Geophysical Research Letters

RESEARCH LETTER
10.1029/2023GL 104668

Key Points:

o A machine learning model
(CAM-Net) tailored for nonlinear
Gravity wave (GW) simulations is
developed

o CAM-Net can achieve a several
order-of-magnitude acceleration
relative to physics-based model
without sacrificing accuracy

o CAM-Net opens a new window to
improve the parameterization of
primary and secondary GWs in the
global atmospheric models

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

W. Dong, and A. Z. Liu,
wenjun@ gats-inc.com:
Liuz2@erauv.edu

Citation:

Dong, W., Fritts, D. C., Liu, A. Z., Lund,
T. 5., Lin, H-L., & Snively, J. (2023).
Accelerating atmospheric gravity wave
simulations using machine learning:
Kelvin-Helmholtz instability and
mountain wave sources driving gravity
wave breaking and secondary gravity
wave generation. Geophysical Research
Letters, 50, e2023GL104668. https://doi.
org/10.1029/2023GL 104668

Received 23 MAY 2023
Accepted 13 JUL 2023

Author Contributions:
C ptualization: Wenj
C. Fritts, Alan Z. Lin
Data curation: Wenjun Dong, Thomas
5.Lund

Formal analysis: Wenjun Dong, David
C. Fritts, Alan Z. Liu, Thomas S. Lund
Funding acquisition: David C. Fritts,
Alan Z. Liu

Investigation: Wenjun Dong, David C.
Fritts, Alan Z. Liu, Thomas S. Lund,
Han-Li Liu

Dong, David

© 2023. The Authors.

This is an open access article under

the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

") Check for updates

ADVANCING
EARTH AND
SPJ\CE SCIENCES

ﬁl
AGU

i’
Accelerating Atmospheric Gravity Wave Simulations Using
Machine Learning: Kelvin-Helmholtz Instability and
Mountain Wave Sources Driving Gravity Wave Breaking and
Secondary Gravity Wave Generation

, David C. Fritts'? (*), Alan Z. Liu!

Wenjun Dong'?? , Thomas S. Lund?, Han-Li Liu®

Jonathan Snively!

,and

ICenter for Space and Atmospheric Research (CSAR), Department of Physical Sciences, Embry-Riddle Aeronautical
University, Daytona Beach, FL, USA, 2Global Atmospheric Technologies and Sciences (GATS), Boulder, CO, USA, *High
Altitude Observatory, National Center for Atmospheric Research, Boulder, CO, USA

Abstract Gravity waves (GWs) and their associated multi-scale dynamics are known to play fundamental
roles in energy and momentum transport and deposition processes throughout the atmosphere. We describe

an initial machine learning model—the Compressible Atmosphere Model Network (CAM-Net). CAM-Net

is trained on high-resolution simulations by the state-of-the-art model Complex Geometry Compressible
Atmosphere Model (CGCAM). Two initial applications to a Kelvin-Helmholtz instability source and mountain
wave generation, propagation, breaking, and Secondary GW (SGW) generation in two wind environments are
described here. Results show that CAM-Net can capture the key 2-D dynamics modeled by CGCAM with high
precision. Spectral characteristics of primary and SGWs estimated by CAM-Net agree well with those from
CGCAM. Our results show that CAM-Net can achieve a several order-of-magnitude acceleration relative to
CGCAM without sacrificing accuracy and suggests a potential for machine learning to enable efficient and
accurate descriptions of primary and secondary GWs in global atmospheric models.

Plain Language Summary Atmospheric gravity waves (GWs) are well described by the
Navier-Stokes equations, but solving these equations including small scale remains daunting, limited by the
very high computational cost of resolving the smallest spatial-temporal features in a global context. To address
this challenge, we developed a machine learning model called CAM-Net. Our model demonstrates that neural
networks can be trained on high-resolution compressible atmospheric model data and then used to simulate GW
evolution. Importantly, initial results show that using such trained model can achieve computational savings of
>1,000 times compared to a physics-based simulation while still achieve highly accurate results. These findings
are exciting, as they suggest that CAM-Net can overcome the limitations of current GW parameterizations and
provide a promising avenue for studying the effects of sub-grid-scale processes in atmospheric science and
properly incorporating them in global models. The development of CAM-Net opens up major new opportunities
for improving effective model resolution, accuracy, and efficiency.

1. Introduction

Gravity waves (GWs) play prominent roles throughout Earth's atmosphere. They are generated at lower altitudes
by various primary sources including airflow over topography (i.e., mountain waves, MWs), convection, and jet
streams (Fritts & Alexander, 2003). Accounting for smaller-scale GW transports and influences remains a chal-
lenging problem due to the complex physics involved and the need for high-resolution simulations to describe
detailed responses where these are important. Multiple parameterization schemes spanning 40 years have aimed
to account for GW pseudo-momentum deposition for various GW sources, discretely or spectrally (i.e., linearly or
nonlinearly), from the surface into the thermosphere (e.g., Fritts & Lu, 1993; Holton, 1982; Lindzen, 1981; Palmer
et al., 1986). More recent schemes have built on these earlier efforts and insights (Alexander & Dunkerton, 1999;
Amemiya & Sato, 2016; Eckermann et al., 2015; Gettleman et al., 2019; Hines, 1997; Miyoshi & Yigit., 2019;
Ribstein et al., 2022; Warner & McIntyre, 1996; Yigit et al., 2008).

Importantly, all these various schemes are based on simplified, often linear or weakly nonlinear, mathemati-
cal models and/or empirical relations that are significant approximations having limited quantitative predictive
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abilities. As such, they introduce significant model uncertainties and biases in predictions of middle and upper
atmosphere responses (Pedatella et al., 2014). Parameterizations addressing GW's that are partially resolved (the
“oray zone") that maintain physical consistency between the resolved and parameterized dynamics are promising
(Vosper, 2015; Vosper et al., 2016), but can also be challenging (Liu, 2019). Such efforts attempt to represent
the complex and highly nonlinear physics of GWs. However, these assumptions and simplifications limit the
representation of many observed GW characteristics, which are physically well understood (e.g., Eckermann
et al., 2015; Eyring et al., 2006; Hertzog et al., 2008; Stephan et al., 2016).

The recent boom in hardware and software developments relevant to machine learning (ML) has motivated some
efforts to examine the possible benefits that ML can bring to GW parameterization (e.g., Chantry et al., 2021;
Espinosa et al., 2022). Chantry et al. (2021) trained a neural network on an upgraded version of an existing param-
eterization scheme that yielded improved results describing GW drag in a numerical weather prediction system.
In another study, Espinosa et al. (2022) applied an artificial neural network to emulate the pseudo-momentum
forcing described in a traditional GW parameterization in an idealized climate model. By coupling the climate
model with their ML-based GW parameterization, they were able to accurately reproduce the quasi-biennial
oscillation. However, these ML-based GW parameterizations rely on traditional GW parameterizations, hence
inherit their assumptions and simplifications.

The dynamics of GWs are governed by the Navier-Stokes equations. In recent years, several ML-based solvers for
partial differential equations (PDEs) have been proposed to approximate or improve various numerical methods.
The most explored of these can be divided into two categories: physics-informed neural networks (PINN, e.g.,
Maziar et al., 2019; Wandel et al., 2022) and neural operators (NOs, e.g., Lu et al., 2019; Li et al., 2020; Xiong
et al., 2023). PINN uses a neural network as the solution function and optimizes a loss function to minimize
violation of the given equation. However, it experiences difficulties in propagating information from initial or
boundary conditions to unseen parts of the interior and to future times. NOs are better suited for solving PDEs
and have been successfully used in flow prediction (e.g., Li et al., 2020; Lu et al., 2019; Xiong et al., 2023).
However, they require large volumes of simulation data. Recently, physics-informed NOs, for example, both the
physics-informed Deep Operator Network proposed by Goswami et al. (2022) and physics-informed Fourier NO
proposed by Li et al. (2021) employ both data and physics losses on operator learning to overcome the shortcom-
ings of purely PINN or data-driven learning.

In this paper, we focus on the potential of ML to improve the efficiency of GW simulations while capturing their
highly nonlinear dynamics with high fidelity, specifically including instabilities, breaking, and SGW generation.
A detail description of our method is provided in Section 2, Section 3 describes our results, and our discussion
and summary are provided in Section 4.

2. Method: Compressible Atmospheric Model Network (CAM-Net)

CAM-Net is a hybrid machine learning model that combines data-driven and physics-informed approaches. We
employ the Complex Geometry Compressible Atmospheric Model (CGCAM) to create the training datasets
for CAM-Net. CGCAM is a finite volume model that has been used extensively to study GW dynamics and
their instabilities in the Mesosphere and Lower Thermosphere (MLT) at very high resolution (see, e.g., Dong
et al., 2020, 2021, 2022, 2023; Fritts et al., 2020, 2021, 2022a, 2022b; Lund et al., 2020).

CAM-Net is based on the Adaptive Fourier NO (AFNO) proposed by Guibas et al., 2021. AFNO is a Fourier
transform-based token-mixing scheme with a vision transformer backbone (Dosovitskiy et al., 2020). The Fourier
architecture of AFNO applies a fast Fourier Transform (FFT) to the data and applies its fully connected layers
in Fourier space before performing an inverse FFT back to real space. The introduction of vision transformer
enables it to model long-range dependencies well and yields a state-of-the-art high-resolution model that resolves
fine-grained features and scales well with resolution and size of data set.

The power of AFNO stems from its ability to combine linear integral operators, implemented through the Fourier
transform, with non-linear activation functions, enabling it to learn highly non-linear operators. Although AFNO
truncates higher frequency modes in the Fourier layer, Li et al. (2020) argue that the entire operator can still
approximate functions with the full frequency range, due to the function being represented in a high-dimensional
channel space. In our case of predicting multi-scale GW dynamics, the Fourier layer truncation of high-frequency
information resulted in poor small-scale structure prediction. To address this, we added a convolutional layer,
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Figure 1. CAMNet architecture that utilizes the modified Adaptive Fourier Neural Operator (AFNO) and follows a
patch-based approach. The input frame is divided into a k X w grid of patches, each of size p X p, and encoded in a higher
dimensional space with position embedding is added to form a sequence of tokens. These tokens are then mixed spatially
using AFNO, which is repeated for L layers, and then a decoder reconstructs the patches for the next frame. A single AFNO
layer is composed of multiple heads for parallel processing. Parts 2—4 of the layer applies the Fourier transform F to the input,
followed by a linear transform R that acts on the lower-frequency Fourier modes and filters out the higher-frequency modes,
this is then followed by an inverse Fourier transform F~'. Part 5 stands for a convolutional layer that is used to capture the
higher-frequency modes that are missed by Part 2-4. Both AFNO outputs #; and reconstructed U are functions, and their
derivatives Dz; and DU can be computed at any query points x and z. The solutions are constrained by the Navier-Stokes
equations that govern GW dynamics. For more information, refer to the corresponding texts.

which is able to amplify high-frequency components and complement the information truncated by the Fourier
layer.

CAM-Net further extends the AFNO architecture by incorporating physics information from the Navier-Stokes
equations, which govern the GW dynamics. These equations are used to create a loss function that captures the
violation of these laws, and Fourier derivatives (Li et al., 2021) are used to compute the derivatives for the physics
constraints. The physical constraints reduce the demand for training datasets and improve the generalization and
physical validity of CAM-Net learning compared to purely data-driven methods.

The CAM-Net architecture is shown in Figure 1. The CAM-Net is currently trained on horizontal wind U, so
CAM-Net's input is U (x, z, t). The CAM-Net architecture consists of 7 parts. Below, we present a detailed
computational implementation of each part. Similar to the iterative update strategy of each Fourier layer in FNO
(Li et al., 2020), the improved iterative update strategy of each Fourier layer in CAM-Net can be expressed as

follows:
Part 1

— (1)

v = P Ux,zt)

part 5 part2 part3 part4

—_—— N A

4 =0 C w+ F! R F wl|,forl=12 - L (2)
part 6

3

—
Ux,z,t+ )= Q@ oL

where P and O are encoder and decoder that are realized by two neural networks that projects U(x,z.t) to hidden
representation # and projects the representation back to the solution U(x,z,t +1). o is a nonlinear activation func-
tion. The additional term C is a convolutional layer that acts on #,. ¢, denotes the output of the I/th Fourier layer of
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AFNO. ¥ denotes the Fourier transform that acts on ¢, R is a linear transform layer that acts on F(z+) to handle
its low-frequency modes. F~!is an inverse Fourier transform that acts on R(F(z4)). The details of each part are
provided below:

Part 1: Encoder P The encoder is implemented using the token embedding layer in the Vision Transformer
architecture proposed by Dosovitskiy et al. (2020). This layer applies a linear projection to each patch to obtain a
fixed-sized vector, which is then concatenated with positional embeddings representing the spatial location of the
patch. The resulting sequence of vectors serves as the input to the sequent neural network layers.

Part 2-4: Fourier Transform F, Linear Transform R, and Inverse Fourier Transform 7~ ': As stated in Liet al., 2020,
since the inputs and outputs of PDEs are continuous functions, it is more efficient to represent them in Fourier
space and perform global convolution. This is due to the quasi-linear computational complexity and global proper-
ties of Fourier transform. The convolution in the spatial domain is equivalent to the pointwise multiplication in the
Fourier domain. To capture global features in input data, a Fourier transform is first applied to the inputs, followed
by a Linear Transform R that acts on the lower-frequency Fourier modes by assigning weights to them. These
weights will be updated during the training. Finally, an inverse Fourier transform is performed to obtain the output.

Part 5: High-frequency Information Compensation C: In each Fourier layer, we utilize a convolutional layer
to extract high-frequency information because it can amplify high-frequency components. We train a C on the
outputs of Part 1 to extract their high-frequency information. As a complement to Parts 2—4, C enables the
forward prediction of high-frequency information.

Part 6: Decoder Q: Given two future states independently predicted by Parts 2—4 and Part 5, we combine them
and train a non-linear decoder using a multi-Layer perceptron layer with a tanh activation function to transform
the AFNO outputs back into U.

Part 7: Physics Informed Loss £,: As CAM-Net is currently trained on horizontal wind U, we utilize only the
momentum flux equation for the physics-informed part, assuming a constant density p over time. Thus, the equa-
tion can be simplified to

adplU) d(pW)
=0
ax | oz

(C))

In Equation 4, the vertical wind W is obtained from CGCAM simulations at each prediction time step, and p is
set to its initial values. The only physics-informed variable to be calculated in CAM-Net is the derivative of U
with respect to x.

The loss function of CAM-Net for optimizing Equations 1-3 is defined as

apU) | (W)

L‘,:acdm+ﬁ£,=a|v—ﬁ|+ﬂ| o . o)

where a and f control the weights of data-driven and physics-informed part in loss functions, respectively.

We performed two cases to evaluate the performance of CAM-Net, and the relevant model parameters are
presented in Table S1 in Supporting Information S1.

3. Results

This section describes our initial efforts using CAM-Net to accelerate simulations of GWs arising from two very
different sources constrained to a two-dimensional (2-D) domain. Case 1 describes the generation of initial GWs
by large-scale, shear-induced Kelvin-Helmholtz Instability (KHI) and the successive generation of SGWs at
much larger scales that readily propagate to much higher altitudes. Case 2 describes MW arising from flow over
idealized terrain, their attainment of large amplitudes, breaking, and generation of SGWs that likewise attain very
high altitudes. CAM-Net wind fields and spectra are compared with high-resolution 2-D CGCAM simulations
in both cases.

3.1. Case 1: Gravity Waves Emitted From Kelvin—-Helmholtz Instability

‘We explore here the potential of CAM-Net for modeling GW's emitted from KHI described by Dong et al. (2023).
‘We use CGCAM to generate training and testing data for CAM-Net. The initial background winds (see Figure S1
in Supporting Information S1) are specified as
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Figure 2. KHI and GWs predicted by CGCAM and CAM-Net.
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CGCAM simulations are performed for a computational domain having dimensions 180 km x 180 km (x,z)
with resolutions of 50 m at the shear center, with exponential mesh stretching approaching the upper and lower
boundaries to reduce computational demands. Periodic boundary conditions are used at the lateral boundaries.
An isothermal no-stress wall condition is used at the lower boundary, and a characteristic radiation condition is
used at the upper boundary. The vertical boundary conditions are supplemented with sponge layers having 20-km
depths to further ensure no reflected GWs. After excluding irrelevant data in the sponge layers, the variable U are
stored on a grid of dimension of 2,000 x 1,000.

Given the initial conditions, CAM-Net is required to simulate the future states of variable U at r € {1,2,3,---,50}
min for a suite of initial conditions. A total of 200 cases are generated by varying Uj, and % in Equation 6, and the
corresponding outputs of CGCAM serves as the true reference solutions for each case. The CGCAM simulations
for each case were run for 50 min at an interval of 1 min. The 200 CGCAM cases were then split into a training
set of 180 cases and a testing set of 20 cases. All samples have a grid of 2,000 x 1,000. The CAM-Net training is
implemented in a multi-GPU environment with 4 V100 GPUs.

Figure 2 displays the variable U employed for both the CAM-Net and CGCAM simulations during the model test,
and we observe a high level of consistency between two models. The ML model CAM-Net can capture small- and
large-scale structures qualitatively, with clear evidence of KHI and KHI-radiated GWs seen in both CGCAM and
CAM-Net. The initial strong shear produces deep and broad KH billows that break down after ~30 min, leading
to the emergence of small-amplitude GW's above the KHI altitude. By 50 min, increasing GW's are seen to prop-
agate with group velocities along the iso-phase lines that extend away from the KHI shear layer. Both models
suggest that GWs are continuously emitted from the KHI dynamics, with well-defined spatial structures having
orientations and spatial scales that agree closely between the CGCAM and CAM-Net fields.

The spectral properties of GWs can reveal important details about their sources, such as the altitude and vertical
extent of the source region, and the dominant wavelengths and frequencies of the GWs generated. The spec-
tral structures of horizontal wind disturbance u' are calculated and found to exhibit high consistency between
CGCAM and CAM-Net. The spectra of u'? computed at the KHI region and higher altitudes at ¢ = 30, 40, and
50 min are displayed in Figure 4. The spectra reflect the characteristics of KHI dynamics. In the KHI region, the
onset of strong KHI yields spectral slopes approaching —5/3 corresponding to wavenumbers of ~1-6 rad/km.
Spectral amplitudes fall sharply beyond wavenumbers of ~20 rad/km and exhibit steeper slopes approaching —7
in the viscous range. At higher altitudes, the —5/3 slope corresponds to wavenumbers of ~0.8-3 rad/km and —7
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slopes correspond to wavenumbers of 3—10 rad/km. These spectra suggest that small-scale structures discussed
above are well resolved at these times.

CAM-Net has promising potential as an alternative to CGCAM for simulating KHI and KHI-radiated GWs. The
time cost of a single KHI case simulation using CAM-Net was approximately 0.8 s on a single A100 (80GB).
This represents a significant acceleration (by >2,000) compared with the 30 min needed by CGCAM when using
36 CPU cores.

3.2. Case 2: Mountain Waves Generation, Propagation, and Breaking

Our intent in Case 2 was to explore CAM-Net capabilities for modeling MW generation, propagation, breaking,
and SGW generations. MW breaking is one of the strongest sources of SGWs (Lund et al., 2020). As in Case 1,
CAM-Net training employs CGCAM simulation data. The CGCAM simulations cover a computational domain
extending 700 x 220 km (x and z) at a resolution of 1 and 0.5 km in x and z. The lateral boundary is periodic. At
the lower boundary, a Gaussian terrain of peak height 4 km and half-width of 30 km is used, and a characteristic
radiation condition is used at the upper boundary. Sponge layers of 20 and 50 km are added to the upper and
lateral boundaries, respectively, to ensure absorption of outgoing GWSs. The variable U are stored on a grid having
dimensions of 600 x 400 after irrelevant values in the sponge layers are excluded.

Given the samples of initial conditions, CAM-Net is trained to reproduce the future states of variable U at ¢
€ {140, 145, 150,---,220} min. Note that we start from t = 140 min to avoid CAM-Net being trained with
non-physical data produced by CGCAM at early simulation times. A total of 200 cases are generated by varying
the initial wind field, with a random wind field randomly extracted from the HWM14 at 30°S, 70°W (Andes
Lidar Observatory) at 00:00 on 200 days among 365 days. The initial temperature field is simplified as used in
Dong et al. (2020). Winds at lower altitudes from HWM 14 are consistently lower than actual observations, and
thus a correction is needed to enable simulation of MW generation. To account for this discrepancy, we randomly
assign wind values ranging from 0 to 30 m/s at these lower altitudes to facilitate the occurrence of MWs. The
initial fields were assumed to be uniform over the domain. The initial wind and temperature fields are shown in
Figure S2 in Supporting Information S1. CGCAM simulations for each case were run for 220 min at an interval
of 5 min. The CGCAM simulations were then split into a training set of 180 cases and a testing set of 20 cases.
All samples have a grid of 600 x 400. The training of CAM-Net is implemented in a multi-GPU environment
with 4 V100.

Our results demonstrate that CAM-Net is capable of effectively modeling MW generation, propagation, breaking,
and SGW generation. We chose a case with an initial wind field that includes a tidal wind field (represented by
gray lines in Figure 3) that was not part of the 200 cases used for training and testing. Figure 3 shows U at t = 150,
180, 200, 220 min generated by CAM-Net and the corresponding CGCAM results at these times. Considering
CAM-Net results first, the earliest responses at + = 150 min reveal MW generation at lower altitudes and their
extension into the MLT. At ¢+ = 180 min, initial instabilities are seen at lower altitudes. At ¢ = 200 min, there is
evidence for strong SGW excitation in the MW breaking regions. The MW field and its associated instabilities
and SGWs continue to intensify to t = 220 min. SGWs are modulated by tidal winds and have large scales and
large influences extending into the thermosphere. The CAM-Net results approximate the CGCAM ground truth
remarkably well over 220 min. Additionally, high consistency is found between CGCAM and CAM-Net in the u’
spectra, which are shown in Figure 4 (third and second rows).

CAM-Net demonstrates promising potential as a competitive alternative to CGCAM for simulating MW gener-
ation, propagation, and breaking. A single MW case simulation using CAM-Net takes approximately 0.5 s on a
single A100 (80GB), in this case ~4,000 times faster than the corresponding CGCAM simulation using 36 CPU
cores, which took around 40 min.

4. Summary

In this paper, we developed a machine learning model solving the compressible Navier-Stokes equations in
our Complex Geometry Compressible Atmosphere Model (CGCAM) named CAM-Net. CAM-Net is a hybrid
machine learning mode] that combines data-driven and physics-informed approaches. It is based on the Adaptive
Fourier NO (AFNO) with modifications tailored to our simulations. The main improvements include: (a) the
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Figure 3. MW evolutions predicted by CGCAM (left) and CAM-Net (right). The initial condition (gray lines) is a horizontal wind of 25 m/s at the surface flowing over
a Gaussian Mountain with a height of 4 km and a half width of 30 km.

addition of convolutional layer branch to compensate for high-frequency components truncated by the Fourier
layers, making the model more robust in resolving multi-scale dynamics, and (b) the incorporation of physical
information from the Navier-Stokes equation in CGCAM. The CAM-Net feedback neural network utilizes a
loss function that combines both the physical information in Navier-Stokes equations and the data loss from
CGCAM simulations. This approach has the potential to reduce the need for extensive training data. However, it
is important to consider the influence of the training data and the need for further investigation in more diverse
and complex scenarios.

CAM-Net has successfully undergone validation on two compelling cases: KHI and MW Sources Driving GW
Breaking and SGW Generation. Both cases have demonstrated CAM-Net's remarkable capacity to significantly
accelerate GW simulations. To further enhance the application of CAM-Net's exceptional GW simulation capa-
bilities, CAM-Net will be optimized and extended (a) from single-variable simulation to multi-variable simula-
tion to better capture the complex nonlinear interactions among various GW variables; and (b) from 2D to 3D
to model the horizontal evolution characteristics of GWs more accurately, which are only fully displayed in 3D
cases.

CAM-Net offers several advantages over traditional and previous ML-based GW parameterization schemes. The
training process of CAM-Net does not rely on any existing GW parameterization schemes, thus it is not limited by
their assumptions and simplifications. CAM-Net is trained with high-resolution simulation data from CGCAM,
which are accurate numerical solutions of the Navier-Stokes equations. Well-trained CAM-Net is capable of
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Figure 4. Cases 1 (firth and second rows) and 2 (third and fourth rows) spectral characteristics predicted by CGCAM and
CAM-Net.
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resolving multi-scale and highly nonlinear GW dynamics, such as instability, GW breaking, and SGW gener-
ations, at much faster speed. To the best of our knowledge, CAM-Net is the first ML-based approach that can
directly simulate highly nonlinear GW dynamics.

A well-trained CAM-Net might produce the simulations orders of magnitude faster than CGCAM, while main-
taining an acceptable level of accuracy. First, high-resolution GW simulations can be generated within seconds,
thus enabling estimation of well-calibrated and constrained uncertainties regarding unresolved GW scales with
higher confidence compared to current global models that have severely simplified GW parameterization schemes
due to computational cost. Second, there is potential to develop a software library of well-trained CAM-Net
models to be applied to a broad range of conditions. The well-trained models have the potential to become a
viable alternative to current GW parameterizations in global models.

Data Availability Statement

The data required to reproduce each figure can be found at https://doi.org/10.6084/m9.figshare.22362955. Simu-
lation data is provided in a vtk file format and can be opened by the open-source software ParaView version
5.10, which is available under the BSD license at https://www.paraview.org/download/. The ParaView Guide can
be downloaded from http://www.paraview.org/download/.The original AFNO code is available at https://github.
com/lonestar686/AdaptiveFourierNeuralOperator.
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