its inputs. Secondly, the proper noise
densities must have bounded likelihood. These assumptions
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rule out non-identifiable ANM. Further, the ELBO max-
imization problem P; in (1) that involves expert policy
computation, causal discovery and state transition dynamics
can be reformulated as follows.

P arg max ge(x, )
mp(at|sttl,st.0), G, p(sttl|st,at,0)

subject to E(ry) < Ry

2y

We now explain how to obtain the reward constraint bound,
denoted as R}, in this context. To accomplish this, we must
first define the concept of “semantic reliability”. The expert
agent’s goal is to select an optimal semantic representation
(encoder) that accurately represents the causal structure at
the transmit side. The imitator, on the other hand, aims
to improve semantic effectiveness on its side to achieve a
desired level of semantic reliability. Semantic reliability is
quantified by the expression, p (E; (s*,8") <§) > 1 — ¢,
where F,(st,3!) = ||st — 8| represents semantic dis-
tortion and e is arbitrarily small. This metric reflects
the imitator’s ability to reliably reconstruct all the causal
aspects in the decoded causal structure. Unlike classical
reliability measures, in semantics, we can recover the actual
meaning of transmitted messages even with a higher bit
error rate (BER), as long as the semantic distortion remains
within the set limit. This is illustrated by the choice of
0 here, which depends on the concept of semantic space.
The semantic space K is defined as an IN-dimensional
topological ball (since s® belongs to an abstract cell com-
plex as proved in Theorem 1) centered at the actual state
st, where all points inside the ball corresponding to the
same semantic information. Formally, we can express this
as Fy(s',8") < § such that I(s") = I,(8"), where E,
is the topological distance between states s’ and 8%, ¢ is
the radius of the topological ball, and I is a mapping
function that maps states to their corresponding semantic
information. The topological distance here refers to the
irreducibility measure quantifying the causal relationships
between any two states s’,s'. The upper bound Ry is
defined by the reward obtained at (5%)" which corresponds

to (8Y)" = argmin C;(s?, 5).

stek
The second challenge pertains to resolving the semantic

encoder (pw (2! | (s',s'"1))) problem using a revised
version of the information bottleneck principle [45]. In con-
strast to [45], we leverage semantic information measures

(a'| s",0)p(s"™ | s',a’,0)p(z" | s', s, (17)
(@™ | G)| +H(ge) <logpy(zM,--- zM™).  (18)
px(z™ | G)| —KLD (¢w (G | z)||p(G)) (19)

derived from IIT principles. As a result, our metrics go be-
yond conventional information theory approaches. Our ob-
jective is to determine the distribution pg (2! | (st, st*1)),
which converts the input signal s into a representation
z, such that z discloses as little information as possible
about s, while extracting the maximum amount of semantic
information about s in the output signal y (I, (s;y)). We
reformulate P5 in (2) as:

Py:  argmax Iu(s';yh)

pw(z*|(s?,s*11))

S.t. ]I¢(St; Zt) <T,

According to Definition 4, causally invariant states are

represented using the same semantic representation z?,

which is ensured by the constraint imposed on I, (s’; 2°)

in (22). Next, we discuss how to solve the above two
optimization problems P, and Ps.

1) Proposed Solution: The resulting bi-level optimiza-
tion involving P; and Py can be alternatively solved as
follows. We first write the Lagrangian corresponding to (21)
and (22) as follows.

Ly =
min ﬂE(at|st+1,st,er)r,l%:}fp(st+1\s;,atée) 9 + M\ (R —t]E(Ct)) )
£ T I ety ) T (e 2 ).
(23)
To solve the resulting bi-level optimization, the technique
is described in Appendix G. The resulting alternating
updates for outer optimization (solving L) can be ob-
tained as (where (k) denotes iteration) (24). Our approach
involves aggressively improving the model to maximize the
ELBO based on the current semantic encoder, followed
by implementing a more conservative policy and causal
discovery. The detailed algorithmic process is presented
in Algorithm 1 and the model architecture in Fig. 3,
which concludes the SC system design at the expert
agent side. The algorithm convergence follows similar
theoretical arguments as in [28, Theorem 1]. The authors
therein demonstrate that maximizing the ELBO in (18)
can recover both the ground truth data generating process,
p(st,s't1, 0, 2t a'; GY), and the true causal graph, G, in
the infinite data limit. Apart from the ANM model, the con-
vergence guarantees are under the assumption that 1) there
are no latent confounders (which is true from the perspec-
tive of expert agent) and 2) the log-likelihood is regular,

(22)



(rp(a® | s 8", 0))p 1 = argmax

mp(at|sttl,st,0)

G (k4+1) = argmax Ly ((TFE(CLt | ' 8%, 0))
G

Pty (87| 8%, at,0) =

mp(at|sttl,st,0)

Ak+1) = argAminﬁl ((ﬂ'E(Cl,t | s'F

Algorithm 1 Proposed Bi-level Optimization for Causal
Discovery and Semantic Encoder
Given: p(G),p(s°)

Define: & = ng(t+1|s ,0,a"), mp(a |st,)
Inltlallze Policy g, causal graph G’ ~ p(@), data buffer

={}.
1: for (t=0,1,2,...) do
2: Collect data D; = (s?, 0) by executing 7 in the
environment.
3: Build local (policy-specific) dynamics model:

E(rt)).

4 Improve pohcy (m;)kJrl = (mg), +
oV 9E(Ty, Efgﬂ). with a conservative algorithm
like policy search with natural gradient (NPG) [46].

5: Compute the encoder distribution, given the causal
graph and state transitions as p(z! | st, s'*!, G) using
VAE.

{&H-la )‘t—&-l} = arg min max g + ARy —

6: Simulate the receiver part using Algorithm 2.
7: Evaluate semantic effectiveness metric Cy(s?, 8%).
8: end for

which means that E,, [[log py (s, s'™, 2%, a’ | G)|] <
We next look at the causal IL problem for the receiver
design.

B. Causal Imitation Learning Problem: Receiver Design

The distribution of the trajectory 7 of the expert’s inter-
actions with the environment can be written as:

H
(s°10) ][ w(s"™" | s, a", 0)mp(a’ | 5. 0)

t=0

(25
Since the imitator does not have access to the confounding
variables 6, it must learn the distribution over trajectories
based on the state transitions history that is available to it.
This history is constructed from the imitator’s interactions
with the environment. The imitator can then use this
learned distribution to guide its own actions and improve
its performance on the task.

Py(r | 6) =

H
p(8°10) [T p(3'"" | &',a",0) m(a’
t=0

causal dynamics model

Pu(7]0) =

5.

(26)

| S0, @o, -+

imitator policy

[:1 (7TE'(at | SH_1

argmax ‘Cl ((TrE(a’t | 8t+17 St,g))k+1 ) G(k+1)7p<st+1 | Sta a‘tv 9)7 Al,(k)) )

78t70)7G(k)ap(k?)(3t+l | Staat70)7Al,(1€))) s

(k+1) 7G7p(k)(st+1 ‘ 8t7 ata 0)5 A1,(k))) )

(24)

17 stv 0))k+1 ) G(k+1)ap(k+1) (St+1 | Sta a't7 0)7 Al) .

The goal of IL here is for the imitator to compute the
policy such that the average reward (which is essentially
QoE here) is maximized. The average is taken across all
possible trajectories and the confounding variables, i.e.,
Eo~por)Erap(rio) [R(5",a";0)]. The resulting policy
learned at the imitator is m,(a’ | 5t,6). However, this
approach assumes that the imitator is ideal, i.e., it has
infinite memory capacity and perceives the state and actions
in the same way as indicated by the expert. Specifically,
the optimal policy is often a deterministic function of the
environment £ = (7,R,0) such that if the imitator is
able to identify the environment, it has all the necessary
information to determine the optimal policy. The imitator
reflects its initial uncertainty about the environment through
a prior distribution P(E € -). As the history unfolds, the
imitator’s current knowledge of the environment can be
represented by the posterior probabilities P(E € - | Hy).
H, represents the history of state-action pairs available at
the imitator node until time ¢. The total number of bits
needed to identify the environment is H(E). Assuming the
reward function is also unknown to the imitator (note that
the expert agent evaluates the semantic effectiveness, which
is the intrinsic reward), the total number bits required to
learn the environment is
H(E) =H(T) + H(R). (27)
In other words, the DT-based SC system may need
to invest H(E) bits for the initial training. However, in
practice, the imitator can only acquire a learning target &,
which is a stochastic function of the actual environment.
This means that due to communication and computational
limitations, the amount of information acquired by the
agent about £ is only I(€; & ) which is derived from the
semantic information received (states here). This can be
quantified as only a subset of history being stored at the
agent due to memory limitations, i.e., P( € - | HI™5).
Here, HZ‘_K represents the history of state transitions
corresponding to the most recent K time instants. The
states perceived by the imitator can be erroneous due to
the presence of a wireless channel between the expert
and the imitator. Thus, we can consider that the imitator
only knows an estimate Ht and, hence, the environment
P&e-|H t) This limits the space over which the learned
target environment lies. As a result, aiming for & incurs a
bounded degree of performance, E[V* — V™¢]. A natural
measure of distortion here is the expected squared regret
between the optimal and target policies:
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d(€,€ | Hy) =

H 2
E |E., <ZV*(Ht)—V’T§(Ht)> |, H,|.
t'=t
(28)

We now look at how to estimate the different components
of £. The receiver begins by extracting the semantics s
from the received signal y¢, which are modeled using the
channel probability distribution p(y® | 2z%). The resulting
st is then stored in the observation history. Using this
history, the receiver obtains an estimate of the confounding
variables @' that helped the expert agent to analyze the
optimal policy. The imitator then uses both the confounding
variable information and the extracted state to derive the
policy m,(a’ | §*,6"). We now look at the details of the
proposed semantic decoder and imitator policy design at the
receiver. First, we define the loss function that captures the
difference in learned state transition dynamics compared to

that at the expert node. N
Definition 6. Given the inferred model at the imitator £

and the original sampling distribution w(s,a), the model
approximation loss is defined as follows.

UE, 1) = By [KLD ((P(- | 5,0) || P(-| 3’“))J :
29)

(29) is used to quantify the semantic reconstruction loss
on the imitator’s end. As explained next, we aim to address
the issue of determining the state transition probability and
imitator policy.

1) Variational Inference Framework for Receiver De-
sign: For simplicity, we reuse the same notation ¥ from
Section IV-A for the NN parameters here. Our proposed
method here learns confounding variables by maximizing
an information theoretic objective defined as follows

F(®)=1(s"6 | Hy) +H[A|s"; H| —1(A;0|s"; Hy)
= (H[6 | Hy] — H[ | s'; Hy]) + H[A | s'; H]
~(H[A|s"H]-H[A|s'0;H,))
:H[0|Ht]—H[0|st;Ht] +H[A|st,0;Ht].

(30)

We particularly derived F'(¥) (where W captures the
NN parameters) for the following reasons. The first term
encourages our prior distribution over p(6 | H;) to have
high entropy, which implies that the imitator ideally prefer
to obtain maximum information about . The second term
suggests that it should be easy to infer the confounding
variable @ from the current state and history. The third term
suggests that each learned target should act as randomly
as possible (random actions), which we achieve by using
a maximum entropy policy to represent each confounder.
As we cannot integrate over all states and confounders
to compute p(@ | s, H;) exactly, we approximate this
posterior with a learned discriminator g4 (0 | s, H;). By
using Jensen’s Inequality, replacing p(0 | s®, H;) with
qs(0 | s*, Hy) gives us a variational lower bound G(¢, )
on our objective F'(¢). Hence, we rewrite (30)

F(V) >H[A|s"0; H] + Egpe)llogqe(0 | s'; Hy)
—logp(0 | Hy)| = G(¢, ).
(31)

Our goal here is to maximize (31) while simultaneously
reducing the average regret (that captures the performance
shortfall associated with the suboptimal learning target
&) in (28). To incorporate the latter aspect, we look at
the principle of information-directed sampling (IDS) [47].
IDS is an abstract objective for sequential decision-making
agents where, at each time period, an agent computes a
policy based on the current history H; that minimizes the
following ratio of average regret to information:

(32)

Er [a(€.€ | Hy)
J(my, ) = — ; .
I(&;at, 5141 | Hy)

IDS is particularly relevant for CSC since it has the dual
objective of (a) maximizing both the QoE by narrowing
the gap between its performance and (b) that of an expert
policy and enhancing the understanding of the environment
£ by utilizing the current extracted semantic state and its
history. Unlike in [47], we propose to replace the IDS via



E, [d(g,e? | Ht)}
Ey sG(0, )

arg min

. 0.5(s" | y")] =
T, g,p(stlyt)

where the constraint represents the semantic reliability
measure defined earlier. For the denominator term, the
expectation is over p(y?)p(s’ | y'), where p(s® | y?) is
the semantic decoder distribution. Next, we look at how to
solve (33) using MBRL.

2) Model Based RL as a Bi-level Optimization: MBRL
is formulated as a bi-level optimization in order to capture
the interactions between model and policy learning. Further,
we look at the optimization problem for the transition
model learning and the imitator policy computation.

-~

Ps : max J(m,, ),

Ty

-~

min/ (5, ug") subject toc(€£) < C

————
policy-learner model-learner

(34)
We use pg" = LS P(st = s,a’ = a) to denote the
average state visitation distribution. ¢(€£) < C captures
the resource constraints at the imitator. The MBRL can
be viewed as a two-level optimization process here, and
the technique to solve it is described in Appendix G. At
the outer level, the objective is to optimize the policy m,
to achieve the best possible performance within the learned
model. At the inner level, an optimization problem is solved
to minimize the prediction error for £ under the induced
state distribution of the policy. This is a bi-level optimiza-
tion because each objective depends on the parameters of
both the problems discussed above. The formulation above
decomposes MBRL into policy learning and generative
model learning components, emphasizing that they are
interdependent and must be addressed together for success.
The technique to solve Pj is discussed in Appendix G and
detailed steps are described in Algorithm 2. Next, we look
at the NN architecture that we adopt for various learned
components in Ps.

C. Generative Al Architecture for “Network State Model”

The imitator model considered here is based on the
concept of world models proposed in generative Al [27]
and is inspired by our cognitive system. Generative Al is
especially advantageous for DT-based SC systems for the
following reasons. First, it helps to improve the amount
of semantic information acquired by the receiver through
accurate modeling of the physical world with the help
of DT. Second, as the information to be transmitted be-
comes more complex, such as 2-D images and videos,
and eventually 3-D holograms or even higher-dimensional
objects in future connected intelligence systems, generative
Al can help the receiver generate more information with
less semantics transmitted, compared to classical syntactic
communication. It comprises three components that work

together to process received semantic information and make
decisions based on past experiences. The first component
is the visual sensory component, which VAE represents.
This component is responsible for decoding the received
information received by the agent into a respective net-
work state 8¢. This decoder distribution is represented by
p(st | yt, H;). The second component is the memory com-
ponent, represented by mixture-density network (MDN)
combined with a recurrent NN (MDN-RNN). It predicts
future states based on historical information, allowing the
imitator to anticipate and prepare for potential future events.
To anticipate the system’s future states, we use a RNN
as a predictive model of future st*1 vectors. However,
since many complex environments are stochastic, we train
our RNN to output a probability density function p(sf*1)
instead of a deterministic prediction of s’*!. This allows
us to capture the uncertainty inherent in the environment
and make more informed decisions based on possible
future states. In our approach, we approximate p(s‘*!)
as a mixture of Gaussian distributions. We then train the
memory component (MDN-RNN) to output the probability
distribution of the next latent vector st*t1, based on its
current and past information. To be more specific, the RNN,
which has Nj, hidden units, models P(s**! | a?, s’, ht),
where h! is the hidden state of the RNN at time step t.
We can adjust a temperature parameter 7' during sampling
to control model uncertainty, as in [27]. We have found
that adjusting 7" is useful for training our controller later.
The third and final component is the decision-making com-
ponent, which is the controller. It makes decisions based
solely on the representations created by the vision and
memory components, enabling the agent to take appropriate
actions based on past experiences and current situations. At
the time ¢, the imitator takes action a® € R™e, where N,
is the dimension of the action space. The proposed imitator
model has been named the “network state model”, which
shares similarities with the concept of world models in Al
However, in contrast to traditional world models in Al,
the various generative Al components in the network state
model (that mimic the physical environment semantics)
are optimized to achieve semantic effectiveness (QoE) as
close to 1 as possible, which is critical for a DT-based SC
system. The training procedure to optimize the generative
Al parameters is detailed in Algorithm 2.

Next, we assess the performance shortfall associated with
the suboptimal environment (and hence a suboptimal policy
compared to expert agent) learned at the imitator.

Theorem 2. (Global performance of equilibrium pair)

Consider a pair of policy and environment model at the
imitator, (7, &), such that simultaneously

Drv(P(-| s,a,8),P(-| s,a,0)) <es,Vs,a,0 (35)

and for simplicity, we assume that the extrinsic reward
is always zero and the semantic effectiveness (intrinsic
reward) is bounded, such that R(8) < Ry, Vs € S. Also,



Algorithm 2 Proposed Bi-level Optimization for Receiver
Design

Given: y
Initialize: Sample 8 ~ p(0), and s ~ p(s'). Collect
10, 000 rollouts from a random policy

1: for (t=0,1,2,...) do

2 Train VAE to decode y? into 3¢ € RY

3: Update the history of observations with 5¢.

4 Train MDN-RNN to model p(6 | H;, 8"). Sample
the point estimate @ ~ argmaxp(@ | Hy,st) as its
mode. .

5: Train the transition model p(3t*! | 3t 60, H;)
using RNN.

6: Evolve controller to maximize the expected cumu-

lative reward.
7: end for

assume that the information learned about the environment
at the imitator is incremental over time, i.e. 1(E;al, s'™ |
H,;) = lot, where 1 is information learned during the first
communication instance. Then, we show that

o 27€€Rmax
— < =
|J(7T775 5) J(ﬂ-na 5)| = (1 7 'Y)ZHOt

Proof: See Appendix E. ]
Theorem 2 indicates that, with time, the discrepancy
between the IDS objective and a hypothetical scenario
where the imitator has perfect knowledge of £ decreases to
zero. This means that as communication between the expert
and the imitator continues, the imitator can accurately
replicate the expert’s policies.

vr,  (36)

Theorem 3. Suppose we have policy-model pair (m,,E)
suciAz that the following conditions hold simultAaneously:
WE W) < eg Yt and J(m,&) > sup J(1',E) — ex. (37)

Let ©* be an optimal policy so that J(n*,&) >
J(n',E) Vr'. Then, at time t, the performance of the
imitator (evaluated using QoE) will be bounded, as follows:

* 2Rax o
‘](ﬂ— 75) - J(ﬂ-ug) < WDTV(:U’S 7/1"25 )
27/ R %)
(1 =)ot
Proof: See Appendix F. ]

Theorem 3 shows that, following a finite number of
communication instances, if Igt is a finite value, the dis-
crepancy in transition probability modeling (denoted by
Dry (ug, ;ﬂgf)) dominates the error in the IDS objective
with regards to the expert and imitator nodes. Therefore,
accurately modeling the physical environment, specifically
the network state transitions in our DT-based system, is
crucial to ensure that the imitator’s policy closely matches
the optimal policy generated by the expert. As we observed
in Theorem 2, using a generative Al architecture at the
imitator can help to close the gap between the physical
models of the expert and imitator.

V. SIMULATION RESULTS AND ANALYSIS

To validate the effectiveness of our CSC approach, we
must first confirm that our learning methods can accu-
rately identify causal relationships in the world model.
We must also ensure that our objective functions and
semantic metrics facilitate this process and speed up the
discovery of causal relationships. We begin with a dataset
X = {x,}5_, of S samples where each sample x consists
of N stationary time-series s = {51, %52, - ,Ts N}
across time-steps ¢ = {1,---,T}. This dataset represent
the states observed at the expert agent. We denote the ¢-
th time-step of the i-th time-series of x as acgl c RP.
We consider an SCM captured by an associated DAG
GET = {YET g7 underlying the generative process of
each sample. The SCM’s endogenous (observed) variables
are vertices v’ ; € VI for each time-series ¢ and each
time-step t. Every set of incoming edges to an endogenous
variable defines inputs to a deterministic function gg’i
which determines that variable’s value. Using DECI, our
learned NN is assumed to follow the generation of x! as
zitl = g (2=, G5, 0,a?) + vl xl is the network state
(physical environment) observed by the DT. The edge§ are
defined by ordered pairs of vertices £ = {(vﬁz,v,ﬁj)}
Here, we consider ¢ = ¢ — 1. and g{;, = g.,; In
other words, our causal graphs and process dynamics are
invariant across time for each time series sample and can
vary across different samples. Our expert agent NNs must
model g, via the transition probability and the causal graph
G,. An encoded version z! is extracted using a VAE, which
gets communicated to the imitator agent. At the receiver,
the objective is to recover the causal graph accurately and
regenerate the states. The actions at the receiver belong to
a discrete set (of cardinality N,), with a random chosen
probability. The entire state space is divided into multiple
nonoverlapping subsets, where for each subset there is a
unique action probability, which is a discretized Gaussian
distribution centered around the mean a, where the mean
is distinct for different subsets. We test the CSC system
on three datasets: two fully-observed physics simulations
(Kuramoto and Particles) and the Netsim dataset of sim-
ulated fMRI data that originally appeared in [48] and
was utilized for causal discovery in [44]. Throughout the
experiments, we compare the performance of the proposed
CSC framework to the two following benchmarks. The first
is a classical wireless system that directly transmits the
received state information (after encoding using a VAE)
without any semantic extraction. The second baseline is
an SC system that is causality unaware (and hence non-
generalizable) [6]. Herein, the SCEs are identified using
our proposed approach and further encoded/decoded using
transformer modules as in [6] without any causal struc-
ture extraction. Fig. 4a presents a scatter plot of the
integrated information in the data, which was calculated
using (9) and taking into account two-dimensional states
st. The brightness of each point in the plot corresponds
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to the level of integrated information. Additionally, the
second row of the same figure shows the SCEs identified
through the algorithm described in Section III-C1. The
number of SCEs comprises approximately two-thirds of
the total number of states present in the data, representing
a significant reduction in the amount of data that does
convey any semantic information. Fig. 4b illustrates that
as communication progresses, the error in confounding
variable estimation decreases, in contrast to a model-based
Bayesian approach that experiences a performance floor of
approximately —5 dB due to inaccurate modeling of the
physical environment.

Fig. 5a illustrates the superior performance of the pro-
posed CSC system, which achieves a semantic reliability
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Fig. 6: (a) Environment model error between expert and imitator
agents. (b) Generalization performance.

of 0.95 at 0 dB. In contrast, the SC system that does
not consider causal structure can achieve the same level
of reliability only at 7 dB. This is attributed to the fact
that the proposed CSC system requires fewer samples to
achieve the desired reliability on the test data set compared
to the SC system, which fails to leverage causality. Fig. 5b
shows the evaluation results for symbol error rate across
different baselines. The results indicate that the proposed
CSC system significantly outperforms the traditional SC
system, achieving a 10 dB decrease in SER (in dB) at an
SNR of 8 dB. Furthermore, compared to classical wireless
systems, the proposed CSC system demonstrates a 40 dB
decrease in SER, highlighting its superior capabilities in



o
3

o
)

o
o

o
w

|-e—Proposed CSC System

1/Semantic Effectiveness
o
~

o
S}

——Transformer based Encoder/Decoder (Causality Unaware)

=]

I I I I I I I
) 1000 2000 3000 4000 5000 6000 7000

8000
Number of Samples for Convergence
()
108
—Classical Wireless Systems
g 107 :\ i
=] —¢-Transformer based Encoder and Decoder| 1
5 108E -e-Proposed CSC System 4
& M
2
A 405k 3
=
S
5 ot
& 10 Q\\e‘s_\$\<
3 I I I I |
10
0 0.5 1 15 2 25 3
Symbol Error Rate «1073
(b)

Fig. 7: (a) Semantic effectiveness under non-stationary learning
environments (corresponding to change in dynamics gs). (b)
Number of physical bits to be transmitted to achieve a particular
SER (corresponding to same semantic reliability).

achieving higher data rates and lower latency.

Fig. 6a presents the evaluation results for normalized
mean squared error (NMSE) in the learned model between
expert and imitator agents. The results demonstrate that
the proposed CSC system significantly outperforms the
maximum likelihood (MLE) baselines that utilizes a linear
approximation [32] (with just a history of length 1) of the
autoregressive model assumed for the dataset, achieving
higher model accuracy across all SNRs. This is particu-
larly important for complex datasets, where linear models
may perform poorly due to potential nonlinearities. These
findings highlight the importance of improving physical
model accuracy using advanced Al algorithms, such as
causal discovery. In Fig. 6b, we evaluate the generalization
performance of the proposed MBRL scheme at the imitator
compared to MLE based learner. Here, we computed the
model error (gZ — g") between expert and imitator agents
for the proposed CSC and the MLE. We observe that
our MBRL performs much better than the standard model
learner (MLE), especially when the number of samples
available is low. This is attributed to the causal structure
extraction of the environment dynamics, which leads to
better generalizability.

Fig. 7a shows the performance of the proposed CSC sys-
tem and the causality unaware baseline in a non-stationary
learning environment. The goal here is to demonstrate
the quick adaptability (with minimal training effort com-
pared to state-of-the-art) of the CSC approach proposed to
changes in the transition dynamics g, of the time series data
used in the simulations. In this case, the transition dynamics
gs change after around 5.7K samples. The results demon-

strate that the proposed CSC system efficiently recovers
from dynamics perturbations, requiring approximately three
times fewer samples compared to the causality-unaware
system, which necessitates more retraining efforts. Hence,
the proposed approach is effective for generalizing to
multiple environments. In Fig. 7b, we observe that the CSC
system outperforms conventional communication systems
and other SC baselines in terms of efficiency (measured in
the number of bits required to convey the same amount of
semantic information). Specifically, we analyze the number
of bits transmitted to achieve a particular SER for 10, 000
communication instances. The CSC system requires sig-
nificantly fewer bits (by a factor of 1000) compared to
the classical system (without reasoning part), highlighting
the significance of our proposed approach. Furthermore,
when compared to state-of-the-art algorithms that do not
consider causal reasoning, the proposed CSC approach is
more robust to SER.

VI. CONCLUSION

In this paper, for the first time in the literature, we
have presented a new vision of a DT-based SC system
entitled CSC that relies upon the recently emerged theory
of consciousness measures based on IIT and Al tools such
as IL and MBRL. This approach enables causal discovery
of the network state, allowing it to be generalized across
multiple wireless environments. We have formulated a bi-
level optimization based on variational inference and infor-
mation bottleneck principle to learn causal discovery, state
transitions, and semantic representation at the transmitter
(expert agent). The optimized semantic representation is
such that the receiver is able to extract maximum semantic
information while at the same time revealing minimum
information about the state. At the receiver (the imitator
node in IL), using a generative Al architecture originally
proposed for “world models” in RL, the node improves
its knowledge about the network state transitions and
causality over time. The proposed bi-level optimization
is formulated using the principles of variational inference
and IDS. We have shown analytically the performance
shortfall associated with a suboptimal environment learning
at the imitator. Simulation results demonstrate our proposed
CSC’s superiority in improving communication efficiency
(minimal transmission) and reliability compared to classical
communication and state-of-the-art SC systems.
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