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Abstract
We consider a decision maker who faces a binary treatment choice when their wel-
fare is only partially identified from data. We contribute to the literature by anchor-
ing our finite-sample analysis on mean square regret, a decision criterion advocated 
by Kitagawa et al. in (2022) "Treatment Choice with Nonlinear Regret" . We find 
that optimal rules are always fractional, irrespective of the width of the identified 
set and precision of its estimate. The optimal treatment fraction is a simple logistic 
transformation of the commonly used t-statistic multiplied by a factor calculated by 
a simple constrained optimization. This treatment fraction gets closer to 0.5 as the 
width of the identified set becomes wider, implying the decision maker becomes 
more cautious against the adversarial Nature.
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1  Introduction

Evidence-based policy making has been a keyword among researchers in social 
sciences and practitioners of public policies. A central question in evidence-based 
policy making is: how should a policy maker inform an optimal policy given 
information gathered from finite data? The seminal work of Manski (2004) advo-
cates to approach the question via the framework of a statistical treatment choice, 
where the planner’s policy choice is formulated based on the statistical decision 
theory of Wald (1950).

Ultimately, the selection of an optimal policy depends on the criterion of 
the decision maker. In the literature of statistical treatment choice, a widely 
used notion is regret (Savage, 1951), essentially the sub-optimality welfare gap 
between a policy under investigation and the oracle first-best policy. Furthermore, 
a common practice is to select optimal rules via minimax regret, which ranks 
decision rules via their worst-case expected regret over the underlying state of 
nature governing the sampling distribution and causal effects of the policy.

In a setting with point-identified welfare, optimal decision rules based on min-
imax regret are often singleton rules (e.g., Stoye, 2009a and Tetenov, 2012b), i.e., 
they dictate to either treat everyone, or no one in the whole population given real-
ized values of sample data. In a setting with partially-identified welfare, minimax 
regret optimal rules can be either singleton or non-singleton rules. See, for exam-
ple, Manski (2009),  Tetenov (2012a),  Stoye (2012), and  Yata (2021). Recently, 
in a point-identified case, Kitagawa et  al. (2022) found that singleton rules can 
be sensitive to the sampling uncertainty and may incur a high chance of large 
welfare loss (see Kitagawa et  al., 2022 for further analyses). As a result, Kita-
gawa et  al. (2022) advocate the use of nonlinear regret to rank decision rules. 
For example, Kitagawa et  al. (2022) recommend using mean square regret as a 
default, which penalizes rules with large variance of regret. This approach aligns 
with the choice of a decision maker who displays regret aversion, as axiomatized 
by Hayashi (2008). In a binary treatment setup, Kitagawa et al. (2022) show that 
minimax optimal decision rules with mean square regret are always fractional and 
follow a simple form of a logistic transformation of the commonly used t-statistic 
for the welfare contrast.

The particular minimax optimal rules derived in Kitagawa et al. (2022) focus on 
the case with point-identified welfare. That is, as finite sample data becomes large, 
the decision maker is able to learn the true welfare of each treatment and thus also 
to learn the true optimal treatment policy. While this assumption can be satisfied in 
many scenarios involving experimental data, there are still plenty of situations when 
such assumptions might be reasonably questioned. For example, even in randomized 
control trials (RCTs), outcome data under treatment or control might still be missing 
due to noncompliance of the sample units or due to attrition in the data-collecting 
process. Even without noncompliance or attrition and when the RCTs are internally 
valid, researchers may also be concerned about external validity, in the sense that 
the population for which the treatment policy is applied may be different from the 
population under which the RCTs are conducted.
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What is the optimal treatment policy when a decision maker cares about mean 
square regret but faces the problem of a partially identified welfare? Do the results 
of Kitagawa et  al. (2022) that optimal rules are fractional remain to hold under 
partial identification? This paper aims to address these questions in a finite-sam-
ple framework, extending the analyses by Kitagawa et  al. (2022). See Table 1 for 
an illustration of the motivation of the paper in relation with the existing results in 
the literature. Following earlier studies by Brock (2006), Manski (2000), Manski 
(2007b), Tetenov (2012a), Stoye (2012), among others, we adopt a simple, but well-
motivated regret-based framework in which a policy maker, who wishes to maxi-
mize the expected outcome of the population, needs to choose a binary treatment 
when (1) the average treatment effect of the target population is partially identified, 
but (2) the identified set for the average treatment effect of the target population 
is a symmetric interval with a fixed and known length around the point-identified 
reduced-form parameter, for which a Gaussian sufficient statistic is available. Sce-
narios sharing both or either of the features have been studied by, e.g., Adjaho and 
Christensen (2022), Ben-Michael et al. (2022), Christensen et al. (2023), D’Adamo 
(2021), Ishihara and Kitagawa (2021), Kido (2022), Stoye (2012), Tetenov (2012a), 
Yata (2021).

This paper contributes to the literature by developing new finite-sample optimal 
decision rules with mean square regret under partial identification, which has not 
been considered elsewhere in the literature to the best of our knowledge. We show 
that the fundamental form of the minimax optimal rules derived by Kitagawa et al. 
(2022) is preserved in the partial identification case. With partially identified wel-
fare, minimax optimal rules have the following simple logistic form:

where t̂ is the t-statistic for the reduced-form parameter (say, the average treatment 
effect of the experimental population in the RCT), and a∗ ∈ (0, 1.23) is the solu-
tion of a simple constrained optimization problem that depends on the ratio of two 
key parameters: the width of the identified set k, and the standard deviation � of 
the estimate of the identified set. In the absence of partial identification, k = 0 and 
a∗ = 1.23 , and (1.1) becomes the rule derived by Kitagawa et al. (2022).

The form of rule (1.1) is consistent with the findings by Kitagawa et al. (2022): 
minimax optimal rules with mean square regret are always fractional, irrespective of 
the magnitude of k and � . Moreover, a∗ is the center of the identified set under the 
least favorable prior, and (1.1) is the posterior probability, under that least favorable 
prior, that the treatment effect of the target population is positive. Due to partial 

(1.1)
exp

(
2 ⋅ a∗ ⋅ t̂

)

exp
(
2 ⋅ a∗ ⋅ t̂

)
+ 1

,

Table 1   Treatment choice with 
partial identification: existing 
results and aim of this paper

Minimax optimal rule Mean regret Mean square regret

Point-identified welfare Singleton Fractional
Partially-identified welfare Either singleton 

or fractional
Aim of this paper



576	 The Japanese Economic Review (2023) 74:573–602

1 3

identification, the location of a∗ needs to be calibrated in a case-by-case manner. We 
show that a∗ < 1.23 , so that the treatment fraction given t̂ > 0 is strictly smaller than 
that in a point-identified case. Therefore, a direct impact of partial identification on 
treatment choice is that it further disciplines the planner to be more cautious against 
the adversarial Nature. That is, optimal decision rules will allocate a larger fraction 
of the population to the opposite treatment, compared to the point-identified case.

Our results draw a sharp contrast with the existing results by Stoye (2012) and 
Yata (2021), who derive minimax optimal rules under the same framework but with 
mean regret. Firstly, their results show that optimal decision rules are fractional only 
when k is large enough relative to � . If k is sufficiently small, minimax regret opti-
mal rules are still singleton rules. With our mean square regret criterion, minimax 
optimal rules are always fractional. Secondly, if mean regret is the risk function, 
whenever a fractional rule is optimal, the corresponding least favorable prior pins 
down the center of the identified set at a value of 0, i.e., under the least favorable 
prior, data is uninformative regarding the sign of the treatment effect of the target 
population. In contrast, under mean square regret, the least favorable prior for the 
center of the identified set supports two points symmetric around 0 so that the deci-
sion maker can update that prior with the data.

Due to the set-identified nature of the welfare and the nonlinear nature of the 
mean square regret, derivation of our results is more delicate than those consid-
ered in the existing literature. Indeed, the form of the optimal decision rule depends 
explicitly on the location of the least favorable prior, which will change depending 
on the ratio of k and � . Following Donoho (1994) and Yata (2021), we find our 
minimax optimal rule by searching for the hardest one-dimensional subproblem and 
verifying that the minimax optimal rule for the hardest one-dimensional subproblem 
is indeed minimax optimal for the whole problem. This approach is different from, 
but very much related to the guess-and-verify approach (as exploited in Azevedo 
et al., 2023; Kitagawa et al., 2022; Stoye, 2009a, 2012, among others). As we will 
demonstrate from Sect. 3 below, the approach by searching for the one-dimensional 
subproblem still has a “guessing” component as well as a “verifying” component. In 
fact, one may view finding the hardest one-dimensional subproblem as one specific 
way of figuring out the least favorable prior. Technically, in our considered prob-
lem, one can still try to figure out the structure of the least favorable prior based on 
prior work (e.g., Stoye, 2012) without using the techniques employed in this paper. 
Hence, it is not entirely clear which approach has a clear advantage in solving these 
minimax problems. It is beyond the scope of this paper to investigate optimal rules 
with mean square regret under the multivariate-signal setting considered by Yata 
(2021), but we conjecture that similar analyses in this paper may be extended.

Our research is related to a rapidly growing literature on treatment choice with par-
tially identified welfare. It is known that minimax regret optimal rules may be frac-
tional with or without true knowledge of the identified set (Brock, 2006; Cassidy & 
Manski, 2019; Manski, 2000, 2002, 2005, 2007a, b, 2013, 2021; Stoye, 2009b, 2012; 
Tetenov, 2012a; Yata, 2021). Fractional rules also arise in a setting with point-identi-
fied but nonlinear welfare (Manski, 2009; Manski & Tetenov, 2007 ). Our results focus 
on a scenario when the policy maker cannot differentiate each individual in the popu-
lation. There is also a large literature on individualized policy learning with concerns 
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on partially identified welfare, including issues like distributional robustness, external 
validity or asymmetric welfare, by, e.g., Adjaho and Christensen (2022), Ben-Michael 
et al. (2021, 2022), Christensen et al. (2023), D’Adamo (2021), Ishihara and Kitagawa 
(2021), Kallus and Zhou (2018), Kido (2022), Lei et al. (2023). When welfare is point-
identified, finite-sample optimal rules are derived in Hirano and Porter (2009, 2020), 
Schlag (2006), Stoye (2009a), and  Tetenov (2012b). Individualised treatment choice 
with point-identified welfare is considered in Athey and Wager (2021), Bhattacharya 
and Dupas (2012), Kitagawa and Tetenov (2018, 2021), Manski (2004), Mbakop and 
Tabord-Meehan (2021), among others.

The rest of the paper is organised as follows. Section 2 introduces our setup. Sec-
tion 3 presents steps to derive our new minimax mean square regret optimal rules 
via finding the hardest one-dimensional subproblem. Section 4 concludes.

2 � Setup

Our analysis begins with the basic framework of optimal treatment choice with par-
tially identified welfare and with finite-sample data (see also Brock, 2006; Manski, 
2000; Manski, 2007b, 2009; Stoye, 2012; Tetenov, 2012a for earlier investigations). 
A decision maker contemplates assigning a binary treatment D ∈ {0, 1} to an infi-
nitely large population which we call target population. Let Yt(1) be the potential 
outcome of the target population when D = 1 (treatment), and Yt(0) be the poten-
tial outcome of the target population when D = 0 (control). Denote by Pt ∈ P the 
joint distribution of 

{
Yt(1), Yt(0)

}
 . We assume that a planner aims to maximize the 

mean outcome of the target population. Define the average treatment effect of the 
target population as �t ∶= �t

[
Yt(1) − Yt(0)

]
 , where �t[⋅] denotes the expectation with 

respect to Pt . Then, it is easy to see that the infeasible optimal treatment policy for 
the target population is

To learn about the unknown parameter �t ∈ ℝ , the decision maker has access 
to finite data collected from some RCTs. However, we assume that the RCTs are 
implemented on a population, which we call experimental population, that is poten-
tially different from the target population. That is, the decision maker is concerned 
about the external validity of the RCT: the data only has limited validity and the 
RCTs only partially identify the true parameter of interest �t . To derive finite sample 
optimality results, we assume that the RCTs have internal validity so that the deci-
sion maker is able to derive a normally distributed estimator 𝜃̂e ∈ ℝ for the average 
treatment effect of the experimental population. That is,

where �e ∈ ℝ is the unknown average treatment effect of the experimental popula-
tion, and 𝜎2 > 0 is known. Note �e is the point-identified reduced-form parameter. 
And �e is potentially different from �t , which is the parameter of interest that the 

1
{
�t ≥ 0

}
.

𝜃̂e ∼ N(𝜃e, 𝜎
2),
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decision maker really cares about. Without any assumptions on the relationship 
between �e and �t , the problem becomes trivial, as �e and �t can be arbitrarily differ-
ent so that nothing can be learnt from the RCTs about �t . In that sense, data is com-
pletely useless. The potential usefulness of data in revealing the true unknown �t lies 
in the following key assumption: for each �e ∈ ℝ , the decision maker knows a priori 
that the difference between �t and �e can be at most k ∈ ℝ , a known constant. That 
is, the identified set for �t is:

with k > 0 known. Note the case of k = 0 corresponds to the point-identified case in 
which �t and �e coincide. The case of k = ∞ corresponds to the case when RCT data 
is completely uninformative about the true �t.

Remark 2.1  The shape of the identified set I(�e) in (2.1) is a symmetric interval 
around �e . Moreover, the upper and lower bounds of I(�e) are both affine in �e with 
the same gradient. Such a nice structure facilitates finite-sample analysis and arises 
in many problems, including the missing data (Manski, 1989), extrapolation under 
a Lipshitz assumption (Ishihara and Kitagawa, 2021; Stoye, 2012; Yata, 2021), and 
welfare bounds with externally invalid experimental population (Adjaho and Chris-
tensen, 2022; Kido, 2022). However, there are also many situations when I(�e) does 
not have the nice form in (2.1). Deriving finite-sample results will be more challeng-
ing and is beyond the scope of this paper, and we leave them for future research.

The decision maker needs to choose a statistical treatment rule that maps the 
empirical evidence summarized by 𝜃̂e ∈ ℝ to the unit interval:

where 𝛿(x) is the fraction of the target population to be treated after the policy maker 
observes 𝜃̂e = x . Note we assume that the primitive action space for the planner 
is [0, 1]. That is, fractional treatment allocation according to some randomization 
device is allowed after data have been observed.

We deviate from the existing literature in treatment choice by evaluating the per-
formance of 𝛿 via mean square regret, a decision criterion advocated by Kitagawa 
et al. (2022) as a special case of nonlinear regret. In a setting with point-identified 
welfare and with finite-sample data, Kitagawa et  al. (2022) observe that optimal 
rules under mean regret  are usually singleton rules and are sensitive to the sam-
pling uncertainty. To alleviate concerns regarding the robustness of optimal decision 
rules with respect to sampling uncertainty, Kitagawa et al. (2022) advocate the crite-
ria of nonlinear regret, which incorporates other useful information from the regret 
distribution (e.g., the second or higher moments), while the standard regret crite-
rion only focuses on the mean of the regret distribution. In particular, mean square 
regret criterion penalizes rules with large variance of regret, and yields optimal 
treatment fractions with a simple formula. From the perspective of decision theory, 
mean square regret also characterizes the choice behaviour of a decision maker who 

(2.1)I(�e) ∶= [�e − k, �e + k],∀�e ∈ ℝ,

𝛿 ∶ ℝ → [0, 1],
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displays regret aversion, a notion axiomatized by Hayashi (2008). A natural open 
question is how the optimal rules will change under the mean square regret criterion 
if the welfare is now partially identified, which we address in this paper. To proceed, 
note that applying 𝛿 to the target population yields a welfare of

and a regret of

to the planner. The mean square regret of 𝛿 is defined as

where ��e
[⋅] is with respect to RCT data 𝜃̂e ∼ N(𝜃e, 𝜎

2) . As Reg(𝛿,Pt) depends on Pt 
only through �t , we can simplify Rsq(𝛿, 𝜃e,Pt) as

where 𝜃 ∶=

(
𝜃e
𝜃t

)
∈ Θ ⊆ ℝ

2 are the unknown parameters in the problem, and

is the associated parameter space.

3 � Minimax optimal rules

We aim to find a minimax optimal rule in terms of mean square regret. Viewing 
Rsq(𝛿, 𝜃) as the risk function in statistical decision theory, we introduce the follow-
ing standard definition of minimax optimality.

Definition 3.1  Let D be a set of statistical decision rules that are functions of 𝜃̂e . A 
rule 𝛿∗ is mean square regret minimax optimal if it is such that

Since � ∈ Θ is a two-dimensional parameter, finding a minimax optimal rule is 
more challenging than in a point-identified case, which can be viewed as a special 
case when �e = �t and the unknown parameter is one-dimensional. That said, note 
the standard guess-and-verify approach (Proposition 4.2, Kitagawa et  al., 2022) is 
still valid. In theory, we can still try to figure out a least favorable prior in ℝ2 and 
show the Bayes optimal rule with respect to that hypothetical least favorable prior, 
say 𝛿𝜋 , is such that

W(𝛿,Pt) ∶= 𝛿�t

[
Yt(1)

]
+ (1 − 𝛿)�t

[
Yt(0)

]

Reg(𝛿,Pt) ∶= W(1
{
𝜃t ≥ 0

}
,Pt) −W(𝛿,Pt) = 𝜃t

{
1{𝜃t ≥ 0} − 𝛿

}

Rsq(𝛿, 𝜃e,Pt) ∶= �𝜃e

[
Reg2(𝛿,Pt)

]
,

Rsq(𝛿, 𝜃) ∶= 𝜃2
t
�𝜃e

[(
1{𝜃t ≥ 0} − 𝛿

)2]
,

Θ ∶=
{
(�e, �t)

� ∈ ℝ
2|�e ∈ ℝ, �t ∈ I(�e)

}

sup
𝜃∈Θ

Rsq(𝛿
∗, 𝜃) = min

𝛿∈D
sup
𝜃∈Θ

Rsq(𝛿, 𝜃).
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where r(𝛿𝜋) is the Bayes mean square regret of 𝛿𝜋 under the hypothetical least favora-
ble prior. Here, we take a different, but related approach that was adopted by Yata 
(2021), who follows Donoho (1994) to find a minimax optimal rule by searching for 
a hardest one-dimensional subproblem. We discuss the connections between these 
two approaches in Sect. 3.2 and Remark 3.4.

Below, we present the core results of this paper. We first review and extend 
some existing results in the one-dimensional problem, which will be useful for 
the derivation of the minimax optimal rule in one-dimensional subproblem and 
also for our two-dimensional problem.

3.1 � Review of the existing results in one‑dimensional problem

Example 3.1  [Stylized one-dimensional problem] Let Ȳ1 ∼ N(𝜏, 1) be normally dis-
tributed with an unknown mean � ∈ [−c, c] for some 0 < c < ∞ , and a known vari-
ance normalized to one, with the likelihood function

where �(x) is the pdf of a standard normal distribution. The mean square regret of a 
rule 𝛿 ∶ ℝ → [0, 1] based on data Ȳ1 is

where the expectation �[⋅] is with respect to Ȳ1 ∼ N(𝜏, 1).

Kitagawa et al. (Example 4.1, 2022) focus on the general result when c = ∞ . The 
following lemma extends the result of Kitagawa et al. (2022) by allowing c to be 

bounded and sufficiently small. Let 𝜌(a) ∶= �

[(
1

exp (2aȲ1)+1

)2
]
 , where the expecta-

tion �[⋅] is with respect to Ȳ1 ∼ N(a, 1).

Lemma 3.1  (Mean square regret minimax rule in a stylized one-dimensional prob-
lem) In terms of mean square regret, a minimax optimal rule in Example 3.1 is

where �∗ ≈ 1.23 solves sup
�∈[0,∞)

�2�(�) . Moreover, the worst-case mean square regret 

of 𝛿∗ is

r(𝛿𝜋) = sup
𝜃∈Θ

Rsq(𝛿𝜋 , 𝜃),

(3.1)f (ȳ1|𝜏) = 𝜙(ȳ1 − 𝜏),∀ȳ1 ∈ ℝ,

Rsq(𝛿, 𝜏) = 𝜏2�
[(
1{𝜏 ≥ 0} − 𝛿(Ȳ1)

)2]
,

𝛿∗ =

⎧⎪⎨⎪⎩

exp (2⋅𝜏∗⋅Ȳ1)
exp (2⋅𝜏∗⋅Ȳ)+1

, if c ≥ 𝜏∗,

exp (2⋅c⋅Ȳ1)
exp (2⋅c⋅Ȳ1)+1

, if c < 𝜏∗,
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Proof  See Appendix 1. 	�  ◻

Remark 3.1  The result of Lemma 3.1 implies that when c ≥ �∗ , minimax optimal 
decision rule is the same as the one found in Kitagawa et al. (Theorem 4.2, 2022), 
while the optimal rule differs when c < 𝜏∗ . This result is very intuitive. We know 
that a global least favorable prior (when c is allowed to be as large as we want) puts 
equal probabilities on �∗ and −�∗ . If c ≥ �∗ , the global least favorable prior is always 
feasible, so the minimax optimal rule must remain the same. If c < 𝜏∗ , the global 
least favorable prior is no longer feasible. Instead, Lemma 3.1 shows that the con-
strained least favorable prior when c < 𝜏∗ puts equal probabilities on the boundary 
points c and −c , and the minimax optimal rule is the Bayes optimal rule with respect 
to that constrained least favorable prior.

3.2 � One‑dimensional subproblem

In this and next subsections, we explain in detail how to derive a minimax opti-
mal rule under mean square regret by using the approach taken by Donoho (1994) 
and Yata (2021). The key idea is to find a one-dimensional subproblem (which we 
know how to solve from results in Sect. 3.1) that is as difficult as the original two-
dimensional problem. In this particular example, as the parameter space Θ ⊆ ℝ

2 
is symmetric, it is natural to consider a one-dimensional subproblem in which the 
parameter space is simply the line connecting two symmetric points around (0, 0)� in 
Θ (to be formally introduced below). For such one-dimensional subproblem, we can 
use Lemma 3.1 to find its minimax optimal rule and the associated worst-case mean 
square regret. Then, we search among all such one-dimensional subproblems. The 
one with the largest worst-case mean square regret is our hardest one-dimensional 
subproblem, and its associated minimax rule is our “guess” of the minimax optimal 
rule for the original two-dimensional problem. A final crucial step is to verify that 
this candidate minimax rule derived from the hardest one-dimensional subproblem 
is indeed a minimax rule of the original problem—this corresponds to the “verify-
ing” step. Therefore, the approach taken by Donoho (1994) and Yata (2021) still 
has a “guessing” component and a “verifying” component, and is very much related 
to the guess-and-verify approach that focuses on finding a least favorable prior 
(exploited in, e.g., Azevedo et al., 2023; Kitagawa et al., 2022; Stoye, 2009a, 2012). 
We further discuss the connections between the two approaches in Remark 3.4.

To be more concrete, a one-dimensional subproblem embedded in the two-
dimensional problem can be constructed as follows. Let ae ≥ 0 and at ∈ I(ae) be 

two known constants. It follows then 
(
ae
at

)
∈ Θ and 

(
−ae
−at

)
∈ Θ . Let

R∗
sq
∶= sup

𝜏∈[−c,c]

Rsq(𝛿
∗, 𝜏) =

{
(𝜏∗)2𝜌(𝜏∗) ≈ 0.12, if c ≥ 𝜏∗,

c2𝜌(c) if c < 𝜏∗.

Θae,at
∶=

{
𝜃 ∈ ℝ

2|𝜃 = s

(
ae
at

)
, s ∈ [−1, 1]

}
⊆ Θ
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be the line connecting 
(
ae
at

)
 and 

(
−ae
−at

)
 . The parameter space Θae,at

 is one-dimen-

sional as it contains only one unknown parameter s ∈ [−1, 1] . We call the problem 
of finding a minimax optimal rule when � ∈ Θae,at

 a one-dimensional subproblem. 

Indeed, for intuition, suppose ae > 0 and let ŝ ∶= 𝜃̂e

ae
 . Simple algebra shows that

which further implies that

That is, atŝ is normally distributed with an unknown mean sat (since s is unknown) 

and with a known variance 
(

at

ae

)2

�2 . Note that sat is the average treatment effect of 
the target population. We may then apply Lemma 3.1 to characterize a minimax 
optimal rule for the one-dimensional subproblem. The case when �e = 0 , in contrast, 
requires a separate consideration, as this corresponds to the case when data 
𝜃̂e ∼ N(0, 𝜎2) reveals no information regarding s. See Remark 3.3 for further discus-
sions. Considering both cases when 𝜃e > 0 and �e = 0 , we have the following 
lemma.

Lemma 3.2  (Mean square regret minimax rule of a one-dimensional subproblem) A 
minimax optimal rule for the one-dimensional subproblem is

That is,

Moreover, the worst-case mean square regret of 𝛿∗
ae,at

 is

ŝ ∼ N

(
s,
𝜎2

a2
e

)
,

atŝ =
at

ae
𝜃̂e ∼ N

(
sat,

(
at

ae

)2

𝜎2

)
.

𝛿∗
ae,at

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

exp
�
2⋅𝜏∗⋅

at�at�𝜎 𝜃̂e
�

exp
�
2⋅𝜏∗⋅

at�at�𝜎 𝜃̂e
�
+1
,

ae

𝜎
≥ 𝜏∗,

exp
�
2⋅

ae

𝜎

at�at�𝜎 𝜃̂e
�

exp
�
2⋅

ae

𝜎

at�at�𝜎 𝜃̂e
�
+1
, 0 ≤ ae

𝜎
< 𝜏∗.

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) = min
𝛿∈D

sup
𝜃∈Θae ,at

Rsq(𝛿, 𝜃).

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) =

⎧⎪⎨⎪⎩

a2
t
𝜎2

a2
e

(𝜏∗)2𝜌(𝜏∗),
ae

𝜎
≥ 𝜏∗,

a2
t
𝜌
�

ae

𝜎

�
, 0 ≤ ae

𝜎
< 𝜏∗.
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Proof  See Appendix 1. 	�  ◻

Remark 3.2  The interpretation of the minimax optimal rule in the one-dimensional 
subproblem is as follows. Intuitively, note as long as ae ≠ 0 , at|at|𝜎 𝜃̂e ∶= t̂ is a stand-
ard t-statistic. Consistent with the conclusion from Kitagawa et al. (2022), a mini-
max optimal rule in this parametric problem is a logistic transformation of t̂ . If 
ae

�
≥ �∗ , then the minimax optimal rule is a logistic transformation of 2𝜏∗ t̂ . If, in 

contrast, 0 <
ae

𝜎
< 𝜏∗ , then the minimax optimal rule is a logistic transformation of 

2
ae

𝜎
t̂ . As we can see, if t̂ > 0 , the treatment fraction when 0 <

ae

𝜎
< 𝜏∗ is smaller than 

the case when ae
�
≥ �∗ . Such a structure has intuitive implications on the minimax 

optimal rule derived later. See Remark 3.5 for a further discussion.

Remark 3.3  The situation when ae = 0 is particularly interesting and demonstrates 
further difference between the criterion of mean square regret and that of mean 
regret. If it holds ae = 0 , then 𝜃̂e ∼ N(0, 𝜎2) . That is, data is completely uninforma-
tive and reveals no information regarding the unknown s. In this situation, 
�t ∈ [−|at|, |at|] . This subproblem coincides with what was analyzed by Manski 
(2007a). If the mean of the regret is the criterion, Manski (2007a) shows that any 
rule 𝛿 such that �[𝛿(𝜃̂e)] =

1

2
 is a minimax optimal rule, where the expectation is 

with respect to 𝜃̂e ∼ N(0, 𝜎2) . That is, there are many minimax optimal rules for this 
particular subproblem. Using the uninformative data can still be minimax optimal 
under mean regret criterion, as using random data may be purely utilized as a rad-
omization device without affecting the mean of regret. This draws a sharp contrast 
with mean square regret, under which the minimax optimal rule is 𝛿∗

0,at
=

1

2
 . That is, 

the minimax optimal rule under mean square regret is to not use data at all and allo-
cate a fraction of 1

2
 of the whole population to treatment. Such a fractional rule may 

be implemented via a randomization device that does not depend on data. This is 
intuitively easy to understand: any other rule that (1) is optimal in terms of the mean 
of regret and (2) uses random data and generates a positive variance of regret is not 
optimal in terms of mean square regret as they introduce further variance with 
respect to data without decreasing the mean of regret.

3.3 � Hardest one‑dimensional subproblem

From Lemma 3.2, we see that for each one-dimensional subproblem where 
� ∈ Θae,at

 , the worst mean square regret of the minimax optimal rule depends on the 
value of ae and at , both of which are assumed to be known. Let a∗

e
≥ 0 and a∗

t
∈ I(a∗

e
) 

be two constants. We call the problem of finding a minimax optimal rule when 
� ∈ Θa∗

e
,a∗t

 the hardest one-dimensional subproblem if

sup
𝜃∈Θa∗e ,a

∗
t

Rsq(𝛿
∗
a∗
e
,a∗t
, 𝜃) = sup

ae≥0,at∈I(ae)
sup

𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃).
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That is, Θa∗
e
,a∗t

 is the one-dimensional parameter space that yields the largest possible 
worst-case mean square regret of its associated minimax rule. If we view the mini-
max problem as a game between the adversarial Nature and the econometrician, 
then the hardest one-dimensional subproblem is the problem that the Nature will 
pick, provided that the Nature is restricted to choose only among the one-dimen-
sional subproblems. To characterise the hardest one-dimensional subproblem, let

Lemma 3.3  (Mean square regret minimax rule of the hardest one-dimensional 
subproblem) 

	 (i)	 The hardest one-dimensional subproblem corresponds to a∗
e
= a∗� , and 

a∗
t
= a∗� + k . Let ΘH ∶= Θa∗�,a∗�+k be the hardest one-dimensional parameter 

space. The minimax optimal rule with respect to this hardest one-dimensional 
subproblem is 

 and 

	 (ii)	 0 < a∗ < 𝜏∗.
	 (iii)	 a∗ is strictly decreasing in k and strictly increasing in �.

Proof  See Appendix 1. 	�  ◻

It turns out 𝛿∗
H
 is not only a minimax optimal rule of the hardest one-dimensional 

subproblem, but also a minimax optimal rule of the original two-dimensional prob-
lem. That is, choosing the hardest one-dimensional subproblem is still the adver-
sarial Nature’s best move, even if they are allowed to choose any parameter in the 
two-dimensional parameter space.

Theorem 3.1  sup𝜃∈Θ Rsq(𝛿
∗
H
, 𝜃) = min𝛿∈D sup𝜃∈Θ Rsq(𝛿, 𝜃). That is, 𝛿∗

H
 is a minimax 

optimal rule in terms of mean square regret for the original two-dimensional prob-
lem analyzed in Sect. 2.

Proof  See Appendix 1. 	�  ◻

(3.2)a∗ ∈ arg sup
0≤ãe≤𝜏∗

(
ãe +

k

𝜎

)2

𝜌
(
ãe
)

𝛿∗
H
∶= 𝛿∗

a∗𝜎,a∗𝜎+k
=

exp
(
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

)

exp
(
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

)
+ 1

,

sup
𝜃∈ΘH

Rsq(𝛿
∗
H
, 𝜃) = 𝜎2

(
a∗ +

k

𝜎

)2

𝜌(a∗).
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Remark 3.4  By now, we can see a clear connection between the approach taken by 
Donoho (1994) and Yata (2021) in finding minimax optimal decisions and the guess-
and-verify approach (Proposition 4.2, Kitagawa et al., 2022). Intuitively, we can view 
finding the hardest one-dimensional subproblem as one way of finding the least 

favorable prior. Indeed, in the original two-dimensional problem, the least favorable 

prior can be verified to be supported on 
(

a∗�

a∗� + k

)
 and 

(
−a∗�

−a∗� − k

)
 with equal 

probabilities. Technically, once an econometrician figures out the structure of the 
least favorable prior (which is possible given prior work in the literature, e.g., Stoye, 
2012), they can proceed without using the techniques employed in this paper, by 
directly invoking Kitagawa et al. (Proposition 4.2, 2022). Therefore, it is not entirely 
clear which approach has a relative advantage in solving these minimax problems.

Remark 3.5  (Comparison with Kitagawa et al., 2022) If the treatment effect of the 
target population is point-identified ( k = 0 ), the theory of Kitagawa et  al. (2022) 

applies and the minimax optimal rule is 𝛿∗ =
exp

(
2⋅𝜏∗⋅

𝜃̂e
𝜎

)

exp
(
2⋅𝜏∗⋅

𝜃̂e

𝜎

)
+1

 , which agrees with the 

conclusion from Theorem 3.1 by mechanically setting k = 0 . Theorem 3.1 clearly 
demonstrates the effect of partial identification ( k > 0 ) on the optimal decision rules. 
Partial identification moves the worst-case location of the point-identified parameter 
�e further toward zero and away from �∗ : the minimax optimal rule becomes 

𝛿∗
H
=

exp
(
2⋅a∗⋅

𝜃̂e
𝜎

)

exp
(
2⋅a∗⋅

𝜃̂e

𝜎

)
+1

 with a∗ < 𝜏∗ . Therefore, partial identification further encourages 

the decision maker to be more cautious against the adversarial Nature: optimal treat-
ment fraction under partial identification will be closer to 0 compared to a point-
identified situation. From Lemma 3.3(iii), we know the value of a∗ decreases as k 
becomes larger: more partial identification results in more ambiguity, leading to 
more prudent or cautious treatment allocation. If k = ∞ , then a∗ = 0 and the optimal 
treatment rule becomes 𝛿∗

H
=

1

2
.

Remark 3.6  (Comparison with Stoye, 2012 and Yata, 2021) The conclusion of Theo-
rem  3.1 is quantitatively and qualitatively different from the conclusion of Stoye 
(2012) and Yata (2021), who both use the mean of regret as a risk criterion and 
derive optimal fractional rules when k is large enough. As shown by Stoye (2012) 
and generalized by Yata (2021) to setups with multivariate signals, if mean of the 
regret is the risk criterion, whether or not a minimax optimal rule is fractional 
depends on the magnitude of k. If k ≤ √

�

2
� , the naive empirical success rule 

1{𝜃̂e ≥ 0} is minimax optimal. When k >
√

𝜋

2
𝜎 , a minimax optimal rule is found to 

be fractional and admits 𝛿∗ = Φ
�
𝜃̂e∕

√
2k2∕𝜋 − 𝜎2

�
 , under which the worst-case 

location for �e is at 0, i.e., when data are uninformative. Theorem 3.1 draws a very 
different picture compared to the existing literature: first of all, optimal rules are 
always fractional, irrespective of the magnitude of k. Second, the worst-case loca-
tion for �e is at ±a∗� ≠ 0 , which implies that data is still informative regarding the 
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true unidentified treatment effect of the target population. See Fig. 1 for an illustra-
tion of the minimax optimal rules in terms of mean regret and mean square regret 
with respect to different values of k.

4 � Conclusion

In this paper, we study optimal binary treatment choice with mean square regret and 
with partially identified welfare, extending the analyses by Kitagawa et al. (2022). 
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Fig. 1   Minimax optimal rules in the Gaussian experiment with a unit variance and an unknown mean. In 
each of the graphs, k represents the width of the identified set. The dashed line is minimax optimal rule 
with respect to mean regret as a function of z, where z represents each possible realization of the Gauss-
ian experiment. The solid line is minimax optimal rule with respect to mean square regret as a function 
of z. Note in the limiting case k = ∞ , the two rules coincide
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Our results lead to a simple and intuitive rule that is sharply different from the exist-
ing literature on treatment choice under partial identification with mean regret crite-
rion. In particular, minimax optimal rules are always fractional, irrespective of the 
width of the identified set. The optimal treatment fraction is a logistic transformation 
of the commonly used t-statistic multiplied by a factor that is calculated by a simple 
constrained optimization. Our results are useful for policy makers who wish to make 
fractional treatment assignment but are concerned that the true optimal policy can 
not be identified from data. For future research, it would be interesting to consider 
optimal treatment choice with a general and arbitrary identified set, or with an esti-
mated identified set. It would also be interesting to consider optimal individualised 
treatment choice with mean square regret.

A Proofs of main results

Proof of Lemma 3.1

By Remark 3.1, we focus on the case when c < 𝜏∗ . Let �c be a prior on � such that 
�c(c) = �c(−c) =

1

2
 . It can be verified that the Bayes optimal rule with respect to �c 

is

By applying integration by change-of-variable, we may find the Bayes mean square 
regret of 𝛿𝜋c(Ȳ) as

By Lemma B.5, sup𝜏∈[−c,c] Rsq(𝛿𝜋c , 𝜏) = c2𝜌(c) , implying 𝛿𝜋c is indeed a minimax 
optimal rule by applying Kitagawa et al. (Proposition 4.2, 2022).

Proof of Lemma 3.2

We prove the lemma by considering two cases.
Case 1: ae = 0 . In this case, for each � ∈ Θ0,at

,

where 𝜃̂e ∼ N(0, 𝜎2) . This is a case where data 𝜃̂e reveals no information regarding 
the unknown s. If in addition to ae = 0 , it holds that at = 0 . Then, any rule is 

𝛿𝜋c(Ȳ) =
exp

(
2 ⋅ c ⋅ Ȳ

)

exp
(
2 ⋅ c ⋅ Ȳ

)
+ 1

= 𝛿∗(Ȳ).

rsq(𝛿𝜋c ,𝜋c) ∶= ∫ Rsq(𝛿𝜋c , 𝜏)d𝜋c(𝜏)

=
1

2
Rsq(𝛿𝜋c , c) +

1

2
Rsq(𝛿𝜋c ,−c)

= c2𝜌(c).

Rsq(𝛿, 𝜃) =
(
ats

)2
�

[(
1{ats ≥ 0} − 𝛿(𝜃̂e)

)2]
,
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minimax optimal. Focus on the case when at ≠ 0 . Let 𝜇𝛿 ∶= �𝛿(𝜃̂e) , 
V𝛿 ∶= �

[(
𝛿(𝜃̂e) − �𝛿(𝜃̂e)

)2] . We have the following decomposition

That is, the mean square regret of each rule depends on 𝛿 only via 𝜇𝛿 and V𝛿 , both of 
which are independent of s. Thus, for each 𝛿

As at ≠ 0 , it is easy to see that a minimax optimal rule would set V𝛿 = 0 and 𝜇𝛿 =
1

2
 . 

That is, 𝛿∗
0,at

=
1

2
 , which means that the minimax optimal rule does not use data 𝜃̂e at 

all. Moreover, sup𝜃∈Θ0,at
Rsq(𝛿

∗
0,at

, 𝜃) =
a2
t

4
.

Case 2: ae > 0 . In this case, note for each � ∈ Θae,at
,

where 𝜃̂e ∼ N(aes, 𝜎
2) . If at = 0 , then any rule is minimax optimal. Focus on at ≠ 0 . 

Then, it follows

In this one-dimensional subproblem, at
ae
𝜃̂e is a sufficient statistic for s (and for ats 

too). Therefore, to show sup𝜃∈Θae ,at
Rsq(𝛿

∗
ae,at

, 𝜃) = min𝛿∈D sup𝜃∈Θae ,at
Rsq(𝛿, 𝜃) , it suf-

fices to focus on rules that are functions of the statistic at
ae
𝜃̂e and show

where D̃ is a set of rules that is a function of the statistic at
ae
𝜃̂e . To this end, let 

�s ∶= sat ∈
[
−||at||, ||at||

]
 , and let 𝜏s ∶=

at

ae
𝜃̂e . Then, for each 𝛿 ∈ D̃ and each � ∈ Θae,at

 , 
we can write

where the �[ ] is with respect to 𝜏s ∼ N
(
𝜏s, 𝜎

2
𝜏s

)
, where �2

�s
=
(

at

ae

)2

�2 . Furthermore, 
note

Rsq(𝛿, 𝜃) =
(
ats

)2{(
1{ats ≥ 0} − 𝜇𝛿

)2
+ V𝛿

}
.

sup
𝜃∈Θ0,at

Rsq(𝛿, 𝜃) = max
{
a2
t

[(
1 − 𝜇𝛿

)2
+ V𝛿

]
, a2

t

[(
𝜇𝛿

)2
+ V𝛿

]}

= a2
t

[
max

((
1 − 𝜇𝛿

)2
,𝜇2

𝛿

)
+ V𝛿

]
.

Rsq(𝛿, 𝜃) =
(
ats

)2
�sae

[(
1{ats ≥ 0} − 𝛿(𝜃̂e)

)2]
,

at

ae
𝜃̂e ∼ N

(
sat,

(
at

ae

)2

𝜎2

)
.

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) = min
𝛿∈D̃

sup
𝜃∈Θae ,at

Rsq(𝛿, 𝜃),

Rsq(𝛿, 𝜃) = 𝜏2
s
�

[(
1{𝜏s ≥ 0} − 𝛿(𝜏s)

)2]
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where the first equality follows from the definition, the second equality follows from 
applying integration by-change-of-variable and letting z =

x

��s
 , and letting 

𝛿1(z) = 𝛿(𝜎𝜏s z) . As �2
�s
 is known, solving min𝛿∈D̃ sup𝜃∈Θae ,at

Rsq(𝛿, 𝜃) is equivalent to 
solving

where Rsq(𝛿1,
𝜏s

𝜎𝜏s
) =

(
𝜏s

𝜎𝜏s

)2

�Z∼N(
𝜏s
𝜎𝜏s

,1)

[(
1

{
𝜏s

𝜎𝜏s
≥ 0

}
− 𝛿1(Z)

)2
]
 is the mean 

square regret of rule 𝛿1 , a function of 𝜏s
𝜎𝜏s

∼ N(
𝜏s

𝜎𝜏s
, 1) with an unknown mean �s

��s
 and 

unit variance. As �s

��s
=

ats|at|� ae ∈ [−
ae

�
,
ae

�
] , by applying Lemma 3.1, we find the 

solution of (A.2) as follows

which coincides with 𝛿∗
ae,at

 . Furthermore, by applying Lemma 3.1 and (A.1), we 
derive the worst-case mean square regret of 𝛿∗

ae,at
 as

cdot

(A.1)

Rsq(𝛿, 𝜃) = 𝜏2
s �

�
1{𝜏s ≥ 0} − 𝛿(x)

�2 1

𝜎𝜏s
𝜙

�
x − 𝜏s

𝜎𝜏s

�
dx

= 𝜎2
𝜏s

�
𝜏s

𝜎𝜏s

�2

�
�
1

�
𝜏s

𝜎𝜏s
≥ 0

�
− 𝛿(𝜎𝜏s z)

�2

𝜙

�
z −

𝜏s

𝜎𝜏s

�
d(z)

= 𝜎2
𝜏s

�
𝜏s

𝜎𝜏s

�2

�Z∼N(
𝜏s
𝜎𝜏s

,1)

⎡
⎢⎢⎣

�
1

�
𝜏s

𝜎𝜏s
≥ 0

�
− 𝛿1(Z)

�2⎤
⎥⎥⎦

(A.2)min
𝛿1

sup
𝜏s
𝜎𝜏s

Rsq(𝛿1,
𝜏s

𝜎𝜏s
),

𝛿∗
1

�
𝜏s

𝜎𝜏s

�
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

exp

�
2⋅𝜏∗⋅

𝜏s
𝜎𝜏s

�

exp

�
2⋅𝜏∗⋅

𝜏s
𝜎𝜏s

�
+1

, if
ae

𝜎
≥ 𝜏∗,

exp

�
2⋅

ae

𝜎
⋅

𝜏s

𝜎𝜏s

�

exp

�
2⋅

ae

𝜎
⋅

𝜏s
𝜎𝜏s

�
+1

, if
ae

𝜎
< 𝜏∗,

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) =

⎧⎪⎨⎪⎩

𝜎2
𝜏s
(𝜏∗)2𝜌(𝜏∗) =

�
at

ae

�2

𝜎2(𝜏∗)2𝜌(𝜏∗) ≈ 0.12
�

at

ae

�2

𝜎2,
ae

𝜎
≥ 𝜏∗,

𝜎2
𝜏s

a2
e

𝜎2
𝜌(

ae

𝜎
) = a2

t
𝜌
�

ae

𝜎

�
,

ae

𝜎
< 𝜏∗.
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Proof of Lemma 3.3

Proof of statement (i)

When ae
�
≥ �∗,

where the first equalify follows from �t ∈ [�e − k, �e + k] , and the second equality is 

because 
(

ae+k

ae

)2

 is decreasing in ae . Similarly, when 0 ≤ ae

𝜎
< 𝜏∗,

Considering both (A.3) and (A.4), we see that finding the worst-case one-dimen-
sional subproblem is reduced to finding

Since ãe =
ae

𝜎
 , the hardest one-dimensional subproblem corresponds to a∗

e
= �a∗ , 

a∗
t
= �a∗ + k . Applying Lemma 3.2 yields the formula for 𝛿∗

H
 and the expression for 

sup𝜃∈ΘH
Rsq(𝛿

∗
H
, 𝜃) as stated in (i) of the current lemma.

Proof of statement (ii)

Write g(ãe) ∶=
(
ãe +

k

𝜎

)2

𝜌
(
ãe
)
 , which is a continuous and differentiable function. 

Therefore, a∗ ∈ arg sup0≤ãe≤𝜏∗ (ãe +
k

𝜎
)2𝜌

(
ãe
)
 is finite. First, we show a∗ > 0 . Let 

f (1)(⋅) be the first derivative of function f (⋅) . Algebra shows

(A.3)

sup
ae

𝜎
≥𝜏∗,at∈I(ae)

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) = sup
ae

𝜎
≥𝜏∗

(
ae + k

ae

)2

𝜎2(𝜏∗)
2𝜌(𝜏∗)

=
(
1 +

k

𝜏∗𝜎

)2

𝜎2(𝜏∗)
2𝜌(𝜏∗)

= 𝜎2
(
𝜏∗ +

k

𝜎

)2

𝜌(𝜏∗)

(A.4)

sup
0≤ ae

𝜎
<𝜏∗,at∈I(ae)

sup
𝜃∈Θae ,at

Rsq(𝛿
∗
ae,at

, 𝜃) = sup
0≤ ae

𝜎
<𝜏∗

(
ae + k

)2
𝜌
(ae
𝜎

)

= sup
0≤ ae

𝜎
<𝜏∗

𝜎2
(ae
𝜎

+
k

𝜎

)2

𝜌
(ae
𝜎

)

= 𝜎2 sup
0≤ãe<𝜏∗

(
ãe +

k

𝜎

)2

𝜌
(
ãe
)
.

a∗ ∈ arg sup
0≤ãe≤𝜏∗

(ãe +
k

𝜎
)2𝜌

(
ãe
)
.
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Thus,

as ∫ x�(x)dx = 0 . It follows then

and g(1)(0) = 2
k

𝜎
𝜌(0) =

1

2

k

𝜎
> 0 as k > 0 . This implies that moving away from ãe = 0 

to a small positive number always increases g(ãe) . Thus, 0 is never a solution of 
sup0≤ãe≤1.23 g(ãe).

Next, we show a∗ < 𝜏∗ . By algebra,

Note �∗ solves sup
�∈[0,∞)

�2�(�) and satisfiy the following FOC:

implying

(A.5), (A.6) and (A.7) together yield

implying �∗ is not a solution of sup0≤ãe≤1.23 g(ãe).

𝜌(1)(ãe) = ∫ 2

(
1

exp
(
2ãex

)
+ 1

)(
−

1(
exp

(
2ãex

)
+ 1

)2
)
exp

(
2ãex

)
2x𝜙

(
x − ãe

)
dx

− ∫
(

1

exp
(
2ãex

)
+ 1

)2

𝜙(1)
(
x − ãe

)
dx

= −4∫
(

exp
(
2ãex

)
x

(
exp

(
2ãex

)
+ 1

)3𝜙
(
x − ãe

))
dx

+ ∫
(

1

exp
(
2ãex

)
+ 1

)2

(x − ãe)𝜙
(
x − ãe

)
dx.

�(1)(0) = −
1

2 ∫ x�(x)dx +
1

4 ∫ x�(x)dx = 0

g(1)(ãe) = 2
(
ãe +

k

𝜎

)
𝜌
(
ãe
)
+
(
ãe +

k

𝜎

)2

𝜌(1)
(
ãe
)
,

(A.5)g(1)(�∗) = 2
(
�∗ +

k

�

)
�(�∗) +

(
�∗ +

k

�

)2

�(1)(�∗).

(A.6)2�∗�(�∗) + (�∗)
2�(1)(�∗) = 0,

(A.7)�(1)(�∗) = −
2�(�∗)

�∗

g(1)(𝜏∗) = 2
k

𝜎
𝜌(𝜏∗) +

(
k2

𝜎2
+ 2𝜏∗

k

𝜎

)
𝜌(1)(𝜏∗)

= −2𝜌(𝜏∗)

[
k

𝜎
+

k2

𝜏∗𝜎2

]
< 0,
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Proof of statement (iii)

By statement (ii), a∗ is an interior solution and must satisfy the following FOC:

As (a∗ + k

𝜎
) > 0 , a∗ must also satisfy

Moreover, as a∗ is a local maximum of a continuously differentiable function, it 
must also satisfy the following second-order condition:

Viewing the right-hand-side of (A.8) as a function of a∗ and k, say F(a∗, k) , we may 
write

From (A.8), we know 𝜌(1)(a∗) < 0 . Together with (A.9), we conclude that 𝜕a
∗

𝜕k
< 0 . 

The proof for 𝜕a
∗

𝜕𝜎
> 0 is similar and omitted.

Proof of Theorem 3.1

Firstly, note the following inequalities hold:

where the first inequality follows from the definition of 𝛿∗ , the second relation fol-
lows from ΘH ⊆ Θ , and the third relation follows from the fact that 𝛿∗

H
 is a minimax 

optimal rule of the hardest one-dimensional subproblem. Secondly, Theorem  B.1 
establishes

Combining (A.10) and (A.11) yields the desired conclusion.

2
(
a∗ +

k

�

)
�(a∗) +

(
a∗ +

k

�

)2

�(1)(a∗) = 0.

(A.8)2�(a∗) +
(
a∗ +

k

�

)
�(1)(a∗) = 0.

(A.9)3𝜌(1)(a∗) + (a∗ +
k

𝜎
)𝜌(2)(a∗) < 0.

�a∗

�k
= −

�F(a∗,k)

�k

�F(a∗,k)

�a∗

= −

1

�
�(1)(a∗)

3�(1)(a∗) + (a∗ +
k

�
)�(2)(a∗)

.

(A.10)

sup
𝜃∈Θ

Rsq(𝛿
∗
H
, 𝜃) ≥ sup

𝜃∈Θ

Rsq(𝛿
∗, 𝜃)

≥ sup
𝜃∈ΘH

Rsq(𝛿
∗, 𝜃)

≥ sup
𝜃∈ΘH

Rsq(𝛿
∗
H
, 𝜃),

(A.11)sup
𝜃∈Θ

Rsq(𝛿
∗
H
, 𝜃) ≤ sup

𝜃∈ΘH

Rsq(𝛿
∗
H
, 𝜃).
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B Additional technical results

Recall the definition of a∗ in (3.2). Let 𝜌∗
(
𝜃e
)
= ∫ (

1

exp (2⋅a∗⋅y)+1

)2

𝜙(y − 𝜃e)dy.

Theorem B.1  sup𝜃∈Θ Rsq(𝛿
∗
H
, 𝜃) ≤ sup𝜃∈ΘH

Rsq(𝛿
∗
H
, 𝜃).

Proof  By Lemma B.1, sup𝜃∈Θ Rsq(𝛿
∗
H
, 𝜃) = 𝜎2 sup− k

𝜎
≤ãe<∞

(
ãe +

k

𝜎

)2

𝜌∗
(
ãe
)
 . By 

Lemma 3.3, 𝛿∗
H
 is a minimax rule with respect to the hardest one-dimensional prob-

lem, and it holds

Furthermore, Lemma B.2 establishes

yielding the conclusion. 	�  ◻

Lemma B.1  sup𝜃∈Θ Rsq(𝛿
∗
H
, 𝜃) = 𝜎2 sup− k

𝜎
≤ãe<∞

(
ãe +

k

𝜎

)2

𝜌∗
(
ãe
)
.

Proof  For any 
(
�e
�t

)
∈ Θ, note 

(
−�e
−�t

)
∈ Θ. Thus, consider each � =

(
�e
�t

)
∈ Θ 

where �t ≥ 0 . Applying change-of-variable yields

sup
𝜃∈ΘH

Rsq(𝛿
∗
H
, 𝜃) = 𝜎2 sup

0≤ãe≤1.23
(ãe +

k

𝜎
)2𝜌

(
ãe
)
= 𝜎2(a∗ +

k

𝜎
)2𝜌(a∗).

sup
−

k

𝜎
≤ãe<∞

(
ãe +

k

𝜎

)2

𝜌∗
(
ãe
) ≤ (a∗ +

k

𝜎
)2𝜌(a∗),

Rsq(𝛿
∗
H
,−𝜃) =𝜃2

t
�−𝜃e

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝
1
�
−𝜃t ≥ 0

�
−

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�
+ 1

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

=𝜃2
t �

⎛
⎜⎜⎜⎝

exp
�
2 ⋅

a∗y

𝜎

�

exp
�
2 ⋅

a∗y

𝜎

�
+ 1

⎞
⎟⎟⎟⎠

2

𝜙(
y+𝜃e

𝜎
)

𝜎
dy

=𝜃2
t �

⎛⎜⎜⎜⎝

exp
�
−2 ⋅

a∗y

𝜎

�

exp
�
−2 ⋅

a∗y

𝜎

�
+ 1

⎞⎟⎟⎟⎠

2

𝜙
�

−y+𝜃e

𝜎

�

𝜎
dy

=𝜃2
t �

⎛⎜⎜⎜⎝
1

1 + exp
�
2 ⋅

a∗y

𝜎

�
⎞⎟⎟⎟⎠

2

𝜙
�

y−𝜃e

𝜎

�

𝜎
dy

=𝜃2
t
�𝜃e

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

1

1 + exp
�
2 ⋅

a∗ 𝜃̂e

𝜎

�
⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦
= Rsq(𝛿

∗
H
, 𝜃).
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Therefore, we deduce

Moreover, note

where 𝜌∗
(
𝜃e
)
= ∫ (

1

exp (2⋅a∗⋅y)+1

)2

𝜙(y − 𝜃e)dy . 	�  ◻

Lemma B.2  sup− k

𝜎
≤𝜃e<∞

(
𝜃e +

k

𝜎

)2

𝜌∗
(
𝜃e
) ≤ (a∗ +

k

𝜎
)2𝜌(a∗).

Proof  Recall g(ãe) ∶=
(
ãe +

k

𝜎

)2

𝜌
(
ãe
)
 . Write g∗(𝜃e) ∶=

(
𝜃e +

k

𝜎

)2

𝜌∗
(
𝜃e
)
 . Note 

g(a∗) = g∗(a∗) as �∗(a∗) = �(a∗) . Thus, it suffices to show that a∗ solves 
sup− k

𝜎
≤𝜃e<∞ g∗(𝜃e) . We take two steps:

Step 1: we show that a∗ is a local extremum point of g∗(𝜃e) . To see this, note 
a∗ ∈ arg sup0≤ãe≤1.23(ãe +

k

𝜎
)2𝜌

(
ãe
)
. By Lemma 3.3 (ii), a∗ is an interior point in 

[0, �∗] . Therefore, a∗ must satisfy the following FOC

As a∗ + k

𝜎
> 0 , it implies

We evaluate the first derivate of g∗(⋅) at a∗:

sup
𝜃∈Θ

Rsq(𝛿
∗
H
, 𝜃) = sup

𝜃e∈ℝ,𝜃t∈I(𝜃e)

𝜃2
t
𝔼𝜃e

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝
1{𝜃t ≥ 0} −

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�
+ 1

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦
,

= max

�
sup

𝜃∈Θ,𝜃t≥0
Rsq(𝛿

∗
H
, 𝜃), sup

𝜃∈Θ,𝜃t<0

Rsq(𝛿
∗
H
, 𝜃)

�
,

= sup
𝜃∈Θ,𝜃t≥0

Rsq(𝛿
∗
H
, 𝜃) = sup

𝜃∈Θ,𝜃t≥0
𝜃2
t
𝔼𝜃e

⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝

1

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�
+ 1

⎞⎟⎟⎟⎠

2⎤⎥⎥⎥⎦
.

sup
𝜃∈Θ,𝜃t≥0

𝜃2
t
�𝜃e

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

1

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�
+ 1

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

= sup
−k≤𝜃e<∞

(𝜃
e
+ k)2�𝜃e

⎡
⎢⎢⎢⎣

⎛
⎜⎜⎜⎝

1

exp
�
2 ⋅ a∗ ⋅

𝜃̂e

𝜎

�
+ 1

⎞
⎟⎟⎟⎠

2⎤
⎥⎥⎥⎦

= 𝜎2 sup
−

k

𝜎
≤ 𝜃e

𝜎
<∞

�
𝜃
e

𝜎
+

k

𝜎

�2

𝜌∗
�
𝜃
e

𝜎

�
= 𝜎2 sup

−
k

𝜎
≤𝜃e<∞

�
𝜃
e
+

k

𝜎

�2

𝜌∗
�
𝜃
e

�
,

2
(
a∗ +

k

�

)
�(a∗) +

(
a∗ +

k

�

)2

�(1)(a∗) = 0.

(B.1)2�(a∗) +
(
a∗ +

k

�

)
�(1)(a∗) = 0.
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where the second equality follows from Lemma B.3, and from using �(a∗) = �∗(a∗) 
again, and the third equality follows from (B.1). Thus, we conclude that a∗ is also a 
local extremum point of g∗(⋅)

Step 2: we show a∗ is in fact a global maximum of the problem sup− k

𝜎
≤𝜃e<∞ g∗(𝜃e) . 

We analyze (g∗)(1)(𝜃e) more in detail. Algebra shows

where g(𝜃e) = 2𝜌∗
(
𝜃e
)
+
(
𝜃e +

k

𝜎

)
(𝜌∗)(1)

(
𝜃e
)
 . As 𝜃e +

k

𝜎
≥ 0 , it follows the sign of 

(g∗)(1)(𝜃e) only depends on g(𝜃e) , which we further analyze below. To this end, write 
1

1+exp (2⋅a∗⋅y)
∶= w∗(y) . Using integration by parts twice, it follows

(B.2)
(g∗)

(1)(a∗) =
(
a∗ +

k

�

)[
2�∗(a∗) +

(
a∗ +

k

�

)
�∗(1)(a∗)

]

=
(
a∗ +

k

�

)[
2�(a∗) +

(
a∗ +

k

�

)
(�)(1)(a∗)

]
= 0,

(g∗)
(1)(𝜃e) =

(
𝜃e +

k

𝜎

)
g(𝜃e),

g(𝜃e) = 2∫ w∗(y)2𝜙(y − 𝜃e)dy + (𝜃e +
k

𝜎
)∫ w∗(y)2

d𝜙(y − 𝜃e)

d𝜃e
dy

= 2∫ w∗(y)2𝜙(y − 𝜃e)dy − (𝜃e +
k

𝜎
)∫ w∗(y)2

d𝜙(y − 𝜃e)

dy
dy

= 2∫ w∗(y)2𝜙(y − 𝜃e)dy − (𝜃e +
k

𝜎
)∫ w∗(y)2d𝜙(y − 𝜃e)

= 2

�
∫ w∗(y)2𝜙(y − 𝜃e)dy + ∫ w∗(y)

dw∗(y)

dy
(𝜃e +

k

𝜎
)𝜙(y − 𝜃e)dy

�

= 2

�
∫ w∗(y)2𝜙(y − 𝜃e)dy + ∫ w∗(y)

dw∗(y)

dy
(𝜃e − y)𝜙(y − 𝜃e)dy

+∫ w∗(y)
dw∗(y)

dy
(
k

𝜎
+ y)𝜙(y − 𝜃e)dy

�

= 2

�
∫ w∗(y)2𝜙(y − 𝜃e)dy + ∫ 𝜙(y − 𝜃e)w

∗(y)
dw∗(y)

dy
d𝜙(y − 𝜃e)

+∫ w∗(y)
dw∗(y)

dy
(
k

𝜎
+ y)𝜙(y − 𝜃e)dy

�

= 2

⎛⎜⎜⎜⎝
∫ w∗(y)2𝜙(y − 𝜃e)dy − ∫

d
�

𝜕w∗(y)

𝜕y
w∗(y)

�

dy
𝜙(y − 𝜃e)dy

+∫ w∗(y)
dw∗(y)

dy
(
k

𝜎
+ y)𝜙(y − 𝜃e)dy

�

= 2∫ w(y)𝜙(y − 𝜃e)dy,
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where

Lemma B.4 shows that ∫ w(y)𝜙(y − 𝜃e)dy has a unique sign change from + to − at 
a∗ , which verifies immediately that a∗ is in fact a global maximum of the problem 
sup− k

𝜎
≤𝜃e<∞ g∗(𝜃e) . 	�  ◻

Lemma B.3  �(1)(a∗) = (�∗)(1)(a∗).

Proof  Note for all 𝜃e ∈ ℝ:

while algebra shows

where F1(𝜃e) = −4 ∫ exp (2𝜃ey)𝜙(y−𝜃e)

(exp (2𝜃ey)+1)
3 ydy . We can further verify that 

F1(𝜃e) = −4 ∫ w𝜃e
(y)ydy , where

is such that w𝜃e
(y) = w𝜃e

(−y) for all y. Thus, it holds F1(𝜃e) = 0 for all 𝜃e ∈ ℝ . It 
then holds

Evaluating (𝜌∗)(1)
(
𝜃e
)
 and 𝜌(1)(𝜃e) at a∗ yields the conclusion. 	�  ◻

Lemma B.4  g(𝜃e) has a unique sign change from + to − at a∗.

Proof  Note by Lemma B.2, g(𝜃e) = 2 ∫ w(y)𝜙(y − 𝜃e)dy , where w(y) is defined in 
(B.3). Also,

(B.3)w(y) = w∗(y)2 −

(
dw∗(y)

dy

)2

−
d2w∗(y)

dy2
w∗(y) + w∗(y)

dw∗(y)

dy
(
k

�
+ y).

(𝜌∗)
(1)
(
𝜃e
)
= −∫

(
1

exp (2 ⋅ a∗ ⋅ y) + 1

)2

𝜙(1)(y − 𝜃e)dy,

𝜌(1)(𝜃e) = F1(𝜃e) − ∫
(

1

exp
(
2𝜃ey

)
+ 1

)2

𝜙(1)
(
x − 𝜃e

)
dy,

w𝜃e
(y) =

𝜙2
(
y − 𝜃e

)
𝜙2

(
y + 𝜃e

)
(
𝜙
(
y − 𝜃e

)
+ 𝜙

(
y + 𝜃e

))3

𝜌(1)(𝜃e) = −∫
(

1

exp
(
2𝜃ey

)
+ 1

)2

𝜙(1)
(
x − 𝜃e

)
dy.
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Thus,

where

As w∗(y)2𝛿∗
H
(y) > 0 , the sign of w(y1) is determined by w̃(y1) . It is straightforward to 

verify that

Thus, it holds that w̃(y) is strictly decreasing and has at most one sign change from 
+ to −. Moreover, note limy→−∞ w̃(y) = ∞ , and limy→∞ w̃(y) = −∞ . Thus, w̃(y) has 
one and only one sign change from + to −, implying that w(y) has one and only one 
sign change from + to − as well. It follows from Kitagawa et al. (Theorem C.1(i), 
2022) that g(𝜃e) at most has one sign change.

Next, we show that g(𝜃e) indeed has one sign change at a∗ . To this end, note

w∗(y) =
1

1 + exp (2 ⋅ a∗ ⋅ y)
,

dw∗(y)

dy
= −(w∗(y))

2
exp (2 ⋅ a∗ ⋅ y)2a∗,

d2w∗(y)

dy2
= 2(w∗(y))

3
(exp (2 ⋅ a∗ ⋅ y)2a∗)

2 − (w∗(y))
2
exp (2 ⋅ a∗ ⋅ y)(2a∗)

2
,

𝛿∗
H
(y) = w∗(y) exp (2 ⋅ a∗ ⋅ y).

w(y) = w∗(y)2 − 3(w∗(y))
4
(exp (2 ⋅ a∗ ⋅ y)2a∗)

2

+ (w∗(y))
3
exp (2 ⋅ a∗ ⋅ y)(2a∗)

2

− (w∗(y))
3
exp (2 ⋅ a∗ ⋅ y)2a∗(

k

𝜎
+ y)

= w∗(y)2𝛿∗
H
(y)

{
1

𝛿∗
H
(y)

− 3𝛿∗
H
(y)(2a∗)

2 + (2a∗)
2 − 2a∗(

k

𝜎
+ y)

}

= w∗(y)2𝛿∗
H
(y)w̃(y)

(B.4)w̃(y) =
1

𝛿∗
H
(y)

− 3𝛿∗
H
(y)(2a∗)

2 + (2a∗)
2 − 2a∗

(
k

𝜎
+ y

)
.

dw̃(y)

dy
= −

⎛⎜⎜⎝
1�

𝛿∗
H
(y)

�2 + 12(a∗)
2
⎞⎟⎟⎠
d𝛿∗

H
(y)

dy
− 2a∗ < 0.

g(a∗) = 2∫ w(y)�(y − a∗)dy = 0

g(1)(a∗) = 2∫ w(y)(y − a∗)�(y − a∗)dy

= 2∫ w(y)y�(y − a∗)dy − 2a∗ ∫ w(y)�(y − a∗)dy

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
0

= 2∫ w(y)y�(y − a∗)dy.
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Algebra shows

Thus,

where wa∗ (y) =
𝜙2(y−a∗)𝜙2(y+a∗)

(𝜙(y−a∗)+𝜙(y+a∗))3
> 0 and is such that wa∗ (−y) = wa∗ (y) for all y ∈ ℝ , 

and w̃(y) is strictly decreasing from +∞ to −∞ . Let t∗ be the unique point such that 
w̃(t∗) = 0 . Suppose t∗ ≥ 0 . Then, we have the following decomposition

where all three terms above can be signed to be negative. A similar decomposition 
also reveals that g(1)(a∗) < 0 holds true when t∗ < 0 . Thus, we we conclude that 
g(1)(a∗) < 0 and a∗ is indeed a sign change of g . Then, we apply Kitagawa et al. (The-
orem C.1(i), 2022) to conclude that g(𝜃e) indeed has one and only on sign change at 
a∗ . Furthermore, Kitagawa et al. (Theorem C.1(ii), 2022) implies that g(𝜃e) and w(y) 
in the same order. The conclusion follows. 	�  ◻

Lemma B.5  Let 0 < c < 𝜏∗ . Then, it holds sup𝜏∈[−c,c] Rsq(𝛿𝜋c , 𝜏) = c2𝜌(c).

Proof  By a symmetry argument, it can be shown that Rsq(𝛿𝜋c , 𝜏) = Rsq(𝛿𝜋c ,−𝜏) for 
all � . Thus,

where we define g∗
c
(�) ∶= �2�∗

c
(�) , and �∗

c
(�) ∶= ∫ (

1

exp (2⋅c⋅y)+1

)2

�(y − �)dy . As 
g∗
c
(c) = c2�(c) , it suffices to show that

Below we show that g∗
c
(⋅) is increasing in [0, c], and the conclusion will follow. We 

take two steps.

w(y) = w∗(y)2𝛿∗
H
(y)w̃(y)

=
(
1 − 𝛿∗

H
(y)

)2
𝛿∗
H
(y)w̃(y)

=

(
𝜙(y + a∗)

𝜙(y − a∗) + 𝜙(y + a∗)

)2
𝜙(y − a∗)

𝜙(y − a∗) + 𝜙(y + a∗)
w̃(y),

g(1)(a∗) =2∫ wa∗ (y)w̃(y)ydy,

g(1)(a∗) = 2�y<−t∗
wa∗ (y)w̃(y)ydy

+ 2�−t∗≤y<t∗
wa∗ (y)w̃(y)ydy

+ 2�y>t∗
wa∗ (y)w̃(y)ydy,

sup
𝜏∈[−c,c]

Rsq(𝛿𝜋c , 𝜏) = sup
𝜏∈[0,c]

g∗
c
(𝜏),

c ∈ arg sup
�∈[0,c]

g∗
c
(�).
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Step 1: show 
(
g∗
c

)
(⋅) is first increasing and then decreasing in [0,∞) . Note 

(
g∗
c

)
(⋅) 

may be analyzed by using the same technique employed in Kitagawa et al. (Lemma 
C.5, 2022). That is, by first re-writing 

(
g∗
c

)(1)
(⋅) using change-of-variable twice, and 

then invoking Kitagawa et al. (Theorem C.1, 2022), we can conclude that 
(
g∗
c

)(1)
(⋅) at 

most has one sign change in [0,∞) . Furthermore, note g∗
c
(0) = 0 , lim�→∞ g∗

c
(�) = 0 , 

and g∗
c
(𝜏) > 0 at any 0 < 𝜏 < ∞ . As g∗

c
 is a continuous and differentiable function, 

there must exist some 0 < x < ∞ such that g∗
c
(x) ≥ g∗

c
(�) for all � ∈ [0,∞) with the 

inequality strict for some � ∈ [0, x) and � ∈ (x,∞) . Thus, 
(
g∗
c

)(1)
(⋅) at least has one 

sign change in [0,∞) . Applying Kitagawa et al. (Theorem C.1, 2022), we conclude 
that 

(
g∗
c

)(1)
(⋅) has a unique sign change from + to − in [0,∞) , implying that 

(
g∗
c

)
(�) 

is first increasing and then decreasing in [0,∞).
Step 2: show 

(
g∗
c

)(1)
(c) ≥ 0 . Suppose not. Then, by the conclusion from the first 

step, it must hold that 
(
g∗
c

)(1)
(c) < 0 and

as c < 𝜏∗ . Furthermore, by Lemma B.6, we know 
(
g∗
c

)
(𝜏∗) >

(
g∗
𝜏∗

)
(𝜏∗) , and (

g∗
c

)
(c) <

(
g∗
𝜏∗

)
(c) for all 0 < c < 𝜏∗ , implying

However, we know it must hold that 
(
g∗
𝜏∗

)
(𝜏∗) >

(
g∗
𝜏∗

)
(c) as 

(
g∗
�∗

)
(�∗) corresponds 

to the worst-case mean square regret of the global minimax optimal rule. Therefore, 
it must hold that 

(
g∗
c

)(1)
(c) ≥ 0 . And we conclude that g∗

c
(⋅) is increasing in [0, c] by 

combining steps 1 and 2. 	�  ◻

Lemma B.6 

	 (i)	
(
g∗
c

)
(𝜏∗) >

(
g∗
𝜏∗

)
(𝜏∗) for all 0 < c < 𝜏∗;

	 (ii)	
(
g∗
c

)
(c) <

(
g∗
𝜏∗

)
(c) for all 0 < c < 𝜏∗.

Proof  Recall the definition of g∗
a
(b):

Statement (i). Viewing g∗
c
(�∗) as a function of c, we aim to establish that 𝜕(g

∗
c)(𝜏

∗)

𝜕c
< 0 

for all 0 < c < 𝜏∗ , and statement (i) will follow directly. For all 0 < c < 𝜏∗:

(
g∗
c

)
(c) >

(
g∗
c

)
(𝜏∗),

(B.5)
(
g∗
𝜏∗

)
(c) >

(
g∗
𝜏∗

)
(𝜏∗).

g∗
a
(b) ∶= b2 ∫

(
1

exp (2 ⋅ a ⋅ y) + 1

)2

�(y − b)dy.
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To show 𝜕(g
∗
c)(𝜏

∗)

𝜕c
< 0 for all 0 < c < 𝜏∗ , fix each 0 < c < 𝜏∗ . We now study how 

�(g∗c)(�)
�c

 changes as a function of � . We can apply Kitagawa et al. (Theorem C.1, 2022) 
to conclude that �(g∗c)(�)

�c
 has at most one sign change (as a function of � ), as 

�2(y+c)�(y−c)

(�(y+c)+�(y−c))3
y has one sign change from − to + as a function of y. Furthermore, 

note

and we may verify

implying � = c is indeed a point of sign change of �(g
∗
c)(�)
�c

 . Applying Kitagawa et al. 

(Theorem C.1, 2022), we conclude that �(g
∗
c)(�)
�c

 (as a function of � ) is first positive 
and then negative with one unique sign change at � = c . As 𝜏∗ > c , we conclude 
𝜕(g∗c)(𝜏

∗)

𝜕c
=

𝜕(g∗c)(𝜏)
𝜕c

∣𝜏=𝜏∗< 0 for all 0 < c < 𝜏∗ . Statement (i) follows.
Statement (ii). The proof is similar. Viewing 

(
g∗
s

)
(c) as a function of s, we aim to 

show that 𝜕(g
∗
s )(c)
𝜕s

> 0 for all c < s < 𝜏∗ . Algebra shows

Now fix each c < s < 𝜏∗ . Viewing �(g
∗
s )(c)
�s

 as a function of c, we can conclude that it 
has at most one sign change by applying Kitagawa et al. (Theorem C.1, 2022). As

and

�
(
g∗
c

)
(�∗)

�c
= −4(�∗)

2 ∫
exp(2cy)y

(exp(2cy) + 1)3
�(y − �∗)dy

= −4(�∗)
2 ∫

�2(y + c)�(y − c)

(�(y + c) + �(y − c))3
y�(y − �∗)dy.

�
(
g∗
c

)
(�)

�c
∣�=c= 0,

(
𝜕
(
g∗
c

)
(𝜏)

𝜕c𝜕𝜏

)
∣𝜏=c = −4c2 ∫

𝜙2(y + c)𝜙(y − c)

(𝜙(y + c) + 𝜙(y − c))3
y𝜙(y − c)(y − c)dy

= −4c2 ∫
𝜙2(y + c)𝜙(y − c)

(𝜙(y + c) + 𝜙(y − c))3
y2𝜙(y − c)dy < 0,

�
(
g∗
s

)
(c)

�s
= −4c2 ∫

�2(y + s)�(y − s)

(�(y + s) + �(y − s))3
y�(y − c)dy.

�
(
g∗
s

)
(c)

�s
∣c=s= 0
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Therefore, �(g
∗
s )(c)
�s

 indeed has one unique sign change from positive to negative (as a 
function of c). As �(g

∗
s )(s)
�s

= 0 , we conclude that

for all c < s < 𝜏∗ . Thus, statement (ii) follows. 	�  ◻
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