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SUMMARY

State estimation for large-scale non-Gaussian dynamic systems remains an un-
resolved issue, given nonscalability of the existing particle filter algorithms. To
address this issue, this paper extends the Langevinized ensemble Kalman filter
(LEnKF) algorithm to non-Gaussian dynamic systems by introducing a latent
Gaussian measurement variable to the dynamic system. The extended LEnKF
algorithm can converge to the right filtering distribution as the number of stages
become large, while inheriting the scalability of the LEnKF algorithm with re-
spect to the sample size and state dimension. The performance of the extended
LEnKF algorithm is illustrated by dynamic network embedding and dynamic
Poisson spatial models.
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1 Introduction

State space models (SSMs) are ubiquitous in modeling dynamic systems in fields as diverse
as biology, finance, and engineering. Consider a general form of non-Gaussian SSMs:

vy =g(xe—1) +ug,  up ~Np(0,Uy),

z ~ f(|we), 1)

where t indexes stages for t = 1,2,...,T; 2; € RP and z; € R are called, respectively, the
state and measurement variables/vectors at stage t; p is the dimension of the state variable
x¢; and NV, is the dimension of the measurement variable z;. For the problems where a single
measurement is taken from each sample, N; represents the sample size at stage ¢t. In model
(1.1), the first equation is called the state evolution equation and the state propagator g(-)
can be highly nonlinear, and the second equation is called the measurement equation and the
distribution f(-) can deviate from Gaussian. Let z1.+ = (21, 22, ..., 2¢) denote the collection
of observations up to stage t. A major goal of the study of the SSM is to infer the so-called
filtering distribution m(z¢|z1.¢) such that downstream statistical inference can be conducted
for the dynamic system. In the study, it is often assumed that the model (1.1) contains no
unknown parameters. Otherwise, the state-augmentation (Anderson, 2001) scheme can be
employed to estimate the states and parameters in a simultaneous manner.



The model (1.1) has been studied in the literature for over half a century. The simplest
case of the model is that g(-) is linear, f(-) is Gaussian with the mean can be represented as a
linear function of x;. In this case, the filtering distribution is still Gaussian, and the Kalman
filter (Kalman, 1960) provides a recursive formula for analytically updating the mean and
variance of the filtering distribution. For the nonlinear case where both the state propagator
and the mean function of f(-) can be nonlinear, extensions of the Kalman filter, such as
extended Kalman filter (Uhlmann, 1992) and unscented Kalman Filter (Julier and Uhlmann,
1997), have been developed via appropriate linearization of the system. Rather than directly
calculating the mean and variance of the filtering distribution, the ensemble Kalman filter
(EnKF) (Evensen, 1994) proposed to approximate the filtering distribution using particles,
while the linearization technique developed in the extended Kalman filter is still applied.
For high-dimensional problems, i.e., p is large, the ensemble size is typically much smaller
than p, which leads to dimension reduction and computational feasibility compared to the
Kalman filter (Shumway and Stoffer, 2006). In particular, the storage for the covariance
matrix of the filtering distribution can be much reduced, and the high-dimensional particles
can be efficiently generated via a forecast-analysis procedure. Since it was proposed, the
EnKF has gained enormous popularity in atmospheric and oceanic sciences. However, as
shown by Law et al. (2016), the EnKF converges only to a mean-field filter, which provides
the optimal linear estimator of the conditional mean but not the filtering distribution except
for linear systems in the large sample limit. Similar results can be found in Le Gland et al.
(2009), Bergou et al. (2019) and Kwiatkowski and Mandel (2015).

Other than the EnKF, the particle filter (Gordon et al., 1993), also known as sequential
importance sampler, has been used to infer the filtering distribution for the model (1.1),
which works for the general case of nonlinear and/or non-Gaussian data. However, it be-
comes impractical when the state dimension is high and/or the total number of stages is
large, as it suffers from the sample degeneracy issue (Cappé et al., 2004) under these sce-
narios. Moreover, the particle filter is not scalable with respect to the sample size N; due
to its Metropolis sampling nature, where a likelihood function needs to be evaluated with
all available data when a particle is generated at each stage.

Quite recently, Zhang et al. (2023) proposed a Langevinized EnKF (LEnKF) algorithm
for inference of the filtering distribution for the model (1.1) with f(-) being assumed to
be Gaussian. LEnKF works by reformulating the EnKF under the framework of Langevin
dynamics. It inherits the forecast-analysis procedure from the EnKF and the use of mini-
batch data from the stochastic gradient Langevin-type algorithms, which make it scalable
with respect to both the dimension and the sample size. Moreover, LEnKF overcomes the
sample degeneracy issue suffered by the particle filter as well as the filtering distribution
estimation issue suffered by the EnKF. Under the big data scenario, LEnKF is shown to
converge to the right filtering distribution in Wasserstein distance as ¢ becomes large.

Towards filtering distribution estimation for the non-Gaussian case of the model (1.1),
Katzfuss et al. (2020) proposed to use Markov chain Monte Carlo (MCMC), e.g., the
Metropolis-Hasting algorithm (Metropolis et al., 1953; Hastings, 1970) and Gibbs sam-



pler (Geman and Geman, 1984), and EnKF in a combined manner, where the Gaussian
measurement variables required by the EnKF were imputed using a MCMC algorithm at
each stage. However, since the EnKF doesn’t converge to the right filtering distribution,
so doesn’t their algorithm. Moreover, their algorithm is not scalable with respect to the
sample size as the algorithm always performs in the scale of entire data set.

In this paper, we extend LEnKF to non-Gaussian systems by introducing a latent Gaus-
sian measurement variable to the model (1.1). The proposed algorithm can converge to
the right filtering distribution as the number of stages becomes large, while inheriting the
scalability of LEnKF with respect to the state dimension and the sample size. The pro-
posed algorithm is applied to dynamic networks for sampling from the filtering distribution
of the node embedding vectors, which facilitates the downstream statistical inference for the
dynamic networks.

The remaining part of this paper is organized as follows. Section 2 describes the proposed
algorithm with justification for its validity. Sections 3 illustrates the performance of the
proposed algorithm using some simulated data sets. Section 4 applies the proposed algorithm
to inference of large-scale dynamic networks. Section 5 concludes the paper with a brief
discussion.

2 Extended Langevinized Ensemble Kalman Filter

2.1 A Brief Review of the LEnKF Algorithm

Motivated by the observation that the model (1.1) forms a Bayesian inverse problem at each
stage, where the state evolution equation implies a prior distribution of z; as shown later,
let’s start with a Bayesian inverse problem for the linear regression:

y=Hzx+n, (2.1)

where 7 ~ Ny (0,T) for some covariance matrix I', y € RY, and # € RP is an unknown
continuous parameter vector. To accommodate the case that N is extremely large, we
assume that y can be partitioned into B = N/n independent and identically distributed
blocks {@1,...,Us}, where each block is of size n and has the positive definite covariance
matrix V' such that I' = diag[V,--- , V].

Let 7(x) denote the prior density function of z, which is assumed to be differentiable
with respect to x. Let w(z|y) denote the posterior distribution. LEnKF provides a uniform
framework for dealing the inverse and data assimilation problems. It reformulates the model
(2.1) as a state-space model through subsampling and Langevin diffusion:

n
e =21+ €55 Viog m(ze—1) + wy, 22)

yr = Hyxy + vy,

where €, denotes the learning rate used at stage t, w; ~ Np(0, £ Q) with Q¢ = eI, y
denotes a block randomly drawn from {@1,...,98}, v ~ Np(0,V;) with V; = V, and H;



is a submatrix of H extracted with the corresponding vector y;. In this state-space model,
at each stage t, the state x; evolves according to an Euler-discretized Langevin equation of
the prior distribution, and the measurement varies with subsampling. To simulate from the
dynamic system (2.2), LEnKF works as described in Algorithm A1l in the Appendix.

For the linear inverse problem, as shown in Zhang et al. (2023), LEnKF is mathematically
equivalent to, but practically much more efficient than, a parallel preconditioned stochastic
gradient MCMC algorithm for which each chain (represented by a member of the ensemble)
iterates in the following equation:

6 o~
=z 1+ %EtVlogw(x§71|yt) + ey, (2.3)

where z{ denotes a generic member of the ensemble produced by Algorithm Al in the
analysis step of stage ¢, ¥; = (I — KyH;) is the preconditioning matrix, e; is a zero
mean Gaussian random error with covariance Var(e;) = €%, and Vlog m(xd_q|lys) =
YHIV, (g — Hyad 1) + Viog m(z¢_;) denotes an unbiased estimate of V log m(zf_;|y;).

LEnKF makes use of both techniques, subsampling and the forecast-analysis procedure.
The former makes it scalable with respect to the sample size N, and the latter makes it
scalable with respect to the dimension p. As shown in Zhang et al. (2023), for a high-
dimensional problem with n < p, the computational complexity of LEnKF can be much
lower than directly simulating from (2.3). The latter requires an LU-decomposition of 3,
which has a computational complexity of O(p?). While LEnKF gets around this issue with
the forecast-analysis procedure, making it scalable with respect to the dimension of the state
variable. By the analysis of Zhang et al. (2023), the computational complexity of LEnKF
is actually the same as that of the parallel stochastic gradient Langevin dynamics (SGLD)
algorithm Welling and Teh (2011), which consists of m chains and each chain evolves via
the iteration

ri=xt_ + %@m log m(zi_i|y) + &, i=1,2,...,m,

where & ~ N,(0,€1,), and all chains are updated based on the same mini-batch data
Y+ at each iteration t. However, as implied by Theorem 1 of Li et al. (2016), LEnKF
can converge much faster than the parallel SGLD algorithm Welling and Teh (2011), since
all eigenvalues of the preconditioning matrix »; can be much less than 1 by noting that
Y= %I —KHy) = (I —eH] (e,HH] +2V;)~'H;) under the assumption V; is positive
definite.

Zhang et al. (2023) has extended Algorithm Al to the Gaussian dynamic system

Ty = g(@p—1) + U, U~ Np(O, Uy),
ye = Hyxy +m, me ~ Ny, (0,T),

based on the Bayesian formula

_ fyelz)m(@e|y 1)
) = T ey &9




where y; € RVt denotes the samples at stage ¢, y;., = {y1,¥2,--.,y:} denotes the collection
of the observations up to stage ¢t. To ensure the particles simulated at stage t to converge to
the filtering distribution 7(zt|y;..), they employed the predictive distribution m(x¢|yq.._1)
as the prior according to the Bayesian formula. To estimate the gradient V log m(xt|yq.._1),
they employed an importance resampling procedure, see Zhang et al. (2023) for the detail. To
make the algorithm scalable with respect to big data, they employed a mini-batch strategy
under the assumption that y; can be partitioned into B, = Ny/n; blocks such that y, , =
Hypxy + v, b = 1,2,... B, where 3, is a block of n; observations randomly drawn
from v = {Ge1,-- -, Y.B, }» Ve ~ Np,(0,V;) for all k, and v, ’s are mutually independent.
Finally, they showed that the state z; of the dynamic system (2.4) at stage ¢ can be simulated
by applying Algorithm A1l to simulate from the following dynamic system

Ttk = Tpp—1— EtﬂUfl(% k-1 = 9(Tt-16-1)) + Wi ks

o 2N, | ’ ’ (2.6)
Yok = Hy ke k + Vg s

for k =1,2,..., where x4 9 = g(x4—1) + w; F4—1,5—1 denotes a sample drawn from 7(z;_1]
Tik—1, Y1.4—1) at iteration k of stage t through the importance resampling procedure;
we g ~ Np(0, %Qt)k) with Q. = €, ,Ip, and p is the dimension of z;. The gradient term
~U; Y(4—1 —9(Z1-1,5-1)) forms an unbiased estimator of Vlog (¢ ;—1|y;.,_,) under the
assumption that the samples in X;_; follows from the distribution 7(z;—1|y1.+—1) and the
sample size |X;_1| is sufficiently large. This assumption has often been used in theoretical
analysis of sequential Monte Carlo. Possible deviations from this assumption has been taken
into account in the theoretical study of Zhang et al. (2023). Refer to Zhang et al. (2023)
for the detail.

Zhang et al. (2023) argued that LEnKF overcomes the sample degeneracy issue (Cappé
et al., 2004) suffered by the particle filter, as the importance resampling procedure employed
in LEnKF aims to draw a sample for the prior 7(z:|y;.,_1) at each stage ¢, while that of
sequential importance sampling aims to draw a sample for the posterior 7(z:|y,;). In
consequence, LEnKF is less bothered by the sample degeneracy issue.

2.2 Extended LEnKF Algorithms for non-Gaussian Data

In practice, we often encounter dynamic systems where the measurement variable follows
a non-Gaussian distribution, e.g., multinomial or Poisson. LEnKF can be extended to
these systems by introducing some Gaussian latent variables. The extension is described,
separately, for the inverse problem and data assimilation in what follows.

2.2.1 Inverse Problems

Consider an inverse problem for which a latent variable model can be formulated as

z~Y(ly), y=Hx+mn, n~Ny(0T), (2.7)



where 2 is observed data following a non-Gaussian distribution v (-), y is the latent Gaussian
variable, and z is the parameter. For this model, we have 7(y|z, z) « ¥ (z|y)o(y|x), where
@(+) denotes a Gaussian density function.

To accommodate the case that N is extremely large, we assume that z can be partitioned
into B = N/n independent and identically distributed blocks {Z1,..., Zg}, where each block
is of size n and the corresponding latent variables have the positive definite covariance
matrix V such that I' = diag[V,--- ,V]. To adapt LEnKF to simulating from the posterior
distribution 7(x|z), we only need to add an imputation step in Algorithm A1l. The extended
algorithm is described in Algorithm 1.

Algorithm 1: Extended LEnKF for non-Gaussian Inverse Problems

. oy . . R PRT] 1 2 .
(i) Initialization: Initialize an ensemble {zg",xy", ..., 25"}, where m is the

ensemble size.
for t=1,2,..., T do
(i) Subsampling: Draw a mini-batch sample, denoted by (z¢, Ht), of size n
from the full data set of size N.
Set Qr = €1, Ry = 2V, and the Kalman gain matrix
K, = Q:H] (HQ:HI + R;)~".
for i=1,2,...,m do
(ii) Forecast: Draw w; ~ N (0, %Q;) and calculate

ol =2+ etﬁVIOg m(zy")) + wy. (2.8)

(iii) Imputation: Draw v~ w(ylalt z) o ¥ (zey)d(yla! "), where
vilel ' ~ N (Hial V).
(iv) Analysis: Draw v; ~ N, (0, #R;) and calculate

aft = ol + Ky (yi — Hyx]' — of) = el + Koy —yl). (2.9)

end

end

2.2.2 Data Assimilation

For non-Gaussian data assimilation problems, the corresponding state space model is given
by

xy = g(@e—1) +ue,  up ~ Np(0,Uy),
yr = Hyxy + 1, 1m0 ~ N, (0,T), (2.10)
Zt ™~ w(‘yt>7



where H, is an appropriately chosen matrix, and y; € RY¢ represents the latent Gaussian
random variable following the conditional distribution (y:|xs, zt) o ¥ (z¢|ys)P(ys|xt), and
@(+) denotes a Gaussian density function. Then the data assimilation LEnKF algorithm of
Zhang et al. (2023) can be extended to the model (2.10) by including an imputation step
for the latent variable y; at each stage ¢t. To accommodate the case that N; is extremely
large at each stage t, we assume that z; can be partitioned into B; = N;/n; independent
and identically distributed blocks {Z;1,..., % B, }, where each block is of size n; and the
corresponding latent variable has the covariance matrix V; such that I'y = diag[V;, -+, V4].
The resulting algorithm is described in Algorithm 2.

2.3 Convergence of the Extended LEnKF Algorithms

To justify the convergence of the extended LEnKF algorithms, we introduce the following
identity established in Song et al. (2020):

Vologn(6 | D) = / Volog (6 | 9, D)x(d | 6, D)dv, (2.14)

where D denotes data, and 6 and ¥ denote two parameters of the posterior 7(0, 9| D). With
this identity, it is easy to show that

Vo logm(x]2) =/Vz logﬂ(xlyyzt)ﬂ(ylx,zt)dy=/Vz log w(z|y)m(y|x, z)dy,  (2.15)

where the last equality holds as w(z|y, z) = w(z|y) given the hierarchical structure (2.7).
That is, V,log7(z|y) forms an unbiased estimator of V,logm(z|z;), provided that y ~
m(y|x, z¢). Further, by (2.3), we can show that Algorithm 1 leads to a preconditioned SGLD
algorithm for simulating from the posterior distribution 7(z|z) even when z is not Gaussian.
In summary, we have the following Lemma concerning the convergence of Algorithm 1.

Lemma 2.1. (Convergence of the extended LEnKF for non-Gaussian inverse problems) Let
x¢ denote a generic member of the ensemble produced by Algorithm 1 in the analysis step of
stage t. If V is positive definite, log w(x) is differentiable with respect to x, and the learning
rate ¢, = O(t™%) for some 0 < w < 1, then limy_o Wo (7, ms) = 0, where T; denotes
the empirical distribution of x¢, m. = w(x|z) denotes the target posterior distribution, and
Wa(-,-) denotes the second-order Wasserstein distance.

The proof of Lemma 2.1 directly follows from (2.15) and the proof of Theorem 1 in Zhang
et al. (2023) and is thus omitted. When an exact sampler for m(y|x, z;) is not available, the
imputation step can be done by a short run of the Metropolis-Hastings algorithm. In this
case, (2.9) can be replaced by

wpt =l Ky (g — Hal' =), (2.16)

i,r

where 3! = %Z;:l yz’j and yi’l, ...,y are the samples simulated in a short Metropolis-
Hastings run. The validity of the resulting algorithm can be justified by noting that 7(y|z)



Algorithm 2: Extended LEnKF for non-Gaussian Data Assimilation Problems

(i) Initialization: Start with an initial ensemble 27, x‘f:g, -, x7g" drawn from
the prior distribution m(x1), where m denotes the ensemble size. Set X; = () for
t=1,2,...,T. Set ky as the common burnin period for each stage t.

for t=1,2,...,T do
for k=1,2,... ,K do
(ii) Subsampling: Draw without replacement a mini-batch sample,
denoted by zx, of size n; from the full data set z; of size N;.
Set Qt.r = € 11y, Ry = 2V;, and the Kalman gain matrix
Ky = Qt,ngk(Ht,th,kHEk + Ry)~h
for i=1,2,..., m do
(iii) Importance resampling: If ¢ > 1, calculate importance weights
7 a,i a,i .
Wi k-1, = w(xt,k_1|wt,1,j) = ¢(xt,k—1 1 g(we-1,5), Up) for
j=1,2,...,|X_1], where ¢(-) denotes a Gaussian density, and
T¢—1,j € Xy—1 denotes the jth sample in X;_1; if k =1, set
zyy = g(x) o) +ut and ut ~ Np(0,U;). Resample
s €{1,2,...,|X 1|} with a probability ocw}, , , i.e.,
P(S i =3s)= _wi,kfl,s/Z'fi”f” wj 1 j» and denote the sample drawn
from &;_1 by :f:;717k71.
(iv) Forecast: Draw wj , ~ N, (0, NQur) Ift =1, set

Tl = Ty~ ke Z\tftVIng(wZ’;_l) + Wiy, (2.11)

where 7(-) denotes the prior distribution of 1. If ¢ > 1, set
, _1y ad » .
Ty = x?,;z,l - Et,kWUt (33?,1271 - 9(33171,1@71)) + wi,k- (2.12)
t
(v) Imputation: Draw y; , ~ 7r(y|z{;, Zik) O qﬁ(y\x{;)w(ymk), where
Zt ) 1s an my-vector representing a mini-batch of data and ¢(-) is a

Gaussian density function.
(vi) Analysis: Draw v; ;, ~ N, (0, §- R;) and set

ol = alh + Ken(yi, — Hopwlh — vl ) S ol + Keelyi g —ylh). (213)

(vii) Sample collection: If k > kg, add the sample x?,z into the set X;.
end

end
end




is Gaussian, which implies that V,logm(x|y) is a linear function of y. As a result, (2.16)
leads to an asymptotically unbiased estimator of V, log7(z|z) given by N/nHIV, ! (g, —
Hiz¢ |) + Vilogm(xf_;), which is similar to the one given in (2.3). When r is small,
this estimator can be biased as the Metropolis-Hastings run might have not yet reached its
equilibrium. By the standard theory of MCMC, it is easy to figure out that the bias is of the
order O(1/r). Further, by Corollary S1 of Zhang et al. (2023), this bias will not affect much
on the validity of the algorithm as long as r is reasonably large. To be more precise, we have
limsup,_, o Wa(7s, m) = O(1/r) in this case. Similar results can be found in Song et al.
(2020), Dalalyan and Karagulyan (2017) and Bhatia et al. (2019), where the convergence of
the SGLD algorithm Welling and Teh (2011) was established with an inaccurate gradient.
In general, the averaging estimator reduces the variation of the stochastic gradient and
improves the convergence of the stochastic gradient MCMC algorithm, see Nemeth and
Fearnhead (2019) for more discussions on this issue. Alternative to the averaging estimator,
the last sample generated in a short run of the Metropolis-Hastings algorithm can also be
used for simplicity. The validity of the resulting algorithm can be justified similarly.

Concerning the convergence of Algorithm 2, we have the following lemma, whose proof
directly follows from (2.15) and the proof of Theorem 2 in Zhang et al. (2023) and is thus
omitted.

Lemma 2.2. (Convergence of the extended LEnKF for non-Gaussian State Space Models)
Assume that for each stage t, the matrices Hy, Uy and Vi, the state propagator g(x:), and
the iteration number IC satisfy the regularity conditions given in Theorem 2 of Zhang et al.

(2023). If €y, mk_w for some w € (0,1) and any k € {1,2,...,K}, then uniformly

with dominating probability, for any t € {1,2,...,T}, m?fc follows a probability law 7 and
limic 00 Wa (7, 1) = 0, where my = w(x¢|21.¢) denotes the filtering distribution at stage t,
and Wa(-,-) denotes 2-Wasserstein distance between two distributions.

3 Illustrative Examples

This section contains two examples, which are for Poisson regression and dynamic Poisson
spatial model, respectively. The first example illustrates the application of Algorithm 1 for
inverse problems, and the second example illustrates the application of Algorithm 2 for data
assimilation problems. In the Appendix, we give an example on nonlinear inverse problems,
which illustrates how the proposed algorithm can be extended to more complicated dynamic
systems for which the expectation function of the Gaussian latent variable, i.e., E(y:|x:), is
a nonlinear function of z;.



3.1 Poisson Regression

Consider a Poisson regression reformulated in the following equations:

S )
Yi = &; /6 + 0o¢€, (31)

z; ~ Pois(exp(y:)),

fori=1,2,...,N, where x; = (z;1,%i2,...,%ip)" is a p-dimensional vector of explanatory
variables, 3 is a p-dimensional vector of regression coefficients, o is the standard deviation,
and ¢;’s are iid standard Gaussian random variables. With a slight abuse of notation, we
use xg, for k=1,2,...,p, to denote the kth covariate of the regression.

We generated 10 data sets from (3.1) with N = 50,000, p = 2000, o9 = 0.5, (81, -+ , 1) =
(1.0,1.0,1.0,1.0), (85,86, ,Bs) = (=1.0,—1.0,—1.0,—1.0), and §; = 0 for j = 9,--- , p.
We generated each vector x; from a multivariate Gaussian distribution such that each of
its component has a standard Gaussian marginal distribution and a correlation coefficient
of 0.5 with any other component.

To conduct Bayesian analysis, we let each component of B be subject to a mixture
Gaussian prior distribution

A N(0,73) + (1 — a1)N(0,73), (3.2)

where oy = 1/p = 0.0005, 7¥ = 1 and 7§ = 0.001, and assume that all the components
are priori independent. Algorithm 1 was applied to this example with the ensemble size
m = 50, the mini-batch size n = 100, and the learning rate ¢, = 0.1/ max{ty,t}°% and
to = 200. The Metropolis-Hastings sampler (Metropolis et al., 1953; Hastings, 1970) was
used in the imputation step, where a Gaussian random walk proposal with a variance of 4
was employed, the sampler was run for 10 iterations, and the last sample was output as the
imputed value. The algorithm was run for 2,000 iterations, which cost 61.2 CPU seconds
on a personal computer with RAM16GB and 2.9GHz Intel Core i7.

Figure 1 summarizes the variable selection results for one data set. The results for other
data sets are similar. Figure 1(a) displays the sample paths of 51, 32, ..., B2000 along with
iterations, which indicate that they all have converged within 500 iterations. Specifically,
after 500 iterations: the sample paths of f1,..., B4 approach to the horizontal line at 1, the
sample paths of (s, ..., 8s approach to the horizontal line at -1, and the sample paths of
Ba, . .., B2000 overlap around the horizontal line at 0. The plot also shows that the estimates
of B1,Ps,...,Ps are slightly biased, which might be due to the shrinkage prior we used.
Figure 1(b) shows the marginal inclusion probability of the variables fi, fa,...,8p. From
this graph, we can see that each of the 8 true variables (indexed 1-8) has a marginal inclusion
probability close to 1, while all false variables have a marginal inclusion probability close
to 0. By the median probability rule Barbieri and Berger (2004), the true model can be
correctly identified. In summary, this example shows that the extended LEnKF can be
applied to non-Gaussian inverse problems.

10



(b)

1.00 1.0 4
0.75 >
0504 % 0.8
8
0.25 A a
E 0.00 '5 "
— -+ %)
= )
- g
—0.25 = 0.44
©
p=
—0.50 o
£ 0.2-
—0.75 '
—1.00 o .-
0 250 500 750 1000 1250 1500 1750 2000 ' S NM TN ON~N®OYTINND O © S
" o~ WS MO O
Iteration a9 d4oaa~

Variable

Figure 1:  Langevinized EnKF for large-scale generalized linear regression: (a) Sample
paths of B1, B, .. ., Baooo across iterations, where j3;, for each i € {1,2,...,2000}, was calcu-
lated by averaging over the ensemble at each iteration; (b) marginal inclusion probabilities
of all covariates x1, ..., Z2000, Where the covariates are shown in the rank of marginal inclu-
sion probabilities.

For this example, we set the prior hyperparameter a; at the level of 1/p, following
the suggestion from Narisetty and He (2014). This setting is robust for high-dimensional
Bayesian variable selection, especially in the big data scenario of this example where the
total sample size N is much larger than p.

3.2 A Nonlinear Non-Gaussian Example

Consider a nonlinear logistic regression reformulated in the following equations:

1027 .
y; = 0o + 1;1:712 + 5sin(@; 3w 4) + x5 + 0256 + - -+ + 024,99 + €5, (3.3)
zi ~ U (-ly;) = Bernoulli(1/1 + exp(—y;)),
where i € {1,2,---, N} indexes the observations, ¢; ~ N'(0,02), and z; 1, ; 2, - . ., Ti 99 are

standard Gaussian random variables and have a mutual correlation coefficient of 0.5. The
dataset was simulated with the sample size N = 200,000, where half of z;’s are 1 and the
other half are 0.

Suppose that the state propagator in (3.3) is unknown, and we modeled it by a 3-
hidden-layer neural network, which consists of 100 input units including a bias unit, 5
units on each hidden layer, and one unit on the output layer. The LeakyRelu o(z) =
L(2<0)(0.12) 4 1(35—g)(x) is used as the activation function. Let B denote the parameter
vector, including weights and bias, of the neural network. Let g(x,3) denote the neural

11



network function. With the variance-splitting state augmentation method (Zhang et al.,
2023), we can rewrite the nonlinear logistic regression model as

yt) = g B)+el, of =B )T, el ~NL(0,00%L,),  (3.4)
y, = H0,+e? =y +e®  e® LNL(0,(1-a)o?l,), (3.5)
ze ~ U(|yy),

where (@4, z;) denotes a mini-batch of the dataset drawn at stage ¢, n is the mini-batch size,
«a is called the variance splitting proportion, H; = (0, ) is chosen such that H,0; = ygl),
the density of 6, is given by 7(60;) = ﬁ(ﬁ)ﬁ(ygl)W), and 7(03) denotes the prior density
function of 3. In this paper, we assume that the components of 3 are a priori independent

and each follows a mixture Gaussian distribution:
At N(0,73) + (1 — a1)N(0,73), (3.7)

where we set a; = 0.01, 72 = 1 and 78 = 0.05 for this example.

Algorithm 1 was applied to solve the linear inverse problem formed by (3.5)-(3.6), where
we set the variance split proportion o = 0.9, the ensemble size m = 20, the mini-batch size
n = 100, iteration time I = 5, and the total number of stages T" = 20,000. In addition,
The learning rate was set to e, = 5 x 1074/k%% with for k =1,--- | K.

In the forecast step, if t > 0 and k = 1, we let

) lgaf i ) )
0y LRy~ (B e ze) o (zy)m (w18 ),

0= 1),
Yo

where 1)(+) is a Bernoulli distribution, and y|,8?’_i17,c ~ Ny (g(zt, ,B?flx), ac?l,).

In the imputation step of iteration ¢, we drew y;k ~ 7r(y|9£’,:,zt) o w(zt|y)7r(y|9£’,i),
where y§k|0{lz ~ Nn(Hte{’;, (1—a)o?1,), and z;,|y ~ Bernoulli(exp(y,)) for i =1,--- ,n.

Figure 2 summarizes the results for one dataset. The results for other datasets are simi-
lar. Figure 2(a) shows the marginal inclusion probabilities of all input variables 1, z2, ..., 2,
with a cutoff value of 0.5 (red dash line). The results are very encouraging: Each of the
true variables (indexed 1-5) has a marginal inclusion probability close to 1, while each of the
false variables has a marginal inclusion probability close to 0. Figure 2(b) shows the scatter
plot of the response Y and its fitted value for 1,000 randomly selected training samples, 500
for true Y = 1 and 500 for true Y = 0. Figure 2(c) shows the scatter plot of the response
Y and its predicted value for 400 test samples, 200 for true Y = 1 and 200 for true Y = 0.

Table 1 summarizes the fitting and prediction results of the extended LEnKF over 10
simulated data sets in five metrics, namely, accuracy, precision, recall, F1 score and AUC
value (i.e., the area under the ROC curve), for which the average values over 10 data sets
were reported with the standard deviation given in the parentheses. Here the ROC curve
refers to the receiver operating characteristic curve, which graphs the true positive rate
(TPR) against the false positive rate (FPR) at various threshold values. The ROC curve
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Figure 2: Extended Langevinized EnKF for a nonlinear classification example: (a)

marginal inclusion probabilities of the variables, where the variables are shown in the rank
of marginal inclusion probabilities; and (b) fitted value of Y (grey dot for true Y = 1, red
cross sign for true Y = 0, randomly selected 500 observations for each class); (c) predicted
value of Y (grey dot for true Y = 1, red cross sign for true Y = 0, randomly selected 200
observations for each class).

Table 1: Fitting and prediction results produced by the extended LEnKF for 10 simulated
data sets, where the averages of the respective quantities, along with their standard devia-
tions (given in the parentheses), are reported. The average CPU time for each run is 2630
seconds on a computer with Apple M1 chip and 64GB memory.

Accuracy Precision Recall F1 score AUC

Fitting  0.8479 (0.0054) 0.8858 (0.0096) 0.8316 (0.0160) 0.8563 (0.0061) 0.9278 (0.0038)
Prediction  0.8659 (0.0035) 0.8843 (0.0116) 0.8582 (0.0120) 0.8704 (0.0024) 0.9458 (0.0038)

13



has often been used to assess the performance of a classification model, with the AUC value
serving as a global measure for its classification ability. Refer to the Appendix for the
definitions of the above metrics, and refer to Fawcett (2006) for more discussions about the
use of ROC curves.

In summary, this example shows that the extended LEnKF provides an effective and fea-
sible algorithm for training Bayesian neural networks for nonlinear non-Gaussian problems.

3.3 Dynamic Poisson Spatial Model

We illustrate the performance of Algorithm 2 using a synthetic cloud-motion data set, which
represents cloud intensities (i.e., counts) at p = 300 locations along with a spatial transect at
T = 80 time points. The data approximately follows an over-dispersed Poisson distribution,
and can be modeled as follows:

ﬁt|ﬁt—1 ~ Np(M(’Y),@t—b Q(TQ, ),
yt‘IBt ~ Nnt (HtﬂtvUQIm)a (3-8)
ze 1|y, ~ Pois(exp(yer)), =1,...,n

where v = (71, 72,73), M(7) is a tri-diagonal matrix with 7 on the main diagonal, v2 on the
first upper sub-diagonal, and 3 on the first lower sub-diagonal. The state evolution error was
assumed to exhibit spatial dependence in a Matern covariance matrix such that the (4, j)-th
element of Q is given by Q; ; = 72 Mat (|i — j|/A), where Mat(d) = (1 + v/3d) exp(—v/3d).

Ten data sets were simulated from the model (3.8). In the simulation, we set n; =
270 and H; as an n; X p-selection matrix; that is, the observation locations were different
for different stages. For the parameters, we set v = (0.3,0.3,0.3), 7 = 1, 0 = 0.1, and
X = 1. For the initial state values, we set By ~ N, (o, o), where p is a constant vector
of =2, and (o), ; = 0.2 Mat(|i —j|/5). Figure 3 shows the state values at 300 locations for
t=1,2,...,80, whose chaotic behavior implies the challenge of the problem.

Algorithm 2 was applied to the data sets to re-estimate the states 8y, 3,,...,87. The
algorithm was run with the ensemble size m = 20, the stage iteration number K = 20, kg =
K/2, and the learning rate € = 0.1/ max(10,k)%¢ for k = 1,2,....,K and t = 1,2,...,T.
The imputation step was accomplished using the Metropolis-Hastings sampler, where each
component of y, was imputed independently and a Gaussian random walk proposal with a
variance of 0.01 was employed. For each component of y,, the Metropolis-Hastings sampler
was run for 20 iterations and the last sample was imputed as the imputed value. At each
stage t, the state was estimated by averaging over the ensembles generated in the last /2
iterations, and the accuracy of the estimate was measured by the root mean-squared error
(RMSE):

RMSE; = ||Bt - ﬁtH2/\/ﬁv

where 3t denotes the estimate of 8,. For comparison, the MCMC-EnKF algorithm Katzfuss
et al. (2020) (see Algorithm A2 in the Appendix for the detail) was applied to this example,
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Figure 3:  State values for t =1,2,...,T

where the imputation was done as for the extended LEnKF, but the states were estimated
using the EnKF. The ensemble size was set to m = 20 as well.

Figure 4 compares the estimates of two randomly selected components of 3, produced
by LEnKF and MCMC-EnKF for one simulated data set. The comparison indicates that
LEnKF provides better state estimates as well as better quantification for the uncertainty of
the estimates. For example, in Figure 4(b), the state values around stages 30 —40 are covered
by the confidence band of LEnKF, but not by that of MCMC-EnKF. More importantly, as
t becomes large, LEnKF can capture pattern of each component of 3,, while MCMC-EnKF
cannot.

Figure 5 (a) compares the coverage rates of the 95% confidence intervals produced by
LEnKF and MCMC-EnKF, where the coverage rate was calculated by averaging over 300
state components at each stage t € {1,2,...,80}. Figure 5(b) shows the averaged coverage
rates over 10 data sets. The comparison shows that LEnKF produced the coverage rates
closing to their nominal level, while MCMC-EnKF did not. This implies that LEnKF is
able to correctly quantify uncertainty of the estimates as t becomes large. Figure 5(c) shows
that LEnKF produced smaller values of RMSE,’s than MCMC-EnKF.

Table 2 summarizes the numerical results of LEnKF and MCMC-EnKF algorithms for
example, where both choices kg = K/2 and kg = K — 1 have been tried for LEnKF. In the
table, we used MRMSE(3) to denote the mean of the root-mean-squared-error of the esti-
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Figure 4: State estimates produced by LEnKF and MCMC-EnKF for a simulated cloud-
motion data set along with stages t = 1,2,...,80: each plot corresponds to one randomly
selected component of 3,, where the true state values are represented by ‘+’, the estimates
by LEnKF are represented by red lines, the estimates by MCMC-EnKF are represented by
green lines, and their 95% confidence intervals are represented by shaded bands.
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Figure 5: Coverage rates of the 95% confidence intervals produced by the extended LEnKF

and MCMC-EnKF for the stages t = 1,2,...,80: (a) coverage rates with one data set; (b)
coverage rates averaged over 10 data sets; (c) log(RMSE,) along with stage t.

mates for the states 85, B31,- .., B calculated on one data set, and used ave-MRMSE(3)
to denote the average of MRMSE(3) over 10 data sets. Similarly, we used MCP to denote
the coverage probability averaged over states 35,851, --., 87 calculated on one data set,
and used Ave-MCP to denote the average MCP over 10 data sets. The comparison shows
that for this example, the extended LEnKF works well with both ky = KC/2 and ko = K — 1,
and it significantly outperforms MCMC-EnKF. For this example, MCMC-EnKF is faster
than the extended LEnKF as it performs only one iteration at each stage, while the extended
LEnKF involves I iterations without subsampling being performed. Note that each itera-
tion of the extended LEnKF requires the inversion of an n; X ny; matrix, while MCMC-EnKF
deals with an N; x N; matrix. Since matrix inversion has a computational complexity of

Table 2: Comparison of LEnKF and MCMC-EnKF in state estimation for the dynamic
spatial model, where the averages of the respective quantities over 10 data sets, along with
their standard deviations (given in the parentheses), were reported. The average CPU time
(in seconds) was recorded on a personal computer with RAM16GB and 2.9GHz Intel Core
i7 for a single run of the algorithm.

ko Ave-MRMSE(3) Ave-MCP CPU Time

extended LENKF  K/2  1.1699(0.0126)  0.9561(0.0015) 31.686(0.195)
extended LEnKF K —1  1.1725(0.0133)  0.9525(0.0017)  26.622(0.215)
MCMC-EnKF ; 1.6327(0.0132)  0.9229(0.0023)  2.704(0.033)
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cubic order in relation to its size, the extended LEnKF can easily outperform MCMC-EnKF
in terms of computation when subsampling is applied.

4 Dynamic Network Embedding

Dynamic networks have been studied in a variety of fields, such as social network analysis,
recommendation systems and epidemiology. Embedding (or latent representation learning)
has been recognized as one of the most promising approaches for dynamic network analysis.
Its basic idea is to learn a low-dimensional vector for each node, which encodes the structural
properties of a node and its neighborhood. Such low-dimensional representations can benefit
a variety of network analytical tasks such as node clustering, link prediction, and graph
visualization. The existing methods for dynamic network embedding can be roughly grouped
into two categories, namely, latent space model-based methods and dynamic graph neural
network-based methods. Refer to Kim et al. (2018), Kazemi et al. (2020) and Skarding et al.
(2021) for recent surveys on this topic.

Although the existing methods work well for many dynamic networks, they are usually
optimization based and fail to capture uncertainty of the embedding vector. An exception is
Sewell and Chen (2015), where the embedding vector is learned using a Metropolis-within-
Gibbs sampler. However, the sampler is not scalable and thus only applicable to small
networks. In what follows, we illustrate that the extended LEnKF algorithm can be used to
learn the embedding vector for dynamic networks. More precisely, we employ the extended
LEnKF algorithm to sample from the filtering distributions of the embedding vector, which
facilitates downstream statistical inference for dynamic networks. It is important to note
that the extended LEnKF algorithm possesses the scalability that is necessary for large-scale
dynamic network analysis.

4.1 Two Latent Space Models

Let G; be the network of observed pairwise links at time ¢ with N; nodes. Each node can
be represented by a d-dimensional latent space, where d is pre-specified. Let x; be an dN;-
vector, where the subvector @;; = (T4(i—1)+14,---,Zdi,t) represents the embedding vector
of node ¢ at stage t. We assume that the nodes can move in the latent space along with
time/stages, and the embedding vector at time ¢+ 1 only depends on the embedding vector
at time ¢, which is the standard Markov assumption.

Dynamic Social Network Latent (DSNL) Model The first latent space model we
considered in this paper is the DSNL model developed in Sarkar and Moore (2005). In the

18



form of state space models with the subsampling scheme, the DSNL model is given by

xy|xi—1 ~ Nan, (T-1,0% 4w, ),
ytlmt ~ Ndm, (Htmta UgIdnt)a

P(zly) = [ w»ise JI 1 —=pie)

1r],1,J €St 170§,1, €St

(4.1)

where S; denotes a set of n; randomly selected nodes from the network at stage ¢; z; denotes
the adjacency matrix formed by the nodes in S; H is the selection matrix corresponding
to S¢; i ~ j and i ¢ j denote existence and absence of a link, respectively; and p;;; is the
probability of a link at stage t. Specifically, p;;; is defined by

1
Pijt = m[(<dijt) + p(1 = K(dije)),
where d;;; = |ly;; — y;ll is the Euclidean distance between node i and node j in the

latent space at stage t, y;;, is the latent vector of node i in S;, 755 = max(d;¢,d;¢) + 1,
i is the degree of freedom of node ¢ in the network G, K(-) is a biquadratic kernel
K(dije) = (1 = (dije/rije)?)? if dije < rij¢ and 0 otherwise, and p is a constant noise.

The intuition behind this model is that for any two nodes 7 and j, we can compare their
distance with their social reach represented by r;;;. When the distance is smaller than the
social reach, the probability of connecting node ¢ and node j is high. When the distance is
greater than the social reach, the probability of connection is p, which can be considered as
a noise probability.

Dynamic Latent Distance (DLD) Model Another latent space model we considered
in the paper is the DLD model developed in Sewell and Chen (2015). In the form of state
space models with the subsampling scheme, the DLD model is given by

$t|$t_1 ~ NdNt (mt—la O—%IdNt)7
yt|wt ~ Ndnt (Htwta Ugldnt)7

€xXp (Zz'jtmjt)
P(zily) = ] 5, (4.2)
it i ges, 1+ exp (745¢)

]P)(Zi't:”y) dij¢ dijt
pi=log | ==L P ) — 5 (1 28 1 Zaty)
nljt g <IP) (szt — O‘yt) ﬁzn Tjt + 5out it
where Sy, Hy, d;ji, 73 and 1j; are as defined in (4.1); and the parameters 3;, and B, are pre-
specified constants which measure the global popularity and activity effects of the network,
respectively. Note that this model deals with directed networks as well as undirected ones,

while the DSNL model allows undirected edges only. In this paper, we consider undirected
networks only.
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4.2 A Dynamic Social Network

This section studies a college messaging dynamic network downloaded at https://snap.
stanford.edu/data/. It’s comprised of private messages sent on an online social network at
the University of California, Irvine, where each node represents a user. Users could search
the network for others and then initiate conversation based on profile information. An edge
(u,v,t) means that user u sent a private message to user v at time ¢. To construct an
undirected user-user interaction network, we set an edge between user u and user v for
day t, if u has messaged v or v has messaged u on day ¢t. The resulting dynamic network
contains 672 users with a time span of 25 days. Figure 6 shows the dynamic network on six
selected days. Our study delves into modeling the dynamics of College Messaging networks,
scrutinizing their structural variations over time..

(a) Day 1 (b) Day 5 (c) Day 10

vl Soam L

Figure 6: Dynamics of College Messaging networks on six selected days — Days 1, 5, 10,
15, 20, and 25, scrutinizing their structural variations over time.

We modeled the college messaging network by the DSNL and DLD models and trained
the models using Algorithm 2. For the DSNL model, we set the constant noise parameter
p = 0.001, the ensemble size m = 20, the standard deviations o7 = o2 = 0.1, the latent
space dimension d = 5, the sample size n, = 250, the iteration number X = 20, and
the learning rate €, = 0.4/ max(10,k)%6 for £k = 1,2,...,K and t = 1,2,...,T. We
applied the Metropolis-Hastings algorithm for imputation, where a Gaussian random walk
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Table 3: Comparison of the extended LEnKF and MCMC-EnKF algorithms for the college
messaging dynamic network, where “Avg-AUC” denotes the averaged AUC values over all
25 days and its standard deviation is given in the parentheses. The CPU time (in seconds)
was recorded on a personal computer with RAM16GB and 2.9GHz Intel Core i7 for a single
run of each algorithm.

Algorithm Model Avg-AUC CPU Time(seconds)

extended LEnKF  DSNL  0.8702(0.0177) 2014
DLD  0.9388(0.0128) 1700

MCMC-EnKF DSNL 0.8670(0.0186) 17201
DLD  0.9385(0.0128) 13008

proposal with variance 0.01 was used. To impute the latent vector for a selected node, the
Metropolis-Hastings algorithm was run for 50 iterations and the sample simulated at the last
iteration was output as the imputed value. At each stage t, the state vector was estimated
by averaging over the ensemble and over the last K/2 iterations. For the DLD model, we
set Bin = Powr = 1.5, and set other parameters to the same values as those used for the
DSNL model. Recall that §;, and S,,: serve as measurements for the global popularity and
activity effects of the network, respectively.

For comparison, the MCMC-EnKF algorithm was applied to the two models, where the
latent vector of each node was imputed in the same procedure as used for the DSNL and
DLD models. Table 3 compares the AUC values (i.e., the areas under the ROC curves)
produced by the two algorithms with the DSNL and DLD models. The comparison shows
that the extended LEnKF algorithm produced almost the same AUC values as the MCMC-
EnKF algorithm, but cost much less CPU time. The MCMC-EnKF algorithm is more
costly as it consists of a single iteration at each stage and does not allow the use of mini-
batch data. As a result, it needs to invert an (dN;) x (dN;)-matrix for calculating the
Kalman gain matrix at each stage ¢, which makes the algorithm unscalable for large-scale
networks. In contrast, the extended LEnKF algorithm is essentially a sequential stochastic
gradient MCMC algorithm, which is scalable with respect to large-scale networks due to the
subsampling scheme it employed in simulations.

To show that the extended LEnKF algorithm can be used for uncertainty quantifica-
tion for dynamic networks, we plotted in Figure 7 and Figure 8 the box-plots of the link
probabilities produced with the DSNL and DLD models, respectively. For comparison, the
link probabilities produced by the MCMC-EnKF algorithm are also plotted. As implied
by the plots, uncertainty of the link probability can be easily measured based on the sam-
ples produced by the extended LEnKF algorithm. The MCMC-EnKF produced similar
box plots to the extended LEnKF for this example. However, as implied by Figure 5, they
might be biased in terms of inference for other examples. Moreover, as implied by Table 3,
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MCMC-EnKF is much more costly than the extended LEnKF.

5 Conclusion

This paper has extended the LEnKF algorithm to non-Gaussian systems by introducing a
latent Gaussian measurement variable to the state space model. The proposed algorithm
converges to the right filtering distribution as the number of stages becomes large, while
inheriting the scalability of LEnKF with respect to the state dimension and sample size.
The proposed algorithm can be applied to sample from the filtering distribution of the
embedding vector and thus downstream statistical inference for the dynamic networks.

The extended LEnKF can be further extended in many different ways. In methodology
development, it can be easily combined with the state-augmentation method (Anderson,
2001) to simultaneously estimate the states and parameters of the dynamic system. With
this combined method, for example, the parameters (3;,, and B,y of the DLD model can
be adaptively determined instead of being specified as constants. In applications, LEnKF
can be easily applied to learn the latent representation for a static network by treating it
as an inverse problem. A further comparison of this method with the existing methods,
see Kazemi et al. (2020) for a survey, is of interest. Other than the latent space models,
the extended LEnKF algorithm can also be used with the dynamic graph neural networks
to learn embedding vectors for dynamic networks, where, as shown in Zhang et al. (2023),
the recurrent neural network or long-short-term-memory (LSTM) network can be easily
expressed as a state space model.
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Appendix

A Metrics for binary classifiers

Consider an experiment with P positive instances and N negative instances under certain
conditions. The four possible outcomes of a binary classifier can be represented in Table
Al.

The metrics used in the paper are defined as follows:
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Figure 7: Box-plots of link probabilities produced with the DSNL model: fitted link proba-
bilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are plotted for
day 1, 5, 10, 15, 20 and 25.
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Figure 8: Box-plots of link probabilities produced with the DLD model: fitted link proba-
bilities for 10 pairs of nodes with edges and 10 pairs of nodes without edges are plotted for
day 1, 5, 10, 15, 20 and 25.
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Table Al: Outcomes of a classifier

Classified Values
P N

P True Positive (TP) False Negative (FN)

True values . .
N False Positive (FP) True Negative (TN)

_ TPLTN .
o AcCuracy=prrNT FPrEN
. Precision:%;

Recall:TPTJr%7 which is also known as sensitivity or true positive rate (TPR);

Speciﬁcity:%, which is also known as true negative rate (TNR);

False positive rate (FPR)=1—Specificity;

9 presision X recall

F1 score= precision+recall *

B Two Existing Algorithms

This section presents two existing algorithms, namely, the LEnKF algorithm (Zhang et al.,
2023) for Gaussian linear inverse problems and the MCMC-EnKF algorithm (Katzfuss et al.,
2020) for data assimilation problems, which are described in Algorithm A1l and Algorithm
A2, respectively.
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Algorithm A1l: LEnKF for Linear Inverse Problems (Zhang et al., 2023)

(i) Initialization: Initialize an ensemble {zf", z%?, ... 3™}, where m is the
ensemble size.
for t=1,2,...,T do
(ii) Subsampling: Draw without replacement a mini-batch data, denoted by
(yt, Hy), of size n from the full dataset of size N.
Set Q = e:1,, Ry = 2V}, and the Kalman gain matrix
Ky = Q:H{ (H,Q:H} + R;)™".
for i=1,2,...,m do
(iii) Forecast: Draw w; ~ N, (0, % Q) and calculate

i a,i n a,i i
ac{ =T+ etﬁVIOg m(x2) + wy. (B.1)

(iv) Analysis: Draw v ~ N, (0, & R;) and calculate

. . . A .
rpt = I{ﬂ + Ki(ye — Hixi" —vp) = I{J + Ki(y: — ynﬁ)' (B.2)

end

end

Algorithm A2: MCMC-EnKF for Data Assimilation (Katzfuss et al., 2020)

. e e . . . .. 1 2
(i) Initialization: Start with an initial ensemble xy, xg~, ..., 5" drawn from

the prior distribution 7 (), where m denotes the ensemble size.
for t=1,2,...,T do

(ii) Forecast: For i =1,2,--- ,m, draw w{ ~ N, (0,U;), calculate

z = g(}")) + ), (B.3)
and calculate the sample covariance matrix of &', 2% ... %™ and denote it
by Ct.

(iii) Imputation: Draw yi ~ w(y|z{", z/) o< p(z¢|y) f (y|z!"), where
yilxl "t ~ N, (Ht:c{’z, V;), and Hy is an Ny x p-dimensional matrix.
(iv) Analysis: For i =1,2,--- ,m, draw v} ~ Ny, (0, ;) and set

a,i i (o ) iyA i fr i i
T, = w,{ + Ki(y; — Hyxy" —vp) = m{ + Ki(y; — y{ )s (B.4)
where Kt = CthT (HtCthT + Vt) -1 form an estimator for Kalman Gain Matrix

K, = SthT (HtSthT + Vi)i1 and S; denotes the covariance matrix of x;
end
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