
An Extended Langevinized Ensemble Kalman Filter for
non-Gaussian Dynamic Systems

Peiyi Zhang, Tianning Dong and Faming Liang

Department of Statistics
Purdue University

West Lafayette, IN 47907

Email: fmliang@purdue.edu

summary

State estimation for large-scale non-Gaussian dynamic systems remains an un-
resolved issue, given nonscalability of the existing particle filter algorithms. To
address this issue, this paper extends the Langevinized ensemble Kalman filter
(LEnKF) algorithm to non-Gaussian dynamic systems by introducing a latent
Gaussian measurement variable to the dynamic system. The extended LEnKF
algorithm can converge to the right filtering distribution as the number of stages
become large, while inheriting the scalability of the LEnKF algorithm with re-
spect to the sample size and state dimension. The performance of the extended
LEnKF algorithm is illustrated by dynamic network embedding and dynamic
Poisson spatial models.

Keywords and phrases: Dynamic Network Embedding, Ensemble Kalman Filter,
Sequential Monte Carlo, State Space Model

1 Introduction

State space models (SSMs) are ubiquitous in modeling dynamic systems in fields as diverse

as biology, finance, and engineering. Consider a general form of non-Gaussian SSMs:

xt = g(xt−1) + ut, ut ∼ Np(0, Ut),

zt ∼ f(·|xt),
(1.1)

where t indexes stages for t = 1, 2, . . . , T ; xt ∈ Rp and zt ∈ RNt are called, respectively, the

state and measurement variables/vectors at stage t; p is the dimension of the state variable

xt; and Nt is the dimension of the measurement variable zt. For the problems where a single

measurement is taken from each sample, Nt represents the sample size at stage t. In model

(1.1), the first equation is called the state evolution equation and the state propagator g(·)
can be highly nonlinear, and the second equation is called the measurement equation and the

distribution f(·) can deviate from Gaussian. Let z1:t = (z1, z2, . . . , zt) denote the collection

of observations up to stage t. A major goal of the study of the SSM is to infer the so-called

filtering distribution π(xt|z1:t) such that downstream statistical inference can be conducted

for the dynamic system. In the study, it is often assumed that the model (1.1) contains no

unknown parameters. Otherwise, the state-augmentation (Anderson, 2001) scheme can be

employed to estimate the states and parameters in a simultaneous manner.

The model (1.1) has been studied in the literature for over half a century. The simplest

case of the model is that g(·) is linear, f(·) is Gaussian with the mean can be represented as a

linear function of xt. In this case, the filtering distribution is still Gaussian, and the Kalman

filter (Kalman, 1960) provides a recursive formula for analytically updating the mean and

variance of the filtering distribution. For the nonlinear case where both the state propagator

and the mean function of f(·) can be nonlinear, extensions of the Kalman filter, such as

extended Kalman filter (Uhlmann, 1992) and unscented Kalman Filter (Julier and Uhlmann,

1997), have been developed via appropriate linearization of the system. Rather than directly

calculating the mean and variance of the filtering distribution, the ensemble Kalman filter

(EnKF) (Evensen, 1994) proposed to approximate the filtering distribution using particles,

while the linearization technique developed in the extended Kalman filter is still applied.

For high-dimensional problems, i.e., p is large, the ensemble size is typically much smaller

than p, which leads to dimension reduction and computational feasibility compared to the

Kalman filter (Shumway and Stoffer, 2006). In particular, the storage for the covariance

matrix of the filtering distribution can be much reduced, and the high-dimensional particles

can be efficiently generated via a forecast-analysis procedure. Since it was proposed, the

EnKF has gained enormous popularity in atmospheric and oceanic sciences. However, as

shown by Law et al. (2016), the EnKF converges only to a mean-field filter, which provides

the optimal linear estimator of the conditional mean but not the filtering distribution except

for linear systems in the large sample limit. Similar results can be found in Le Gland et al.

(2009), Bergou et al. (2019) and Kwiatkowski and Mandel (2015).

Other than the EnKF, the particle filter (Gordon et al., 1993), also known as sequential

importance sampler, has been used to infer the filtering distribution for the model (1.1),

which works for the general case of nonlinear and/or non-Gaussian data. However, it be-

comes impractical when the state dimension is high and/or the total number of stages is

large, as it suffers from the sample degeneracy issue (Cappé et al., 2004) under these sce-

narios. Moreover, the particle filter is not scalable with respect to the sample size Nt due

to its Metropolis sampling nature, where a likelihood function needs to be evaluated with

all available data when a particle is generated at each stage.

Quite recently, Zhang et al. (2023) proposed a Langevinized EnKF (LEnKF) algorithm

for inference of the filtering distribution for the model (1.1) with f(·) being assumed to

be Gaussian. LEnKF works by reformulating the EnKF under the framework of Langevin

dynamics. It inherits the forecast-analysis procedure from the EnKF and the use of mini-

batch data from the stochastic gradient Langevin-type algorithms, which make it scalable

with respect to both the dimension and the sample size. Moreover, LEnKF overcomes the

sample degeneracy issue suffered by the particle filter as well as the filtering distribution

estimation issue suffered by the EnKF. Under the big data scenario, LEnKF is shown to

converge to the right filtering distribution in Wasserstein distance as t becomes large.

Towards filtering distribution estimation for the non-Gaussian case of the model (1.1),

Katzfuss et al. (2020) proposed to use Markov chain Monte Carlo (MCMC), e.g., the

Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) and Gibbs sam-

2

pler (Geman and Geman, 1984), and EnKF in a combined manner, where the Gaussian

measurement variables required by the EnKF were imputed using a MCMC algorithm at

each stage. However, since the EnKF doesn’t converge to the right filtering distribution,

so doesn’t their algorithm. Moreover, their algorithm is not scalable with respect to the

sample size as the algorithm always performs in the scale of entire data set.

In this paper, we extend LEnKF to non-Gaussian systems by introducing a latent Gaus-

sian measurement variable to the model (1.1). The proposed algorithm can converge to

the right filtering distribution as the number of stages becomes large, while inheriting the

scalability of LEnKF with respect to the state dimension and the sample size. The pro-

posed algorithm is applied to dynamic networks for sampling from the filtering distribution

of the node embedding vectors, which facilitates the downstream statistical inference for the

dynamic networks.

The remaining part of this paper is organized as follows. Section 2 describes the proposed

algorithm with justification for its validity. Sections 3 illustrates the performance of the

proposed algorithm using some simulated data sets. Section 4 applies the proposed algorithm

to inference of large-scale dynamic networks. Section 5 concludes the paper with a brief

discussion.

2 Extended Langevinized Ensemble Kalman Filter

2.1 A Brief Review of the LEnKF Algorithm

Motivated by the observation that the model (1.1) forms a Bayesian inverse problem at each

stage, where the state evolution equation implies a prior distribution of xt as shown later,

let’s start with a Bayesian inverse problem for the linear regression:

y = Hx+ η, (2.1)

where η ∼ NN (0,Γ) for some covariance matrix Γ, y ∈ RN , and x ∈ Rp is an unknown

continuous parameter vector. To accommodate the case that N is extremely large, we

assume that y can be partitioned into B = N/n independent and identically distributed

blocks {ỹ1, . . . , ỹB}, where each block is of size n and has the positive definite covariance

matrix V such that Γ = diag[V, · · · , V].

Let π(x) denote the prior density function of x, which is assumed to be differentiable

with respect to x. Let π(x|y) denote the posterior distribution. LEnKF provides a uniform

framework for dealing the inverse and data assimilation problems. It reformulates the model

(2.1) as a state-space model through subsampling and Langevin diffusion:

xt = xt−1 + ϵt
n

2N
∇ log π(xt−1) + wt,

yt = Htxt + vt,
(2.2)

where ϵt denotes the learning rate used at stage t, wt ∼ Np(0,
n
NQt) with Qt = ϵtIp, yt

denotes a block randomly drawn from {ỹ1, . . . , ỹB}, vt ∼ Nn(0, Vt) with Vt = V , and Ht

3

is a submatrix of H extracted with the corresponding vector yt. In this state-space model,

at each stage t, the state xt evolves according to an Euler-discretized Langevin equation of

the prior distribution, and the measurement varies with subsampling. To simulate from the

dynamic system (2.2), LEnKF works as described in Algorithm A1 in the Appendix.

For the linear inverse problem, as shown in Zhang et al. (2023), LEnKF is mathematically

equivalent to, but practically much more efficient than, a parallel preconditioned stochastic

gradient MCMC algorithm for which each chain (represented by a member of the ensemble)

iterates in the following equation:

xat = xat−1 +
ϵt
2
Σt∇̂ log π(xat−1|yt) + et, (2.3)

where xat denotes a generic member of the ensemble produced by Algorithm A1 in the

analysis step of stage t, Σt = n
N (I − KtHt) is the preconditioning matrix, et is a zero

mean Gaussian random error with covariance Var(et) = ϵtΣt, and ∇̂ log π(xat−1|yt) =
N
nH

T
t V

−1
t (yt −Htx

a
t−1) +∇ log π(xat−1) denotes an unbiased estimate of ∇ log π(xat−1|yt).

LEnKF makes use of both techniques, subsampling and the forecast-analysis procedure.

The former makes it scalable with respect to the sample size N , and the latter makes it

scalable with respect to the dimension p. As shown in Zhang et al. (2023), for a high-

dimensional problem with n ≪ p, the computational complexity of LEnKF can be much

lower than directly simulating from (2.3). The latter requires an LU-decomposition of Σt,

which has a computational complexity of O(p3). While LEnKF gets around this issue with

the forecast-analysis procedure, making it scalable with respect to the dimension of the state

variable. By the analysis of Zhang et al. (2023), the computational complexity of LEnKF

is actually the same as that of the parallel stochastic gradient Langevin dynamics (SGLD)

algorithm Welling and Teh (2011), which consists of m chains and each chain evolves via

the iteration

xit = xit−1 +
ϵt
2
∇̂x log π(x

i
t−1|y) + ẽt, i = 1, 2, . . . ,m,

where ẽt ∼ Np(0, ϵtIp), and all chains are updated based on the same mini-batch data

yt at each iteration t. However, as implied by Theorem 1 of Li et al. (2016), LEnKF

can converge much faster than the parallel SGLD algorithm Welling and Teh (2011), since

all eigenvalues of the preconditioning matrix Σt can be much less than 1 by noting that

Σt =
n
N (I −KtHt) =

n
N (I − ϵtHT

t (ϵtHtH
T
t +2Vt)

−1Ht) under the assumption Vt is positive

definite.

Zhang et al. (2023) has extended Algorithm A1 to the Gaussian dynamic system

xt = g(xt−1) + ut, ut ∼ Np(0, Ut),

yt = Htxt + ηt, ηt ∼ Nnt
(0,Γt),

(2.4)

based on the Bayesian formula

π(xt|y1:t) =
f(yt|xt)π(xt|y1:t−1)∫
f(yt|xt)π(xt|y1:t−1)dxt

, (2.5)

4

where yt ∈ RNt denotes the samples at stage t, y1:t = {y1, y2, . . . , yt} denotes the collection

of the observations up to stage t. To ensure the particles simulated at stage t to converge to

the filtering distribution π(xt|y1:t), they employed the predictive distribution π(xt|y1:t−1)

as the prior according to the Bayesian formula. To estimate the gradient ∇ log π(xt|y1:t−1),

they employed an importance resampling procedure, see Zhang et al. (2023) for the detail. To

make the algorithm scalable with respect to big data, they employed a mini-batch strategy

under the assumption that yt can be partitioned into Bt = Nt/nt blocks such that yt,k =

Ht,kxt + vt,k, k = 1, 2, . . . Bt, where yt,k is a block of nt observations randomly drawn

from yt = {ỹt,1, . . . , ỹt,Bt
}, vt,k ∼ Nnt

(0, Vt) for all k, and vt,k’s are mutually independent.

Finally, they showed that the state xt of the dynamic system (2.4) at stage t can be simulated

by applying Algorithm A1 to simulate from the following dynamic system

xt,k = xt,k−1 − ϵt
nt
2Nt

U−1
t (xt,k−1 − g(x̃t−1,k−1)) + wt,k,

yt,k = Ht,kxt,k + vt,k,
(2.6)

for k = 1, 2, . . ., where xt,0 = g(xt−1) + ut; x̃t−1,k−1 denotes a sample drawn from π(xt−1|
xt,k−1, y1:t−1) at iteration k of stage t through the importance resampling procedure;

wt,k ∼ Np(0,
nt

Nt
Qt,k) with Qt,k = ϵt,kIp, and p is the dimension of xt. The gradient term

−U−1
t (xt,k−1−g(x̃t−1,k−1)) forms an unbiased estimator of ∇ log π(xt,k−1|y1:t−1) under the

assumption that the samples in Xt−1 follows from the distribution π(xt−1|y1:t−1) and the

sample size |Xt−1| is sufficiently large. This assumption has often been used in theoretical

analysis of sequential Monte Carlo. Possible deviations from this assumption has been taken

into account in the theoretical study of Zhang et al. (2023). Refer to Zhang et al. (2023)

for the detail.

Zhang et al. (2023) argued that LEnKF overcomes the sample degeneracy issue (Cappé

et al., 2004) suffered by the particle filter, as the importance resampling procedure employed

in LEnKF aims to draw a sample for the prior π(xt|y1:t−1) at each stage t, while that of

sequential importance sampling aims to draw a sample for the posterior π(xt|y1:t). In

consequence, LEnKF is less bothered by the sample degeneracy issue.

2.2 Extended LEnKF Algorithms for non-Gaussian Data

In practice, we often encounter dynamic systems where the measurement variable follows

a non-Gaussian distribution, e.g., multinomial or Poisson. LEnKF can be extended to

these systems by introducing some Gaussian latent variables. The extension is described,

separately, for the inverse problem and data assimilation in what follows.

2.2.1 Inverse Problems

Consider an inverse problem for which a latent variable model can be formulated as

z ∼ ψ(·|y), y = Hx+ η, η ∼ NN (0,Γ), (2.7)

5

where z is observed data following a non-Gaussian distribution ψ(·), y is the latent Gaussian

variable, and x is the parameter. For this model, we have π(y|x, z) ∝ ψ(z|y)ϕ(y|x), where
ϕ(·) denotes a Gaussian density function.

To accommodate the case that N is extremely large, we assume that z can be partitioned

into B = N/n independent and identically distributed blocks {z̃1, . . . , z̃B}, where each block

is of size n and the corresponding latent variables have the positive definite covariance

matrix V such that Γ = diag[V, · · · , V]. To adapt LEnKF to simulating from the posterior

distribution π(x|z), we only need to add an imputation step in Algorithm A1. The extended

algorithm is described in Algorithm 1.

Algorithm 1: Extended LEnKF for non-Gaussian Inverse Problems

(i) Initialization: Initialize an ensemble {xa,10 , xa,20 , . . . , xa,m0 }, where m is the
ensemble size.
for t=1,2,. . . , T do

(i) Subsampling: Draw a mini-batch sample, denoted by (zt, Ht), of size n
from the full data set of size N .
Set Qt = ϵtIp, Rt = 2V , and the Kalman gain matrix
Kt = QtH

T
t (HtQtH

T
t +Rt)

−1.
for i=1,2,. . . ,m do

(ii) Forecast: Draw wi
t ∼ Np(0,

n
NQt) and calculate

xf,it = xa,it−1 + ϵt
n

2N
∇ log π(xa,it−1) + wi

t. (2.8)

(iii) Imputation: Draw yit ∼ π(y|xf,it , zt) ∝ ψ(zt|y)ϕ(y|xf,it), where

yit|x
f,i
t ∼ Nn(Htx

f,i
t , V).

(iv) Analysis: Draw vit ∼ Nn(0,
n
NRt) and calculate

xa,it = xf,it +Kt(y
i
t −Htx

f,i
t − vit)

∆
= xf,it +Kt(y

i
t − yf,it). (2.9)

end

end

2.2.2 Data Assimilation

For non-Gaussian data assimilation problems, the corresponding state space model is given

by

xt = g(xt−1) + ut, ut ∼ Np(0, Ut),

yt = Htxt + ηt, ηt ∼ NNt
(0,Γt),

zt ∼ ψ(·|yt),
(2.10)

6

where Ht is an appropriately chosen matrix, and yt ∈ RNt represents the latent Gaussian

random variable following the conditional distribution π(yt|xt, zt) ∝ ψ(zt|yt)ϕ(yt|xt), and
ϕ(·) denotes a Gaussian density function. Then the data assimilation LEnKF algorithm of

Zhang et al. (2023) can be extended to the model (2.10) by including an imputation step

for the latent variable yt at each stage t. To accommodate the case that Nt is extremely

large at each stage t, we assume that zt can be partitioned into Bt = Nt/nt independent

and identically distributed blocks {z̃t,1, . . . , z̃t,Bt
}, where each block is of size nt and the

corresponding latent variable has the covariance matrix Vt such that Γt = diag[Vt, · · · , Vt].
The resulting algorithm is described in Algorithm 2.

2.3 Convergence of the Extended LEnKF Algorithms

To justify the convergence of the extended LEnKF algorithms, we introduce the following

identity established in Song et al. (2020):

∇θ log π(θ | D) =

∫
∇θ log π(θ | ϑ,D)π(ϑ | θ,D)dϑ, (2.14)

where D denotes data, and θ and ϑ denote two parameters of the posterior π(θ, ϑ|D). With

this identity, it is easy to show that

∇x log π(x|zt) =
∫

∇x log π(x|y, zt)π(y|x, zt)dy =

∫
∇x log π(x|y)π(y|x, zt)dy, (2.15)

where the last equality holds as π(x|y, z) = π(x|y) given the hierarchical structure (2.7).

That is, ∇x log π(x|y) forms an unbiased estimator of ∇x log π(x|zt), provided that y ∼
π(y|x, zt). Further, by (2.3), we can show that Algorithm 1 leads to a preconditioned SGLD

algorithm for simulating from the posterior distribution π(x|z) even when z is not Gaussian.

In summary, we have the following Lemma concerning the convergence of Algorithm 1.

Lemma 2.1. (Convergence of the extended LEnKF for non-Gaussian inverse problems) Let

xat denote a generic member of the ensemble produced by Algorithm 1 in the analysis step of

stage t. If V is positive definite, log π(x) is differentiable with respect to x, and the learning

rate ϵt = O(t−ϖ) for some 0 < ϖ < 1, then limt→∞W2(π̃t, π∗) = 0, where π̃t denotes

the empirical distribution of xat , π∗ = π(x|z) denotes the target posterior distribution, and

W2(·, ·) denotes the second-order Wasserstein distance.

The proof of Lemma 2.1 directly follows from (2.15) and the proof of Theorem 1 in Zhang

et al. (2023) and is thus omitted. When an exact sampler for π(y|x, zt) is not available, the
imputation step can be done by a short run of the Metropolis-Hastings algorithm. In this

case, (2.9) can be replaced by

xa,it = xf,it +Kt

(
ȳit −Htx

f,i
t − vit

)
, (2.16)

where ȳit = 1
r

∑r
j=1 y

i,j
t and yi,1t , . . . , yi,rt are the samples simulated in a short Metropolis-

Hastings run. The validity of the resulting algorithm can be justified by noting that π(y|x)

7

Algorithm 2: Extended LEnKF for non-Gaussian Data Assimilation Problems

(i) Initialization: Start with an initial ensemble xa,11,0 , x
a,2
1,0 , . . . , x

a,m
1,0 drawn from

the prior distribution π(x1), where m denotes the ensemble size. Set Xt = ∅ for
t = 1, 2, . . . , T . Set k0 as the common burnin period for each stage t.
for t=1,2,. . . ,T do

for k=1,2,. . . ,K do
(ii) Subsampling: Draw without replacement a mini-batch sample,
denoted by zt,k, of size nt from the full data set zt of size Nt.
Set Qt,k = ϵt,kIp, Rt = 2Vt, and the Kalman gain matrix
Kt,k = Qt,kH

T
t,k(Ht,kQt,kH

T
t,k +Rt)

−1.

for i=1,2,. . . , m do
(iii) Importance resampling: If t > 1, calculate importance weights
ωi
t,k−1,j = π(xa,it,k−1|xt−1,j) = ϕ(xa,it,k−1 : g(xt−1,j), Ut) for
j = 1, 2, . . . , |Xt−1|, where ϕ(·) denotes a Gaussian density, and
xt−1,j ∈ Xt−1 denotes the jth sample in Xt−1; if k = 1, set

xa,it,0 = g(xa,it−1,K) + ua,it and ua,it ∼ Np(0, Ut). Resample

s ∈ {1, 2, . . . , |Xt−1|} with a probability ∝ ωi
t,k−1,s, i.e.,

P (St,k,i = s) = ωi
t,k−1,s/

∑|Xt−1|
j=1 ωi

t,k−1,j , and denote the sample drawn

from Xt−1 by x̃it−1,k−1.

(iv) Forecast: Draw wi
t,k ∼ Np(0,

nt

Nt
Qt,k). If t = 1, set

xf,it,k = xa,it,k−1 − ϵt,k
nt
2Nt

∇ log π(xa,it,k−1) + wi
t,k, (2.11)

where π(·) denotes the prior distribution of x1. If t > 1, set

xf,it,k = xa,it,k−1 − ϵt,k
nt
2Nt

U−1
t (xa,it,k−1 − g(x̃it−1,k−1)) + wi

t,k. (2.12)

(v) Imputation: Draw yit,k ∼ π(y|xf,it,k, zt,k) ∝ ϕ(y|xf,it,k)ψ(y|zt,k), where
zt,k is an nt-vector representing a mini-batch of data and ϕ(·) is a
Gaussian density function.
(vi) Analysis: Draw vit,k ∼ Nnt

(0, nt

Nt
Rt) and set

xa,it,k = xf,it,k +Kt,k(y
i
t,k −Ht,kx

f,i
t,k − vit,k)

∆
= xf,it,k +Kt,k(y

i
t,k − yf,it,k). (2.13)

(vii) Sample collection: If k > k0, add the sample xa,it,k into the set Xt.

end

end

end

8

is Gaussian, which implies that ∇x log π(x|y) is a linear function of y. As a result, (2.16)

leads to an asymptotically unbiased estimator of ∇x log π(x|z) given by N/nHT
t V

−1
t (ȳt −

Htx
a
t−1) + ∇x log π(x

a
t−1), which is similar to the one given in (2.3). When r is small,

this estimator can be biased as the Metropolis-Hastings run might have not yet reached its

equilibrium. By the standard theory of MCMC, it is easy to figure out that the bias is of the

order O(1/r). Further, by Corollary S1 of Zhang et al. (2023), this bias will not affect much

on the validity of the algorithm as long as r is reasonably large. To be more precise, we have

lim supt→∞W2(π̃t, π∗) = O(1/r) in this case. Similar results can be found in Song et al.

(2020), Dalalyan and Karagulyan (2017) and Bhatia et al. (2019), where the convergence of

the SGLD algorithm Welling and Teh (2011) was established with an inaccurate gradient.

In general, the averaging estimator reduces the variation of the stochastic gradient and

improves the convergence of the stochastic gradient MCMC algorithm, see Nemeth and

Fearnhead (2019) for more discussions on this issue. Alternative to the averaging estimator,

the last sample generated in a short run of the Metropolis-Hastings algorithm can also be

used for simplicity. The validity of the resulting algorithm can be justified similarly.

Concerning the convergence of Algorithm 2, we have the following lemma, whose proof

directly follows from (2.15) and the proof of Theorem 2 in Zhang et al. (2023) and is thus

omitted.

Lemma 2.2. (Convergence of the extended LEnKF for non-Gaussian State Space Models)

Assume that for each stage t, the matrices Ht, Ut and Vt, the state propagator g(xt), and

the iteration number K satisfy the regularity conditions given in Theorem 2 of Zhang et al.

(2023). If ϵt,k ∝ 1
n2
t logKk

−ϖ for some ϖ ∈ (0, 1) and any k ∈ {1, 2, . . . ,K}, then uniformly

with dominating probability, for any t ∈ {1, 2, . . . , T}, xa,it,K follows a probability law π̃t and

limK→∞W2(π̃t, πt) = 0, where πt = π(xt|z1:t) denotes the filtering distribution at stage t,

and W2(·, ·) denotes 2-Wasserstein distance between two distributions.

3 Illustrative Examples

This section contains two examples, which are for Poisson regression and dynamic Poisson

spatial model, respectively. The first example illustrates the application of Algorithm 1 for

inverse problems, and the second example illustrates the application of Algorithm 2 for data

assimilation problems. In the Appendix, we give an example on nonlinear inverse problems,

which illustrates how the proposed algorithm can be extended to more complicated dynamic

systems for which the expectation function of the Gaussian latent variable, i.e., E(yt|xt), is
a nonlinear function of xt.

9

3.1 Poisson Regression

Consider a Poisson regression reformulated in the following equations:

yi = xT
i β + σ0ϵi,

zi ∼ Pois(exp(yi)),
(3.1)

for i = 1, 2, . . . , N , where xi = (xi,1, xi,2, . . . , xi,p)
T is a p-dimensional vector of explanatory

variables, β is a p-dimensional vector of regression coefficients, σ0 is the standard deviation,

and ϵi’s are iid standard Gaussian random variables. With a slight abuse of notation, we

use xk, for k = 1, 2, . . . , p, to denote the kth covariate of the regression.

We generated 10 data sets from (3.1) withN = 50, 000, p = 2000, σ0 = 0.5, (β1, · · · , β4) =
(1.0, 1.0, 1.0, 1.0), (β5, β6, · · · , β8) = (−1.0,−1.0,−1.0,−1.0), and βj = 0 for j = 9, · · · , p.
We generated each vector xi from a multivariate Gaussian distribution such that each of

its component has a standard Gaussian marginal distribution and a correlation coefficient

of 0.5 with any other component.

To conduct Bayesian analysis, we let each component of β be subject to a mixture

Gaussian prior distribution

α1N (0, τ21) + (1− α1)N (0, τ20), (3.2)

where α1 = 1/p = 0.0005, τ21 = 1 and τ20 = 0.001, and assume that all the components

are priori independent. Algorithm 1 was applied to this example with the ensemble size

m = 50, the mini-batch size n = 100, and the learning rate ϵt = 0.1/max{t0, t}0.6 and

t0 = 200. The Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970) was

used in the imputation step, where a Gaussian random walk proposal with a variance of 4

was employed, the sampler was run for 10 iterations, and the last sample was output as the

imputed value. The algorithm was run for 2,000 iterations, which cost 61.2 CPU seconds

on a personal computer with RAM16GB and 2.9GHz Intel Core i7.

Figure 1 summarizes the variable selection results for one data set. The results for other

data sets are similar. Figure 1(a) displays the sample paths of β1, β2, . . . , β2000 along with

iterations, which indicate that they all have converged within 500 iterations. Specifically,

after 500 iterations: the sample paths of β1, . . . , β4 approach to the horizontal line at 1, the

sample paths of β5, . . . , β8 approach to the horizontal line at -1, and the sample paths of

β9, . . . , β2000 overlap around the horizontal line at 0. The plot also shows that the estimates

of β1, β2, . . . , β8 are slightly biased, which might be due to the shrinkage prior we used.

Figure 1(b) shows the marginal inclusion probability of the variables β1, β2, . . . , βp. From

this graph, we can see that each of the 8 true variables (indexed 1-8) has a marginal inclusion

probability close to 1, while all false variables have a marginal inclusion probability close

to 0. By the median probability rule Barbieri and Berger (2004), the true model can be

correctly identified. In summary, this example shows that the extended LEnKF can be

applied to non-Gaussian inverse problems.

10

Figure 1: Langevinized EnKF for large-scale generalized linear regression: (a) Sample

paths of β1, β2, . . . , β2000 across iterations, where β̂i, for each i ∈ {1, 2, . . . , 2000}, was calcu-
lated by averaging over the ensemble at each iteration; (b) marginal inclusion probabilities
of all covariates x1, . . . , x2000, where the covariates are shown in the rank of marginal inclu-
sion probabilities.

For this example, we set the prior hyperparameter α1 at the level of 1/p, following

the suggestion from Narisetty and He (2014). This setting is robust for high-dimensional

Bayesian variable selection, especially in the big data scenario of this example where the

total sample size N is much larger than p.

3.2 A Nonlinear Non-Gaussian Example

Consider a nonlinear logistic regression reformulated in the following equations:

yi = 0xi,0 +
10x2

i,1

1+x2
i,2

+ 5 sin(xi,3xi,4) + xi,5 + 0xi,6 + · · ·+ 0xi,99 + ϵi,

zi ∼ ψ (·|yi) = Bernoulli(1/1 + exp(−yi)),
(3.3)

where i ∈ {1, 2, · · · , N} indexes the observations, ϵi ∼ N (0, σ2), and xi,1, xi,2, . . ., xi,99 are

standard Gaussian random variables and have a mutual correlation coefficient of 0.5. The

dataset was simulated with the sample size N = 200, 000, where half of zi’s are 1 and the

other half are 0.

Suppose that the state propagator in (3.3) is unknown, and we modeled it by a 3-

hidden-layer neural network, which consists of 100 input units including a bias unit, 5

units on each hidden layer, and one unit on the output layer. The LeakyRelu σ(x) =

1(x<0)(0.1x) + 1(x>=0)(x) is used as the activation function. Let β denote the parameter

vector, including weights and bias, of the neural network. Let g(x,β) denote the neural

11

network function. With the variance-splitting state augmentation method (Zhang et al.,

2023), we can rewrite the nonlinear logistic regression model as

y
(1)
t = g(xt,β) + ε

(1)
t , θT

t = (βT , (y
(1)
t)T), ε

(1)
t ∼ Nn(0, ασ

2In), (3.4)

yt = Htθt + ε
(2)
t = y

(1)
t + ε

(2)
t , ε

(2)
t ∼ Nn(0, (1− α)σ2In), (3.5)

zt ∼ ψ(·|yt), (3.6)

where (xt, zt) denotes a mini-batch of the dataset drawn at stage t, n is the mini-batch size,

α is called the variance splitting proportion, Ht = (0, I) is chosen such that Htθt = y
(1)
t ,

the density of θt is given by π(θt) = π(β)π(y
(1)
t |β), and π(β) denotes the prior density

function of β. In this paper, we assume that the components of β are a priori independent

and each follows a mixture Gaussian distribution:

α1N (0, τ21) + (1− α1)N (0, τ20), (3.7)

where we set α1 = 0.01, τ21 = 1 and τ20 = 0.05 for this example.

Algorithm 1 was applied to solve the linear inverse problem formed by (3.5)-(3.6), where

we set the variance split proportion α = 0.9, the ensemble size m = 20, the mini-batch size

n = 100, iteration time K = 5, and the total number of stages T = 20, 000. In addition,

The learning rate was set to ϵt,k = 5× 10−4/k0.9 with for k = 1, · · · ,K.

In the forecast step, if t > 0 and k = 1, we let

θa,i
t,0 =

 βa,i
t−1,K

y
(1),i
t,0

 , y
(1),i
t,0 ∼ π(y|βa,i

t−1,K, zt) ∝ ψ(zt|y)π(y|βa,i
t−1,K),

where ψ(·) is a Bernoulli distribution, and y|βa,i
t−1,K ∼ Nn(g(xt,β

a,i
t−1,K), ασ

2In).

In the imputation step of iteration t, we drew yi
t,k ∼ π(y|θf,i

t,k, zt) ∝ ψ(zt|y)π(y|θf,i
t,k),

where yit,k|θ
f,i
t,k ∼ Nn(Htθ

f,i
t,k, (1−α)σ2In), and zt,l|y ∼ Bernoulli(exp(yl)) for l = 1, · · · , n.

Figure 2 summarizes the results for one dataset. The results for other datasets are simi-

lar. Figure 2(a) shows the marginal inclusion probabilities of all input variables x1, x2, . . . , xp
with a cutoff value of 0.5 (red dash line). The results are very encouraging: Each of the

true variables (indexed 1-5) has a marginal inclusion probability close to 1, while each of the

false variables has a marginal inclusion probability close to 0. Figure 2(b) shows the scatter

plot of the response Y and its fitted value for 1,000 randomly selected training samples, 500

for true Y = 1 and 500 for true Y = 0. Figure 2(c) shows the scatter plot of the response

Y and its predicted value for 400 test samples, 200 for true Y = 1 and 200 for true Y = 0.

Table 1 summarizes the fitting and prediction results of the extended LEnKF over 10

simulated data sets in five metrics, namely, accuracy, precision, recall, F1 score and AUC

value (i.e., the area under the ROC curve), for which the average values over 10 data sets

were reported with the standard deviation given in the parentheses. Here the ROC curve

refers to the receiver operating characteristic curve, which graphs the true positive rate

(TPR) against the false positive rate (FPR) at various threshold values. The ROC curve

12

0 1 2 3 4 5 80 25 86 88 10 44 66 78 91 98 43 61 37 36

Variables

0.0

0.2

0.4

0.6

0.8

1.0

m
ar
gi
na

l i
nc

lu
sio

n
pr
ob

ab
ilit

y
fo
r v

ar
ia
bl
e

(a)

0 100 200 300 400 500
Y

0.0

0.2

0.4

0.6

0.8

1.0

Fit
te
d
Va

lu
e

(b)

0 50 100 150 200
Y

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
ed

 V
al
ue

(c)

Figure 2: Extended Langevinized EnKF for a nonlinear classification example: (a)
marginal inclusion probabilities of the variables, where the variables are shown in the rank
of marginal inclusion probabilities; and (b) fitted value of Y (grey dot for true Y = 1, red
cross sign for true Y = 0, randomly selected 500 observations for each class); (c) predicted
value of Y (grey dot for true Y = 1, red cross sign for true Y = 0, randomly selected 200
observations for each class).

Table 1: Fitting and prediction results produced by the extended LEnKF for 10 simulated
data sets, where the averages of the respective quantities, along with their standard devia-
tions (given in the parentheses), are reported. The average CPU time for each run is 2630
seconds on a computer with Apple M1 chip and 64GB memory.

Accuracy Precision Recall F1 score AUC

Fitting 0.8479 (0.0054) 0.8858 (0.0096) 0.8316 (0.0160) 0.8563 (0.0061) 0.9278 (0.0038)

Prediction 0.8659 (0.0035) 0.8843 (0.0116) 0.8582 (0.0120) 0.8704 (0.0024) 0.9458 (0.0038)

13

has often been used to assess the performance of a classification model, with the AUC value

serving as a global measure for its classification ability. Refer to the Appendix for the

definitions of the above metrics, and refer to Fawcett (2006) for more discussions about the

use of ROC curves.

In summary, this example shows that the extended LEnKF provides an effective and fea-

sible algorithm for training Bayesian neural networks for nonlinear non-Gaussian problems.

3.3 Dynamic Poisson Spatial Model

We illustrate the performance of Algorithm 2 using a synthetic cloud-motion data set, which

represents cloud intensities (i.e., counts) at p = 300 locations along with a spatial transect at

T = 80 time points. The data approximately follows an over-dispersed Poisson distribution,

and can be modeled as follows:

βt|βt−1 ∼ Np(M(γ)βt−1,Q(τ2, λ)),

yt|βt ∼ Nnt(Htβt, σ
2Int),

zt,l|yt ∼ Pois(exp(yt,l)), l = 1, . . . , nt,

(3.8)

where γ = (γ1, γ2, γ3), M(γ) is a tri-diagonal matrix with γ1 on the main diagonal, γ2 on the

first upper sub-diagonal, and γ3 on the first lower sub-diagonal. The state evolution error was

assumed to exhibit spatial dependence in a Matern covariance matrix such that the (i, j)-th

element of Q is given by Qi,j = τ2 Mat (|i− j|/λ) , where Mat(d) = (1+
√
3d) exp(−

√
3d).

Ten data sets were simulated from the model (3.8). In the simulation, we set nt =

270 and Ht as an nt × p-selection matrix; that is, the observation locations were different

for different stages. For the parameters, we set γ = (0.3, 0.3, 0.3), τ = 1, σ = 0.1, and

λ = 1. For the initial state values, we set β0 ∼ Np(µ0,Σ0), where µ0 is a constant vector

of −2, and (Σ0)i,j = 0.2Mat(|i− j|/5). Figure 3 shows the state values at 300 locations for

t = 1, 2, . . . , 80, whose chaotic behavior implies the challenge of the problem.

Algorithm 2 was applied to the data sets to re-estimate the states β1,β2, . . . ,βT . The

algorithm was run with the ensemble size m = 20, the stage iteration number K = 20, k0 =

K/2, and the learning rate ϵt,k = 0.1/max(10, k)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T .

The imputation step was accomplished using the Metropolis-Hastings sampler, where each

component of yt was imputed independently and a Gaussian random walk proposal with a

variance of 0.01 was employed. For each component of yt, the Metropolis-Hastings sampler

was run for 20 iterations and the last sample was imputed as the imputed value. At each

stage t, the state was estimated by averaging over the ensembles generated in the last K/2
iterations, and the accuracy of the estimate was measured by the root mean-squared error

(RMSE):

RMSEt = ∥β̂t − βt∥2/
√
p,

where β̂t denotes the estimate of βt. For comparison, the MCMC-EnKF algorithm Katzfuss

et al. (2020) (see Algorithm A2 in the Appendix for the detail) was applied to this example,

14

0 11 22 33 44 55 66 77 88 99 11
0

12
1

13
2

14
3

15
4

16
5

17
6

18
7

19
8

20
9

22
0

23
1

24
2

25
3

26
4

27
5

28
6

29
7

Space

0
4

8
12

16
20

24
28

32
36

40
44

48
52

56
60

64
68

72
76

Ti
m
e

−6

−4

−2

0

2

4

6

Figure 3: State values for t = 1, 2, . . . , T

where the imputation was done as for the extended LEnKF, but the states were estimated

using the EnKF. The ensemble size was set to m = 20 as well.

Figure 4 compares the estimates of two randomly selected components of βt produced

by LEnKF and MCMC-EnKF for one simulated data set. The comparison indicates that

LEnKF provides better state estimates as well as better quantification for the uncertainty of

the estimates. For example, in Figure 4(b), the state values around stages 30−40 are covered

by the confidence band of LEnKF, but not by that of MCMC-EnKF. More importantly, as

t becomes large, LEnKF can capture pattern of each component of βt, while MCMC-EnKF

cannot.

Figure 5 (a) compares the coverage rates of the 95% confidence intervals produced by

LEnKF and MCMC-EnKF, where the coverage rate was calculated by averaging over 300

state components at each stage t ∈ {1, 2, . . . , 80}. Figure 5(b) shows the averaged coverage

rates over 10 data sets. The comparison shows that LEnKF produced the coverage rates

closing to their nominal level, while MCMC-EnKF did not. This implies that LEnKF is

able to correctly quantify uncertainty of the estimates as t becomes large. Figure 5(c) shows

that LEnKF produced smaller values of RMSEt’s than MCMC-EnKF.

Table 2 summarizes the numerical results of LEnKF and MCMC-EnKF algorithms for

example, where both choices k0 = K/2 and k0 = K − 1 have been tried for LEnKF. In the

table, we used MRMSE(β) to denote the mean of the root-mean-squared-error of the esti-

15

(a)

(b)

Figure 4: State estimates produced by LEnKF and MCMC-EnKF for a simulated cloud-
motion data set along with stages t = 1, 2, . . . , 80: each plot corresponds to one randomly
selected component of βt, where the true state values are represented by ‘+’, the estimates
by LEnKF are represented by red lines, the estimates by MCMC-EnKF are represented by
green lines, and their 95% confidence intervals are represented by shaded bands.

16

(a) (b) (c)

0 20 40 60 80
Time

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

extended LEnKF
MCMC-EnKF

0 20 40 60 80
Time

0.2

0.4

0.6

0.8

1.0

C
o
v
e
ra

g
e
 P

ro
b
a
b
ili

ty

extended LEnKF
MCMC-EnKF

0 20 40 60 80
Time

0.0

0.5

1.0

1.5

2.0

Lo
g
a
ri

th
m

 o
f

R
M

S
E

extended LEnKF
MCMC-EnKF

Figure 5: Coverage rates of the 95% confidence intervals produced by the extended LEnKF
and MCMC-EnKF for the stages t = 1, 2, . . . , 80: (a) coverage rates with one data set; (b)
coverage rates averaged over 10 data sets; (c) log(RMSEt) along with stage t.

mates for the states β30,β31, . . . ,βT calculated on one data set, and used ave-MRMSE(β)

to denote the average of MRMSE(β) over 10 data sets. Similarly, we used MCP to denote

the coverage probability averaged over states β30,β31, . . . ,βT calculated on one data set,

and used Ave-MCP to denote the average MCP over 10 data sets. The comparison shows

that for this example, the extended LEnKF works well with both k0 = K/2 and k0 = K−1,

and it significantly outperforms MCMC-EnKF. For this example, MCMC-EnKF is faster

than the extended LEnKF as it performs only one iteration at each stage, while the extended

LEnKF involves K iterations without subsampling being performed. Note that each itera-

tion of the extended LEnKF requires the inversion of an nt×nt matrix, while MCMC-EnKF

deals with an Nt × Nt matrix. Since matrix inversion has a computational complexity of

Table 2: Comparison of LEnKF and MCMC-EnKF in state estimation for the dynamic
spatial model, where the averages of the respective quantities over 10 data sets, along with
their standard deviations (given in the parentheses), were reported. The average CPU time
(in seconds) was recorded on a personal computer with RAM16GB and 2.9GHz Intel Core
i7 for a single run of the algorithm.

k0 Ave-MRMSE(β) Ave-MCP CPU Time

extended LEnKF K/2 1.1699(0.0126) 0.9561(0.0015) 31.686(0.195)

extended LEnKF K − 1 1.1725(0.0133) 0.9525(0.0017) 26.622(0.215)

MCMC-EnKF - 1.6327(0.0132) 0.9229(0.0023) 2.704(0.033)

17

cubic order in relation to its size, the extended LEnKF can easily outperform MCMC-EnKF

in terms of computation when subsampling is applied.

4 Dynamic Network Embedding

Dynamic networks have been studied in a variety of fields, such as social network analysis,

recommendation systems and epidemiology. Embedding (or latent representation learning)

has been recognized as one of the most promising approaches for dynamic network analysis.

Its basic idea is to learn a low-dimensional vector for each node, which encodes the structural

properties of a node and its neighborhood. Such low-dimensional representations can benefit

a variety of network analytical tasks such as node clustering, link prediction, and graph

visualization. The existing methods for dynamic network embedding can be roughly grouped

into two categories, namely, latent space model-based methods and dynamic graph neural

network-based methods. Refer to Kim et al. (2018), Kazemi et al. (2020) and Skarding et al.

(2021) for recent surveys on this topic.

Although the existing methods work well for many dynamic networks, they are usually

optimization based and fail to capture uncertainty of the embedding vector. An exception is

Sewell and Chen (2015), where the embedding vector is learned using a Metropolis-within-

Gibbs sampler. However, the sampler is not scalable and thus only applicable to small

networks. In what follows, we illustrate that the extended LEnKF algorithm can be used to

learn the embedding vector for dynamic networks. More precisely, we employ the extended

LEnKF algorithm to sample from the filtering distributions of the embedding vector, which

facilitates downstream statistical inference for dynamic networks. It is important to note

that the extended LEnKF algorithm possesses the scalability that is necessary for large-scale

dynamic network analysis.

4.1 Two Latent Space Models

Let Gt be the network of observed pairwise links at time t with Nt nodes. Each node can

be represented by a d-dimensional latent space, where d is pre-specified. Let xt be an dNt-

vector, where the subvector xit = (xd(i−1)+1,t, . . . , xdi,t) represents the embedding vector

of node i at stage t. We assume that the nodes can move in the latent space along with

time/stages, and the embedding vector at time t+1 only depends on the embedding vector

at time t, which is the standard Markov assumption.

Dynamic Social Network Latent (DSNL) Model The first latent space model we

considered in this paper is the DSNL model developed in Sarkar and Moore (2005). In the

18

form of state space models with the subsampling scheme, the DSNL model is given by

xt|xt−1 ∼ NdNt
(xt−1, σ

2
1IdNt

),

yt|xt ∼ Ndnt(Htxt, σ
2
2Idnt),

P (zt|yt) =
∏

i∼j,i,j∈St

pijt
∏

i̸∼j,i,j∈St

(1− pijt),
(4.1)

where St denotes a set of nt randomly selected nodes from the network at stage t; zt denotes

the adjacency matrix formed by the nodes in St; Ht is the selection matrix corresponding

to St; i ∼ j and i ̸∼ j denote existence and absence of a link, respectively; and pijt is the

probability of a link at stage t. Specifically, pijt is defined by

pijt =
1

1 + e(dijt−rijt)
K(dijt) + ρ(1−K(dijt)),

where dijt = ∥yit − yjt∥ is the Euclidean distance between node i and node j in the

latent space at stage t, yit is the latent vector of node i in St, rijt = max(δi,t, δj,t) + 1,

δi,t is the degree of freedom of node i in the network Gt, K(·) is a biquadratic kernel

K(dijt) = (1− (dijt/rijt)
2)2 if dijt < rijt and 0 otherwise, and ρ is a constant noise.

The intuition behind this model is that for any two nodes i and j, we can compare their

distance with their social reach represented by rijt. When the distance is smaller than the

social reach, the probability of connecting node i and node j is high. When the distance is

greater than the social reach, the probability of connection is ρ, which can be considered as

a noise probability.

Dynamic Latent Distance (DLD) Model Another latent space model we considered

in the paper is the DLD model developed in Sewell and Chen (2015). In the form of state

space models with the subsampling scheme, the DLD model is given by

xt|xt−1 ∼ NdNt
(xt−1, σ

2
1IdNt

),

yt|xt ∼ Ndnt
(Htxt, σ

2
2Idnt

),

P (zt|yt) =
∏

i̸=j,i,j∈St

exp (zijtηijt)

1 + exp (ηijt)
,

ηijt : = log

(
P (zijt = 1|yt)

P (zijt = 0|yt)

)
= βin

(
1− dijt

rjt

)
+ βout

(
1− dijt

rit

)
,

(4.2)

where St, Ht, dijt, rit and rjt are as defined in (4.1); and the parameters βin and βout are pre-

specified constants which measure the global popularity and activity effects of the network,

respectively. Note that this model deals with directed networks as well as undirected ones,

while the DSNL model allows undirected edges only. In this paper, we consider undirected

networks only.

19

4.2 A Dynamic Social Network

This section studies a college messaging dynamic network downloaded at https://snap.

stanford.edu/data/. It’s comprised of private messages sent on an online social network at

the University of California, Irvine, where each node represents a user. Users could search

the network for others and then initiate conversation based on profile information. An edge

(u, v, t) means that user u sent a private message to user v at time t. To construct an

undirected user-user interaction network, we set an edge between user u and user v for

day t, if u has messaged v or v has messaged u on day t. The resulting dynamic network

contains 672 users with a time span of 25 days. Figure 6 shows the dynamic network on six

selected days. Our study delves into modeling the dynamics of College Messaging networks,

scrutinizing their structural variations over time..

(a) Day 1 (b) Day 5 (c) Day 10

(d) Day 15 (e) Day 20 (f) Day 25

Figure 6: Dynamics of College Messaging networks on six selected days — Days 1, 5, 10,
15, 20, and 25, scrutinizing their structural variations over time.

We modeled the college messaging network by the DSNL and DLD models and trained

the models using Algorithm 2. For the DSNL model, we set the constant noise parameter

ρ = 0.001, the ensemble size m = 20, the standard deviations σ1 = σ2 = 0.1, the latent

space dimension d = 5, the sample size nt = 250, the iteration number K = 20, and

the learning rate ϵt,k = 0.4/max(10, k)0.6 for k = 1, 2, . . . ,K and t = 1, 2, . . . , T . We

applied the Metropolis-Hastings algorithm for imputation, where a Gaussian random walk

20

Table 3: Comparison of the extended LEnKF and MCMC-EnKF algorithms for the college
messaging dynamic network, where “Avg-AUC” denotes the averaged AUC values over all
25 days and its standard deviation is given in the parentheses. The CPU time (in seconds)
was recorded on a personal computer with RAM16GB and 2.9GHz Intel Core i7 for a single
run of each algorithm.

Algorithm Model Avg-AUC CPU Time(seconds)

extended LEnKF DSNL 0.8702(0.0177) 2014

DLD 0.9388(0.0128) 1700

MCMC-EnKF DSNL 0.8670(0.0186) 17201

DLD 0.9385(0.0128) 13008

proposal with variance 0.01 was used. To impute the latent vector for a selected node, the

Metropolis-Hastings algorithm was run for 50 iterations and the sample simulated at the last

iteration was output as the imputed value. At each stage t, the state vector was estimated

by averaging over the ensemble and over the last K/2 iterations. For the DLD model, we

set βin = βout = 1.5, and set other parameters to the same values as those used for the

DSNL model. Recall that βin and βout serve as measurements for the global popularity and

activity effects of the network, respectively.

For comparison, the MCMC-EnKF algorithm was applied to the two models, where the

latent vector of each node was imputed in the same procedure as used for the DSNL and

DLD models. Table 3 compares the AUC values (i.e., the areas under the ROC curves)

produced by the two algorithms with the DSNL and DLD models. The comparison shows

that the extended LEnKF algorithm produced almost the same AUC values as the MCMC-

EnKF algorithm, but cost much less CPU time. The MCMC-EnKF algorithm is more

costly as it consists of a single iteration at each stage and does not allow the use of mini-

batch data. As a result, it needs to invert an (dNt) × (dNt)-matrix for calculating the

Kalman gain matrix at each stage t, which makes the algorithm unscalable for large-scale

networks. In contrast, the extended LEnKF algorithm is essentially a sequential stochastic

gradient MCMC algorithm, which is scalable with respect to large-scale networks due to the

subsampling scheme it employed in simulations.

To show that the extended LEnKF algorithm can be used for uncertainty quantifica-

tion for dynamic networks, we plotted in Figure 7 and Figure 8 the box-plots of the link

probabilities produced with the DSNL and DLD models, respectively. For comparison, the

link probabilities produced by the MCMC-EnKF algorithm are also plotted. As implied

by the plots, uncertainty of the link probability can be easily measured based on the sam-

ples produced by the extended LEnKF algorithm. The MCMC-EnKF produced similar

box plots to the extended LEnKF for this example. However, as implied by Figure 5, they

might be biased in terms of inference for other examples. Moreover, as implied by Table 3,

21

MCMC-EnKF is much more costly than the extended LEnKF.

5 Conclusion

This paper has extended the LEnKF algorithm to non-Gaussian systems by introducing a

latent Gaussian measurement variable to the state space model. The proposed algorithm

converges to the right filtering distribution as the number of stages becomes large, while

inheriting the scalability of LEnKF with respect to the state dimension and sample size.

The proposed algorithm can be applied to sample from the filtering distribution of the

embedding vector and thus downstream statistical inference for the dynamic networks.

The extended LEnKF can be further extended in many different ways. In methodology

development, it can be easily combined with the state-augmentation method (Anderson,

2001) to simultaneously estimate the states and parameters of the dynamic system. With

this combined method, for example, the parameters βin and βout of the DLD model can

be adaptively determined instead of being specified as constants. In applications, LEnKF

can be easily applied to learn the latent representation for a static network by treating it

as an inverse problem. A further comparison of this method with the existing methods,

see Kazemi et al. (2020) for a survey, is of interest. Other than the latent space models,

the extended LEnKF algorithm can also be used with the dynamic graph neural networks

to learn embedding vectors for dynamic networks, where, as shown in Zhang et al. (2023),

the recurrent neural network or long-short-term-memory (LSTM) network can be easily

expressed as a state space model.

Acknowledgments

Liang’s research is support in part by the NSF grants DMS-2015498 and DMS-2210819, and

the NIH grant R01-GM126089. The authors thank the editor, associate editor, and two

referees for their constructive comments, which have led to significant improvement of this

paper.

Appendix

A Metrics for binary classifiers

Consider an experiment with P positive instances and N negative instances under certain

conditions. The four possible outcomes of a binary classifier can be represented in Table

A1.

The metrics used in the paper are defined as follows:

22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=1
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=5
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=10
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=15
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=20
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=25
extended LEnKF
MCMC EnKF
Link Label

Figure 7: Box-plots of link probabilities produced with the DSNL model: fitted link proba-
bilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are plotted for
day 1, 5, 10, 15, 20 and 25.

23

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=1
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=5
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=10
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=15
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=20
extended LEnKF
MCMC EnKF
Link Label

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

T=25
extended LEnKF
MCMC EnKF
Link Label

Figure 8: Box-plots of link probabilities produced with the DLD model: fitted link proba-
bilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are plotted for
day 1, 5, 10, 15, 20 and 25.

24

Table A1: Outcomes of a classifier

Classified Values

P N

P True Positive (TP) False Negative (FN)
True values

N False Positive (FP) True Negative (TN)

• Accuracy= TP+TN
TP+TN+FP+FN ;

• Precision= TP
TP+FP ;

• Recall= TP
TP+FN , which is also known as sensitivity or true positive rate (TPR);

• Specificity= TN
TN+FP , which is also known as true negative rate (TNR);

• False positive rate (FPR)=1−Specificity;

• F1 score=2 presision×recall
precision+recall .

B Two Existing Algorithms

This section presents two existing algorithms, namely, the LEnKF algorithm (Zhang et al.,

2023) for Gaussian linear inverse problems and the MCMC-EnKF algorithm (Katzfuss et al.,

2020) for data assimilation problems, which are described in Algorithm A1 and Algorithm

A2, respectively.

25

Algorithm A1: LEnKF for Linear Inverse Problems (Zhang et al., 2023)

(i) Initialization: Initialize an ensemble {xa,10 , xa,20 , . . . , xa,m0 }, where m is the
ensemble size.
for t=1,2,. . . ,T do

(ii) Subsampling: Draw without replacement a mini-batch data, denoted by
(yt, Ht), of size n from the full dataset of size N .
Set Qt = ϵtIp, Rt = 2Vt, and the Kalman gain matrix
Kt = QtH

T
t (HtQtH

T
t +Rt)

−1.
for i=1,2,. . . ,m do

(iii) Forecast: Draw wi
t ∼ Np(0,

n
NQt) and calculate

xf,it = xa,it−1 + ϵt
n

2N
∇ log π(xa,it−1) + wi

t. (B.1)

(iv) Analysis: Draw vit ∼ Nn(0,
n
NRt) and calculate

xa,it = xf,it +Kt(yt −Htx
f,i
t − vit)

∆
= xf,it +Kt(yt − yf,it). (B.2)

end

end

Algorithm A2: MCMC-EnKF for Data Assimilation (Katzfuss et al., 2020)

(i) Initialization: Start with an initial ensemble xa,1
0 ,xa,2

0 , . . . ,xa,m
0 drawn from

the prior distribution π(x0), where m denotes the ensemble size.
for t=1,2,. . . ,T do

(ii) Forecast: For i = 1, 2, · · · ,m, draw wi
t ∼ Np(0, Ut), calculate

xf,i
t = g(xa,i

t−1) + wi
t, (B.3)

and calculate the sample covariance matrix of xa,1
t ,xa,2

t , . . . ,xa,m
t and denote it

by Ct.
(iii) Imputation: Draw yi

t ∼ π(y|xf,i
t , zt) ∝ ρ(zt|y)f(y|xf,i

t), where

yi
t|x

f,i
t ∼ NNt

(Htx
f,i
t , Vt), and Ht is an Nt × p-dimensional matrix.

(iv) Analysis: For i = 1, 2, · · · ,m, draw vit ∼ NNt
(0, Vt) and set

xa,i
t = xf,i

t + K̂t(y
i
t −Htx

f,i
t − vit)

∆
= xf,i

t + K̂t(y
i
t − yf,i

t), (B.4)

where K̂t = CtH
T
t

(
HtCtH

T
t + Vt

)−1
form an estimator for Kalman Gain Matrix

Kt = StH
T
t

(
HtStH

T
t + Vt

)−1
and St denotes the covariance matrix of xt

end

26

References

Anderson, J. (2001), “An ensemble adjustment filter for data assimilation,” Monthly

Weather Review, 129, 2884–2903.

Barbieri, M. and Berger, J. (2004), “Optimal predictive model selection,” Annals of Statis-

tics, 32, 870–897.

Bergou, E., Gratton, S., and Mandel, J. (2019), “On the convergence of a non-linear ensem-

ble Kalman smoother,” Applied Numerical Mathematics, 137, 151–168.

Bhatia, K., Ma, Y.-A., Dragan, A. D., Bartlett, P. L., and Jordan, M. I. (2019), “Bayesian

Robustness: A Nonasymptotic Viewpoint,” arXiv preprint arXiv:1907.11826.

Cappé, O., Guillin, A., Martin, J., and Robert, C. (2004), “Population Monte Carlo,”

Journal of Computational and Graphical Statistics, 13, 907–929.

Dalalyan, A. S. and Karagulyan, A. G. (2017), “User-friendly guarantees for the Langevin

Monte Carlo with inaccurate gradient,” CoRR, abs/1710.00095.

Evensen, G. (1994), “Sequential data assimilation with a nonlinear quasi-geostrophic model

using Monte Carlo methods to forecast error statistics,” J. Geophys. Res., 99, 10143–

10162.

Fawcett, T. (2006), “An introduction to ROC analysis,” Pattern Recognit. Lett., 27, 861–874.

Geman, S. and Geman, D. (1984), “Stochastic relaxation, Gibbs distributions and the

Bayesian restoration of images,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 6, 721–741.

Gordon, N., Salmond, D., and Smith, A. (1993), “Novel approach to nonlinear/non-Gaussian

Bayesian state estimation,” IEE Proceedings F - Radar and Signal Processing, 140, 107–

113.

Hastings, W. (1970), “Monte Carlo sampling methods using Markov chain and their appli-

cations,” Biometrika, 57, 97–109.

Julier, S. J. and Uhlmann, J. K. (1997), “New extension of the Kalman filter to nonlinear

systems,” in Signal Processing, Sensor Fusion, and Target Recognition VI, ed. Kadar, I.,

SPIE, vol. 3068, pp. 182 – 193.

Kalman, R. (1960), “A new approach to linear filtering and prediction problems,” Journal

of Basic Engineering, 82, 35–45.

Katzfuss, M., Stroud, J. R., and Wikle, C. K. (2020), “Ensemble Kalman Methods for

High-Dimensional Hierarchical Dynamic Space-Time Models,” Journal of the American

Statistical Association, 115, 866–885.

27

Kazemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., and Poupart, P.

(2020), “Representation Learning for Dynamic Graphs: A Survey,” Journal of Machine

Learning Research, 21, 1–73.

Kim, B., Lee, K., Xue, L., and Niu, X. (2018), “A Review of Dynamic Network Models with

Latent Variables,” Statistics Surveys, 12, 105–135.

Kwiatkowski, E. and Mandel, J. (2015), “Convergence of the square root ensemble Kalman

filter in the large ensemble limit,” SIAM/ASA J. Uncertainty Quantification, 3, 1–17.

Law, K., Tembine, H., and Tempone, R. (2016), “Deterministic Mean-Field Ensemble

Kalman Filtering,” SIAM J. Sci. Comput., 38, A1251–A1279.

Le Gland, F., Monbet, V., and Tran, V.-D. (2009), “Large sample asymptotics for the

ensemble Kalman filter,” Research report RR-7014, INRIA.

Li, C., Chen, C., Carlson, D. E., and Carin, L. (2016), “Preconditioned Stochastic Gradient

Langevin Dynamics for Deep Neural Networks,” in AAAI, pp. 1788–1794.

Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953), “Equation

of state calculations by fast computing machines,” Journal of Chemical Physics, 21, 1087–

1091.

Narisetty, N. N. and He, X. (2014), “Bayesian variable selection with shrinking and diffusing

priors,” Annals of Statistics, 42, 789–817.

Nemeth, C. and Fearnhead, P. (2019), “Stochastic Gradient Markov Chain Monte Carlo,”

arXiv:1907.06986.

Sarkar, P. and Moore, A. (2005), “Dynamic social network analysis using latent space mod-

els,” ACM SIGKDD Explorations Newletter, 7, 31–40.

Sewell, D. K. and Chen, Y. (2015), “Latent space models for dynamic networks,” Journal

of the American Statistical Association, 110, 1646–1657.

Shumway, R. and Stoffer, D. (2006), Time Series Analysis and Its Applications with R

Examples, New York: Springer.

Skarding, J., Gabrys, B., and Musial, K. (2021), “Foundations and Modeling of Dynamic

Networks Using Dynamic Graph Neural Networks: A Survey,” IEEE Access, 9, 79143–

79168.

Song, Q., Sun, Y., Ye, M., and Liang, F. (2020), “Extended stochastic gradient Markov chain

Monte Carlo for large-scale Bayesian variable selection,” Biometrika, 107, 997–1004.

Uhlmann, J. K. (1992), “Algorithms for Multiple-Target Tracking,” American Scientist, 80,

128–141.

28

Welling, M. and Teh, Y. W. (2011), “Bayesian Learning via Stochastic Gradient Langevin

Dynamics,” in ICML, pp. 681–688.

Zhang, P., Song, Q., and Liang, F. (2023), “A Langevinized Ensemble Kalman Filter for

Large-Scale Dynamic Learning,” Statistica Sinica, in press: doi:10.5705/ss.202022.0172.

29

