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Abstract

We introduce an approach to improve single-reference coupled cluster theory in

settings where the Aufbau determinant is absent from or plays only a small role in

the true wave function. Using a de-excitation operator that can be efficiently hid-

den within a similarity transform, we create a coupled cluster wave function in which

de-excitations work to suppress the Aufbau determinant and produce wave functions

dominated by other determinants. Thanks to an invertible and fully exponential form,

the approach is systematically improvable, size consistent, size extensive, and, interest-

ingly, size intensive in a granular way that should make the adoption of some ground

state techniques such as local correlation relatively straightforward. In this initial

study, we apply the general formalism to create a state-specific method for orbital-

relaxed singly excited states. We find that this approach matches the accuracy of

similar-cost equation-of-motion methods in valence excitations while offering improved

accuracy for charge transfer states. We also find the approach to be more accurate

than excited-state-specific perturbation theory in both types of states.
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1 Introduction

Coupled cluster (CC) theory1–4 offers highly accurate treatments of electron correlation and

is particularly effective in single-reference (SR) settings in which the true wave function is

dominated by a single determinant. With strong formal properties like size extensivity and

size consistency that configuration interaction (CI) theory lacks,5,6 CC can reliably achieve

exquisite accuracy in SR settings, as evidenced for example by the sub-kBT errors of the

perturbative-triples-corrected singles and doubles theory, CCSD(T).7–11 By looking a little

closer at the details of CC theory, one can identify two important factors driving its success

in SR settings: the accuracy of its reference and the conditioning of its working equations.

Indeed, when the true wave function is not dominated by a single determinant, SR-CC

approaches often fail dramatically,12–14 and the construction of more multi-reference (MR)

approaches can lead to ill-conditioned equations or intruder state issues.15–20

In thinking about MR-CC, it can be useful to recognize that most approaches fall into

one of three categories: Jeziorski-Monkhorst (JM), internal contraction, and single-reference-

based methods.12–14 JM methods utilize a wave operator that contains a separate cluster

operator for each reference function within the multi-reference starting point. 21 In the state-

universal (SU) approach, the idea is to optimize this operator via a generalized Bloch equa-

tion such that it transforms linear combinations of the reference functions into a correspond-

ing set of Hamiltonian eigenstates.21–30 In practice, SU approaches have often encountered

intruder states, unphysical solutions, and challenges in converging their equations,12,20,23,24,30

in part because the highest energy reference functions may not be energetically well sepa-

rated from determinants outside the reference space.12 State-specific approaches to the JM

ansatz avoid many of these challenges, but, in eschewing the generalized Bloch equation, lead

to a situation in which there are more variables than available projective equations, which in

practice has resulted in the introduction of additional sufficiency conditions.31–37 Internally

contracted approaches also employ multiple determinants in the reference wave function, but
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not in the construction of the cluster operator. Instead, they act a single cluster operator on

the reference, which achieves a natural match between the number of variables and projective

equations but creates challenges related to nonterminating expansions and ill-conditioned

overlap matrices.38–42 Single-reference-based methods, on the other hand, retain a single

determinant reference but extend other parts of the formalism to make it more amenable

to MR settings. For example, active-space-based approaches include particular subsets of

higher excitation operators, such as small subsets of the triples and quadruples.43–50

These single-reference-based approaches retain many of the advantages of SR-CC but

also have challenges. Like SR-CC, they have relatively straightforward working equations,

at least compared to those of MR-CC. However, they can face difficulty in selecting the

reference determinant, for example in cases where the dominant determinant changes along

a reaction pathway.12 Further, a too-simple reference can necessitate large excitation am-

plitudes that lead to large and unwelcome contributions from the higher nonlinear terms in

the CC expansion. In the present study, we address the large amplitude issue directly so

that relatively simple SR working equations can be usefully employed in a wider range of

settings.

Specifically, we seek to avoid the need for large excitation amplitudes even when the true

wave function has a small or zero Aufbau contribution by including a de-excitation operator

that suppresses the Aufbau determinant within the CC expansion. Possible applications of

this Aufbau suppressed CC (ASCC) approach include strongly correlated ground states as

well as state-specific treatments of both weakly and strongly correlated excited states. Unlike

our previous approach of removing the Aufbau determinant through a pseudo-projection

operator,51 ASCC employs an invertible operator, making it more general and avoiding the

need to perturbatively correct for projected-out pieces of the correlation treatment. Although

the ASCC formalism has the potential to be useful in many areas, we focus in this initial

study on singly excited states, where it offers a route to orbital-relaxed, excited-state-specific

CC treatments atop spin-pure reference functions.
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One long-running challenge even in singly excited states has been to fully capture the

effects of post-excitation orbital relaxations.52 Many widely used approaches, such as time-

dependent density functional theory (TD-DFT),53–55 equation-of-motion CC (EOM-CC),56–58

and linear response CC (LR-CC),59–66 rely on linear response and have only a limited ability

to account for orbital relaxations or the new correlation effects created when an electron

is transferred between different regions of a molecule. These issues are known to limit ac-

curacy in charge transfer (CT), Rydberg, core, and double excitations.67–76 State-specific

approaches seek to improve matters by more fully tailoring their treatments to the needs of

the excited state in question and have been developed for single determinant theories,77–83 CI

theory,84–92 perturbation theory,93,94 CC theory,51,95–99 complete active space self-consistent

field (CASSCF) theory,100–106 and DFT.78,107–111 In this context, ASCC offers a route to sys-

tematically improvable, state-specific CC treatments with good spin symmetry and working

equations that closely mirror the ground state theory.

Through its fully exponential form, ASCC ensures its predictions are size consistent, size

extensive, and, perhaps most interestingly, size intensive at a granular level. By granular, we

mean that intensivity is achieved not only in the final result, but also at every stage within

the optimization. As we will see, this granular intensivity arises because the mathematics

for electrons far from the excitation simplify to those of ground state SR-CC throughout the

working equations. When combined with the use of excited-state-specific reference orbitals

from excited state mean field (ESMF) theory,87–89,94 this granular intensivity should make it

relatively straightforward to eventually incorporate local correlation treatments, 112–116 which

may benefit from increased excited state specificity.117–119 In this initial study, however, we

will focus on introducing the general ASCC framework and investigating its efficacy in singly

excited states.
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2 Theory

2.1 A Challenge for Single-Reference Coupled Cluster

In the standard single-reference approach,1,4–6 the coupled cluster (CC) equations are moti-

vated by and derived from an exponential ansatz

|ΨCC⟩ = eT̂ |ϕ0⟩ =

(
1 + T̂ +

1

2
T̂ 2 + . . .

)
|ϕ0⟩ (1)

involving an excitation operator T̂ and the closed-shell Aufbau determinant |ϕ0⟩. If one

allows T̂ to contain all orders of excitation, then the theory is exact within the one-electron

basis, but in practice T̂ is usually truncated to produce a polynomial cost approach. For

example, CCSD includes only single and double excitations in T̂ . Within the CI expansion

that the CCSD wave function corresponds to, this choice gives it the ability to set the

coefficients on the singly and doubly excited determinants however it wants while, unlike

CI, still achieving a size extensive energy. Though CCSD has much more limited control

over the coefficients on the triply and higher excited determinants, this is of little concern so

long as two conditions are met: (1) those highly excited terms are small in the exact wave

function and (2) the magnitude of T̂ itself is small so that its higher order powers do not

create unduly large triply or higher excited determinants. When the first condition is not

met (as is typically true in strongly correlated systems), single-reference CC struggles. 12,120

However, what happens if one naively applies single-reference CC in a case where only the

second condition is not met?

Table 1. Example of a simple singly excited state.

Determinant Label FCI Coefficient
Aufbau A cA = 0.01

HOMO-X→LUMO+X X cX = 0.68
HOMO-Y→LUMO+Y Y cY = 0.09

HOMO2 →LUMO2 D cD = 0.03
All others very small
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For example, consider the relatively simple full CI (FCI) wave function shown in Table 1,

which might arise as one of a molecule’s low-lying excited states. Being dominated by single

excitations, this state would be well treated by many excited state theories, but what would

happen if we were to try to naively apply single-reference CC to it directly, that is to say

without using linear response theory? Due to the fact that the CC expansion puts a coefficient

of 1 on the Aufbau determinant, the amplitude within T̂ for the HOMO-X→LUMO+X single

excitation would have to be huge — something like tX ≈ 0.68/0.01 = 68 — in order to get

the right ratio of single-to-Aufbau in our expansion. The others would have to be large as

well: tY ≈ 0.09/0.01 = 9 and tD ≈ 0.03/0.01 = 3. At this point, if we ignore normalization

and look only through linear order in the expansion, we’d be doing a good job at matching

FCI. However, the nonlinear terms are now a disaster, as T̂ is not small. Consider the T̂ 5

term in the expansion, which leads to a hextuply excited determinant with a coefficient on

the order of t2Xt
2
Y tD/5! ≈ 9000. These types of terms now dominate the wave function, and

so instead of creating a good approximation of FCI, we’ve created a terrible mess. In sum,

when trying to apply single-reference CC directly to a state in which the Aufbau coefficient

is small relative to some others, we get in trouble regardless of whether we keep T̂ small

or make it large. If we keep it small, the Aufbau will be too large relative to the other

determinants, but, if we make it large, the nonlinear terms will get out of hand.

This issue is why, of course, approaches other than a direct application of single-reference

CC are typically taken for this type of state. Options include using a non-Aufbau refer-

ence, using multiple references, and applying equation-of-motion or linear response theory.

Although these approaches all have their merits, and, depending on the details, may work

quite well for the example above, they also involve drawbacks. The difficulty of capturing

orbital relaxations in linear response theory would be problematic if the state above were a

charge transfer excitation. Using an alternative single-determinant reference could work well

for the cX and cY coefficients used in the example, but would become challenging if molecular

geometry changes caused cX and cY to gradually exchange magnitudes, as it would then be
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difficult to choose which reference to use. Were the cD coefficient to grow large, both of

these approaches would become more challenging. At that point, one may be motivated to

move away from SR approaches, with all the complication that that entails. In this study,

we will instead explore an alternative path that, by suppressing the Aufbau determinant,

provides a systematically improvable and state-specific framework in which a formal SR can

be maintained even when non-Aufbau determinants dominate the true FCI wave function.

2.2 Aufbau Suppression

To suppress the coefficient on the Aufbau determinant in the expanded CC wave function,

let us augment our ansatz as follows.

|ΨASCC⟩ = e−Ŝ†
eT̂ |ϕ0⟩

=

(
1 + T̂ − Ŝ†T̂ +

1

2
T̂ 2 + . . .

)
|ϕ0⟩ (2)

Here Ŝ is a (hopefully simple) excitation operator that will be chosen such that the −Ŝ†T̂ |ϕ0⟩

term and any similar higher-order terms produce additional copies of the Aufbau determinant

that can partially or fully cancel out the zeroth-order |ϕ0⟩ term. Basically, by de-exciting

with Ŝ† after exciting with T̂ , we can get back to Aufbau and, provided the amplitude

coefficients within Ŝ and T̂ are chosen carefully, can thereby suppress the overall coefficient

on the Aufbau determinant via cancellation.

Before discussing whether or not this approach can be practical, let us first emphasize its

strong formal properties. As the ansatz remains exponential, it will still product-factorize and

thus maintain size consistency. Even better, so long as our approach to energy evaluation and

optimization does not introduce any unlinked terms, it will remain extensive. The use of the

invertible operator exp(−Ŝ†) guarantees that systematic improvability is also still present: if

T̂ contains all orders of excitations, then exp(T̂ ) |ϕ0⟩ can describe exp(Ŝ†) |ΨFCI⟩ just as well

as it can describe |ΨFCI⟩. Finally, with the ability to suppress the Aufbau determinant, this
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approach can describe wave functions dominated by non-Aufbau determinants while keeping

the magnitude of T̂ modest, which should improve our chances of achieving an accurate,

state-specific description while limiting T̂ to low orders of excitation.

To make this approach practical, we first convert the central CC eigenvalue equation

Ĥ |ΨASCC⟩ = E |ΨASCC⟩ (3)

into a similarity transformed form in which Ŝ† has been wrapped around the Hamiltonian.

H̄eT̂ |ϕ0⟩ = EeT̂ |ϕ0⟩ (4)

H̄ = eŜ
†
Ĥe−Ŝ†

(5)

Considering that extended CC (ECC) methods induce large increases in computational cost

when they introduce similar de-excitation-based transforms,121–126 this step may seem coun-

terproductive. However, two key differences keep ASCC’s cost in check. First, the ordering

of the excitation and de-excitation operator exponentials is reversed compared to ECC, al-

lowing the de-excitation transform to act on the bare Hamiltonian. Second, in ASCC, we

restrict Ŝ to single excitations, which allows Eq. (5) to be evaluated at O(N5) cost to yield a

new set of one- and two-electron integrals that, as we will see below, allow the overall method

to keep the same asymptotic scaling as ground state SR-CC. Although in other settings it

may be interesting to optimize Ŝ, we will now turn our attention to singly excited states,

where we will show that the desired Aufbau suppression can be achieved with a particularly

simple and predetermined form.

2.3 Singly Excited States

Imagine a singly excited state in which one component of the excitation is more important

than the others, such as for example the wave function in Table 1. To start with, let us

consider the largest configuration state function (CSF) within this wave function on its own
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before we get to worrying about the smaller components or the weak correlation details. We

write this CSF as

|ψ0⟩ =
1√
2

(
|ϕp

h⟩ + |ϕp̄

h̄
⟩
)

(6)

where the presence or absence of a bar on an index denotes opposite electron spin, and h and

p are the indices corresponding to the “hole” and “particle” spatial orbitals that are singly

occupied in this CSF. Adopting the terminology of the active-space-based CC methods,44 we

will refer to |ψ0⟩ as our reference (the major part of the state, Eq. (6), around which we will

fill in the details), while we will refer to the Aufbau determinant |ϕ0⟩ as the formal reference

(the state acted upon by exp(−Ŝ†) exp(T̂ ) in our ansatz definition in Eq. (2)). By choosing

our operator Ŝ as the single excitation that excites our formal reference to our reference (and

whose adjoint de-excites the other way),

Ŝ ≡ 1√
2

(
â†pâh + â†p̄âh̄

)
(7)

Ŝ |ϕ0⟩ = |ψ0⟩ (8)

Ŝ† |ψ0⟩ = Ŝ†Ŝ |ϕ0⟩ = |ϕ0⟩ (9)

we set ourselves up to achieve Aufbau suppression via excitation to and de-excitation from

our reference CSF. In particular, if we initialize our T̂ operator to the very simple singles

and doubles form

T̂init = Ŝ − 1

2
Ŝ2 (10)
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and note that Ŝ3 = 0, as one cannot excite more than two electrons out of the hole orbital,

then our ASCC ansatz is initialized to our reference CSF |ψ0⟩.

e−Ŝ†
eT̂init |ϕ0⟩ = e−Ŝ†

eŜ−
1
2
Ŝ2 |ϕ0⟩ (11)

=

(
1 − Ŝ† +

1

2
(Ŝ†)2

)(
1 + Ŝ

)
|ϕ0⟩ (12)

=
(

1 + Ŝ − Ŝ†Ŝ
)
|ϕ0⟩ (13)

= Ŝ |ϕ0⟩ (14)

= |ψ0⟩ (15)

As intended, the Aufbau determinant has been suppressed, leaving us with a wave function in

which our reference CSF is dominant. In other words, we have reached a qualitatively correct

starting point for describing many singly excited states. This was achieved while maintaining

the Aufbau determinant as our formal reference and while maintaining relatively modest

amplitudes sizes within T̂ . Indeed, the 1/
√

2 and −1/2 amplitudes hiding inside T̂init are

much smaller than the values of 68 and 9 seen in our example in Section 2.1. Whether they

are small enough to allow for an accurate fleshing out of the remaining wave function details

is a matter for numerical tests, which we explore in Section 3. While the attention thus

far has been focused on states dominated by a single CSF, this formalism naturally extends

to include states with multiple dominant CSFs as well by including additional excitation

operators in Ŝ. While increasing the number of excitation operators in Ŝ requires additional

components in T̂init to exactly reconstruct the reference – for example, a handful of triples

amplitudes and a single quadruple amplitude in the two CSF case – this subset of amplitudes

remains relatively modest in size so long as the number of dominant CSFs in a state remains

relatively small, as is often the case. Having successfully built up our reference starting from

our formal reference, we now turn our attention to adding and optimizing the details needed

for a robust correlation treatment.
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2.4 Filling in the Details

To think through which additional amplitudes should be enabled to take us from T̂init to a

T̂ more in line with that used in CCSD, it is useful to separate this operator into two pieces.

T̂ = T̂P + T̂NP (16)

This partitioning is similar to the internal and external partitioning in single-reference-based

multi-reference CC,45,46 although, for convenience of notation in this study, we draw the line

between the two sets of amplitudes in a slightly different way. Specifically, we group into T̂P

all amplitudes whose excitation operators contain one or more of our “primary” indices (h,

p, h̄, p̄) from within our chosen Ŝ from Eq. 7. All other excitation operators will be grouped

into the “non-primary” T̂NP . This way, since the terms in T̂NP bear no primary indices while

those in Ŝ† bear only primary indices, T̂NP and Ŝ† will commute. We can thus rearrange

our ansatz as

|Ψ⟩ = eT̂NP e−Ŝ†
eT̂P |ϕ0⟩ (17)

in which we see that the contributions from T̂NP will behave much the same as would those in

multi-reference CC. Indeed, exp(T̂NP ) can be formally understood as acting on the Aufbau-

suppressed, multi-determinant form set up by exp(−Ŝ†) exp(T̂P ) |ϕ0⟩, even if, operationally,

we group exp(−Ŝ†) with Ĥ for computational expediency. Recognizing this parallel to multi-

reference CC and aiming for a weak correlation treatment of similar quality to CCSD, we

choose T̂NP to contain all single and double excitations that have no primary indices.

In choosing what to include in T̂P , we want to ensure that we have all singles and

doubles relative to our reference |ψ0⟩. Although this choice goes a bit beyond that, we start

by including all singles and doubles that have at least one primary index. However, some

of the double excitations relative to our reference |ψ0⟩ that involve excitations from hole or
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to particle orbitals are actually triple excitations relative to our formal reference |ϕ0⟩,51 so,

taking inspiration from the active-space-based CC methods,43–50 we also include the small

slice of triple excitations T̂3′ that both a) contain at least three primary indices and b)

contain a primary single excitation. The inclusion of these triples is not a cost concern, as

they are only a small O(ov2) slice of all the triples. Putting it all together, our excitation

operator is

T̂ = T̂P + T̂NP = T̂1 + T̂2 + T̂3′ (18)

where T̂1 and T̂2 are the same as in CCSD and T̂3′ is the small slice of triples described above.

One final detail to take care of is how, when appropriate, to allow some contribution from

the Aufbau determinant to survive. One approach, which seems expedient especially when

the contribution is expected to be small, is to simply let the amplitude optimization modify

the 1/
√

2 coefficients on the primary single excitation within T̂init to values slightly above or

below 1/
√

2 so that the cancellation effect is no longer perfect and a small contribution from

Aufbau remains. In the present study, this is the approach we will take. We will mention,

though, that if one wants the flexibility to allow larger Aufbau contributions, one option

would be to simply scale down the Ŝ† operator via

|Ψ⟩ = e−(1−s0)Ŝ†
eT̂ |ϕ0⟩ . (19)

Setting s0 = 1 recovers standard SR-CC, while values in between 0 and 1 provide varying

amounts of Aufbau suppression. Again, in this study we set s0 = 0 and instead rely on the

optimization of the amplitudes in T̂ to reintroduce Aufbau contributions where appropriate.
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2.5 Optimizing the Amplitudes

To determine the amplitudes within T̂ and ultimately evaluate the energy, we take the usual

projective approach of standard CC theory.1,4–6

E = ⟨ϕ0| e−T̂ eŜ
†
Ĥe−Ŝ†

eT̂ |ϕ0⟩ (20)

0 = ⟨ϕµ| e−T̂ eŜ
†
Ĥe−Ŝ†

eT̂ |ϕ0⟩ (21)

As in SR-CC, |ϕµ⟩ = T̂µ |ϕ0⟩ are the individual determinants reached by acting the indi-

vidual excitation operators T̂µ within T̂ on the Aufbau determinant. The value of using

an invertible exponential form to achieve Aufbau suppression becomes clear here, where it

ensures that only connected and therefore linked terms appear in the working equations,

thereby guaranteeing size extensivity.4,127,128 In practice, we set up our working equations by

first performing the MO integral transformation needed to form the one- and two-electron

integrals of the similarity transformed H̄ from Eq. (5), in terms of which our energy and

amplitude equations now directly mirror SR-CC theory.

E = ⟨ϕ0| e−T̂ H̄eT̂ |ϕ0⟩ (22)

0 = ⟨ϕµ| e−T̂ H̄eT̂ |ϕ0⟩ (23)

We should point out that some care in implementation is needed, as the two-electron integrals

within H̄ lack the full 8-fold permutational symmetry that they had in Ĥ, but importantly

maintain the 4-fold symmetry necessary for grouping together terms as in the ground state

theory. Aside from that, the working equations are now identical to those of a standard

SR-CC theory in which T̂ is chosen according to Eq. (18). Thanks to the inclusion of only a

small slice of the triples, these equations have the same O(o2v4) asymptotic scaling as CCSD.

With working equation so similar to standard CC, we have for now simply followed the

standard recipe for solving the amplitude equations. Specifically, we use a quasi-Newton
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iterative solver in which we approximate the Jacobian as the diagonal of the similarity

transformed Fock operator, which is obtained via a Fock-based analogue of Eq. 5. This

update scheme closely parallels what is often done in ground state SR-CC,5 and leads to a

familiar form for the amplitude updates.

tnewµ = toldµ − Rµ

∆µ

(24)

The residual Rµ is the right hand side of Eq. (23), and ∆µ is the virtuals-minus-occupieds

difference of the similarity transformed Fock matrix diagonal entries corresponding to the

T̂µ excitation. As we are not in the canonical basis, the Fock matrix is not diagonal, and so

the diagonal Jacobian approximation is a somewhat more aggressive approximation than in

canonical single-reference, ground state CC where the Fock matrix is diagonal. Nonetheless,

when paired with DIIS acceleration,129 this update scheme achieves tight convergence (|Rµ| <

10−10 a.u.) in all of our results.

As a final note regarding amplitude optimization, we should point out that ASCC delivers

what one might call iteration-by-iteration intensivity. In addition to being size extensive,

size consistent, and (for excited states) size intensive thanks to its exponential ansatz, the

adoption of the same iterative solver used by the ground state theory causes amplitudes on

molecular fragments far away from the fragment bearing the excitation to match those of

CCSD at every step of the optimization. This essentially means that the ways in which the

amplitude equations differ from the ground state theory are “localized” around the excitation

itself. Distant parts of the system experience essentially identical mathematics as in CCSD,

down to the level of individual amplitude updates. We note that this property should make

it relatively straightforward to adapt many ground state techniques, such as local correlation

methods, for use in ASCC.
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2.6 Primary CSF and Orbital Basis

So far, we have not specified how we choose the MO basis or the primary CSF that we use to

define Ŝ in this single-excitation-focused incarnation of ASCC. Although many choices are

possible in principle, including CASSCF,100–103 DFT,130–132 TD-DFT,53–55 CIS,84 selected

CI (sCI),133–135 and even EOM-CCSD,56–58 in this study we elect to use excited state mean

field theory (ESMF)87–89 to generate an initial guess, because it provides a state specific,

orbital relaxed, and spin-pure singly excited reference function. By transforming the ESMF

wavefunction to its transition orbital pair (TOP) orbital basis,93 which shares many simi-

larities with the natural transition orbital (NTO) basis,136 the full ESMF wavefunction is

compressed into a smaller set of determinants without loss of information, which can then

be truncated to include only the most important CSFs for an initial guess. Once we have

truncated to these primary CSFs, we separately re-canonicalize the non-primary parts of

the occupied and virtual spaces so as to make the Fock matrix used in the quasi-Newton

amplitude update as close to diagonal as possible without modifying the truncated ESMF

reference. While this truncated ESMF serves its role relatively well for the singly excited

states in this initial study, the most effective methods for generating ASCC’s initial guess

and orbital basis will likely vary by application, and so it will be important to explore the

possibilities more systematically in the future.

3 Results

3.1 Computational Details

For the single- and two-CSF QUEST tests, the EOM-CCSD calculations were performed with

PySCF,137–139 while for the charge transfer tests, EOM-CCSD and δ-CR-EOM-CC(2,3),A140–146

calculations were performed with GAMESS.147,148 These calculations, as well as ASCC cal-

culations, did not use the frozen core approximation. We iterate ASCC until the maximum

amplitude equation residual was no larger than 10−10, and for all other methods we utilize
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the default convergence settings. Geometries for the charge transfer tests were adapted from

the cc-pVDZ geometries in the NIST Computational Chemistry Comparison and Benchmark

Database149 and can be found in the Supporting Information (SI). Other geometries are from

the QUEST #1 excitation energy benchmark set.150 All calculations were performed in the

aug-cc-pVDZ basis, with the exception that, in the charge transfer tests, we removed aug-

mentation from the hydrogen atoms. Any CSF with an ESMF singular value greater than

0.2 was included in the truncated ESMF reference for both ASCC and ESMP2.

3.2 Single-CSF QUEST Tests

As an initial investigation of ASCC, we evaluate its accuracy on a set of small molecule exci-

tations from the QUEST #1 excitation energy benchmark.150 Of the 56 total states, ESMF

was able to provide a good initial guess for 48 of them, with 8 others showing irreconcilable

state mixing or no convergence within ESMF. Specifically, ESMF spuriously mixed large

amounts of other states into the Rydberg states of dinitrogen and the totally symmetric ex-

cited states of formaldehyde, while it did not converge for one singly and one doubly excited

state in nitrosomethane. We have treated the 48 states with the present ASCC approach,

leaving the other 8 for future study with non-ESMF starting points.

Looking first at the states dominated by a single CSF, the results for ASCC are compared

to those of EOM-CCSD, extrapolated FCI (exFCI), high level CC, and ESMP287,93,94 (a

state-specific 2nd order perturbation theory also built atop ESMF) in Table 2. We note that

the reference values make use of the frozen core approximation while our calculations do

not, but the energetic differences resulting from this approximation are rather small (∼0.01

eV),150 so these excitation energies still make excellent reference values.

As one might expect, ASCC produces a mean unsigned error (MUE) which is signifi-

cantly lower than ESMP2’s as well as a much smaller standard deviation. Though the more

robust correlation treatment in ASCC is likely responsible for the majority of this differ-

ence, it is worth emphasizing ASCC’s ability to adjust the reference in the presence of the
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Table 2. Excitation Energies in eV for single-CSF statesa from the QUEST benchmark.

Molecule State ESMP2 ASCC EOM-CCSD Referenceb

water 11B1 7.59 7.50 7.45 7.53
11A2 9.37 9.27 9.21 9.32
21A1 9.95 9.86 9.86 9.94

hydrogen sulfide 11B1 6.02 6.12 6.13 6.10
11A2 6.08 6.28 6.34 6.29

ammonia 11A2 6.41 6.42 6.46 6.48
11E 8.05 8.03 8.03 8.08
21A1 9.51 9.65 9.65 9.68
21A2 10.29 10.45 10.38 10.41

hydrogen chloride 11Π 7.71 7.82 7.86 7.82
dinitrogen 11Πg 8.77 9.64 9.49 9.41
carbon monoxide 11Π 8.23 8.66 8.67 8.57

21Σ+ 10.64 11.19 11.17 10.94
31Σ+ 11.22 11.48 11.71 11.52
21Πu 11.52 11.87 11.97 11.76

ethylene 11B3u 7.23 7.22 7.33 7.31
11B1u 7.79 7.88 8.04 7.93
11B1g 7.92 7.91 8.01 8.00

formaldehyde 11A2 4.00 3.94 4.02 3.99
11B2 7.35 7.11 7.04 7.11
21B2 8.29 8.08 7.99 8.04
21A2 8.90 8.72 8.61 8.65
11B1 9.24 9.27 9.37 9.29

thioformaldehyde 11A2 1.98 2.16 2.32 2.26c

11B2 5.85 5.85 5.84 5.83
21A1 6.17 6.61 6.75 6.51

methanimine 11Ad 5.09 5.22 5.31 5.25
acetaldehyde 11Ad 4.33 4.30 4.36 4.34
cyclopropene 11B1 6.36 6.77 6.78 6.71d

11B2 6.49 6.86 6.88 6.82
diazomethane 11A2 2.72 2.97 3.23 3.09

11B1 5.03 5.31 5.43 5.35
21A1 5.29 5.84 5.90 5.79

formamide 11Ad 5.66 5.62 5.71 5.70
21Ap 6.95 6.73 6.83 6.67
41Ap 7.57 7.40 7.41 7.29

ketene 11A2 3.59 3.84 3.97 3.84
11B1 5.68 5.93 5.94 5.88
21A2 6.89 7.10 7.15 7.08

nitrosomethane 11Ad 2.02 2.04 2.00 1.99
streptocyanine-C1 11B2 6.48 7.19 7.22 7.14

Single CSF Statistics
ESMP2 ASCC EOM-CCSD

MSEe ± Std. Dev. -0.13±0.23 0.01 ± 0.08 0.05±0.09
MUEf ± Std. Dev. 0.21±0.16 0.06 ± 0.05 0.08±0.06
Max Error 0.66 0.25 0.24

aStates where one ESMF singular value is >0.2. bThe QUEST benchmark150 reference was exFCI unless
noted otherwise. cCCSDTQ reference. dCCSDT reference. eMean signed error (MSE). fMean unsigned
error (MUE).
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discovered details of the correlation. Such adjustments can occur both through T̂1-based or-

bital relaxations151 as well as through adjustments to the size of other singly excited CSFs.

These abilities are both missing in the ESMP2 treatment and thus result in relatively large

discrepancies between these two theories when the ESMF reference provides less reliable de-

pictions of the target states, such as in the 31Σ+ and 21Π states of carbon monoxide where

ESMF erroneously mixes in small amounts of the 21Σ+ and 11Π states respectively. This

issue appears to be responsible for ASCC’s accuracy advantage over ESMP2 in these states,

where ASCC shows errors similar to those in other states while ESMP2 shows unusually

large errors. This improved robustness against initial guess quality is a favorable feature,

especially considering that, in states where ESMF produces an even less accurate mixing of

CSFs, it could be necessary to instead employ an alternative reference that may offer less in

the way of state-specific orbital relaxation.

Turning to a comparison with EOM-CCSD, ASCC produces a very slightly lower MUE,

but, given the statistical spreads, it’s more correct to say that the two methods showed

about the same overall accuracy in these one-CSF QUEST tests. The more salient difference

appears to be that EOM-CCSD typically errors slightly high, while ASCC appears to error

high and low in roughly equal amounts. Given EOM-CCSD’s well earned reputation for

accuracy in small molecule single excitations, it is encouraging to see comparable accuracy

from ASCC in such tests. This observation in hand, we now turn to charge transfer, where

we would expect to see larger differences between state-specific and linear response methods.

3.3 Charge Transfer Tests

To investigate ASCC in a context where post-excitation orbital relaxations are expected to

be more important, we applied it to a set of 22 different charge transfer excitations, which

consist of both intramolecular and intermolecular excitations characterized by significant

dipole shifts. Although we are currently limited to studying relatively small systems by the

pilot nature of our ASCC implementation, these states already offer some clarity about the
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method’s advantages in a CT context. TOP orbital plots for each of these excitations are

depicted in Figure 1a, and excitation energy errors relative to δ-CR-EOM-CC(2,3),A,140–146

an N7 scaling, size intensivity corrected, perturbative triples EOM-CC method, are shown

in Figure 1b. Note that we elect to use the “A” variant of δ-CR-EOM-CC(2,3) over others

due to its better-centered mean unsigned error.142

3.3.1 Intramolecular Charge Transfer

Starting with lithium fluoride (LiF), we examine transfers into its lithium 2s orbital (p1) from

the fluorine off-axis (h1) and on-axis (h2) p orbitals. In both of these excitations, ASCC and

EOM-CCSD produce excitation energies in close alignment to the reference values, while

ESMP2 produces somewhat larger errors. While EOM-CCSD often errs high for charge

transfer excitations, in lithium fluoride, much like for hydrogen chloride in the QUEST set,

the charge transfer distance is rather short and there are not too many electrons to correlate.

Evidently, EOM-CCSD’s linear response based approximations work well in this context.

In chloroethene (CH3Cl), we examined transfers from both the out-of-plane lone pair

(h1) and the in-plane lone pair (h2) to the π∗ orbital (p1). In these excitations, EOM-

CCSD produces ∼0.25 eV errors, which are larger than any of EOM-CCSD’s errors in states

considered up till now. For the h1p1 excitation, which has the smaller of the two dipole

shifts, ASCC errors a bit higher than EOM-CCSD, while ESMP2 performs comparably to

the reference method. However, for the h2p1 excitation, whose dipole shift and CT character

are more pronounced, ASCC improves on EOM-CCSD with an error slightly smaller than

that of ESMP2. We thus start to see what will become a pattern: ASCC’s performance

relative to EOM-CCSD is better in states with more pronounced CT character.

This pattern continues in acrolein (C3H4O), where we examine transfers into a π∗ orbital

(p1) from an oxygen lone pair (h1) and from a π orbital (h2). The h1p1 excitation has the

larger dipole shift and more significant charge transfer character, with the h1 oxygen lone

pair delocalizing over the π system. ASCC’s excitation energy error for h1p1 is less than half
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(a) TOPs for particle and hole orbitals. Hole orbitals are in the grey background
while particle orbitals are in the white. All possible combinations of hole and
particle orbitals are considered. To save space, hole and particle orbitals are
shown separately on chloride intermolecular systems.

(b) Excitation energy errors in eV relative to δ-CR-EOM-CC(2,3),A.

Summary Statistics for Charge Transfer States
ESMP2 ASCC EOM-CCSD

MSEa ± Std. Dev. -0.09 ± 0.18 0.07 ± 0.10 0.26 ± 0.13
MUEb ± Std. Dev. 0.15 ± 0.14 0.07 ± 0.10 0.26 ± 0.13
Max Error 0.56 0.37 0.64

aMean signed error (MSE). bMean unsigend error (MUE).

Figure 1. Charge transfer orbitals (a), results (b), and summary statistics.
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the size of EOM-CCSD’s, with ESMP2’s error intermediate between the two. The h2p1 state

has a smaller dipole shift and less charge transfer character, essentially shifting the electron

within the π system. All three methods produce comparable and sizable errors for this state,

and although it is not entirely clear why this is, it does continue the CT accuracy pattern

in which ASCC has an advantage when CT is more pronounced.

3.3.2 Intermolecular Charge Transfer

Turning now to states with even stronger CT character, we find that ASCC has a clear

accuracy advantage over EOM-CCSD in intermolecular CT. We begin with a transfer from

ammonia to difluorine in which the molecules are separated by 6 Å. The lowest-lying CT

excitation in this system is from the nitrogen lone pair (h1) to difluorine’s σ∗ orbital (p1).

EOM-CCSD’s excitation energy error of 0.6 eV is its largest error across all states tested in

this study. ESMP2 also produces a large error (∼0.5 eV), though it errors low while EOM-

CCSD errors high. ASCC, in contrast, produces an excitation energy in close agreement

with the reference method.

As seen in Figure 1(b), this pattern is repeated throughout our intermolecular CT tests:

EOM-CCSD errors high by 0.2 eV or more, ESMP2 errors low by up to 0.3 eV, and ASCC

stays consistently within 0.1 eV (and usually 0.05 eV) of the reference. The lack of full

orbital relaxation in EOM-CCSD likely explains most of the difference, although we suspect

that its neutral-ground-state-based correlation treatment of the ionic CT state also plays

a role. Aside from NH3 — F2, our intermolecular charge transfer tests excite an electron

from a chloride anion to a nearby π∗ orbital of dinitrogen (N2 — Cl−), carbon monoxide

(CO — Cl−), or ethylene (C2H4 — Cl−) at a separation distance of 4 Å. Some of these

examples are artificial in that, in a complete basis, they would only exist as resonances, 152

but in the finite basis we are using they still offer meaningful tests of how closely methods

come to matching the energies of the δ-CR-EOM-CC(2,3),A CT states. The relatively large

polarizability of the chlorine atom and the transfer of a full electron across a significant
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distance make orbital relaxation effects important in these states. EOM-CCSD can only

approximate these relaxations through its R̂2 operator, and its errors, which are significantly

larger than in the one-CSF QUEST tests of Section 3.2, suggest that this approximation is

reaching its limit. In contrast, ASCC benefits from explicit orbital relaxations both from the

ESMF reference and its own T̂1 operator as well as from a correlation treatment optimized

in the presence of the relaxed orbitals.

3.4 Two-CSF QUEST Tests

In this initial study of ASCC, we explore its performance in two-CSF states via a minimal

extension of the one-CSF approach in order to determine whether further extensions are

warranted. In this minimal extension, we begin by identifying the important hole and particle

orbitals via the transformation of the ESMF wave function to its TOP orbital basis, just

as in the 1-CSF case. We then update the Ŝ operator to contain the four individual single

excitation operators (two alpha and two beta) that create the two-CSF state, with their

coefficients within Ŝ set by the ESMF wave function. We extend T̂ by adding the O(1)

subset of triples and the single quadruple that flesh out a (4,4) active space encompassing

the two-CSF reference, and by extending the definition of a primary orbital for the purposes

of constructing T̂3′ to include both CSFs’ hole and particle orbitals. We then set the initial

amplitudes within T̂init so that the initial ASCC wave function is equal to the two-CSF

truncated ESMF state.

Optimizing this minimally extended two-CSF ASCC ansatz, we find that further exten-

sions will be needed in order for ASCC’s systematic improvability to produce accurate results

in multi-CSF excited states. Table 3 reveals errors on the order of 1 eV, which stands in

stark contrast to the more accurate results from ESMP2 and EOM-CCSD. Alongside these

large energy errors, we see that some of the initially nonzero amplitudes from T̂init — which

are important for creating the reference |ψ0⟩ from the Aufbau determinant |ϕ0⟩ — change

substantially during optimization. To give a sense of scale, we can look at N2, where, during
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Table 3. Excitation Energies in eV for two-CSF statesa from QUEST benchmark.

Molecule State ESMP2 ASCC Frozen ASCC EOM-CCSD Referenceb

dinitrogen 11Σ−
u 9.78 10.90 9.54 10.20 10.05

11∆u 10.32 11.66 10.34 10.61 10.43
carbon monoxide 11Σ− 9.92 11.12 9.89 10.10 10.05

11∆ 10.17 11.37 10.08 10.21 10.16
acetylene 11Σ−

u 6.83 7.99 6.91 7.27 7.20
11∆u 7.18 8.52 7.43 7.57 7.51

formamide 31Ap 6.66 9.38 8.06 7.72 7.64

Multi CSF Statistics
ESMP2 ASCC Frozen ASCC EOM-CCSD

MSEc ± Std. Dev. -0.31 ± 0.32 1.13 ± 0.32 -0.11 ± 0.28 0.09 ± 0.05
MUEd ± Std. Dev. 0.31 ± 0.32 1.13 ± 0.32 0.23 ± 0.18 0.09 ± 0.05
Max Error 0.98 1.74 0.51 0.18

a States where two ESMF singular values are >0.2. b Reference from QUEST benchmark150 exFCI results
unless stated otherwise. cMean signed error (MSE). dMean unsigned error (MUE).

optimization, the sum of squares of the primary CSFs’ coefficients in the CI expansion of the

wave function changed from 1.0 to 0.897 and 0.843 for the two-CSF 11Σ−
u and 11∆u states,

respectively, which contrasts sharply with the change from 1.0 to 0.9995 seen in the one-CSF

11Πg state, which was typical of the other one-CSF states as well. Given that the idea of

a reference is that further changes should be minor, this implies that either the reference

was poor to begin with or that artifacts arising from truncating T̂ have led the optimization

to make erroneously large modifications to these amplitudes. With ESMP2 using the same

reference and performing much better than this minimal extension of one-CSF ASCC, we

think that the reference is not the issue. Instead, we suspect that this minimal extension

must be missing components of the full T̂ operator that were more important than we had

guessed.

What might these missing amplitudes be? One possibility can be spotted by noting that

our minimal extension has created an ansatz whose nonlinear terms will, if we expand the

wave function out into a CI basis, produce some strangely large quadruply excited determi-

nants. For example, labeling our two primary excitations by the hole and particle indices

h1, h2, p1, and p2, the O(1)-sized singles amplitude tp1h1
can combine in a quadratic term with

the tp̄1b c

h̄1h2k
triples amplitude to produce a quadruply excited determinant with a coefficient
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roughly as large as that of a CCSD doubles amplitude (because this triple is doubly excited

relative to our reference). There will be O(ov2) of these concerningly large quadruples, and

each of them contributes to the amplitude equation for tp1p̄1
h1h̄1

, which plays an important role

in setting up the reference. Were we to explicitly include the corresponding O(ov2) set of

explicit quadruples within T̂ , this effect would presumably be mitigated. Although we do

not think that this further extension would change the theory’s asymptotic scaling, we leave

a more complete study of how different extensions of ASCC’s cluster operator would improve

accuracy in two- and multi-CSF states for future work.

Here, we attempt to answer the simpler question of whether accuracy is improved by pre-

venting the optimization of the weak correlation part of the cluster operator from modifying

the reference. To do so, we break the optimization into two stages. First, we only optimize

the amplitudes within the (4,4) active space, starting from the ESMF-based guess. We then

freeze those amplitudes and optimize the rest so as to prevent the reference from being in-

fluenced by the spurious terms discussed above. As seen in Table 3, this “Frozen ASCC”

approach reduces errors considerably, although they are still larger than in the single-CSF

states. These results suggest that, if the inclusion of small slices of higher excitations within

T̂ prevents spurious alterations to the reference, accuracy should be improved without having

to invoke a somewhat arbitrary freezing.

Thanks to ASCC’s systematic improvability, we expect that adding key higher amplitudes

will ultimately lead to even greater accuracy improvements. Further, since the number of

added amplitudes should be small, we anticipate that they will not affect asymptotic scaling.

Finally, we note that adding these amplitudes will not create mismatches between the number

of amplitudes and equations, as one can simply add the corresponding projections as well.

This contrasts with the need for sufficiency conditions in the state-specific JM methods. In

the one-CSF regime, such conditions can be avoided via two-determinant CC’s spin-locking

approach,153,154 but it is not obvious how these methods would avoid them in two-CSF

states.
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4 Conclusion

We have presented a new coupled cluster framework in which a de-excitation operator is

used to efficiently suppress the Aufbau determinant within the wave function expansion.

This approach allows extended single-reference methods to treat states in which the Aufbau

determinant is small or absent without resorting to large amplitude values and the problems

they create. Thanks to its fully exponential form, the approach is systematically improvable,

size consistent, size extensive, and, for excited states, achieves a granular size intensivity in

which the equations for electrons far from the excitation simplify into the ground state

equations. In initial testing on singly excited states, we find that a particularly simple

CCSD-like version of the theory works well in single-CSF and especially charge transfer

states, but that a more sophisticated version will be needed for two-CSF states.

Looking forward, there are many exciting avenues to explore in Aufbau suppressed cou-

pled cluster. An obvious direction is to determine which additional excitations must be

included to achieve accurate results for multi-CSF excited states. Is it only the small slice of

quadruples that we flagged above, or will other amplitudes be important as well? One could

ask a similar question for doubly excited states, which, if one chooses the MO basis the right

way, can usually be made to look like linear combinations of Aufbau, singles, and doubles. In

that case, as well as in some strongly correlated ground states, it will be worth considering

whether modifications to the de-excitation operator would be helpful in addition to consid-

ering the inclusion of higher excitation operators. Other directions might seek to exploit

the way that the theory’s granular size intensivity gives it a strong formal relationship with

ground state coupled cluster. This connection could be helpful in adding local correlation

treatments and an analogue of the ground state’s “perturbative triples” correction, since one

can intuit that, apart from the amplitudes directly involved in the excitation, these additions

can be expected to take a similar form as in the ground state. In summary, we are excited

to explore the possibilities created by Aufbau suppression.
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