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Abstract—In this paper, a novel joint energy and age of
information (Aol) optimization framework for IoT devices in
a non-stationary environment is presented. In particular, IoT
devices that are distributed in the real-world are required to
efficiently utilize their computing resources so as to balance the
freshness of their data and their energy consumption. To optimize
the performance of IoT devices in such a dynamic setting, a
novel lifelong reinforcement learning (RL) solution that enables
IoT devices to continuously adapt their policies to each newly
encountered environment is proposed. Given that IoT devices
have limited energy and computing resources, an unmanned
aerial vehicle (UAV) is leveraged to visit the IoT devices and
update the policy of each device sequentially. As such, the
UAV is exploited as a mobile learning agent that can learn a
shared knowledge base with a feature base in its training phase,
and feature sets of a zero-shot learning method in its testing
phase, to generalize between the environments. To optimize the
trajectory and flying velocity of the UAYV, an actor-critic network
is leveraged so as to minimize the UAV energy consumption.
Simulation results show that the proposed lifelong RL solution
can outperform the state-of-art benchmarks by enhancing the
balanced cost of IoT devices by 8.3% when incorporating warm-
start policies for unseen environments. In addition, our solution
achieves up to 49.38% reduction in terms of energy consumption
by the UAV in comparison to the random flying strategy.

Index Terms—Internet of Things (IoT), Unmanned Aerial
Vehicle (UAV), Age of Information (Aol), Lifelong Learning.

I. INTRODUCTION

HE Internet of Things (IoT) [1] represents a techno-

logical breakthrough that brings forth numerous oppor-
tunities for new applications at the intersection of wireless
communications and intelligent industries, e.g., Industry 4.0
[2]. In fact, IoT devices can provide increased autonomy to
physical systems by harnessing their immense capabilities
to sense and collect data from their surroundings [3]. In
essence, capturing the performance of IoT devices in such use
cases has been an active area of research and recent interest
[4]. Essentially, this requires adopting novel metrics such as
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the age of information (Aol) to reflect the timeliness and
freshness of the underlying physical systems being monitored
[5]. Here, the Aol is defined as the time elapsed since the
last successfully received update packet at the IoT device
was generated by the physical source [6]. Nevertheless, IoT
devices often lack sufficient computing capabilities and have
limited energy resources to offload their collected data to
remote base stations (BSs). Hence, it is challenging for IoT
devices to operate in areas with poor connectivity and provide
reliable services for mission-critical physical systems. To
alleviate such challenges, one can integrate [oT networks with
unmanned aerial vehicles (UAVs) [7]-[9] to improve wireless
connectivity and enhance computing abilities. UAVs can be
deployed as flying BSs that can communicate with IoT devices
in a cost-efficient way. It can significantly extend the commu-
nication distance, overcome terrain constraints, and enhance
communication quality [10]. Additionally, UAVs can augment
wireless communication capabilities significantly through the
integration of complementary technologies, such as intelligent
reflecting surfaces (IRS) [7]. Evidently, UAVs can enhance the
performance of IoT networks by providing versatile wireless
[8] and computing services [9] to aid autonomous decision-
making at the [oT level, and simultaneously, reduce the energy
cost of IoT devices.

Despite the surge on IoT in the literature [4], [11], [12],
the physical environment associated with IoT networks have
been extensively considered stationary — an ideal assumption
that rarely holds in practice [13]. This assumption normally
considers that the generation of data from the physical system
follows a given distribution [14] Consequently, the optimal
strategies and policies that govern the operation of IoT devices
are assumed implicitly to be time-invariant [15]. On the
contrary, due to changes in the environment affecting the
physical system (e.g., thermal drifts) or on the system level
itself (e.g., aging effects), non-stationary conditions arise for
IoT devices [16]. Thus, it remains challenging for IoT devices
to optimize their performance and reduce their Aol and energy
costs in such real-world scenarios [17]. Noticeably, relying on
conventional methods, such as reinforcement learning (RL),
to do so by optimizing the operating policies of these devices
drastically fails to address the challenges posed by non-
stationary environments. This stems from the fact that such
solutions are theoretically developed and tailored towards
operating in stationary environments, whereby any variabilities
in the environment can lead to suboptimal performance and
degradation in the system reliability levels. Henceforth, a
robust RL solution that can continuously adapt the policies
of IoT devices to unprecedented non-stationary developments


https://orcid.org/https://orcid.org/0009-0003-5525-0410
https://orcid.org/https://orcid.org/0000-0003-0086-5250
https://orcid.org/https://orcid.org/0000-0002-5966-7139
https://orcid.org/https://orcid.org/0000-0003-1720-220X
https://orcid.org/https://orcid.org/0000-0002-4933-594X
https://orcid.org/https://orcid.org/0000-0003-2247-2458
https://orcid.org/https://orcid.org/0000-0002-9334-2477

in the environment is desired.

A. Prior Works

Minimizing the Aol has been extensively addressed in
various IoT network scenarios [18]-[20] with the aid of
UAVs [21], [22]. In particular, the works in [21] and [22]
investigate minimizing the Aol for IoT scheduling updates,
while optimizing the trajectory [21] and velocity [22] of the
UAV. Nevertheless, these works [19]-[21] rely on classical
RL approaches (e.g., Q-learning) throughout their solutions.
Accordingly, this limits the novelty of these solutions to ideal
stationary scenarios. Furthermore, such stationary assumption
also affects the practical UAV functionality in assisting IoT
networks. In practice, leveraging RL solutions (e.g., value-
based learning [23] and policy-based learning [24]) to optimize
the UAV operations and trajectory in such non-stationary sce-
narios can lead to unstable rewards while draining computing
resources. To address this issue, recent works such as [25]
and [26], have discussed RL solutions for a broad range
of applications in a non-stationary setting. Nevertheless, the
works in [25] and [26] have key limitations that hinder their
practicality. In fact, these works assume that the evolution
of non-stationary environments is predictable in nature. Thus,
these works assume full knowledge about the period of each
environment encountered and its transitions. For instance,
the work in [25] models the non-stationary environments as
continually evolving Markov decision processes (MDPs) that
are based on a soft actor-critic (AC) architecture. While such
approach [25] works explicitly for periodically changing non-
stationary environments, it is clearly not suitable for capturing
the abrupt, random, and miscellaneous transitions that occur
in dynamic real-world environments. Moreover, the variants
of Q-learning emerging in [26] have shown inefficient per-
formance on multiple fronts. On the one hand, the previously
learned parameters and optimal policies are discarded for each
new environment encountered. On the other hand, adapting the
policies can be computationally intense and resource draining
until convergence is reached. Furthermore, merging RL with
other fundamental methods that provide a leap into the non-
stationary realm has also been limited. Here, one of these
prominent solutions can be to embrace RL with meta-learning
[27] and transfer learning. In particular, this solution can con-
siderably maintain adequate performance in new environments
with the aid of a few gradient updates and k-shot learning.
Nonetheless, it tends to lose the knowledge acquired about
previously encountered environments with each new update.
In fact, harnessing this knowledge can be a key to enable swift
updates [28]. Indeed, exploiting other methods that fill in this
gap and facilitate maintaining continuous knowledge transfer
(e.g., through a knowledge base [29]) between environments
in a RL regime can provide substantial enhancements [25]-
[27]. However, they come at the expense of changing the
architecture of the knowledge base for each new environment
encountered, which can be largely inefficient.

In essence, an effective RL solution in a non-stationary
setting demands a rigorous design to detect transitions be-
tween environments, accumulate the acquired knowledge and
successfully transfer it between environments, while ensuring a

minimal convergence time for updates and the sustainability of
acquired parameters and architectures. To this end, this novel
RL solution must generalize between environments on the
fly, while efficiently utilizing computing and energy resources
of both the UAV and IoT devices, simultaneously. Hence,
such a solution should consider the optimization of the UAV
inherently within its design, as the non-stationary dimension
in the IoT network will impinge on the operating strategy and
functionality of the UAV. As such, fulfilling these requirements
demands a shift towards lifelong learning [30] that can provide
a continuously evolving, knowledge-aware, and generalizable
RL solution in a non-stationary setting.

B. Contributions

The main contribution of this paper is the development
of a novel UAV-aided lifelong RL approach to continuously
optimize the data freshness and energy efficiency of IoT
devices in non-stationary environments. In particular, IoT
devices distributed in the real-world must effectively utilize
their computing resources to balance their cost of Aol and
energy consumption. This is carried out in the presence of a
UAV that facilitates the rapid adaptation of these IoT devices to
their dynamic environments through updating their operating
policies accordingly. Here, the UAV acts as a central mobile
agent responsible for visiting each IoT device while updating
and learning a knowledge basis and feature basis of the en-
countered environments, respectively. Thus, our proposed life-
long approach further focuses on developing a generalizable
model that can seamlessly adapt to new environments without
altering the underlying knowledge base. In fact, such model
with mapping vectors for each environment individually en-
ables the separation of the shared knowledge and environment
specific knowledge. Hence, this enables the rapid adaptation
to new environments by alleviating the need for extensive
modifications or retraining of the model. To efficiently utilize
the energy resources of the UAV in this operation, an AC
network is leveraged to optimize its flying trajectory and
velocity between the devices. By utilizing the accumulated
knowledge basis and the extracted features, the framework
can effectively determine the best IoT interacting policies for
different environments without the need for explicit training
on every specific environment. 7o the best of our knowledge,
this is the first work that considers the joint optimization of
both IoT devices and UAV in non-stationary environments.

In summary, our key contributions include:

o We propose a UAV assisted IoT framework that enables
the UAV to help IoT devices adjust to non-stationary
environments while minimizing its flying energy. In this
framework, the energy consumption of the UAV and the
cost of the IoT devices (represented in terms of Aol
and computing energy) are jointly considered. A fix and
optimize method is applied for better analysis.

« We propose a novel lifelong RL approach that enables
knowledge transfer for a stream of environments. By
employing this approach, a small amount of sampled data
can facilitate convergence within a few steps. In addition,
the use of zero-shot method enables the quick feature



extraction such that a warm-start initial policy can be
provided for unseen environments.

« A novel environment discovery method is explored to
detect the environment change point. Using the sampled
information, the application of feature extraction and a
doubled knowledge basis together can enable fast knowl-
edge extraction for unseen environments.

Simulation results showcase that our proposed lifelong RL
solution can reduce up to 50% of the convergence time for
updates in comparison to random initial policies. Moreover, it
can reduce the energy consumption of the UAV by 49.38%
in comparison to the random flying strategy. Furthermore,
in our previous work [1], we have developed a lifelong RL
solution to optimize of the Aol and computing energy of
IoT devices in a non-stationary setting. However, this early
work did not consider the influence of the non-stationary
environment on the UAV flying strategy. In contrast, this work
comprehensively addresses the flight strategy of the UAV and
inherently incoporates it within our lifelong RL approach.

The rest of the paper is organized as follows. The system
model and problem formulation are provided in Section II.
The lifelong RL algorithm to optimize IoT devices in non-
stationary environments is presented in Section III. The design
of an energy efficient solution to optimize the trajectory and
velocity of the UAV is presented in Section IV. Simulation
results are provided in Section V. Finally, conclusions are
drawn in Section VI. The notations used in this paper are
shown in Table 1.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. Aol Model for IoT Devices

Consider a geographical area in which a set N' of N IoT
devices are deployed as in Fig. 1. These devices are randomly
distributed in this area according to a uniform distribution.
The IoT devices are equipped with radio transceivers, micro-
controllers, and sensors, enabling them to monitor and interact
with their physical systems and surrounding environments [4].
For example, IoT devices in a smart factory can be deployed to
monitor the production line, such as the equipments, products,
etc. and their environmental conditions. Upon capturing the
data, the IoT devices employ processing and data analysis to
extract valuable insights, such as the equipment malfunctions,
product quality, or any other useful events. In response to these
detected events, each IoT device is required to take actions
(e.g., triggers an alert, adjusts the manufacturing parameters,
etc.). These actions are time-sensitive and require real-time
responses, which necessitates striking a balance between time
criticality and energy consumption of IoT devices to maintain
operational efficiency and sustainability.

The coordinates of each device 7 are denoted as d; =

(z4,y:), where i = 1,..., N. Furthermore, the system operates
over a time horizon that is divided into equal time slots ¢,
where ¢t = 1,2,...,T, where T is the total number of time

slots. At the beginning of each time slot ¢, device ¢ collects
data from its environment. Here, the environment refers to
the physical system and its surroundings. We assume that the
local environments of the IoT devices are independent from

Table I: Parameters and notations of the system model.

Parameters  Descriptions

N Number of IoT Devices

N The set of IoT Devices

i The index of device

t The index of time slot

tf,t, tf’t Starting and ending time of the environment

d; The Cartesian coordinates of device 7

it Probability of the Bernoulli distribution

qi,t The indicator of the package arrival

a;. ¢ The size of the data packet

Qg ¢ Mean value of data package size

Ot Standard deviation of Gaussian distribution

€t Number of CPU cycles for device % at time slot ¢
€; max Maximum number of CPU cycles for device 7
Ki Device’s chip architecture related parameter

bi ¢ Queues of unprocessed packages in CPU cycles
AV Aol of device 7 at time slot ¢

&t Index of the most recently processed data packet
ug,; The generation time of packet &; ¢

Wi t4+1 Indicator of the empty queue for time slot ¢

¢ (t) Cost of device 4 at time slot ¢

B,y Nz Trade-off factors with x = 1,2,3,4

Zit Environment specific set of device ¢ at slot ¢

Lo UAV’s initial location

[ 25, UAV’s location in its m—th decision

Um Velocity of the UAV for its m—th flight

Umin , Umax UAV’s minimum and maximum velocity

€; The CPU decision vector of device 7

E The CPU decision matrix of all the devices

v The vector of UAV’s velocity during flight

F The vector of UAV’s destination during flight
€ Gaussian noise of stochastic policy

o Standard deviation of Gaussian distribution

eo Propulsion energy per unit time

el Total energy consumption of UAV’s m—th flight

T Interaction history collected from environment
T The total number of time slots

n; Number of environments of device 7

Z Number of environments for all the devices
M Number of flying decisions of the UAV

each other. The data packets that arrive at each device are
independent and identically distributed (i.i.d.). Assume that
the arrivals of data packets at device ¢ follow a Bernoulli dis-
tribution with a probability \; ; at time slot ¢. Let ¢; ; € {0, 1}
represent the arrival of a data packet of device ¢ at time slot ¢,
where ¢; ; = 1 indicates the arrival of a data packet to device ¢;
and ¢; ; = 0, otherwise. Also, assume that the size a;; > 0 of
a data packet follows a Gaussian distribution with parameters
(&i,t,af’t), where a;; is the average number of CPU cycles
required to process a packet, and o; ; is the standard deviation
[1].

At each time slot ¢, each device ¢ allocates a certain number
of CPU cycles ¢;; € [0,€; max] for processing the received
packets, where €; max is the maximum number of CPU cycles
of device 7 per time slot. Given the constant length of the
timeslots, the energy consumption per timeslot is simplified
to become directly proportional to “Zf?,t [31], where x; is a
paramater related to the chip architecture of the CPU. A first-
come-first-serve (FCFS) policy is employed. At the end of slot
t, the number of CPU cycles required to process the remaining
packets in the queue of device ¢ is given by:

bit+1 = max{b; + ¢i+ai+ — € ,0}, (D

where b; ; is the total amount of data in the queue.
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Fig. 1: An illustration of the system model comprising of a UAV
that sequentially visits the IoT devices which are distributed in a real-
world non-stationary environment.

To measure the freshness of information in the data packets,
we consider the Aol at each device i is A;; = ¢ — ug,,
during time slot ¢, where &; ; is the index of the most recently
processed data packet at device ¢ in time slot ¢ and wug, , is
the time at which the most recent data packet at device ¢ was
generated [5]. Then, the evolution of the Aol for each device
1 is stated as:

_ Aip+1, if w;41 =0, 2

A.
it+1 (t + 1) —Ug s if Wil = 1,

where w; ;11 = 1 if the number of CPU cycles required to
process the data packets at time ¢ is sufficient (i.e., the queue
is empty) to complete computing; w; ;41 = 0, otherwise.

To further elucidate this concept, Fig. 2 illustrates the
evolution of the Aol over time. Here, each device collects and
packetizes data from its environment instantly. Upon its arrival
at the IoT device, a data packet is processed immediately
if there are no other packets in the queue. If there are
packets ahead in the queue, the newly arrived packet incurs a
queuing delay. This causes the Aol to increase until the newly
arrived packet is processed, resulting in the sawtooth shape
in Fig. 2. Clearly, there exists a tradeoff between the Aol and
energy consumption. In other words, the more CPU cycles are
allocated, the more data packets can be processed. Thus, this
leads to better Aol performance, i.e., lower Aol. Henceforth,
we define a cost function for each device i to capture this
tradeoff, as follows:

ci(t) = BAi + (1 — B)riel, 3)

where 5 € [0,1] is a factor to balance the tradeoff between
the Aol and energy consumption during each time slot ¢.

B. Non-Stationary Environment Model

As a result to the dynamic changes over time, the environ-
ment experienced by each IoT device varies in a non-stationary
fashion. These variations are reflected in the probability of
data packet arrivals and the distribution of the sizes of the
arrived data packets. Thus, each IoT device faces challenges
in adapting its CPU cycles allocation accordingly to its new
environment. This entails dynamically adjusting the allocation
strategies to meet the varying requirements and optimize
overall system performance.

Definition 1. An environment corresponds to a unique set of
environmental parameters. The environment of device ¢ at time
slot ¢ is represented by 2;; = (Ai¢, @ity 024, Kis € max)-

In the environment tuple, x; and €;max remain constant
for each device but may vary across different devices. These
parameters represent the physical properties of each device
that are inherent to the device itself and cannot be altered by
the surrounding environments. However, since x; and €; max
impact the CPU allocation strategies, it is reasonable to include
them as part of the environment-specific tuple.

Furthermore, we assume that each IoT device ¢ experi-
ences n; environments within the time interval [0,7"). Thus,
Z = Zfil n; is the total number of environments experienced
by all the devices. However, it is worth noting that the value of
n; and, consequently, Z are unknown in advance. We assume
that the intra-environment variations are stable over time while
the inter-environment is non-stationary. The abrupt changes of
the environments occur at the beginning of each time slot. The
average duration of an environment for device ¢ is p;, which
follows a Gaussian distribution with average p; and variation
o}. Indeed, determining the exact distribution of p; in advance
can be challenging. In addition, the average duration of the
environments remains consistent for each device, since the
environments encountered by a single device follow a certain
pattern or regulation.

C. UAV Model

A UAV serves as a flying BS for IoT devices. The proposed
approach involves the UAV flying from one device to another
to collect environment-related data. This data collection pro-
cess enables the UAV to assist the devices in adapting to the
dynamic environments it encounters.

Initially, the UAV starts at a known location {y. We consider
m = 1,..., M to indicate the m-th flight made by the UAV,
where M is the total number of flights that the UAV can
make during T time slots. Then, we define I,, € {d;},
VYm € M £ {1,..., M}. However, the exact value of M is
considered to be unknown. The UAV is assumed to maintain
a constant velocity vmin < Um < Umax When flying from
one device to another, where v, and vy, are the minimum
and maximum velocities of the UAV, respectively. In addition,
once the UAV arrives at a device, it will hover over it before
it flies to the next destination. The distance between UAV
and the device is considered close enough such that the
energy consumed for their communication can be neglected.
Moreover, we assume that the velocity of the UAV permits it
to visit each environment for multiple times.



When flying from one location ,,, to another location I, 1,
the UAV consumes energy for propulsion, communication,
and computing. Here, assume a rotary wing UAV whose total
energy eV is dominated by propulsion [32]. The energy of the
UAV can be expressed as [32]:

1/2
302, vl W 1
eo(vm):Po 1+ b} —|—P1 1+72—72 -‘r*dop&AU?n
ip 4vg 205 2
parasite
blade profile induced
(C))

where Py and P; denote the blade profile power and induced
power, respectively, v is the tip speed of the rotor blade, vg
is the mean rotor-induced velocity in hover, dj is the fuselage
drag ratio, s is the rotor solidity, p is the air density, and A is
the rotor disc area. Hence, the total energy consumed by the
UAV during its m-th visit can be formulated as:

U

€Y (Vb by 1) = Meo(vm) )

®)
Um,

Here, we consider two types of transmissions: a) uplink
data collection and b) downlink strategy update. However,
as a small amount of sampled data is typically uploaded,
we can neglect the time and energy required for uplink data
transmission [33]. Similarly, as the downlink transmission
involves the transmission of strategies for IoT devices, it is
reasonable to disregard this time and energy as well [34]. This
is due to the fact that the strategies of all the devices have the
same structure. In addition, we consider that the processing
time and energy consumption of the UAV are mainly governed
by the strategy update procedure and hovering, respectively.
Based on the upcoming display of the strategy update process,
it is clear that each strategy update involves similar steps and
consumes the same amount of energy. Hence, it is valid to
consider it as a constant within in each flight. Leveraging
the fact that the strategy update procedure is similar and the
distance between the UAV and the device is near, we assume
the hovering time is the same. Since the hovering energy
consumed by the UAV is proportional to the number of time
slots it hovers [32], the hovering time and hovering energy can
be treated as constant values. As this constant on each flight
would not impact the optimization process, it can be ignored
in the optimization. Therefore, the total energy consumed by
the UAV during each flight is equivalent to eZ,.

D. Problem Formulation

With the modeling of the UAV and IoT devices established,
the next step is to formulate our objective function. Our
goal is to minimize the cost for all devices and the energy
consumption of the UAV. The problem can be formulated as:

N T M
1 K U
LEI,E,I}PZ § E E)\z‘t,ai,t[ci(t)]+ﬁ E m (Vms b, bng1)

i=1 t=0 m=0
(6)
st. A, eN, VieN tel0,T), 7
€1 < €mx, Vi EN, t€[0,T), (8)
Umin < Um < Umax, VM =0,1,..., M, )]
l,e{d;}, Yvm=1,... M,Vi=1,... N, (10)
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Fig. 2: The dynamic evolution of Aol for device i.

where 1 € [0,1] is a parameter that regulates the tradeoff
between the devices’ cost and the UAV energy usage. In

addition, &; = [€;0,...,€, 7] indicates the vector of CPU
cycles of device ¢ throughout the period T', E = [e;...;en] is
the matrix of CPU cycles for all devices, v = [v1,...,vp] is
the vector of UAV’s velocity during its flight, F' = [I4, ..., 1]

is vector of the UAV’s destination during its flight. Constraints
(8) and (9) indicate the limits of the CPU cycles of each device
and the UAV, respectively. Constraint (10) specifies that the
target point of a UAV flight is the location of the selected
device. The UAV flies in a straight line to the target point. It is
worth noting here that the distribution of the data packet arrival
Ai+ and the distribution of the sizes of the arrived packet a; ;
for each device 7 in time slot ¢ are unknown. In addition, the
duration of any environment follows an unknown distribution.

Furthermore, the UAV assists the devices in a sequential
manner. When the UAV arrives at an IoT device during its m-
th flight, it collects the environment related information from
the device and updates its strategy. This strategy reflects the
device’s interaction with its current environment. In particular,
it helps the device determine CPU cycle allocation at each time
slot before the UAV comes for its next visit. This can help the
device improve its decisions in its current environment.

To help the devices update their interacting strategies, the
UAV also learns its own trajectory. It determines its flight
path F' and v. On the one hand, the decisions made by the
UAV on the flight path F' and velocity v can have a strong
impact on the first term in the objective (6). In essence, early
or late visits of the UAV at a device can affect the cost of
the device, particularly in the face of unknown changes in the
environment. For instance, we can consider the scenario of
a delayed visit. If the UAV visits a device significantly late
after the device has already encountered a new environment,
the device may acquaint an outdated and unsuitable interacting
strategy in the absence of the UAV. Due to changes in data
packet arrival probability and size, this inappropriate strategy
can result in elevated Aol and unnecessary CPU energy
consumption. Consequently, the arrival time, i.e., the flight
path of the UAV, can have a vital impact on the first term in
(6). On the other hand, the decision making process of the
devices, i.e., E, also affects the UAV’s energy consumption,



i.e., the second term in (6). For instance, if a device’s CPU
decisions are suboptimal, i.e., its interaction strategy is poor,
this can lead to repetitive UAV visits for collecting data or
extended the hovering times over the device for data collection.
Consequently, the probability that the UAV visits other devices
with new environments decreases. This, in turn, can degrade
the overall performance of the entire system. Hence, in either
case, the energy consumption of the UAV increases.
Furthermore, the flight destination of the UAV [,,, in (6) is
discrete. Hence, the problem is a Mixed Integer Programming
(MIP) problem, which is typically NP-hard and finding an
optimal solution for the problem can be highly challenging.
To efficiently solve this problem, we decouple it into two sub-
problems that are solved in an alternating manner. First, we
fix the flight control of the UAV and optimize the decision-
making processes of the IoT devices. We resort to a lifelong
learning solution as the environments of these devices are
considerably non-stationary. The obtained optimal decisions
are denoted by E*, consisting of optimal CPU cycles decision
€;, for all devices at all time slots. Subsequently, we utilize
the optimal interaction strategies obtained in the first stage
to calculate the UAV’s optimal flying decisions using an AC
network. The obtained optimal flying decisions are denoted as
F*=[7,...,l}] and v* = [v],..., v
ITI. LIFELONG RL FOR IOT STRATEGY OPTIMIZATION IN
NON-STATIONARY ENVIRONMENTS

As discussed earlier, the two terms in the objective function
(6) are optimized alternately while the other term remains
fixed. In this section, we focus on the optimization of the first
term in (6). As such, the flight path and flying velocities of
the UAV are considered to be constant throughout the time
period T'. Hence, the optimization problem (6) is reduced
to the following Aol-energy cost minimization problem via
optimizing E, that can be formulated as follows:

1 L E
E Z Z Z EALt,(L{,J [Ci (t)]

min
i=1 t=0

st. (7),(8).

(1)

During each flight, the UAV destination is randomly selected
from the pool of all IoT devices. The problem in (11) involves
optimizing the performance of IoT devices in an environment
that undergoes discrete changes in an unpredictable manner.
In other words, each environment persists for an unknown
duration before being replaced by a new one. Furthermore,
each environment can be considered as a stationary environ-
ment characterized by the tuple z;; throughout its duration.
Consequently, the entire problem described in (11) can be
viewed as a collection of independent environments that
appear sequentially.

Here, traditional optimization approaches, such as convex
and stochastic optimization [35], are unsuitable to solve this
problem, as they rely on stationary environments in which
the distribution of the generated data is known. However,
in our case, the dynamical patterns of the environments
are unknown and non-stationary. Moreover, classical machine
learning algorithms, such as supervised learning and RL, are

6
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Fig. 3: An illustration of the relationship between the knowledge
base and environment-related vectors.

also unsuitable for solving this problem as the setting does not
take place in a stationary condition. In addition, a continuous
knowledge transfer method is needed to leverage the acquired
knowledge from one environment to the other. Hence, a
continual learning method that allows a sequential stream of
tasks to be acquired should be considered. Notably, lifelong
learning has the potential to address the challenges presented
by this problem. Despite the early proposal of lifelong learning
in the literature [36], [37], most works have been limited to
supervised learning methods and have not exploited the RL
regime. Unlike these existing studies, we propose an efficient
lifelong RL approach where each environment can be modeled
as an RL problem and knowledge can be transferred between
them accordingly.

A. RL for Independent Environments

With the independent IoT environments, as discussed ear-
lier, we first present the optimization model of each indepen-
dent environment. Subsequently, we provide its corresponding
MDP. Each independent environment can be modeled through
the following problem:

mEi‘n Exivaie [ci(t)] (12)

st (7),(8).

It is worth noting that the start time and end times of each
environment in time slot ¢ are ¢7, and ¢7,, respectively. In
addition, we note that 0 <7, <t7, <T while having these
variables unknown in advance.

Let x; refer to whether device ¢ experiences an environmen-
tal change, by having y; = 1 indicating a new environment
and y; = O indicating that there is no change in the envi-
ronment. For each environment, we can model the decision-
making process of each device as a MDP, as delineated in the
following.

In this system, each IoT device interacts with its surrounding
environment at each time slot by processing data packets
received from the environment. During this interaction, the
device generates a record of its status changes, i.e., interaction
history, denoted by 7. The space in which this interaction
history occurs is defined as {X,Y, R}, where X is the state



space, ) is the action space, and R is the reward function,
and are elucidated as follows:

« The state space X is a set of tuples @;; = (A, 4, b; )
representing the Aol and the number of CPU cycles
required pending data packets at the beginning of slot
t for device ¢. The state space has a dimension of d = 2,
which is the number of variables in the state space.

The action space is the set of all possible CPU cycles
y = {61'7,5, Vi,t}.

o The reward function R(«; ;,€;+) is given by

—(BA + (1 - 5)“1‘5?,15)~
o II; ; is defined as the set of policy parameters:

IL; ¢ = {me,,[0:¢ € R'},

R(xi, €it) =

where 0, is the policy for device i at time slot t.
In addition, 7e, , (€| ) = Pr{e; @i, 0i} is the
parameterized function that determines the probability of
selecting a particular action ¢; ¢, given state x; ;. The goal
is to find the optimal decision-making policy oy, that
minimizes the cost function for device ¢ in the current
environment.

Furthermore, each environmental MDP episode can be
equivalently represented through a one-to-one mapping utiliz-
ing the variables of z; ;. Subsequently, we use an environment
feature vector ¢(z;;) € R% to represent each unique MDP
episode. ¢(-) is a feature extraction function, and d, is its
dimension. While multiple features can describe the same
environment, different environments typically have unique
features. However, the exact environment descriptor z;; is
unknown and must be estimated from the collected interaction
history 7.

Up so far, we have acknowledged the independence be-
tween environments. We proceed to determine the environment
change detection. It is eligible to consider that the change
of z;, indicates the change of environments. As such, z;;
can be detected by sampling and collecting the environment
related information. The environment related information can
be extracted from interaction history 7. Given interaction
history 7 = {x;+, €, R(Tis, €i¢)}, wWhere 5, < ¢ < #5,.
Then (t§, —t7,) is the length of the interaction history and

={tj;, <t <, [ar = 1,t € N} is the set of
time slots when there was a packet arrival. The environment
descriptor can be estlmated as follows: \; ; =~ [Q;|/(t5,—1:,),
Qi ~ Ztegi( it+1—bit)/|Qil, and & 07 t~ [Zteg ( i1
bit — Giy)]/|Q:|. Here, the device- spemﬁc parameters x;
and €; max can be directly obtained from the IoT device. By
combining the estimated values of S\i’t, a;+ and 51‘2,# the
environment descriptor 2;; can be obtained. This process is
dubbed as environment discovery.

Up until now, there are two variables that capture these high-
level features for each single environment: i) the environment
policy 6, ; and ii) the environment feature vector ¢(z; ;). Here,
0, ; determines the cost of each device at any time slot, while
¢(zi,) identifies a specific environment. Both variables are
independently distributed, as the environment distribution is
i.i.d and unknown. Thus, €, and ¢(z;:) contain different

Algorithm 1 UpdateL

if x; = 0 then
Ap +— A — (SST) @I
br < br, — Vec(sT ® (aTF))

else
Identify a new environment for device %
Z+—Z+1

end if

Ap +— Ap + (SST) ®T

br + b, +vec(sT ® (aTF))

L+ mat((%AL + ﬁSIdxh,dxh)il%bL)

Algorithm 2 Lifelong Reinforcement Learning

Require: 7' < 0, A < zeroSgxh,dxh, b < Z€rosgxn,1
Require: L < zerosg p, D < zerosg, p
while UAV arrives at device ¢ do
Collect T
Identify environment feature ¢(2) for device i using 7
Update x; according to ¢(2)
Compute ;4 and T'; 4 from T
L, D < reinitializeAllZeroColumns(L, D)
S + argming K(K, s, 3, Q)
L < updatel{(L, s, o, T")
D «+ updateD{(D, s, ¢p(Z),mI4,)
end while

attributes of an environment [38]. Hence, it is worth exploiting
the similarities between these attributes to share experiences
across various environments.

B. Lifelong Learning for Non-stationary Environments

Our goal is to achieve a balance between the Aol and energy
consumption for all devices. Given that the devices experience
independent environments and with the aforementioned MDP
model, problem (11) can be rewritten as:

mmEZZJ it) (13)
i=1 t=0
where J(0;.) = [ po, ,(T)Ri,«(T)dT, pe,, is the probability

dlstrlbutlon of interaction hlstory 7, and R; ((7) is the reward
of the trajectory 7. As such, we can formulate the aforemen-
tioned variables as:
b5
po, (T)=Po(xo) [ p(@is1|zis,ir) 7o, (eilais),
t:tf,t

(14)

%i,t(T) ts
it

E Rmztvczt

Ztt ts

5)

where p(x; 1+1|®i ., €;,¢) is the unknown state transition prob-
ability that maps a state-action pair at time slot £ onto a
distribution of states at time slot ¢ + 1.

The problem in (13) involves a sequential stream of in-
dependent reinforcement environments as denoted in III-A.
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Fig. 4: The flow diagram of the proposed lifelong RL algorithm.

To enable continuous learning throughout the dynamical RL
environments, it is important to explore and exploit the
common structures revealed by the high level features such
as 0;, and ¢(z;,). To enable knowledge transfer between
environments, we assume that the policy 6;; is a linear
combination of h latent components [28], i.e., 8;; = Ls; 4,
where s;; € R” is a vector of linear parameters and L
is a knowledge base with a library of h latent components
that represents the shared knowledge of all the environments.
The dimension of A, denoted as d, is chosen independently
with cross-validation. The mapping function s;; should be
sparse to maximize the knowledge captured by the latent
components. As such, each observed environment can be a
linear combination of only a few latent components in L.
To incorporate the environment feature, we also assume that
the environment feature vector can be linearly represented
by a latent basis D € R%*" Similar to the knowledge
base L, the environment feature basis DD can capture the
commonalities among the environment descriptors, such as
¢(zi1) = Ds;,. As illustrated in Fig. 3, the policy base L
and feature base D share the same coefficient vectors s; ;. As
such, the environment policy @; ; and the environment feature
vector ¢(z;) can be connected through the shared mapping
vectors. It is reasonable to utilize the relationship between the
feature dictionary and the knowledge base.

We proceed to optimize the coupled bases L and D
together. Up to this end, techniques from the field of sparse
coding are utilized. Specifically, coupled dictionary optimiza-
tion [29] is applied to optimize the dictionaries for multiple
feature spaces with a joint sparse representation. The result
of incorporating knowledge transfer and feature coding into
the optimization process is a multi-environment loss function

based on coupled dictionaries, given as:

N T
1 .
gr(L, D) =7 303 min [7(6:.) +mll9(z1.) ~ Dsisl

i=1 t=0

+ allsiclh | + ms(ILIE+IDIR) (16)

where ¢1-norm approximates the vector sparsity and ||L|gp=
(tr(LL"))'/? is the Frobenius norm of matrix L. The param-
eter 7; controls the balance between the policy’s fit and the
feature’s fit. Also, 72 and 13 are two regularization parameters,
where 75 controls the sparsity of s;;. The penalty on the
Frobenius norm of L and D regularizes the predictor weights
to have low />-norm and avoids overfitting.

The optimal €;; in (16) can achieve the minimum
gr(L, D), having L and D given. Considering that 6, =
Ls; 4, (16) is transformed into a minimization problem based
on {s;.}. Consequently, we can first obtain L and D with a
series of consecutive environments. Then, s;; can be further
optimized. Given L and s;., the suboptimal 6;; can be
obtained eventually.

To compute L and D, we need to access the interaction
history of all environments for all devices, as evident from
(16). Notably, there remains dependence between the policies
of environments and their interaction history. To suppress
this dependence, we use a second-order Taylor expansion to
approximate 7 (0;,,) around an estimated optimal policy, de-
noted as «; ¢, for each individual environment. The estimated
policy is defined as:

oy = arg %lin J(Oir). 17

it
Here, the method used to obtain o, is the base learner.
Accordingly, we use the collected interaction history of device
1 to evaluate o 4.

The second-order Taylor expression of 7 (0; ;) is expanded
around «; ¢. For each environment z; ;,

J(O0i=Ls;y) =T (i) + VI (0ir)e, ,—a, (tiy — Lsiy)
+ |lats,s — Lis; 4 %M, (13)

where V.7 (0, ;) is the first-order gradient of 7(0;,) and T'; ,
is the Hessian matrix. The first term on the right-hand side
(RHS) of (18) is a constant and can be suppressed. The second
term takes a negligible value as «; ; is the minimizer of (17).
Substituting the second-order Taylor expansion into (16) yields
the following loss function:

N T

1 .
8.0 =135 il 5

i=1 t=0
11 19(2i) — Dsil3+all il

+ 03 (| LIF+HIDIE) - (19)

Now, considering the symmetrical characteristic in (19), the
following pairs can be abstracted as follows:

_ Ot . _ L . _ Fi,t 0
ool -8 P ),



Algorithm 3 Zero-Shot Transfer for a New Task

Require: Trained L € R?" and D € R%*"
Estimate ¢(Z;,¢) from collected interaction history 7
si, ¢ argming, ,[|¢(Zi1) — Dsigl34n2]sills
0;=Lsi,

where O is the all-zero matrix. With this abstraction, (19) is
simplified to the following:

= sz;n 185~ Ksidlia,,

i=1 t=0

+mallsiall | + sl K 1)

Clearly, (21) is a joint optimization problem for 3, , and K.
Solving this problem requires the availability of trajectories of
all the devices throughout the time period 7' to compute the
Hessian matrices T'; ¢, i.e., @, ;. However, this is not feasible
in practice. Firstly, predicting future dynamics beforehand is
unattainable. Secondly, the UAV is limited to accessing one
device at any given moment. Hence, only the trajectory of the
currently visited device by the UAV can be obtained. Thus, an
approach that can eliminate these dependencies is necessary.

Next, we adopt an alternating approach to optimize the
shared knowledge base and device specific knowledge. First,
we leverage the initialized K to optimize s;, of the current
device and the environment it is experiencing. Then, we utilize
the obtained s;; to optimize L and D. With that in mind, we
can rewrite (21) as follows:

it < argmin (K, 84,8, ,,Q, ) » (22)
Si,t
N T
K—argmm—ZZE (K, 8i:8i6Qir) + 13l K|,
i=1 t=0
(23)

where

(K, 84,80 Qiy) = 1Bis

By fixing K, s;: can be updated as in (22). This is an
¢1-regularized regression problem that can be solved as an
instance of Lasso.

To update K, we decouple (23) between L and D. Since the
two variables have similar structures, their update processes
are identical. Hence, we consider L as an example and define
its associated loss function ¢(L, s; 4, a; ¢, T ;). Accordingly,
L is updated through:

— Ksillo, +nllsidlh- 24)

N T

1
L =argmin— > > ¢(L,sis, i, i) + 15 LlF - (25)
=1 t=0

Herein, L can be easily obtained by nulling the gradient of
(25). Then L can be obtained as A_lbL, where:

Ap = n3laxnaxh + 7 Z (sitsiy) @Tis,  (26)

27)

Ly
L= ZZVGC(SEt ® (o Tir)) -

i=1 t=0
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Fig. 5: An illustration of the proposed AC network for UAV flight
control.

The UAV repeats the above process for each environment
until L converges. This process is referred to as updateL,
that is summarized in Algorithm 1. By assembling s; ¢, o ¢,
and T' over ¢ and ¢, a similar algorithm can be used to
update D, which is referred to as updateD. Even though
only a single environment is considered at a time, the policy
improvement of the other environments can be obtained by
improving the knowledge base L and the feature dictionary D.
The complete flow of this approach is presented in Algorithm
2, and a corresponding flow diagram is presented in Fig. 4
to summarize this approach. After proper training, the UAV
can quickly find a high-fidelity policy £* = {¢;,} for each
environment encountered.

C. Zero-Shot Learning Method

Thus far, we have achieved the learning and knowledge
accumulation for environments with the help of «; ;. Next, we
design an algorithm that can adapt to unknown environments.
To further accelerate the learning of new environments, we
adopt a zero-shot transfer method [39] with coupled dictio-
naries [40]. The zero-shot method is often used to establish
a connection between unobserved and observed classes in
machine learning. Thus, it is useful in the following cases:
1) The unobserved classes are rare, and it is not easy to find
adequate instances for training; 2) The total number of classes
is large, and it is impossible to get all instances labeled or train
all classes; 3) It is expensive to obtain instances for certain
classes; 4) Target classes change over time and it is costly to
label every class that is observed.

In the considered non-stationary environment, the new envi-
ronments are not encountered before during during training. In
other words, we do not have o ; for these new environments.
Hence, we leverage the zero-shot method to associate the
trained environments and new environments via the shared



knowledge bases L and D. Here, the feature descriptor ¢(z; +)
acts as a high-level descriptor of the learning process.
According to [29], a policy ;. in the policy parameter
space can be recovered using the coupled dictionary L and
D with a feature descriptor for each environment. We use the
estimated value z;; obtained with a small set of interaction
histories 7, and then obtain the shared mapping vector using
the estimated feature descriptor ¢(Z;:). The loss function
UD,s,¢(2),mI4.) in (24) can be rewritten as:

84 ¢ arg IEIP{”QS(‘%Lt) — Dsigl3+mllsicli}. (28
Having obtained the policy parameter 0”, the optimal in-
teracting decision £* = {€f,} can be determined using a
stochastic policy, i.e., e;?"t = O;tmi,ﬂrez, where ¢, is the noise
of the stochastic policy having ¢, ~ N(0,02) with o, being
the standard deviation of Gaussian distribution. This procedure
is summarized in Algorithm 3.

IV. ENERGY EFFICIENT UAV TRAJECTORY AND
VELOCITY OPTIMIZATION

In the previous section, we formulate the lifelong RL
method for non-stationary optimization for IoT devices. How-
ever, the second term in (6) also needs to be addressed. In
this section, we optimize the flight decisions F' and v, i.e.,
trajectory and velocity of the UAV, respectively. We note here
that the UAV is responsible for maintaining the knowledge
bases L and D for all devices and taking the corresponding
flight decisions.

A. Energy Optimization of UAV

With the optimal interaction policies obtained in Section III,
(6) can be reformulated. Particularly, the flight control ob-
jective of the UAV can be formulated in the form of an
optimization problem as follows:

1 M N T
U *
E,m{ml i §7Oe m (Vs by U 1) 5_ Ef(fi(t) (29)
s.t. (9),(10),

i (t) = BAiy + (1= B)rie]s.

Indeed, traditional RL may not be adequate to handle the
non-stationarity surrounding the IoT devices in problem (29).
However, it can proficiently manage flight control of the UAV
over all the devices. This is due to the fact that the non-
stationarity affects the distribution of the periods, i.e., p; and
ol, of the ToT devices only. As such, the flight decisions
of the UAV are not affected the distribution changes in the
environment of the devices, but rather by the frequency of
change in the underlying environment. Thereby, the UAV
operates at a higher level of abstraction from the IoT devices.

Accordingly, RL methods such as value-based learning and
policy-based learning can be potential solutions for UAV
flight control. However, the unstable reward caused by the
unpredictable environmental changes can slow down value-
based learning, and the batch learning required for policy-
based learning can greatly drain training resources. Hence, we

(30)
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Fig. 6: Illustrative figure of the proposed lifelong RL and AC
network solution for the UAV-aided non-stationary IoT network
optimization.

loT Devices

resort to an AC framework that offers increased stability, better
convergence, and reduced variations. The AC network consists
of two networks: i) the actor network that is responsible for
decision-making and outputs actions based on the current state
inputs, and ii) the critic network, which interacts with the
environment using the actions from the actor network and
updates its value output accordingly. This value can be used as
a judgment value in the actor network to increase or decrease
the probability of the chosen action. The two networks interact
with each other and the environment in an interactive manner
until the optimal flight policy is obtained. An illustration of the
AC network functionality is described in Fig. 5. Furthermore,
we describe the denoted RL environment as follows:

o« The state space of the UAV, denoted as X“ €
RN*2 includes the UAV’s current location and the
time that has elapsed since the current environment
arrived at each device. Specifically, A™ {sm}
{l;m, ™o, ™1, ...,wn}. For the device that the UAV is
visiting, co; is initialized based on the duration of the
current environment when the current environment is new.
If the environment is not new, w; is updated by adding the
flying time of the UAV to the current device. Additionally,
w; is augmented by the flying time for other devices.

« The action space of the UAV, denoted by Y, is defined
as its next destination l,,, 1 and velocity v,,, i.e., Y* =
1} = {vm, s 1|vm < Vmax, Imt1 € R}, since the
UAV only accesses one device at a time.

o The reward of the UAV, denoted by R"(¢,,{m), is a
function of the state and action ie, R%(sm,C,) =
el (Vi Uy binp1) + 3 Zz lzt tmt ci(t). Here, each
time the UAV selects a device to V1Slt it only considers
the reward of that specific device in the current flight
period.

We use IT% = {mg, } to denote the distribution of the actions
over the states, and II¥ = {mg_} to denote the action-value
function parameter, where mg_({,,/sm) = Pr{¢,,|sm,0a}-
The AC network maximizes the accumulated discounted re-



ward Gy, = — > o0 nE ™ R%(6k, ), where ny € (0,1] is
the discount coefficient. Given a state and the policy, the gain
of an action is evaluated by an action-value function, i.e., the
Q-function, that is denoted as:

Qr.(Smy Cm) = Eo [GrnlSm, €l -

Furthermore, the Bellman expectation equation of the action-
value function is given as:

QTK‘C (Cmy Cm) :ER,§~E [Ru (gmv Cm)
+ 774]Ecm_*_1~7rtl [Qﬂ'c (Cm+17 Cm+1)]] )

where = is the non-statioinary environment that the devices
interact with. Thus, the actor network adjusts its policy based
on the action-value function that is formulated as:

€1y

(32)

Ve, J(0a) = E[ > Vo.logme, (Cnlsm) Qre (Smy Cin) | -

m=0

(33)

Then, the parameter of the actor network is updated through
the following equation:

0o < 04+ 14 Ve, J(0a), (34)

where 7, is the learning rate of the AC network. Hence, the
network allows the UAV to effectively learn its trajectory on
the fly.

B. Algorithm Overview

In Algorithm 4, we provide detailed procedures for the
training processes of the proposed lifelong RL solution with
AC network. As a complement, a complete workflow of the
testing procedures is illustrated in Fig. 6. Additional informa-
tion regarding the training and testing procedures can be found
in the simulation section. As shown in Fig. 6, @ the UAV
detects and obtains its current status. (2) The UAV decides
its next flying destination and velocity accoring to the AC
network. (3) The UAV uses its central computing resources
and energy to control the flight to the destination. (4) The UAV
arrives at the destination and updates its status. (5) When the
UAV arrives at the device, it collects interaction history data
from the device. (6) The UAV obtains the feature vector of the
current environment. (7) The proposed Lifelong RL method is
used to compute the policy for the current device. (8) The UAV
transmits the environment based policy to the device through
interface with the device. (9) The devices interact with the
surrounding environments using the received policies.

C. Complexity Analysis

For the lifelong reinforcement learning algorithm, each
update step begins with a UAV’s visit to a device. The update
process begins by obtaining o;; and I';; for the encoun-
tered environment. We employ a base learner, specifically the
episodic Natural Actor-Critic (eNAC), known for its computa-
tional complexity of O(&(d, n;)) per step. Here, n; denotes the
number of trajectories acquired for the current environment of
the visited device. The update of L involves matrix and vector
multiplications, resulting in a complexity of O(d>h?) for each
update. The update of s, necessitates solving a Lasso instance,

Algorithm 4 Overview of the proposed algorithm

Require: 7' < 0, A < zeroSqxh,dxh, b < 2€rosqxn1
Require: L < zerosyp, D < zerosq,
Require: «;, s; for all devices
Require: ¢y < zerosy 2, mgq
Stage I: IoT Devices Optimization
while some devices are not visited yet do
UAV selects a random destination %
Update L, D and s; for device ¢ using Algorithms 1
and 2
Update the set of visited and unvisited devices
end while

Stage 11: UAV Optimization

while ¢t < T do
UAV selects a device and velocity based on ¢, and mg,
UAV flies to destination and collects T and identify ¢(2)

if x; = 1 then
Obtain s}, using Algorithm 3
Obtain 6; , = Ls],
else
Compute 6}, using regular PG
end if '
Transmit the updated policy 0;1‘/ to device ¢
UAV computes reward R" (S, {m)
UAV updates mg, and mg_ using (34)
Update: next state g,,4; of the UAV and ¢, ¢ Gpq1
Update: t < t + (||lm+1 — Un ) /vm and m < m + 1
end while

typically with a complexity of O(d® + hd® + dh?) [41].
Similarly, updating the feature basis D through coupled dic-
tionaries has a complexity of O(h?(d+d.)?). The update step
described above is executed iteratively in the training process
until all IoT devices are visited, typically requiring 80 to 120
iterations until convergence. Regarding the learning of UAV
trajectories, the complexity of the Actor-Critic (AC) algorithm
is O(e2%) [42]. The described update step is repeated during
the training of the AC network while the UAV flies around,
typically over approximately 25 flights. Consequently, the
overall computational complexity of the proposed algorithm
is calculated as O(h?(d + d.)3) + O(&(d, ny) + €29).

D. Computational Energy

Comparing our proposed lifelong RL solution to other
benchmarks, we observe that the benchmark algorithm
achieves 11.41% energy saving in terms of average CPU
energy consumption. However, this comes at the expense of
suboptimal interacting policies for 10T devices, resulting in
additional Aol cost. Overall, our proposed algorithm achieves
a better comprehensive framework to balance energy and Aol.
Particularly, it achieves a 14.69% improvement in average
reward over the benchmark. Additionally, we compare the
proposed algorithm with the two benchmarks regarding the
energy consumption of the UAV. Our algorithm achievs sav-



Table II: Propulsion energy parameters of the UAV.

Parameters ~ Simulation Value
Po 23.661

P; 88.627

Vtip 120 m/s

V0 4.03

do 0.6

s 0.05

p 1.225 kg/m3

A 0.503 m®

ings of 47.55% and 50.44% compared to the two benchmarks,
respectively.

V. SIMULATION RESULTS AND ANALYSIS
A. Simulation Environment and Settings

In our simulations, we consider N = 6 IoT devices dis-
tributed within a square region with a side length of 1km. The
horizontal and vertical sides of the region are aligned with the
x and y axes, respectively. We consider the use of Mica2 chips
[43] on IoT devices. As such, the corresponding parameters
are adopted such that e,y € [3x 105, 8 x 106] cycles/slot, and
ki = 10721] /cycles®. Moreover, the packet size a; ; follows a
Gaussian distribution with mean @, ; € [1x107,5x107] cycles
and standard deviation o;; = 5 X 109 cycles for each en-
vironment. In addition, we consider that the duration of
each environment follows a normal distribution with unique
parameters for each device ranging from 100 to 550 timeslots.
Moreover, each duration of a time slot is considered to be
1s. In addition, we consider 1500 episodes while having each
episode corresponding to 3000 timeslots. The initial location of
the UAV is at the origin of the square region, i.e., o = (0,0).
We consider the range of the flying velocity of the UAV to
be 10m/s < v, < 40m/s. The rest of the propulsion energy
parameters of the rotary-wing UAV are found in Table II.

More simulation details are given as follows. The dimen-
sions of the policy 6, are determined by the MDP model of
each environment. In our simulation, the state space has a size
of d = 2. Accordingly, the dimension of the knowledge base
L has d = 2 components. The feature basis D is composed of
d, = 5 latent components, which is equal to the dimension of
the environment parameters as defined in Definition 1. The
value of h, which is the dimension of each component in
the knowledge base L and feature basis D, is obtained from
the cross-validation experiment. In our simulation, the size
of h is 7. For the AC network, we employ a three-layered
neural network comprising 128 neurons with both action and
value heads. The Rectified Linear Unit (ReLU) activation
function is applied. Given the well-established nature of the
AC network, details are suppressed here since it has been
explored extensively in the literature with numerous examples
available.

1) Training and Testing Procedure: On the one hand, the
training procedure of the proposed algorithm includes the UAV

randomly flying between the devices to update the policy
of each device sequentially so that it learns the knowledge
base and the feature base. This process continues until all
devices are visited and all environments are experienced. The
knowledge base and the feature base are then updated and
refined with each interaction between the UAV and devices.

On the other hand, the devices and their associated envi-
ronments are considered to be randomly chosen. The UAYV,
equipped with its trained knowledge base and feature base,
visits these devices randomly to update their policies using
the zero-shot method. Following the training of the knowledge
base and feature base, the trajectory of the UAV is learned
using an AC network. The policy update method for all
devices remains the same, while the AC network learns and
optimizes the trajectory of the UAV based on the available
information and feedback from the devices. The AC network
has two hidden layers. The action head applies Softmax to
yield the probability of the UAV visiting the devices at its next
destination. A clamp function is used to capture the velocity of
the UAV within the designated velocity bounds. Additionally,
the value head captures the loss in the policy. Herein, we adopt
zero grad as the default optimizer.

2) Benchmarks and Baselines: We consider multiple
benchmarks to compare with our proposed solution. Hence,
our baseline for lifelong RL solution comprises the regular
policy gradient (PG) method. Here, instead of using the zero-
shot method to enable a warm-start policy, we consider the
regular PG as the base learner for each environment. In
principle, any PG methods capable of estimating Hessian
matrix can be incorporated, such as REINFORCE [44] and
Natural Actor Critic (NAC) [45]. In our simulation, we adopt
the NAC method, which is known for providing a more
efficient and stable learning process. This is due to the fact that
NAC incorporates natural gradients derived from information
geometry, thereby respecting the underlying structure of the
parameter space. For conciseness, we refer to this method as
regular PG.

Furthermore, we compare our proposed AC network used
for optimizing the UAV with the following baselines:

o Random method: The UAV chooses its flying destination
randomly and flies at constant velocity of 20 m/s.

o Force method: We determine the visit interval for each
device by considering the frequency of change in the
device’s environments. Similar to the random method, the
flying velocity is set to 20 m/s.

o Value-based method: We consider a two-layer neural
network for Q-learning to acquire the flight trajectories
of the UAV.

B. Lifelong RL vs. Regular PG

In this subsection, we compare our proposed lifelong learn-
ing method with the Regular PG method to experiment with
the effectiveness of our proposed algorithm. To do so, we
ran our proposed algorithm on single environments to test
its ability to generate warm start policies. Additionally, we
present a comparison in continuous environments to examine
its performance in non-stationary environments.



Fig. 7 compares our proposed zero-shot lifelong learning
method with the regular PG method on a set of new environ-
ments. From Fig. 7, we can see that four independent envi-
ronments are presented as examples to validate our approach.
Unlike regular algorithms that need to start with a random
initial policy, our method can provide a better warm-start
policy due to the knowledge transfer incorporated in zero-shot
lifelong learning. With this improved starting policy, the con-
vergence time is greatly improved. In particular, our proposed
method converges faster than the regular PG method, achieving
a 50% improvement in the best case and a 25% improvement
in the worst scenario case. In addition, our approach yields
a 10% improvement in average reward at the beginning of
an environment compared to the random initial policy. It’s
important to emphasize that in Fig. 7(d), our approach attains
the global optimum by harnessing accumulated knowledge,
a performance significantly superior to that of the baseline
algorithm, which merely reaches the local optimum.

Fig. 8 shows the capability of our proposed lifelong solution
in comparison to the PG method under a series of sequential
environments encountered by a single IoT device. We note
that the initial policy for both of the aforementioned methods
is randomly generated and identical. From Fig. 8, our proposed
algorithm provides better warm-start policy such that the start-
ing reward is 33.7% higher than that achieved by regular PG
method. Furthermore, it is also evident that the mean average
reward of our proposed algorithm surpasses that of the regular
PG method by 8.3%. This improvement can be attributed to
the superior warm-start policy, which effectively reduces the
convergence time. Clearly, the average reward demonstrates
ongoing improvement, even as new environments continuously
emerge. This underscores the sustainability of our lifelong
learning algorithm as an evolving algorithm.

C. On the Impact of Lifelong RL on IoT Devices

In this subsection, we focus on the influence of our proposed
lifelong RL algorithm on the system, particularly the IoT
devices. Specifically, we present the impact of different non-
stationary environmental periods on the average reward of IoT
devices and the visiting frequency by the UAV in Fig. 9. In
Fig. 10, we provide a detailed analysis of the IoT devices’
performance, including Aol, CPU energy consumption and
queue length.

Fig. 9 shows an example of the visits performed by the
UAV to IoT devices with different environmental periods '.
This example includes 5 devices where the duration of each
environment is constant for each device. Here, the duration
of each environment increases incrementally from 40 to 440
time slots as we as we transition from device 1 to device 5,
respectively. From Fig. 9, it is evident that the UAV visits
the IoT devices successively at different rates. In fact, as
the duration of the environment increases, the likelihood that
the UAV visits the corresponding IoT device decreases. In
particular, 39% of the UAV’s visits are allocated to device 1
while only 5% of the its visits are designated for device 5.

'For simplicity, we now utilize the absolute value of the reward function
from here on. Hence, the rewards in upcoming figures will be represented as
positive values.

(a) (b)
= * cnecdoeead T
= ] O,O i?f_[— rE O/OQQ?, e
. VAN
~m 8o # ~ . RS
) o ¥ o PRI
&0 -10 &0 VS
I S 710, 00
D 12 —o— Lifelong RL 5] _#/ [—o— Lifelong RL
<> A — - Regular PG 2 — £ - Regular PG
14 8
0 5 10 15 20 0 5 10 15 20
Number of Time Slots Number of Time Slots
, (c) (d)
2 RS eopaaseliRitad T I T RL 5
g o § -5 | — & - Regular PG o
Q -4 < o ) ¥
3 - NG 55 e
[ae o A—k/ o -5
() g ) 4
&0 P & -6 ’
g 5t/ f 7
q; —0— Lifelong Ré g 65 A—g; ;AA_Q&%;AAA A MMAA
— A--Regular P &
< R egular < , P o
0 5 10 15 20 20 30

0 10
Number of Time Slots Number of Time Slots

Fig. 7: Average reward of the regular PG and our proposed zero-shot
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This distribution aligns with the frequency of changes in the
environment of each IoT device. As such, the averaged value
of the reward for device 5 is 6.7212 which is remarkably better
than that of device 1 having a value of 9.2810. This is due to
the frequent changes in the environment that severely degrade
the rewards and necessitate additional visits by the UAV to
compensate for frequent policy updates. From Fig. 9(f), we can
observe that the UAV responds to the environmental changes
within a consistent time interval percentage across all devices.
This response time accounts for 54.03% of the period for
device 1, which slightly decreases to 44.44% for device 5. It is
evident that the UAV exhibits accurate control over its timing
for visits to the devices with respect to each environment. This
is pertained by the proposed AC network, which empowers
the UAV to effectively balance the disparities introduced by
varying environmental periods.
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different environmental periods.

Fig. 10 provides a thorough comparison between our life-
long RL method and the regular PG method for different UAV
flying strategies. This comparison is carried out on multiple
fronts that include the average reward, Aol, and CPU energy
consumption, and queue length. On the one hand, our proposed
AC method for the UAV outperforms the random and force
methods on all of the aforementioned levels. On the other
hand, our lifelong RL solution achieves a remarkable upper-
hand in comparison to the regular PG method. In particular,
from Fig. 10(a), the average reward of the lifelong RL is
14.69% lower than regular PG. This is attributed to the ability
of the zero-shot method to facilitate a warm-start policy for
each new environment, whereby the the duration of suboptimal
policies is effectively reduced. In addition, Fig. 10(b) shows
that the proposed lifelong RL solution acheives a 21.42%
reduction in Aol in comaprison to the regular PG method.
In addition, Fig. 10(d) shows that the lifelong RL method can
achieve a reduction of 47.04% in queue length compared to
regular PG. This gain arises is due to the efficient utilization
of the allocated CPU resources to process the arrived data
packets at each IoT device. Unlike the trends of the reward,
Aol, and queue length, Fig. 10(c) showcases that the regular
PG consumes less CPU energy compared to lifelong RL
solution. Nevertheless, this comes at the expense of employing
suboptimal interacting policies, which in turn fail to strike
a balance between Aol and CPU energy consumption. This
subsequently leads to increased values of rewards, Aol, and
queue length. From Figs. 10(a) to 10(d), it is evident that
our proposed method outperforms the PG method in terms of
the total reward of devices, Aol and queue length. However,
this improvement comes at the cost of increased CPU energy
consumption due to the inherent trade-off between Aol and
CPU energy consumption.

D. Influence of AC on UAV & IloT Devices

In order to evaluate the impact of AC, we consider the
influence of the proposed algorithm on the entire UAV and IoT
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Fig. 10: Comparison for the average (a) reward, (b) Aol, (c)
consumed CPU energy, and (d) queue length between the proposed
lifelong RL method and the regular PG method.

devices system. In Fig. 11, we evaluate the performance of the
UAV and IoT devices across different UAV flying strategies.
In Fig. 12 and 13, we analyze the influence of the UAV’s
velocities on the integrated performance of the UAV and IoT
devices, respectively. In Fig. 14, we present the impact of the
number of devices on the Aol and CPU energy consumption
of IoT devices.

Fig. 11 showcases how the proposed AC method outper-
forms the random and force methods in terms on the rewards
and energy efficiency for the UAV. From Fig. 11, our proposed
method attains around 49% improvement in terms of system
rewards with respect to the other baselines. One of the main
reasons for this is the precise selection of destination and
velocity that results in a significant reduction in the UAV’s
energy consumption that reaches 2292 kJ. This corresponds to
a substantial energy savings of 48.5% as compared to the force
method and random methods. From a different perspective, the
rewards of the devices that are incorporated in the trade-off
controlled by y play a significant role in enhancing the overall
reward of the system. Indeed, the AC method empowers the
lifelong RL by equipping it with prudent flying decisions,
thereby mitigating losses pertaining to suboptimal interacting
policies and enhancing the rewards of the devices compared
to the other two methods. These results verifies that the AC
method can learn the varying distribution of environmental
periods across multiple devices. Meanwhile, the force method
effectively mitigates the decrease in rewards of the devices
caused by suboptimal policies upon comparison to the random
method. However, due to its constant velocity and lack of
energy consideration, the overall reward of the force method
remains inferior to our proposed approach.

Fig. 12 shows the system performance in terms of system
and device rewards across different UAV flying methods for
different velocities of the UAV. From Fig. 12, the energy con-
sumption of the UAV decreases at first, after which it increases
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with the incermental increase of the velocity from 10m/s
to 40m/s. This is consistent with the energy consumption
model of the rotary wing UAV [32]. In addition, the reward of
the devices decreases 22.06% as the velocity increases from
10m/s to 40m/s. Here, maintaining a higher UAV velocity
enables more frequent device visits, which can facilitate the
development of improved interacting policies. Meanwhile, the
force and random methods have a similar performance. In fact,
the reward of the devices in the random and force method are
on average 5.78% and 4.61% higher than our proposed AC
method, respectively. Clearly, it is evident from Fig. 12 that the
system’s reward is proportional to the energy consumption of
the UAV. This is reflected in a remarkable 70.05% difference
between the highest and lowest rewards. Clearly, the UAV’s
flying energy significantly impacts the overall reward of the
system. This underscores the significance of our proposed
method in learning and optimizing the flying strategy of the
UAV.

Fig. 13 illustrates the relationship between the Aol and CPU
energy consumption of devices for different UAV velocities
and for two methods: a) the proposed AC method and the b)
the value-based method. From Fig. 13, the Aol in the proposed
method decreases by 26.30% as the velocity increases from
10m/s to 40m/s. This is due to the fact that allowing the
UAV to conduct frequent visits enables the devices to improve
their interacting policies through lifelong RL. Accordingly,
this results in an increased energy demand to process incoming
packets at the devices. As such, the energy consumption
increases from 0.99 mJ to 2.29 mJ to account for the additional
CPU processing of the devices. Subsequently, this decreases
the Aol and shortens the queue lengths. This decrease is
a direct implication of utilizing additional CPU energy to
reduce queue length, and simultaneously, enhancing the data
freshness.

Fig. 14 shows the performance of the devices as the number
of the IoT devices varies from 5 to 30. The performance is
comprising of their averaged Aol and CPU energy consump-
tion, on one hand, and the reward and queue length, on the
other hand. From In fact, as the number of devices increases,
the UAV can perform a lower number of visits for each device.
Hence, suboptimal interacting policies that degrade the perfor-
mance of each device arise accordingly. Thus, from Fig. 14(a),
we can observe that the Aol increases from 4.81 to 9.81, as the
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Fig. 12: The variation of the energy and rewards v.s. UAV velocity.
(Left): The energy consumption of the UAV v.s. UAV velocity.
(Right): The rewards of the system and devices under the proposed
lifelong RL methods in comparison to the Random and Force
methods v.s. UAV velocity.

number of devices increases. This observation underscores the
importance of constraining the UAV’s flying range to achieve
optimal efficiency. In contrast, the CPU energy consumption
experiences a significant decrease that reaches up to 55% as
the number of devices increases. Here, the energy consumption
reaches a plateau when the number of devices exceeds 10.
Evidently, poor interacting policies can bring drastic effects
to the energy efficiency of the CPU. From Fig. 14(b), the
reward of the devices increases by 59.29% as the number of
devices increases. Furthermore, the average queue length for
all the devices also experiences an increase due to the delayed
processing of incoming data packets. Hence, as the number of
devices increases, we can see that the having many devices
will inevitably lead to an increase in the rewards. However,
this comes at the expense of delayed UAV response and an
elevated queue length.

E. Lifelong Curriculum Learning

In this subsection, we consider the influence of lifelong cur-
riculum learning. Unlike random environments, we selectively
arrange the difficulties of environments and their correspond-
ing orders. In Fig. 15,we evaluate the performance of lifelong
RL models trained by the basic and complex environments
separately. In Fig. 16, we evaluate the performance of the AC
model with shuffled environment orders.

To evaluate the influence of different training environments
on the performance of lifelong RL method, we consider
two types of environments: basic environments and complex
environments. These environments are characterized based
on their convergence performance, including the convergence
rate and the average reward achieved at convergence. With
these different environments as the training environments, we
consider three lifelong RL models. These models encompass
those trained solely on basic environments (Easy Model), those
trained solely on complex environments (Difficult Model), and
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those trained on a mixed training set comprising both basic and
complex environments (Mix Model). Fig. 15 depicts the aver-
age reward of the three models tested on the basic and complex
environments. As shown in Fig. 15(a), the average rewards
of the three considered models and the regular PG model
are evaluated on 40 basic environments. The performance of
all the three models under consideration consistently exceeds
that of the regular PG model, demonstrating an improvement
of approximately 25.31% at the beginning and 5.99% upon
convergence. The model trained on complex environments
consistently outperforms both Easy model and Mix model
throughout the learning process, with initial improvements of
24.98% and 24.48% over regular PG, respectively. This is
attributed to the inherent ability of Difficult model to capture
and leverage more profound knowledge, while the other two
models fail to exploit the knowledge effectively. The superior-
ity of the Easy model over the Mix model is attributed to the
consistency in the training environments, facilitating a learning
process with gradients converging towards the target parameter
areas. In addition, it is shown in Fig. 15(a) that our proposed
method converges to a better value than the regular PG. This
noteworthy enhancement is attributed to the incorporation of
our knowledge base, which facilitates effective exploitation
beyond local optima. Fig. 15(b) shows the performance of the
models specifically on complex environments. It is evident
that the Difficult model significantly outperforms the Easy and
Mix models, showcasing improvements of 3.36% and 4.87%,
respectively. This aligns with the previously discussed obser-
vation, wherein the Difficult model’s ability to capture more
profound knowledge contributes to its superior performance. In
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Fig. 15: The average reward of different lifelong RL models on
(a) basic environments and (b) complex environments. The lines
represent the smoothed average of the scattered dots.

addition, the Easy model is better than Mix model in terms of
warm start policy. This comes from the fact that mixed training
environments underperform the knowledge base. The reason is
that it is difficult for a model with divergent training examples
to capture the specific knowledge and learn a unified represen-
tation, leading to possible misderstanding of some particular
type of environments. Furthermore, the disparity between the
two subfigures indicates the challenges encountered by the
models in capturing the features of complex environments
compared to their performance in basic environments.

In order to evaluate the influence of the environmental
orders on the UAV and IoT devices system, we consider four
distinct shuffling scenarios:

o Scenario 1: All the environments used to train the AC
model are basic environments. For each device, a collec-
tion of basic environments are experienced sequentially
over time. One practical example is smart agriculture,
where the environmental dynamics and parameters are
relatively simple and straightforward.

o Scenario 2: All the considered environments are complex
environments. For example, these complex environments
represent intricate challenges encountered in intelligent
robotics. Intelligent robots must process complex envi-
ronmental parameters to make correct decisions regarding
movement or operations. In this case, each device is
exposed to a set of complex environments with random
orders.

e Scenario 3: Unlike Scenario 1 and Scenario 2, a mix-
ture of basic and complex environments is considered.
Specifically, only basic environments are experienced
during the first half of the time period [0,T), while
complex environments are experienced during the second
half of the time interval. Take a smart vehicle traversing
different surrounding environments as an example [46].
Simple environments, such as rural areas, are initially
encountered, followed by more complex environments,
such as urban cityscapes.

o Scenario 4: As a flip of Scenario 3, Scenario 4 considers
the case where complex environments are followed by
simple and basic environments. Similar to Scenario 3,
the time interval [0,7) is divided into two halves: first
complex environments, followed by basic environments.
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As depicted in Fig. 16, all shuffling scenarios exhibit a de-
crease in average reward before an ascent, ultimately converg-
ing. Scenario 3 demonstrates the fastest convergence speed,
achieving convergence within up to 14 episodes and attaining
the highest convergence value among the four shuffling scenar-
i0s. The training strategy of tackling basic environments first,
followed by advaced ones, as outlined in [47], can enhance
model performance and expedite the learning rate. This is
due to the fact that encountering basic environments initially
guides the learning agent towards a more favorable parameter
space, effectively mitigating the impact of noise introduced by
diverse training samples. Subsequently, engaging in complex
environments aids Scenario 1 in moving towards target param-
eter solutions with increased confidence. In Fig. 16, shuffling
scenarios with homogeneous environments, such as Scenario
1 and Scenario 2, demonstrate superior convergence speed
compared to Scenario 4. For reasons analogous to those in
Fig. 15, homogeneous environments can guide the models with
consistent gradients, while Scenario 4 introduces noises to the
learning process, resulting in delayed learning. As also shown
in Fig. 16, Scenario 3 attains the best convergence value,
exhibiting the highest improvement of up to 24.42% compared
to Scenario 1. This aligns with the expectation of guidance
and denoising capabilities provided by the basic-first-then-
complex order. In contrast to the impact of shuffling orders on
convergence speed, Scenario 2 and Scenario 4 exhibit superior
convergence values, compared to Scenario 1. In other words,
the inclusion of complex environments in the training samples
enhances the model’s ability to exploit additional knowledge,
thereby providing better insights into optimal parameters.

VI. CONCLUSION

In this paper, we have proposed a novel UAV-aided lifelong
RL solution that leverages a UAV to adapt the policies of
IoT devices in non-stationary environments. Our proposed
method aims to continuously optimize the data freshness and
energy efficiency of IoT devices, while efficiently utilizing

the energy resources of the UAV. Hence, we have designed
a lifelong RL solution that leverages a shared knowledge
base and feature base to acquire the optimal policies for the
dynamic non-stationary environments. In addition, we have
proposed a zero-shot method to determine the warm-start poli-
cies for unseen environments. To efficiently utilize the energy
resources of the UAV as it learns from the environments, its
corresponding flying trajectory and velocities are optimized by
adopting an AC network solution mechanism. Our simulations
have validated that the proposed lifelong approach yields
significant performance gains in terms of minimized Aol and
optimal energy efficiency for both IoT devices and the UAV,
respectively. A potential avenue for future exploration lies in
investigating non-stationarity across diverse domains. In this
case, the implementation of fully distributed knowledge bases
has the potential to facilitate a more flexible learning structure
across extensive networks of mobile devices.
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