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Abstract

Motivated by the impact of worsening climate conditions on vegetation patches, we study dynamic instabilities in an

idealised Ginzburg–Landau model. Our main results predict time instances of sudden drops in wavenumber and the

resulting target states. The changes in wavenumber correspond to the annihilation of individual vegetation patches

when resources are scarce and cannot support the original number of patches. Drops happen well after the primary

pattern has destabilised at the Eckhaus boundary and key to distinguishing between the disappearance of 1,2 or

more patches during the drop are complex spatio-temporal resonances in the linearisation at the unstable pattern.

We support our results with numerical simulations and expect our results to be conceptually applicable universally

near the Eckhaus boundary, in particular in more realistic models.

1. Introduction

We study the evolution of spatially periodic patterns as system parameters vary slowly. Our motivation

stems from ecological problems in which slowly varying parameters model worsening environmental

conditions due to climate change. Of particular interest are dryland ecosystem models describing the

interaction between vegetation density and available resources such as water. An important goal is to

understand the process of desertiûcation, predicting how much vegetation will remain as, for instance,

average yearly rainfall decreases due to changing climate conditions. In ODE models that do not account

for spatial variation of vegetation density or available resources, one often predicts tipping, in which

a sudden collapse from a vegetated to a desert state occurs once the yearly rainfall decreases past

some critical value. One also often observes hysteresis in such models, so that it is difficult to reverse

desertiûcation once it has occurred even if average rainfall begins to recover [49].

There has been great recent interest [2, 3, 9, 20, 40, 49, 50] in understanding the role of spatial depen-

dence of the distribution of vegetation and resources on the ecosystem dynamics and eventual collapse.

In particular, it was recently observed that in spatially extended models, a Turing instability of the uni-

formly vegetated state may occur prior to reaching the tipping point in the spatially independent system;

see [49] and references therein. Uniform vegetation then gives way to periodic vegetation patches, and

the pattern now evolves through the space of stable periodic patterns, called the Busse balloon; see [7,

8] and [14, Ch.IIIB2b]. In some cases, the system may avoid tipping completely, with stable periodic

vegetation patterns persisting past the former tipping point. This 8Turing before tipping9 mechanism

then increases the resilience of the ecosystem as it avoids total collapse and the system may in principle
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Figure 1. Top: schematic depiction of vegetation patches in one- and two-dimensional domains and

drops of density as parameters evolve slowly; bottom: schematic depiction of the Busse balloon near

a Turing instability with parameter μ vertical, wavenumber horizontal. Wavenumbers of equilibria are

quantised due to imposed spatially periodic boundary conditions with small (left) and large (right)

period; see for example the discussion in (1.3). Patterns exist above μex but are stable only above

μeck. Red curves are schematic sample paths of observed wavenumbers when the parameter μ is

slowly decreased, evolving in a staircase along the Eckhaus boundary. See also Figure 3 for numerical

simulations.

recover by evolving back through the Busse balloon of stable patterns if environmental conditions begin

to improve.

The purpose of this work is to better understand the evolution of patterns in and beyond the Busse

balloon as system parameters vary slowly. One expects that the pattern will vary continuously, slightly

adjusting the amplitude and shape of vegetation patches, until it reaches the boundary of the Busse

balloon, at which point the pattern becomes unstable in the system with frozen parameters. In ecolog-

ical terms, the available resources are no longer sufficient to support the present number of vegetation

patches, so the system 8sacriûces9 some number of vegetation patches, giving way to a new stable pattern

with fewer vegetation patches. This self-organised sacriûce intuitively requires coordination between the

different vegetation patches, all of which experience the same scarcity of resources. In parameter space,

this crisis is represented by a sudden jump from the boundary to the interior of the Busse balloon, to a

pattern with a lower wavenumber; see Figure 1 for an illustration.

While this picture of 8bouncing off the boundary of the Busse balloon9 is somewhat intuitive and

is born out in numerical simulations (see for instance Figure 5), there do not appear to be theoretical

predictions of these dynamics of evolution through the Busse balloon in simple pattern-forming models.1

For instance, while it is intuitive that one must jump to another stable pattern once the original underlying

pattern becomes unstable past the boundary of the Busse balloon, it is not clear how many vegetation

patches will be lost in such a transition. A natural goal is then to answer the following question.

1See, however, [2] for predictions of the evolution in the presence of drift and heterogeneity.

https://doi.org/10.1017/S0956792524000160 Published online by Cambridge University Press



European Journal of Applied Mathematics 3

Figure 2. Delay of bifurcation in pitchfork (left) and saddle-node (right) bifurcation when the

parameter is slowly varied. Left, top: slow passage through a subcritical pitchfork bifurcation,

a′ = μa + a3, μ′ = ε, yields O(1) delay in parameter space of the departure from the unstable state.

Left, bottom: the reason for the delay in the pitchfork bifurcation is an accumulated exponential small-

ness from the dynamics in the stable regime, here shown in a schematic log plot of the amplitude. Right:

in a slow passage near a fold, a′ = −μ − a2, μ′ = ε, the delay is small, O(ε2/3) in the parameter. See

text for details on how our results relate to the delay in the pitchfork bifurcation.

Given an initial periodic pattern with small fluctuations, can we predict the evolution of the number

of patches as parameters vary slowly? In particular, can we predict the time at which the number of

patches will change, and how much it will drop by?

We formulated our motivation in terms of dryland vegetation patches, but we believe that there are

many settings in which this evolution of patterns with varying parameters is at the centre of the descrip-

tion of dynamics; see for instance studies of Turing patterns in growing domains [37] or the analysis of

melting-boundary convection in [59].

The question embeds naturally into the larger set of problems known as delay of instability; see for

instance [15, 27, 44, 54], in particular the early work in [43], and see [10, 13, 23, 26] for dynamic

bifurcations in the context of pattern-forming instabilities. Such delays manifest themselves in contexts

where a branch of equilibria undergoes a bifurcation and destabilises, or vanishes entirely. 8Dynamically9

passing through this bifurcation diagram by slowly changing the parameter with rate ε, one expects to

follow the 8static9 picture, that is, one expects to track the stable branch and, in the absence of the stable

branch, a strong unstable manifold of the equilibrium at criticality; see Figure 2. In the simplest case

of a saddle-node bifurcation, the solution stays near the remnant of the equilibria for a time ε−1/3 [38].

Similar results are available in the case of pitchfork and transcritical bifurcations when the parameter

change includes a generic disturbance of the trivial branch [39]. If the trivial branch is undisturbed, the

delay is of order ε−1, that is, of order one in the parameter, with take-off point determined by the initial

parameter value. Of course such a scenario is global in the sense that it requires assumptions on the

system far away from the bifurcation point, at which point also other eigenvalues might be relevant; see

for instance [33] for an analysis of two such eigenvalues interacting and [32] for a case with continuous

spectrum crossing. More robust delays occur in Hopf bifurcations [27, 45, 46], where recent work, closer

in spirit to our work here, also explores a PDE setting where many modes destabilise instantaneously

[25, 34].

Our setting relates to the global aspect of the delay of instability in pitchfork bifurcations. In fact,

the Eckhaus instability, which generically describes the boundary of the Busse balloon near a Turing

bifurcation, manifests itself in bounded domains as a subcritical pitchfork bifurcation. With this anal-

ogy, we predict delays of order one in the parameter before leaving a ûxed pattern. A simple linear

calculation indeed correctly predicts the take-off point through an integral criterion: take-off points are

found by requiring that the average of the marginally stable eigenvalue along part of the branch followed

by the solution is zero. Intuitively, the cumulative exponential decay in the stable regime is 8spent9 in
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the unstable regime where the solution grows exponentially, until both cancel and the solution reaches

ûnite distance from the equilibrium branch again.

Beyond this simple linear calculation that we corroborate and supplement with global information,

our key insight here is that the global nature of the delay makes it necessary to take into account other

potentially unstable modes. Our results in this direction answer the main question posed above through

linear predictions based on the presence of nonlinear spatio-temporal resonances. We predict, depend-

ing on the initial parameter value, the time when the solution leaves a neighbourhood of the equilibrium

and the new equilibrium that the solution approaches. Since in fact the number of maxima (or vege-

tation patches, in this particular scenario) drops, we refer to this critical time as the drop time, to the

associated parameter value as the drop parameter value, and to the decrease in the number of max-

ima as the drop number. Our results predict drop numbers in a range from 1 to 4 and associated drop

times. The predictions are based on spatio-temporal resonances in the complex plane and are reminis-

cent of criteria for front invasion speeds and transitions from convective to absolute instability in large

bounded domains as explored in [1, 19] and point to a potentially more comprehensive theory of spatio-

temporal instabilities in extended systems. We emphasise that the results here address one particular,

albeit ubiquitous example of instability, the long-wavelength Eckhaus destabilisation. Boundaries of the

Busse balloon in systems far from equilibrium often involve different instability modes, in particular

period-doublings; see [16, 17] for examples and see [48] for a conceptual view on instabilities of Turing

patterns in one-dimensional systems.

To be speciûc, we study this question here in the Ginzburg–Landau equation

At = Axx + μ(εt)A − A|A|2, A = A(x, t) ∈C, x ∈R, t > 0. (1.1)

The Ginzburg–Landau equation is one of the simplest models of pattern-forming systems, and a univer-

sal amplitude equation that describes spatio-temporal dynamics near a Turing instability [14, 47]. It is

therefore a natural starting point to understand the evolution of periodic patterns through the Busse bal-

loon. In the Ginzburg–Landau equation, the boundary of the Busse balloon is determined by the Eckhaus

instability; see [14, iVA1a(ii)] for background, [36, 55] for a study of the dynamics of the instability,

[29, 56] for the effect of noise, [51] for ûnite-size effects, and Section 2 below for a basic review. We

allow the linear coefficient μ to vary slowly in time, with time scale ε−1, and consider the problem on

bounded domains with periodic boundary conditions. We will often make comparisons to the static

problem, where μ does not vary in time. We emphasise here that when interpreting results obtained

for the Ginzburg–Landau equation in the context of a Turing instability, one needs to account for the

fact that A(x, t) is an amplitude-phase modulation, so that actual solutions are of the form A(εx, ε2t)eix,

say. In particular, the preferred constant state A ≡ const in Ginzburg–Landau corresponds to a preferred

patterned state in the original model.

The equation (1.1) with ε = 0, μ(εt) = μ > 0 ûxed possesses equilibria A∗(x;j) =
√

μ − j2eijx for all

|j|�√
μ. We are interested in the fate of these 8patterned9 equilibria for a ûxed j when the parameter

μ is slowly decreased and, as it turns out, the equilibrium is destabilised. We wish to consider instabil-

ities on a ûxed-size domain which we assume, after possibly rescaling x, t, and |A|, to be x ∈ [0, 2π ].

To accommodate an initially ûxed equilibrium with arbitrary j we impose 2π -twist-periodic boundary

conditions, relative to this equilibrium,

A(2π , t) = e2π ijA(0, t), Ax(2π , t) = e2π ijAx(0, t). (1.2)

This allows us to treat j as a continuous rather than a quantised parameter.

Next, deûning a new variable B through A(x, t) = eijxB(x, t), we ûnd that B solves the conjugated

equation

Bt = (∂x + ij)2B + μ(εt)B − B|B|2, (1.3)

with periodic boundary conditions

B(2π , t) = B(0, t), Bx(2π , t) = Bx(0, t). (1.4)
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Figure 3. Simulations of (1.1) with initial condition A∗(x;j), j = 8 and ε = 0.05, with initial μ-values

μin = μc + μ̂, μ̂ = 6, 16, . . . , 56. Plotted are winding numbers of A as time progresses and μ decreases,

over the parameter value μ at a given time instance. Trajectories crisscross the Eckhaus boundary in

a staircase pattern that depends on the initial parameter value. The value μ̂ = 0 corresponds to the

onset of the Eckhaus instability at j = 8. Initial conditions further away from the instability lead to later

drops and higher drop numbers. Fractions of 1 are added to show all itineraries simultaneously, so

that the actual current winding number is the largest integer below the plotted curve. Also shown are

the boundary of instability (red) and the boundary of existence of equilibria (black) with a given j; see

Section 2 for details. Note that the figure is reflected along the diagonal when compared to Figure 1, using

the traditional bifurcation-theoretic depiction of phase-space versus parameter also used in Figure 2.

This equation has a family of constant solutions

Ej = {eiϕB∗(j), ϕ ∈ [0, 2π )}, B∗(j) =
√

μ − j2, (1.5)

modulated solutions

E
j
′ = {eiϕB∗(j

′)ei(j
′−j)x, ϕ ∈ [0, 2π )}, B∗(j′) =

√

μ − j′
2, (1.6)

and the trivial solution B∗ = 0. Drop numbers as described above, when, say, j > 0, are now simply the

differences j − j′ for a trajectory that hovers subsequently ûrst near an equilibrium Ej and later near an

equilibrium E
j
′ with j > |j′|. Together with the drop number, we also wish to predict the drop time t∗, when

a solution leaves a small ûxed neighbourhood of Ej, or, more naturally, the associated drop parameter

value μ(εt∗). The main insight of the analysis presented in this paper can be roughly described as follows.

Main results. Consider solutions to (1.3) with periodic boundary conditions (1.4), and with initial

conditions close to Ej for some j, and assume that Ej is initially stable for μ = μ0. Under conceptual

assumptions on the existence of connecting orbits in the static problem, drop times and drop numbers

as μ varies are determined by resonance criteria for eigenvalues, and associated integral conditions

summarised in Section 3.1.

As a consequence, our results predict the drops in the intricate web of winding numbers j observed

over time, when only the initial parameter value is varied; see Figure 3 for this increase of the drop with

distance from criticality and for the ensuing sequence of drop events.

2. The Eckhaus instability in the static problem

In this section, we recall stability of periodic patterns in the static problem

Bt = (∂x + ij)2B + μB − B|B|2, (2.1)

with μ ûxed and with 2π -periodic boundary conditions. Dynamics of (2.1) are inüuenced by its

symmetries, which we now list for reference:
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• (spatial translation) Tx0
: B(x, t) �→ B(x + x0, t), viewing x on the circle R/2πZ;

• (reüection) T− : B(x, t) �→ e−2ijxB(−x, t);

• (gauge rotation) Rφ : B(x, t) �→ eiφB(x, t) for φ ∈R/2πZ;

• (complex reüection) S− : B(x, t) �→ e−2ijxB̄(x, t).

From the discussion above, we recall that we are interested in the stability properties of the spatially

constant equilibria Ej, deûned in (1.5). We remark that one commonly studies stability properties on

the unbounded real line rather than on a ûxed, possibly large ûnite domain. Separating into phase and

amplitude dynamics and linearising, one there ûnds that the Ej are linearly stable provided μ > 3j2,

and the long wavelength instability at μ = 3j2 is referred to as the Eckhaus instability; see for instance

[31, Chapter 8.2] for a review. Our focus on ûnite domains here gives well-known corrections to this

threshold. The restriction to ûnite domains here appears essential to the techniques used below.

2.1 Local stability analysis

The Eckhaus instability in ûnite domains was analysed in [57], and we brieüy review the basic linear

analysis here. Separating (2.1) into real and imaginary parts B = u + iv and linearising about (u, v) =
(B∗(j), 0), we ûnd

ut = uxx − 2jvx − 2(μ − j2)u

vt = vxx + 2jux.

The linearisation is block diagonal in Fourier modes u(x) =
∑

�∈Z u�e
i�x, v(x) =

∑

�∈Z v�e
i�x,

(

u̇�

v̇�

)

=
(

−�2 − 2(μ − j2) −2ij�

2ij� −�2

) (

u�

v�

)

. (2.2)

This matrix is self-adjoint, a reminder that the Ginzburg–Landau equation is a gradient üow. It has a

negative trace, so that it always has at least one negative real eigenvalue. From a short calculation, one

ûnds that the other eigenvalue is positive when

μ < μ�,c := 3j2 − �2

2
(2.3)

for � 
= 0, while the � = 0 block always has one zero and one negative eigenvalue. As μ decreases, the

instability is therefore always ûrst seen in the � = ±1 mode. The eigenvalue that becomes unstable past

μ�,c is given by

λ�,+(μ) = −�2 − (μ − j2) +
√

4�2j2 + (μ − j2)2. (2.4)

For notational simplicity, we usually suppress the dependence of λ�,+(μ) and μ�,c on the base wavenum-

ber j. To further simplify notation, we write λ� instead of λ�,+ since the eigenvalue λ�,− will be irrelevant

for the discussion in this work. We also write simply μc := μ1,c for the boundary of stability, noting that

modes with |�| 
= 1 destabilise for smaller values of μ, reüecting the side-band nature of the Eckhaus

instability. Eigenvectors are

(u�, v�)(μ) =
(

j2 − μ +
√

4�2j + (μ − j2)2, 2i�j
)

.

Note that, since the equilibrium is ûxed under translations Tx0
and the reüection T−S−:B(x) �→ B̄(−x), the

linearisation commutes with these symmetries which henceforth act on eigenspaces (and on the üows

on invariant manifolds tangent to those eigenspaces). Since the algebraic expression for eigenvalues and

eigenvectors are somewhat cumbersome, we will later verify assumptions explicitly in the limit of large

j, where we set μ = μc + μ̂, and ûnd

λ�(μ) = −�2

2

(

�2

2
− 1

2
+ μ̂

)

j−2 + O
(

j−4
)

, (u�, v�)(μ) =
(

�

2
+ O

(

j−2
)

, ij

)

, (2.5)
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Figure 4. Eigenvalues of the linearisation at Ej with j = 8 (top) and j = 4 (bottom), for parameter values

μ = j2 at onset to μc + 10. Enlargement near criticality (right) reveals the intricate crossovers that are

explicit in the limit of large j. Eigenvalues are shown from � = 1 in dark blue to � = 7 (top) and � = 5

(bottom), respectively, in light blue.

also writing e�(μ) short for the normalised eigenvector; see Figure 4 for an illustration of the dependence

of eigenvalues on μ. The stability threshold μ̂ = 0 corresponds to the Eckhaus boundary μ = 3j2 in

the inûnite domain, but with the ûnite size correction − 1

2
. Note that since u and v are real, we have

u� = u−�, v� = v−�, and in particular λ�(μ) = λ−�(μ).

2.2 Connecting orbits

To understand the evolution of periodic patterns in the dynamic problem, we are interested not only in

stability boundaries in the static problem but also in connecting orbits. That is, we ask the following

question: if we start with an initial condition B0 near the equilibrium Ej which is Eckhaus unstable,

where does the solution B(t) go as t → ∞?

The complex Ginzburg–Landau equation is in fact a gradient üow in L2([0, 2π ), C),

Bt = −∇L2E[B], with energy E[B] = 1

2π

∫ 2π

0

(

1

2
|Bx + ijB|2 − μ

2
|B|2 + 1

4
|B|4

)

dx. (2.6)

As a consequence, the solution B(t) necessarily converges to an equilibrium with energy lower than

Ej. A direct calculation shows that from this perspective, out of all equilibria Ek, only wavenumbers

|k| < j are eligible, and one may suspect that solutions B(t) originating near Ej converge to a speciûc Ek.

Unfortunately, it seems difficult to establish analytically which equilibrium Ek is selected in this sense.

In fact, there are also spatially patterned equilibria other than the Ek, believed to all be unstable as they

limit, in a large-domain limit, onto unstable phase defect solutions such as

Ad(x; k) =
(√

2k + i
√

1 − 3k2 tanh (
√

1 − 3k2x/
√

2)
)

eikx; (2.7)

see [42]. Some, for our purposes rather restrictive, results have been obtained in [18], where heteroclinic

orbits between two distinct equilibrium sets Ej and Ej−k have been constructed. The arguments there are

based on the variational structure (2.6), roughly demonstrating that there is in fact a unique candidate for

connecting orbits with given co-periodicity. In our contexts, the results only give conclusive information

in the case 1

2
< j < 1, in which case a generic perturbation of Ej will converge to Ej−1.

On the other hand, the fate of perturbations is rather straightforward to establish numerically. We

distill our ûndings in the following conceptual assumption about the static problem, which we will later

rely on to draw conclusions in the problem with slowly varying parameters.
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Figure 5. Left: existence and stability boundaries, as well as spatio-temporal resonances responsi-

ble for cross-overs in the drop number changes, together with mode number of a sample trajectory.

Resonance curves μ12 :2, μ1,2:3, etc. correspond to parameter values where λ1 + λ1 = λ2, λ1 + λ2 = λ3,

and so forth. In the region between solid and dashed part of the curves, λj+1 > λ1 + λj; see Section 3.1

for details on resonances and their relevance. Right: space-time plot of Re(A) of the same sample tra-

jectory, with time axis represented in terms of the slowly varying μ, varying up until μ < 0 and no

nontrivial equilibria exist.

First note that for a generic μ, the eigenvalues λ�(μ) will be distinct up to the symmetry λ�(μ) =
λ−�(μ). The special crossover points at which this condition is violated, that is, at which eigenvalues for

different wavenumbers � collide, will play a role later but are excluded in the following discussion. We

denote the crossover point, at which λ�(μ) = λk(μ), by μ = μ� : k. Away from these crossover points, we

let eu
�

denote the real two-dimensional eigenspace associated with the unstable eigenvalues λ±�(μ).

The following hypothesis is sometimes colloquially referred to as node conservation or linear mode

selection.

Hypothesis 2.1 (Linear mode selection). For 0 < δ1 
 δ0 
 1 sufficiently small fixed, trajectories with

initial conditions given as a perturbation of Ej of size δ0 will limit on Ej−�∗ if their amplitude is maximal

in the unstable eigenspace with index �∗. To be precise, writing the projection of the initial condition on

the unstable subspace of Ej as a linear combination
∑

α�e�e
i�x, we have δ0 = |α�∗ | � δ1 = max� 
=�∗ |α�|.

Here, e� is the normalised eigenvector to the eigenvalue λ� from (2.5); see Figure 6 for a schematic.

To explain the basic intuition, notice that perturbations of the constant equilibrium in the direction

of the eigenvector λ�, that is perturbations where δ1 = 0, have a sinusoidal shape and winding number

� relative to Ej. The hypothesis states that as the amplitude grows, this 8modal9 shape is preserved and

terminates in the equilibrium Ej−�, with winding number −� relative to the origin.

Hypothesis 2.1 is reasonably well supported by numerical experiments; see Figure 7 for experiments

in the cases � = 1 and � = 2. In the numerical experiments, we perturbed the unstable equilibrium in

the eigenvector to λ�, only, thus checking the milder version of the hypothesis with δ1 = 0. We found

consistent drops by � in a large region (shaded grey in the ûgure). We superimposed this region with

eigenvalue resonance curves that we computed using numerical continuation. In the left panel, we show

the transition from drop-by-one to drop-by-two as predicted in the next section at μ12 :2. This resonance

occurs well inside the shaded grey region. Note that for smaller μ the resonance is not present, the

numerical continuation of the resonance condition undergoes a saddle-node with a second resonance

curve μ∗
12:2

. In the right panel, we show in particular the resonance μ1,2:3, which indicates the transition

to a drop-by-three, again well inside the region where the hypothesis holds for � = 2; for details, compare

the deûnition of the log amplitudes bj (3.5)–(3.8) and the main prediction (3.10).
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Figure 6. Schematic of the picture implied by Hypothesis 2.1: the unstable manifold of Ej, here 2-dimen-

sional, contains open sets of orbits that connect to Ej−1 and Ej−2, respectively. The hypothesis guarantees

that the connecting orbits to Ej−1 and Ej−2, respectively, contain the caps of conical regions around the

respective eigenspaces. In particular, trajectories in the boundary between connecting orbits to Ej−1

and Ej−2 are not arbitrarily close to the eigenspaces. It seems plausible that the boundary of validity of

the hypothesis is related to trajectories on a codimension-one stable manifold of saddle equilibria, here

referred to as ‘defect’, since equilibria of the form (2.7) are natural candidates for such a role in the

setting of an unbounded domain.

Figure 7. Testing the linear prediction hypothesis in the fixed-μ problem, we computed trajectories

with small perturbations of an unstable equilibrium Ej in the modes � = 1 (left) and � = 2 (right). We

found that the trajectories converged to the equilibrium Ej−� in a range (shaded grey) far exceeding the

possible drop ranges investigated below. In the left figure, � = 1, drops to Ej−1 were confirmed up for

all μ larger than and up to a critical value μ1,bdy, which includes a region where λ2 > λ1 (shown as

μ > μ1:2) and a region where λ2 > 2λ1 (shown as μ > μ12:2). However, it does not encompass the entire

parameter region where Ej−� is stable (shown as μ > μ−1
stab). Remarkably, higher drops appear to occur

past a somewhat fixed distance to the instability boundary μstab. On the right, the region with consistent

drop-by-2 (shaded grey) also encompasses well the region where we predict a local drop-by-two. We

refer to (3.4) for precise definitions of the various resonance curves shown and the main prediction in

Section 3.1 relying on these resonances to predict drop numbers and drop times.

In the spirit of this assumption, we ûx δ > 0 sufficiently small and consider a trajectory that starts

in a neighbourhood of the unstable equilibrium Ej. We deûne the local drop number (depending on δ)

at the time when the distance to the Ej reaches δ by ûnding the index of the unstable eigenspace with

maximal amplitude in the sense of Hypothesis 2.1. In the results presented in the next section, it then

turns out that the distance to the eigenspace is in fact very small, that is, δ1 
 δ0.
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We say that the global drop number of such a trajectory is � if Ej−� is the ûrst equilibrium so that the

trajectory reaches its neighbourhood of size δ. Hypothesis 2.1 is geared to imply that local drop numbers

and global drop numbers are equal in the static (μ ûxed) problem. In fact, local and global drop numbers

agree well also in the dynamical problem, where μ varies slowly; compare Figure 11.

We note that, thinking about proving a version of Hypothesis 2.1, detailed information on connecting

orbits usually requires information in addition to energy levels of equilibria or more general topological

information [41]. One such property are comparison principles with the associated reûned Sturm oscilla-

tion properties in the real scalar version of (1.1), known as the Allen-Cahn equation, ut = uxx + μu − u3.

Here, in fact the structure of connecting orbits is completely determined; see for instance [28, Chapter

5.3], the review [22], or [21] for a more recent perspective. Some extensions towards systems of the type

considered here were investigated in [6].

3. Slow passage through the Eckhaus instability

Based on our understanding of the static problem, in particular Hypothesis 2.1, we now turn to

predictions for the dynamic problem

Bt = (∂x + ij)2B + μB − B|B|2, (3.1)

μ̇ = −ε. (3.2)

Throughout, we envision an initial condition given as a small generic perturbation of the j-modal equi-

librium Ej, for a μ-value initially large enough such that Ej is stable. As time evolves, the solution will

follow the μ-dependent equilibrium very closely as long as μ > μc. Our goal is to predict when (i.e., for

which μ-value less than μc) the solution will leave a small neighbourhood of Ej and what the dominant

linear mode � is at that time instance, hence predicting a drop-by-� based on our linear mode selection

assumption, Hypothesis 2.1.

3.1 Main result – spatio-temporal resonances and drop criteria

We summarise here the results of the analysis in the subsequent sections in the form of an algorithm

that predicts, at leading order, local drop parameter values μout and local drop number m given an initial

parameter value μin and initial wavenumber j in (3.2). Recall the eigenvalues of the linearisation λ�(μ)

and deûne resonant parameter values μ = μk1 ,...,ks : k0
as the values of μ where a resonance condition in

the eigenvalues holds:

λk0
(μ) =

s
∑

σ=1

λkσ
(μ) at μ = μk1 ,...,ks : k0

, (3.3)

k0 =
s

∑

σ=1

kσ . (3.4)

For instance,

λ3(μ) = λ1(μ) + λ2(μ), at μ = μ1,2:3,

and introducing short-hand notation,

λ3(μ) = 3λ1(μ) at μ = μ1,1,1:3 =: μ13:3.

The parameter values μk1 ,...,ks : k0
represent spatio-temporal resonances in the sense that at these parameter

values linear solutions eikx+λt exist that are resonant both in time (3.3) and space (3.4).
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Next, we recursively deûne log-amplitudes of modes b� given μin as follows:

b1(μ) =
∫ μin

μ

λ1(μ̂)dμ̂, (3.5)

b2(μ) =
∫ μ

12:2

μ

λ2(μ̂)dμ̂ + 2b1(μ12 :2), μ < μ12 :2 (3.6)

b3(μ) =
∫ μ1,2:3

μ

λ3(μ̂)dμ̂ + b1(μ1,2:3) + b2(μ1,2:3), μ < μ1,2:3 (3.7)

b4(μ) =
∫ μ2,2:4

μ

λ4(μ̂)dμ̂ + 2b2(μ22 :4), μ < μ2,2:4. (3.8)

Main prediction – drops m � 4. Fix � and an initial parameter value μin > μc and consider dynamics

with slowly decreasing μ = μin − εt. The drop parameter value μout is given to zeroth order in ε by

μout = argmaxμ<μc
max1���4b�(μ) = 0, (3.9)

that is, the largest (dynamically the first) μ-value at which any of the log amplitudes return to 0. The

local drop number is

m = argmax1�� b�(μout), (3.10)

that is, the index � that achieves b�(μout) = 0. The maxima are taken only over log amplitudes that are

defined for the given parameter value μ. As a function of μin, μout < μc is strictly decreasing and m is

strictly increasing.

The log-amplitudes before the resonances can be deûned as well, but they are always much smaller

than the log-amplitudes with smaller index.

The reader will notice that only speciûc resonances occur in the deûnition of the b�. We found these

resonances to be relevant in the sense that their effects dominate the effects of all other resonances

in the examples we studied, in particular in the limit of large j. We do not know of a general rule to

predict which resonances dominate for larger potential drop numbers, so the algorithm for drops by 5

or higher is more complex. For the mode b5, one needs to ûnd log-amplitudes depending on different

spatio-temporal resonances and maximise over all of those, for instance deûning

b2,3:5

5 (μ) =
∫ μ2,3:5

μ

λ5(μ̂)dμ̂ + b2(μ2,3:5) + b3(μ2,3:5) μ < μ2,3:5,

b1,4:5

5 (μ) =
∫ μ1,4:5

μ

λ5(μ̂)dμ̂ + b1(μ1,4:5) + b4(μ1,4:5) μ < μ1,4:5,

b1,22 :5

5 (μ) =
∫ μ

1,22:5

μ

λ5(μ̂)dμ̂ + b1(μ1,22:5) + 2b2(μ1,22:5) μ < μ1,22 :5, etc.

With this information, we can deûne critical parameter values where changes in drop numbers occur.

At these parameter values, the argmax in (3.10) is realised simultaneously at two different values of

�. In all situations we encountered, those two values of � were adjacent, � ∈ {m, m + 1} and the drop

number increases by one as μin increases through this critical parameter value. We then denote this

critical parameter value by μin,m→m+1, with associated local drop parameter values μout,m→m+1.

It turns out that μout,1→2 = μ12 :2, but for m � 2, μout,m→m+1 is strictly less than the resonances associated

with the mode m + 1, for instance μ1,m:m+1, μ12 ,m−1:m+1, etc. We will see that, as a consequence, corrections

to the transition points are O(
√

ε) for μout,1→2 but O(ε) for other transitions.

We refer to Figures 8, 10, and 11 for numerical demonstration of the validity of the results presented

here. The remainder of this section presents the rationale behind these predictions, explaining to what

extent one should expect rigorous results, and some details on ε-corrections as well as asymptotics for

j → ∞. The numerical results also show that global drop numbers agree well with local drop number

predictions. This is also conûrmed by the direct testing of Hypothesis 2.1, Figure 7, which shows that
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the hypothesis holds well beyond the region where drop number changes are expected, at least for drop

numbers of 1 and 2.

3.2 Drop-by-1 transitions

First, we consider initial conditions for which B0 is close to an equilibrium Ej, and the initial parameter

value μin is just above the stability boundary μc = μ1,c at which λ1(μ) becomes positive. Starting very

close to the stability boundary, we expect the ûrst drop in the winding number to occur while λ1(μ) is

the only unstable eigenvalue, and so we study the reduced problem on the associated centre manifold. In

this case, no further assumptions are necessary to make precise and rigorous statements about the local

drop time.

When ε = 0 and μ = μ1,c, the static problem has a complex one-dimensional, real two-dimensional

centre manifold. A parameter-dependent centre manifold reduction [57] gives the leading order equation

for the complex amplitude a1 near μ = μ1,c,

ȧ1 = λ1(μ)a1 + c1(μ)a1|a1|2, c1(μ) > 0, (3.11)

which is the normal form for a subcritical pitchfork bifurcation with rotational symmetry. The cubic

coefficient, obtained through a centre-manifold expansion was shown to be positive in [57]. Solutions

to (2.1) on this centre manifold are then recovered using the eigenvectors e1(μ) (2.5) through

B(x, t) = B∗(j) + u + iv, u + iv = a1(t)e1(μ)eix + ā1(t)ē1(μ)e−ix + O
(

|a1|2
)

. (3.12)

Considering these centre manifolds in the system (3.1)–(3.2) for ε = 0, we ûnd an invariant manifold,

of real dimension three, given by the union over μ of the centre manifolds constructed above. This

manifold is normally hyperbolic from the explicit splitting in the linearisation at the equilibria and hence

persists for ε small [4, 28], with dynamics given by

ȧ1 = λ1(μ)a1 + c1(μ)a1|a1|2 + O
(

|a1|5
)

, (3.13)

μ̇ = −ε. (3.14)

As noted above, the üow commutes with the action of translations a1 �→ eiϕa1 and reüections a1 �→ ā1,

so that the real subspace is invariant and dynamics for arbitrary initial conditions are conjugate to the

dynamics in the real space by complex rotation. Alternatively, one could also use a time-dependent

centre-manifold reduction [11] after an appropriate modiûcation of the μ-dynamics outside of the

parameter regime considered and arrive at the same reduced equation.

We then consider a boundary-value problem where we prescribe the initial amplitude a1,in = δ 
 1

and initial parameter value μin at a time −Tin, and seek time Tout and associated parameter value μout

where the amplitude a1 is of size δ again,

a1(−Tin) = a1,in = δ, μ(−Tin) = μin

a1(Tout) = a1,out = δ, μ(Tout) = μout. (3.15)

For convenience, we set

μin − μ1,c = εTin, so that μ1,c − μout = εTout, μ(0) = μ1,c. (3.16)

Because λ1(μin) is stable, we expect that a1 will initially decay exponentially, and then grow once μ

decreases past μ1,c, so that the time Tout and thereby the value of μout at which a1 returns to its initial

size, a1(Tout) = δ, are well deûned.

Since we are only considering a time interval in which a1 remains small, as a ûrst approximation

we analyse (3.13)–(3.14) by neglecting the nonlinear terms and solving the resulting linear equation
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explicitly for initial conditions (a1,in, μin), with solution

a1(t) = exp

(∫ t

−Tin

λ1(μ(εs)) ds

)

a1,in. (3.17)

Since λ1(μin) < 0, the integral is initially negative and begins increasing as μ decreases past μ1,c. Then

in this linear prediction, the time Tout is the ûrst time after Tin at which the equal area condition

∫ Tout

−Tin

λ1(μ(εs)) ds = 0, or, equivalently,

∫ μout

μin

λ1(μ) dμ = 0, (3.18)

holds. Note that the latter integral describes precisely the vanishing log-amplitude b1 = 0 from

Section 3.1.

Lemma 3.1 (Equal-area prediction). The system (3.12) together with the boundary conditions (3.16)

has a unique solution for 0 < δ, μ1,in − μ1,c 
 1, sufficiently small, and we have the expansion

μout = μ0

out + O(ε), (3.19)

where μ0
out < μin is the largest solution to the equal-area condition (3.18). In particular, μ1,c − μout =

μin − μ1,c + O(|δ| + |ε| + |μin − μ1,c|2).

Proof. The result states that at leading order, the linear prediction (3.18) is correct. For small δ, the

eigenvalue λ1(μ) can be approximated near μ1,c by λ1(μ) = λ1
′(μ1,c)(μ − μ1,c) + O(2), which implies

the last statement.

In order to show that nonlinear terms contribute only at higher order, one follows the analysis of the

slow passage near a pitchfork bifurcation in [39]. We omit the somewhat lengthy but straightforward

details.

Corollary 3.2 (drop-by-1 result). Assume Hypothesis 2.1 and an initial condition in a sufficiently small

neighbourhood to the j-mode equilibrium for some j > 0, a parameter-value μin �μ1,c, and let ε be

sufficiently small. Then the modal number will drop by one at μout = 2μ1,c − μin + O(ε).

Proof. The result follows immediately from Lemma 3.1 and Hypothesis 2.1.

From Corollary 3.2, we conclude that for μin sufficiently close to μ1,c, we will always observe a drop

by one and can easily characterise the drop time. Naturally, we wish to see how far this result extends.

The key limiting factor in the result is the presence of a leading eigenvalue with λ1(μ) > λ(μ) for all other

λ(μ) in the spectrum of the linearisation. Technically, centre manifold reductions in the literature also

require a uniform splitting, λ1(μ) > η0 > λ(μ) with η0 independent of μ, possibly with sufficiently large

gaps to ensure smoothness. We believe that a simple splitting of the leading eigenvalue λ1(μ) > λ(μ)

for all μ ∈ (μin, μout) should be sufficient to establish Lemma 3.1 but will not attempt to do so here. We

observed excellent validity of our predictions even when the uniform gap condition does not hold.

The procedure thus far predicts how and when a ûrst transition will lead to a drop by one in wavenum-

ber or possibly a more severe drop. At the end of this drop, from say Ej to Ej−1 near μ = μout, we have

followed a global heteroclinic to a neighbourhood of Ej−1, where we typically expect that upon enter-

ing the neighbourhood, we have a generic perturbation of this stable equilibrium and can now repeat the

analysis with the new μin given by the previous μout. A short calculation using our main prediction (3.10)

and expressions for eigenvalues in (2.5) shows that for j � 1, the distance between μ1,c for modes j and

j + 1 is 6j + 1, while the distance between μ1,c and μ2,c is only 3

2
. Hence, one expects that, for large j, a

drop-by-1 is followed by a large distance to criticality in parameter space and a potentially subsequent

higher drop; compare also Figure 3. Therefore, we now analyse such higher drops, when more than one

eigenvalue is unstable at the predicted drop time.

https://doi.org/10.1017/S0956792524000160 Published online by Cambridge University Press



14 A. Asch et al.

3.3 The drop-by-2 transition

We ûrst consider the static problem with μ3,c < μ < μ2,c, so that the equilibrium Ej has two unstable

eigenvalues λ1(μ) and λ2(μ). There is an associated complex two-dimensional, real four-dimensional

centre-unstable manifold. The dynamics on this manifold are governed by equations for the complex

amplitudes a1, a2 in the associated eigenspaces,

ȧ1 = λ1(μ)a1 + c1,2(μ)ā1a2 + O(|a1|(|a1|2 + |a2|2)),

ȧ2 = λ2(μ)a2 + c12 (μ)a2

1 + O(|a1|(|a1|2 + |a2|2)), (3.20)

with coefficients c1,2(μ), c12 (μ) ∈C that can be readily computed by evaluating the nonlinearity on the

associated eigenspace and projecting. Again, the vector ûeld commutes with the isotropy of the equilib-

rium, that is, translations (a1, a2) �→ (eiϕa1, e2iϕa2), and reüections (a1, a2) �→ (ā1, ā2). As consequence,

c12 and c1,2 are real and the real subspace (a1, a2) ∈R
2 is invariant. Note that the nonlinear terms corre-

spond to the spatial resonances referred to in (3.4): the aj are amplitudes of Fourier modes eijx, and the

complex rotation is induced by the spatial shift x �→ x + ϕ in the full equation. The associated manifold

is normally hyperbolic in parameter regimes where λ1(μ) and λ2(μ) are separated from other eigen-

values; its smoothness (making in particular the cubic terms meaningful) is determined by spectral

gaps; see for instance [28, 30]. These gaps can be easily evaluated in the large-j limit (2.5) where

|λ2(μ)|/|λ3(μ)| > 2 for all μ̂ > 0, providing the desired smoothness of the manifold and validity of

expansions.

For ε 
= 0, this manifold persists as a slow manifold with dynamics at quadratic order given by

ȧ1 = λ1(μ)a1 + c1,2(μ)ā1a2, (3.21)

ȧ2 = λ2(μ)a2 + c12 (μ)a2

1, (3.22)

μ̇ = −ε. (3.23)

To predict drop times and drop numbers, we will try to determine when (a1, a2) leave a small neigh-

bourhood of the origin, and whether |a1| � |a2| or |a2| � |a1| at that time, thus concluding that the

local drop number is 1 or 2, respectively. Hypothesis 2.1 then allows us to conclude global drop num-

bers. We therefore consider the system (3.21)–(3.23) with initial conditions a1(−Tin) = a2(−Tin) = δ,

μ(−Tin) = μin, with μin > μ1,c > μ2,c so that both eigenvalues are initially stable. As we shall quickly

see, the initial value of a2 is irrelevant so that this particular choice is not restrictive. The solution will

therefore initially contract, and we look for the ûrst time Tout at which

max {|a1(Tout)|, |a2(Tout)|} = δ. (3.24)

Asymptotics from variation-of-constant formula. We neglect higher order terms and study (3.21)–

(3.23) setting c1,2 ≡ 0, noticing that a2 
 1 so that |c1,2ā1a2| 
 |a1|; see also (3.35) and the discussion

there. We also use μ as an equivalent time variable and ûnd amplitudes

a1(μ) = e
1
ε

∫ μin
μ λ1(ν)dνδ,

a2(μ) = a0

2(μ) + a12

2 (μ),

a0

2(μ) = e
1
ε

∫ μin
μ λ2(ν)dνδ,

a12

2 (μ) =
∫ μin

μ

c12 (ν)e
1
ε �(ν)dν δ2,

�(ν; μ) =
∫ ν

μ

λ2(ρ)dρ +
∫ μin

ν

2λ1(ρ)dρ. (3.25)
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Here, we suppress the dependence on μin in �(ν; μ) and notice that �(ν; μ) is smooth and maximal

when ν = μ12:2 so that we can expand the integrand near ν = μ12 :2 to ûnd

a12

2 (μ) = c12 e
1
ε �δ2

∫ μin

μ

e
1
2ε

�νν (ν−μ
12:2

)2

dν(1 + O(
√

ε))

= c12 e
1
ε �δ2

√

−2ε

�νν

err

(

μ12 :2 − μ√
ε

)

(

1 + O(
√

ε)
)

, (3.26)

where �νν = (λ2 − 2λ1)′ < 0 is the derivative in μ of the resonance condition, and c12 , �, and �νν are

evaluated at ν = μ12 :2, and err (z) =
∫ z

−∞ exp (−z2)dz.

First, one sees that a0
2 
 a12

2 . In order to identify the largest amplitude upon exiting a neighbourhood,

thus determining if the local drop number is 1 or 2, we therefore need to compare a1 and a2 ∼ a12

2 . The

transition from a local drop number of 1 to a drop number 2 occurs when

a12

2 = δ, and a1 = δ. (3.27)

Solving these two equations for μin and μout then identiûes the transition parameter values μin,1→2 and

μout,1→2. In order to solve (3.27), we use the expression for a1 to ûnd
∫ μin

μout,1→2
λ1(ν)dν = 0. Substituting

this result into the expression for � in (3.25), we obtain

�(μ12:2, μout,1→2) =
∫ μ

12:2

μout,1→2

(λ2(ρ) − 2λ1(ρ))dρ. (3.28)

We next assume that �μ = μ12 :2 − μout,1→2 > 0 is small so that we can Taylor expand

�(μ12:2, μout,1→2) = −1

2
�νν(μ12 :2, μ12:2)(�μ)2 + O((�μ)3).

Inserting this into (3.26) and partially solving for �μ, we ûnd

�μ =
√

2ε

�νν

log
(

c12δ
√

−2ε/(�νν)err (�μ/
√

ε)
)

. (3.29)

Assuming that at leading order �μ ∼
√

−ε log ε, we ûnd err (�μ/
√

ε) → √
π , so that, consistently, at

leading order

�μ =
√

2ε

�νν

log
(

c12δ
√

−2πε/(�νν)
)

. (3.30)

Away from the transition, the amplitude of a2(μ) is given at leading order through

a2(μ) =

§

¨

©

O(εa2
1(μ)), μ > μ12:2,

exp
(

1

ε

∫ μ
12:2

μ
λ2(ρ)dρ + 1

ε

∫ μin

μ
12:2

2λ1(ρ)dρ
)

, μ < μ12:2,
(3.31)

or, neglecting log ε-terms,

b2(μ) = ε log (a2(μ)) =
∫ μin

μ

�max(ρ)dρ, �max(ρ) = max {λ2(ρ), 2λ1(ρ)} =
{

2λ1(ρ), ρ > μ12 :2,

λ2(ρ), ρ < μ12 :2.

(3.32)

For μout < μout,1→2, at leading order the local drop parameter value is given by setting a12

2 (μ) = δ in

(3.25), which gives
∫ μ

12:2

μout

λ2(ρ)dρ +
∫ μin

μ
12:2

2λ1(ρ)dρ
!= 0, (3.33)

in agreement with our predictions in Section 3.1 and with direct simulations illustrated in Figure 8.
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Figure 8. Numerical comparisons for the drop-by-1 to drop-by-2 transition. Top: local and global drop

numbers depending on μin (left) and μout (right) for several values of ε; predicted drop as solid black

curve. Bottom: μout versus μin for several values of ε together with prediction for ε = 0 (solid black)

(left); drop values μin both local and global as observed in top row shown here as a function of ε, with

linear fit and predicted values of drops as green dot. Extrapolated values at ε = 0 from linear fits fall

within 10% of the predicted value for local drops and within 2% for global drops (right). Throughout,

μ = μc + μ̂ indicates values relative to criticality.

Rigorous asymptotics and a geometric view on resonances. We next present a geometric view that

also explains why higher order terms are irrelevant. Consider the new variable ξ = a2
1/a2, together with

a2, and ûnd the new equations

ξ ′ =(2λ1(μ) − λ2(μ))ξ − c12 (μ)ξ 2 + O(|a2|),

a2
′ =λ2(μ)a2 + c12 (μ)ξa2 + O(|a2|2), (3.34)

μ′ =ε. (3.35)

In the invariant plane a2 = 0, we ûnd a slow passage through a transcritical bifurcation at the resonance,

as 2λ1(μ) − λ2(μ) passes through zero. Before the resonance, 2λ1(μ) − λ2(μ) > 0, and the nontrivial

equilibrium ξ∗ = (2λ1(μ) − λ2(μ))/c12 is exponentially attracting; past the resonance, trajectories fol-

low the now stable trivial equilibrium ξ = 0. Normal to this stable family of equilibria, trajectories ûrst

decay, then grow in the a2-direction with the eigenvalue λ2 + c12ξ∗ = 2λ1; after the passage through the

transcritical bifurcation growth is governed by the normal eigenvalue λ2, thus reproducing the integral

criterion (3.33). A reûned desingularisation, analysing for instance the slow passage through the trans-

critical bifurcation using geometric blowup as in [39] should then lead to a leading-order expansion of

the form obtained through the direct calculations outlined above; see Figure 9 for an illustration.
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Figure 9. Top: dynamics of centre manifold equations (3.20) with instability thresholds for a1 and a2

and λ1/2 = 0, respectively, and subsequent 1:1 and 1:2 resonances; μ decreases to the left, the vertical

plane a1 = 0 is invariant. Sample dark and bright red trajectories illustrating trajectories exiting in

the a1 and a2 directions, respectively. Bottom: dynamics in projective coordinates (3.35) with invariant

planes a2 = 0 and ξ = a2
1/a2 = 0; trajectories follow the stable branch in a transcritical bifurcation

in the horizontal plane with unstable manifold in purple and blue for nontrivial and trivial branch,

respectively; trajectories exit in the a2 direction along the unstable manifold, albeit at locations where

a2
1/a2 
= 0, so |a1| ∼

√
|a2| � |a2| (bright red), or when a2

1/a2 ∼ 0 and |a2| � |a1| (dark red).

3.4 The drop-by-3 transition

Turning to predictions for higher drops, we need to account for more unstable eigenvalues and therefore

higher resonances. We ûrst adapt the asymptotic calculation for the 1:2-resonance criteria above to the

drop-by-3 transition.

Once λ3 becomes positive, we track the six-dimensional unstable manifold associated to the ûrst

three complex unstable modes in the static problem. Keeping track of what interactions of modes

e±3ix, e±2ix, e±ix can produce the original modes eix, e2ix, e3ix, we see that to leading order, the dynamics

on this unstable manifold are given by

ȧ1 = λ1(μ)a1 + c−1,2ā1a2 + c3,−2a3ā2, (3.36)

ȧ2 = λ2(μ)a2 + c12 a2

1 + c3,−1a3ā1, (3.37)

ȧ3 = λ3(μ)a3 + c13 a3

1 + c1,2a1a2, (3.38)

μ̇ = −ε, (3.39)

also taking into account the slow evolution of μ. Error terms can be seen to be small either heuristically

or in the analogue of the geometric desingularisation shown in Figure 9; see the discussion below. We

again consider this system with initial conditions a1(−Tin) = a2(−Tin) = a3(−Tin) = δ, μ(−Tin) = μin,

and look for the ûrst time Tout for which |aj(Tout)| = δ for some j = 1, 2 or 3.

The coefficients of the nonlinear terms depend on μ and hence are also slowly varying, but since

the values of these coefficients will not affect our predictions at leading order, we suppress this depen-

dence. Also note that we have included the cubic term c13 a3
1 in the equation for a3, since the analysis of

Section 3.3 suggests that for some time we have a2 ∼ a2
1, and so a3

1 terms are in fact on the same order

as a1a2 for some relevant time. Following a similar line of reasoning, we see as in Section 3.3 that the

back-coupling terms involving a2 and a3 in the equation for a1, and a3 in the equation for a2, are higher
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order. We, therefore, neglect these terms and arrive at the system

ȧ1 = λ1(μ)a1, (3.40)

ȧ2 = λ2(μ)a2 + c12 a2

1, (3.41)

ȧ3 = λ3(μ)a3 + c13 a3

1 + c1,2a1a2, (3.42)

μ̇ = −ε. (3.43)

We can now solve this system recursively, ûrst solving (3.40) for a1, then solving for a2 via its variation

of constants formula, and then inserting both expressions for a1 and a2 into (3.42) and solving via the

variation of constants formula. We shall use the expressions for a1 and a2 derived above and are left

with the equation for a3, which we write as a sum of the solution to the homogeneous equation a0
3, the

solution a13

3 with inhomogeneity c13 a3
1, and the solution a

1,2
3 with inhomogeneity c1,2a1a2. We ûnd

a0

3(μ) = e
1
ε

∫ μin
μ λ3(ν)dνδ,

a13

3 (μ) =
∫ μin

μ

c13 (μ)e
1
ε �

13 (ν)dνδ3,

�13 (ν) =
∫ ν

μ

λ3(ρ)dρ +
∫ μin

ν

3λ1(ρ)

a1,2

3 (μ) =
∫ μin

μ

c1,2(μ)e
1
ε �1,2(ν)dνδ3,

�1,2(ν) =
∫ ν

μ

λ3(ρ)dρ +
∫ μ

12,2

ν

(λ1(ρ) + λ2(ρ))dρ +
∫ μin

μ
12,2

3λ1(ρ)dρ. (3.44)

Following the same strategy as in the analysis for near the 12:2-resonance, we evaluate the integrals to

leading order near the maximum of the exponential, ûnding

b13

3 = ε log |a13

3 | = �13 (μ13:3) + O(ε1−
), (3.45)

b1,2

3 = ε log |a1,2

3 | = �1,2(μ1,2:3) + O(ε1−
), (3.46)

where we used the short hand 1− to denote any exponent less than 1, accounting for potential terms of

the form ε log ε. Clearly, b
1,2
3 > b13

3 > b0
3, so that the amplitude of a3 is at leading order given through

exp (b
1,2
3 /ε). The crossover occurs when a3 ∼ a2, that is, at leading order, when

∫ μ1,2:3

μout,2→3

λ3(ρ)dρ +
∫ μ

12:2

μ1,2:3

(λ1(ρ) + λ2(ρ))dρ +
∫ μin,2→3

μ
12:2

3λ1(ρ)dρ (3.47)

!=
∫ μ

12:2

μout,2→3

λ2(ρ)dρ +
∫ μin,2→3

μ
12,2

2λ1(ρ)dρ + O(ε1−
) (3.48)

!= O(ε1−
). (3.49)

The two equalities determine μout, 2→3 and μin, 2→3. Linearising at a solution with respect to these two

variables, we ûnd a Jacobi matrix with determinant
∣

∣

∣

∣

∣

−λ3(μout) + λ2(μout) 3λ1(μin)

−λ2(μout) 2λ1(μin)

∣

∣

∣

∣

∣

= λ1(μin) (−2λ3(μout) + 5λ2(μout)) .

Assuming the additional non-resonance condition 2λ3(μout) 
= 5λ2(μout), we therefore expect to be able

to solve for the variables μin and μout with the implicit function theorem with corrections to the transi-

tion value as O(ε1−
), rather than O(

√
ε) for the 1-2-transition. The results agree with our summary in

Section 3.1 and with numerical simulations shown in Figure 10.
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Figure 10. Numerical comparisons for the drop-by-2 to drop-by-3 transition. Top: local and global

drop numbers depending on μin (left) and μout (right) for several values of ε; predicted drop as solid

black curve. Bottom: μout versus μin for several values of ε together with prediction for ε = 0 (solid

black) (left); drop values μin both local and global as observed in top row shown here as a function of

ε, with linear fit and predicted values of drops as green dot. Extrapolated values at ε = 0 from linear

fits fall within 1% of the predicted value (right). Throughout, μ = μc + μ̂ indicates values relative to

criticality.

The geometric picture for the drop-by-3 transition. We can follow the strategy for the analysis of

the drop-by-2 transition and introduce projective variables that encode the quotients of amplitudes

and resonances. For instance, set ξ2 = a2
1/a2, ξ3 = a1a2/a3, writing for short λj = λj(μ), suppressing

μ-dependence in the nonlinear terms, and suppressing higher-order terms in a1, to ûnd

a1
′ = λ1a1,

ξ2
′ = (2λ1 − λ2)ξ2 − c12 :2ξ

2

2 ,

ξ3
′ = (λ1 + λ2 − λ3)ξ3 − c1,2:3ξ

2

3 − c13:3ξ
2

3 ξ2.

We previously analysed the dynamics in the (a2, ξ2)-subsystem. In the regime μ > μ12:2, ξ3 follows the

nontrivial stable branch with ξ3 = (λ1 + λ2 − λ3)/(c1,2:3 − c13 :3ξ2). For μ1,2:3 < μ < μ12:2, ξ2 ∼ 0 and ξ3 =
(λ1 + λ2 − λ3)/c1,2:3 become the nontrivial stable branch, which at μ1,2:3 exchanges stability with the

trivial branch ξ3 = 0 in a transcritical bifurcation. In particular, ξ3 ∼ 0 for μ < μ1,2:3. To reproduce the

explicit computations above, we recover growth by analysing exponential growth in the normal direction

of a1, and of a2/3 through the values of ξ2,3.
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3.5 Drop-by-4 and beyond

Predicting higher drops appears to be cumbersome in general. We outline here the calculations for the

transition from a drop-by-3 to a drop-by-4. The relevant amplitude equations are

ȧ1 = λ1(μ)a1, (3.50)

ȧ2 = λ2(μ)a2 + c12 a2

1, (3.51)

ȧ3 = λ3(μ)a3 + c1,2a1a2 + c13 a3

1, (3.52)

ȧ4 = λ4(μ)a4 + c1,3a1a3 + c2,2a2

2 + +c12 ,2a2

1a2 + c14 a4

1, (3.53)

μ̇ = −ε. (3.54)

Higher modes will be irrelevant until growth dominates the source terms from resonant interactions.

In order to determine the onset of growth in the mode a4, one would inspect the lowest order source

terms, a2
2 and a1a3, and ûnd the associated resonances, μ22 :4 and μ1,3:4, which give a lower bound for the

crossover to a drop-by-4.

It is convenient to track approximations to the logarithms of the amplitudes, bk = ε log ak, so that for

instance

b1(μ) =
∫ μin

μ

λ1(μ)dμ,

b2(μ) =
∫ μ

12:2

μ

λ2(μ)dμ + 2b1(μ12 :2),

b3(μ) =
∫ μ1,2:3

μ

λ3(μ)dμ + b1(μ1,2:3) + b2(μ1,2:3). (3.55)

For b4, we need to consider all resonant terms in the equation for a4. At leading order, we ûnd that b4 is

given as a maximum of the expressions obtained by treating all terms separately,

b1,3

4 (μ) =
∫ μ1,3:4

μ

λ4(μ)dμ + b1(μ1,3:4) + b3(μ1,3:4),

b2,2

4 (μ) =
∫ μ1,3:4

μ

λ4(μ)dμ + 2b2(μ1,3:4),

. . .

and similar expressions for cubic and quartic resonant terms. At any given μ < μ1,3:4, the amplitude is

given by the maximum b4 = maxm bm
j

where m runs through all resonant source terms.

It turns out that b
2,2
4 maximises the amplitudes, and we can ûnd the value of the transition from a

drop-by-3 to a drop-by-4 by solving b4
2,2(μout) = 0 together with b3(μout) = 0 for μout and μin. For ûnite

j, this equation can easily be solved numerically, and the predicted drop transitions compare well with

numerical simulations as shown in Figure 11.

Generalising to higher transitions appears straightforward in principle but cumbersome. One obtains

successively log-amplitudes b1, b2, b3, b4, . . . , b�, . . . for a given μin as functions of μ, maximising at

each � and each μ over all potential resonant source terms. Solving for b�(μ) = 0 as a function of μ

given μin then yields the local drop parameter value μout. The argmax of all the exit values μout then

determines the local drop number for a given μin. We caution, however, that at some point the skew

product structure may not be preserved since, for instance, terms of the form a3ā2 in the equation for a1
′

may dominate the linear term λ1a1.
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Figure 11. Drop-to numbers for initial patterns with j = 3, . . . , 8 varying μin, plotted against μin − μc

(top) and μout − μc (bottom). Shown are both local (blue) and global drops (yellow), which always yield

an equal drop or a drop by one less than the local drop. The actual drop-to number is the integer part of

the plotted value (which is slightly shifted to improve readability). Red markers indicate the theoretical

prediction for drops.

3.6 Drop number transitions for large j

In the limit of large j, the criteria for transitions can be evaluated explicitly. Using the expansion for

eigenvalues (2.5), we can ûnd the resonances as deûned in (3.3) explicitly. Setting μ = 3j2 − 1

2
+ μ̂, we

have in decreasing order,

μ̂12 :2 = −3, μ̂13:3 = −6, μ̂1,2:3 = −15

2
, μ̂1,3:4 = −14, μ̂1,4:5 = −45

2
,

and

μ̂14 :4 = −10, μ̂12 ,2:4 = −114

10
, μ̂22 :4 = −27

2
, μ̂1,3:4 = −14, . . .

Evaluating the log-amplitudes in (3.5)–(3.8) explicitly for eigenvalues as in (2.5), we also ûnd explicit

crossover points μ̂in,1→2, μ̂out,1→2, for drop-by-1 to drop-by-2 and μ̂in,2→3, μ̂out,2→3 for drop-by-2 to drop-

by-3 as

μ̂in,1→2 = 3, μ̂out,1→2 = −3, μ̂in,2→3 = 15, μ̂out,2→3 = −12. (3.56)

Note that the change to a drop-by-3 occurs well before the amplitude a4 becomes relevant.

The drop values μ̂out,� for a drop by � as a function of μ̂in are given by

μ̂out,1 = −μ̂in, 0 < μ̂in < μ̂in,1→2, (3.57)

μ̂out,2 = 1

2

(

−3 −
√

−9 + 2μ̂2
in

)

, μ̂in,1→2 < μ̂in < μ̂in,2→3, (3.58)

μ̂out,3 = 1

6

(

−24 − 2
√

3

√

−33 + μ̂2
in

)

, μ̂in,2→3 < μ̂in < μ̂in,3→4. (3.59)
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For the drop-by-3 to drop-by-4 transition, we ûnd, based on the source term a2
2 and the associated 2,2:4-

resonance,

μ̂in,3→4 = 3

√

1

2

(

159 + 28
√

14
)

= 34.4521 . . . ,

μ̂out,3→4 = 1

4

(

−30 −
√

2
(

9
(

159 + 28
√

14
)

− 297
)

)

= −23.6125 . . . . (3.60)

The transition associated with the resonant term a1a3 is located at

μ̂13

in,3→4 = 1

2

√

21
(

147 + 8
√

201
)

= 36.9757 . . . ,

μ̂13

out,3→4 = 1

4

(

−30 −
√

21
(

147 + 8
√

201
)

− 519

)

= −25.0887 . . . ,

a larger value of μin. The drop values for ûnite j have signiûcant corrections, in particular for larger drop

numbers or when the drop parameter value is close to the existence boundary.

4. Discussion

We analysed the slow passage through an Eckhaus bifurcation in a bounded domain. Under the con-

ceptual assumption, well corroborated in simulations, that for perturbations of unstable patterns, the

dominant Fourier mode of the perturbation determines the global drop, we reduced the analysis to the

dynamics in a ûnite-dimensional centre-manifold. We found that the drop number then depends on how

far the initial parameter value is from criticality. For small distances, one observes a drop-by-1, but for

larger distances, the drop number increases. We derived criteria for the drop time and the drop number

in general for drops up to 3 and found explicit formulas in the case of a large domain (large j in our

scaling). The formulas do not show an obvious pattern that would generalise to larger drop numbers,

although our approach can in principle be pursued beyond drops by 3 and the transition to drops by 4.

The main complicating factor in the analysis is the presence of spatio-temporal resonances, which lead

to nonlinear coupling between amplitudes of modes for different drops. Spatial resonances allow for the

presence of those nonlinear terms; temporal resonances determine cross-over points when growth in

higher modes exceeds the resonant feeding from lower modes.

Some avenues that would be interesting to study further are a generalisation to higher drop numbers,

a rigorous justiûcation of the centre manifold analysis when spectral gaps fail, and the identiûcation of

relevant higher order terms for moderate values of ε. On the other hand, it seems natural to pursue this

analysis in an unbounded domain, where the Eckhaus instability is caused by essential spectrum. In this

setting, the expansion of eigenvalues in the large-j limit that we used throughout is universal beyond the

Ginzburg–Landau equation and reüects the sideband nature with modulation equations of the form

at = −(axx + μ̂a − a2)xx, (4.1)

for wavenumber corrections a; see for instance [58]. From this perspective, the precise form of parameter

variation is irrelevant, and paths of the form (μ(τ ), j(τ )) would lead to equivalent results. The quadratic
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resonances, key to the calculation of drop times, are induced by the nonlinearity (a2)xx. It would be inter-

esting to relate the universal quadratic term here to the quadratic coefficients modelling resonances. In

this direction, it appears tempting to analyse more generally potential resonance orderings and the ensu-

ing sequence of transitions to higher drop numbers, as outlined in Section 3.5. Conceivably, this could be

explicit in the limit as j → ∞ and potentially conclude with a complete description of possible staircases

as shown in Figure 3. On the other hand, the perspective of a wavenumber modulation equation (4.1)

rather than an amplitude modulation such as Ginzburg–Landau demonstrates that local drop numbers

should be largely independent of the model considered and predictions, suitably adjusted by computing

the relevant eigenvalues λj(τ ) along a parameter path would still hold. Exploring this systematically for

instance in a simple Swift–Hohenberg equation

ut = −(k(τ )∂xx + 1)2u + μ(τ )u − u3, (4.2)

in a large periodic domain, with for instance 0 < μ(τ ) ≡ μ̄ 
 1 and k = k0 − ετ , k0 ∼ 1, or even more

realistic reaction-diffusion models such as Klausmeier9s or the Gray–Scott model [35, 52] would be a

natural next step.

In this setting of an unbounded domain, rather than describing the global evolution by a heteroclinic

orbit, one could start to analyse the spatio-temporal evolution of the Eckhaus instability with frozen

parameter in terms of spreading fronts, and, in a second stage, incorporate the effect of spatio-temporally

slowly varying parameters; see [24] for the effect of slowly varying environments on spatial spreading,

[26] for a review of the effect of spatiotemporal changes on pattern evolution, and [19] for the role of

spatiotemporal resonances in spatial spreading.

In a different direction, one would also be interested in instabilities different from the Eckhaus side-

band instability, in particular spatial period doubling [53], and in the effect of various types of spatio-

temporal noise and variation. Even adding boundary conditions different from the simple periodic setting

considered here may well destroy the simple pitchfork nature of the Eckhaus instability; see [42] for a

conceptual analysis of the effect of boundaries.

Finally, imperfections in time and space would certainly affect predictions made here. A delay of the

bifurcation is still expected but shortened when small temporal noise is present [5], and spatial noise

may well change drop predictions in other ways.
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Appendix – numerical algorithms

We present some details on numerical simulations performed to check Hypothesis 2.1, corroborate the

asymptotic formulas, and produce Figures 8 and 10.

We simulated the Ginzburg–Landau equation using a spectral method with 32 Fourier modes in the

case j = 6 and 64 Fourier modes in the cases j = 8, 12. We monitored higher Fourier modes when com-

paring simulations of higher spatial resolution and found the chosen spatial resolution to be sufficient.

Time stepping uses the second-order exponential time differencing method ETD2RK from [12, (22)]

with step sizes 0.005 (j = 6) and 0.001 (j = 12). The system is stiff because of large stable eigenvalues in

the diffusion matrix and large eigenvalues due to the term involving j2, which creates large stable eigen-

values for the linearisation at equilibria even for small Fourier modes. Since exponential decay leads to

very small amplitudes of relevant Fourier modes at criticality, we used high-precision arithmetic with

sufficiently many digits D ∼ maxt{−p log10 a1} so that a
p

1 is fully resolved when, for instance, investi-

gating a drop number p. We conûrmed that lower resolution causes round-off errors and alters results

signiûcantly.

We chose initial conditions as the basic pattern A(x) ≡
√

μ − j2 for a given value μ = μin and a pertur-

bation of size δ in the eigenvector associated with the ûrst Fourier mode. We chose δ = 0.1 in Figure 8

and δ = 0.0001 in Figure 10. Larger choices of δ lead to better agreement between local and global

drop number transitions, while smaller choices of δ usually improve the agreement between μout and

predicted values.

We found local drop numbers by determining when the solution leaves a small neighbourhood of the

equilibrium, tracking whether ‖A − 1

2π

∫

A‖2 < δ and then ûnding the index of the Fourier mode with

largest amplitude. We then integrated until the winding number A =
∫ 2π

x=0
∂x(Im log (A(x)))dx is nonzero,

at which point we integrated for another 50 time units to let the trajectory converge to a neighbourhood

of a new equilibrium. The agreement between local and global drop numbers depends on the choice

of δ. We picked values as indicated which gave good agreement without trying to optimise.
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To test the linear hypothesis, Figure 7, we solved the initial-value problem for a collection of parame-

ter values in the (j, μ)-plane. We started with a perturbation of Ej of size δ = 0.1 in the unstable �-mode

and integrated until the trajectory reached another equilibrium, which in turn was determined by check-

ing if sup
(

|A(x)| − 1

2π

∫

A
)

< 10−4. We used the same numerical parameters as above but performed the

computations in standard double precision.
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