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Abstract

We consider a decision maker who faces a binary treatment choice when their wel-
fare is only partially identified from data. We contribute to the literature by anchor-
ing our finite-sample analysis on mean square regret, a decision criterion advocated
by Kitagawa et al. in (2022) "Treatment Choice with Nonlinear Regret" . We find
that optimal rules are always fractional, irrespective of the width of the identified
set and precision of its estimate. The optimal treatment fraction is a simple logistic
transformation of the commonly used t-statistic multiplied by a factor calculated by
a simple constrained optimization. This treatment fraction gets closer to 0.5 as the
width of the identified set becomes wider, implying the decision maker becomes
more cautious against the adversarial Nature.
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1 Introduction

Evidence-based policy making has been a keyword among researchers in social
sciences and practitioners of public policies. A central question in evidence-based
policy making is: how should a policy maker inform an optimal policy given
information gathered from finite data? The seminal work of Manski (2004) advo-
cates to approach the question via the framework of a statistical treatment choice,
where the planner’s policy choice is formulated based on the statistical decision
theory of Wald (1950).

Ultimately, the selection of an optimal policy depends on the criterion of
the decision maker. In the literature of statistical treatment choice, a widely
used notion is regret (Savage, 1951), essentially the sub-optimality welfare gap
between a policy under investigation and the oracle first-best policy. Furthermore,
a common practice is to select optimal rules via minimax regret, which ranks
decision rules via their worst-case expected regret over the underlying state of
nature governing the sampling distribution and causal effects of the policy.

In a setting with point-identified welfare, optimal decision rules based on min-
imax regret are often singleton rules (e.g., Stoye, 2009a and Tetenov, 2012b), i.e.,
they dictate to either treat everyone, or no one in the whole population given real-
ized values of sample data. In a setting with partially-identified welfare, minimax
regret optimal rules can be either singleton or non-singleton rules. See, for exam-
ple, Manski (2009), Tetenov (2012a), Stoye (2012), and Yata (2021). Recently,
in a point-identified case, Kitagawa et al. (2022) found that singleton rules can
be sensitive to the sampling uncertainty and may incur a high chance of large
welfare loss (see Kitagawa et al., 2022 for further analyses). As a result, Kita-
gawa et al. (2022) advocate the use of nonlinear regret to rank decision rules.
For example, Kitagawa et al. (2022) recommend using mean square regret as a
default, which penalizes rules with large variance of regret. This approach aligns
with the choice of a decision maker who displays regret aversion, as axiomatized
by Hayashi (2008). In a binary treatment setup, Kitagawa et al. (2022) show that
minimax optimal decision rules with mean square regret are always fractional and
follow a simple form of a logistic transformation of the commonly used t-statistic
for the welfare contrast.

The particular minimax optimal rules derived in Kitagawa et al. (2022) focus on
the case with point-identified welfare. That is, as finite sample data becomes large,
the decision maker is able to learn the true welfare of each treatment and thus also
to learn the true optimal treatment policy. While this assumption can be satisfied in
many scenarios involving experimental data, there are still plenty of situations when
such assumptions might be reasonably questioned. For example, even in randomized
control trials (RCTs), outcome data under treatment or control might still be missing
due to noncompliance of the sample units or due to attrition in the data-collecting
process. Even without noncompliance or attrition and when the RCTs are internally
valid, researchers may also be concerned about external validity, in the sense that
the population for which the treatment policy is applied may be different from the
population under which the RCTs are conducted.
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What is the optimal treatment policy when a decision maker cares about mean
square regret but faces the problem of a partially identified welfare? Do the results
of Kitagawa et al. (2022) that optimal rules are fractional remain to hold under
partial identification? This paper aims to address these questions in a finite-sam-
ple framework, extending the analyses by Kitagawa et al. (2022). See Table 1 for
an illustration of the motivation of the paper in relation with the existing results in
the literature. Following earlier studies by Brock (2006), Manski (2000), Manski
(2007b), Tetenov (2012a), Stoye (2012), among others, we adopt a simple, but well-
motivated regret-based framework in which a policy maker, who wishes to maxi-
mize the expected outcome of the population, needs to choose a binary treatment
when (1) the average treatment effect of the target population is partially identified,
but (2) the identified set for the average treatment effect of the target population
is a symmetric interval with a fixed and known length around the point-identified
reduced-form parameter, for which a Gaussian sufficient statistic is available. Sce-
narios sharing both or either of the features have been studied by, e.g., Adjaho and
Christensen (2022), Ben-Michael et al. (2022), Christensen et al. (2023), D’Adamo
(2021), Ishihara and Kitagawa (2021), Kido (2022), Stoye (2012), Tetenov (2012a),
Yata (2021).

This paper contributes to the literature by developing new finite-sample optimal
decision rules with mean square regret under partial identification, which has not
been considered elsewhere in the literature to the best of our knowledge. We show
that the fundamental form of the minimax optimal rules derived by Kitagawa et al.
(2022) is preserved in the partial identification case. With partially identified wel-
fare, minimax optimal rules have the following simple logistic form:

exp (2-a*-1)

exp(2-a*-?)+1’ (4.

where 7 is the t-statistic for the reduced-form parameter (say, the average treatment
effect of the experimental population in the RCT), and a* € (0, 1.23) is the solu-
tion of a simple constrained optimization problem that depends on the ratio of two
key parameters: the width of the identified set k, and the standard deviation ¢ of
the estimate of the identified set. In the absence of partial identification, k = 0 and
a* = 1.23, and (1.1) becomes the rule derived by Kitagawa et al. (2022).

The form of rule (1.1) is consistent with the findings by Kitagawa et al. (2022):
minimax optimal rules with mean square regret are always fractional, irrespective of
the magnitude of k and o. Moreover, a* is the center of the identified set under the
least favorable prior, and (1.1) is the posterior probability, under that least favorable
prior, that the treatment effect of the target population is positive. Due to partial

Table 1 Treatment choice with
partial identification: existing
results and aim of this paper

Minimax optimal rule Mean regret Mean square regret

Point-identified welfare Singleton Fractional

Partially-identified welfare ~ Either singleton ~ Aim of this paper
or fractional
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identification, the location of a* needs to be calibrated in a case-by-case manner. We
show that a* < 1.23, so that the treatment fraction given 7 > 0 is strictly smaller than
that in a point-identified case. Therefore, a direct impact of partial identification on
treatment choice is that it further disciplines the planner to be more cautious against
the adversarial Nature. That is, optimal decision rules will allocate a larger fraction
of the population to the opposite treatment, compared to the point-identified case.

Our results draw a sharp contrast with the existing results by Stoye (2012) and
Yata (2021), who derive minimax optimal rules under the same framework but with
mean regret. Firstly, their results show that optimal decision rules are fractional only
when k is large enough relative to . If & is sufficiently small, minimax regret opti-
mal rules are still singleton rules. With our mean square regret criterion, minimax
optimal rules are always fractional. Secondly, if mean regret is the risk function,
whenever a fractional rule is optimal, the corresponding least favorable prior pins
down the center of the identified set at a value of 0, i.e., under the least favorable
prior, data is uninformative regarding the sign of the treatment effect of the target
population. In contrast, under mean square regret, the least favorable prior for the
center of the identified set supports two points symmetric around O so that the deci-
sion maker can update that prior with the data.

Due to the set-identified nature of the welfare and the nonlinear nature of the
mean square regret, derivation of our results is more delicate than those consid-
ered in the existing literature. Indeed, the form of the optimal decision rule depends
explicitly on the location of the least favorable prior, which will change depending
on the ratio of k and . Following Donoho (1994) and Yata (2021), we find our
minimax optimal rule by searching for the hardest one-dimensional subproblem and
verifying that the minimax optimal rule for the hardest one-dimensional subproblem
is indeed minimax optimal for the whole problem. This approach is different from,
but very much related to the guess-and-verify approach (as exploited in Azevedo
et al., 2023; Kitagawa et al., 2022; Stoye, 2009a, 2012, among others). As we will
demonstrate from Sect. 3 below, the approach by searching for the one-dimensional
subproblem still has a “guessing” component as well as a “verifying” component. In
fact, one may view finding the hardest one-dimensional subproblem as one specific
way of figuring out the least favorable prior. Technically, in our considered prob-
lem, one can still try to figure out the structure of the least favorable prior based on
prior work (e.g., Stoye, 2012) without using the techniques employed in this paper.
Hence, it is not entirely clear which approach has a clear advantage in solving these
minimax problems. It is beyond the scope of this paper to investigate optimal rules
with mean square regret under the multivariate-signal setting considered by Yata
(2021), but we conjecture that similar analyses in this paper may be extended.

Our research is related to a rapidly growing literature on treatment choice with par-
tially identified welfare. It is known that minimax regret optimal rules may be frac-
tional with or without true knowledge of the identified set (Brock, 2006; Cassidy &
Manski, 2019; Manski, 2000, 2002, 2005, 2007a, b, 2013, 2021; Stoye, 2009b, 2012;
Tetenov, 2012a; Yata, 2021). Fractional rules also arise in a setting with point-identi-
fied but nonlinear welfare (Manski, 2009; Manski & Tetenov, 2007 ). Our results focus
on a scenario when the policy maker cannot differentiate each individual in the popu-
lation. There is also a large literature on individualized policy learning with concerns
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on partially identified welfare, including issues like distributional robustness, external
validity or asymmetric welfare, by, e.g., Adjaho and Christensen (2022), Ben-Michael
et al. (2021, 2022), Christensen et al. (2023), D’Adamo (2021), Ishihara and Kitagawa
(2021), Kallus and Zhou (2018), Kido (2022), Lei et al. (2023). When welfare is point-
identified, finite-sample optimal rules are derived in Hirano and Porter (2009, 2020),
Schlag (2006), Stoye (2009a), and Tetenov (2012b). Individualised treatment choice
with point-identified welfare is considered in Athey and Wager (2021), Bhattacharya
and Dupas (2012), Kitagawa and Tetenov (2018, 2021), Manski (2004), Mbakop and
Tabord-Meehan (2021), among others.

The rest of the paper is organised as follows. Section 2 introduces our setup. Sec-
tion 3 presents steps to derive our new minimax mean square regret optimal rules
via finding the hardest one-dimensional subproblem. Section 4 concludes.

2 Setup

Our analysis begins with the basic framework of optimal treatment choice with par-
tially identified welfare and with finite-sample data (see also Brock, 2006; Manski,
2000; Manski, 2007b, 2009; Stoye, 2012; Tetenov, 2012a for earlier investigations).
A decision maker contemplates assigning a binary treatment D € {0, 1} to an infi-
nitely large population which we call target population. Let Y,(1) be the potential
outcome of the target population when D = 1 (treatment), and Y,(0) be the poten-
tial outcome of the target population when D = 0 (control). Denote by P, € P the
joint distribution of {Y,(l), Y,(O)}. We assume that a planner aims to maximize the
mean outcome of the target population. Define the average treatment effect of the
target population as 8, :=E, [Y,(l) - Y,(O)], where E,[-] denotes the expectation with
respect to P,. Then, it is easy to see that the infeasible optimal treatment policy for
the target population is

1{6, > 0}.

To learn about the unknown parameter 6, € R, the decision maker has access
to finite data collected from some RCTs. However, we assume that the RCTs are
implemented on a population, which we call experimental population, that is poten-
tially different from the target population. That is, the decision maker is concerned
about the external validity of the RCT: the data only has limited validity and the
RCTs only partially identify the true parameter of interest 8,. To derive finite sample
optimality results, we assume that the RCTs have internal validity so that the deci-
sion maker is able to derive a normally distributed estimator 8, € R for the average
treatment effect of the experimental population. That is,

6, ~ N@,,5%),

where 6, € R is the unknown average treatment effect of the experimental popula-

tion, and 62 > 0 is known. Note 6, is the point-identified reduced-form parameter.
And 0, is potentially different from 6,, which is the parameter of interest that the
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decision maker really cares about. Without any assumptions on the relationship
between 6, and 6,, the problem becomes trivial, as 8, and 6, can be arbitrarily differ-
ent so that nothing can be learnt from the RCTs about §,. In that sense, data is com-
pletely useless. The potential usefulness of data in revealing the true unknown 6, lies
in the following key assumption: for each 8, € R, the decision maker knows a priori
that the difference between 6, and 6, can be at most £ € R, a known constant. That
is, the identified set for 6, is:

10,) := [0, — k.0, + k],V0, € R, @.1)

with k > 0 known. Note the case of k = 0 corresponds to the point-identified case in
which 6, and 6, coincide. The case of k = oo corresponds to the case when RCT data
is completely uninformative about the true 6,.

Remark 2.1 The shape of the identified set /(f,) in (2.1) is a symmetric interval
around 6,. Moreover, the upper and lower bounds of /(6,) are both affine in 6, with
the same gradient. Such a nice structure facilitates finite-sample analysis and arises
in many problems, including the missing data (Manski, 1989), extrapolation under
a Lipshitz assumption (Ishihara and Kitagawa, 2021; Stoye, 2012; Yata, 2021), and
welfare bounds with externally invalid experimental population (Adjaho and Chris-
tensen, 2022; Kido, 2022). However, there are also many situations when /(6,) does
not have the nice form in (2.1). Deriving finite-sample results will be more challeng-
ing and is beyond the scope of this paper, and we leave them for future research.

The decision maker needs to choose a statistical treatment rule that maps the
empirical evidence summarized by @e € R to the unit interval:

5: R —[0,1],

where 5(x) is the fraction of the target population to be treated after the policy maker
observes ée = x. Note we assume that the primitive action space for the planner
is [0, 1]. That is, fractional treatment allocation according to some randomization
device is allowed after data have been observed.

We deviate from the existing literature in treatment choice by evaluating the per-
formance of 4 via mean square regret, a decision criterion advocated by Kitagawa
et al. (2022) as a special case of nonlinear regret. In a setting with point-identified
welfare and with finite-sample data, Kitagawa et al. (2022) observe that optimal
rules under mean regret are usually singleton rules and are sensitive to the sam-
pling uncertainty. To alleviate concerns regarding the robustness of optimal decision
rules with respect to sampling uncertainty, Kitagawa et al. (2022) advocate the crite-
ria of nonlinear regret, which incorporates other useful information from the regret
distribution (e.g., the second or higher moments), while the standard regret crite-
rion only focuses on the mean of the regret distribution. In particular, mean square
regret criterion penalizes rules with large variance of regret, and yields optimal
treatment fractions with a simple formula. From the perspective of decision theory,
mean square regret also characterizes the choice behaviour of a decision maker who
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displays regret aversion, a notion axiomatized by Hayashi (2008). A natural open
question is how the optimal rules will change under the mean square regret criterion
if the welfare is now partially identified, which we address in this paper. To proceed,
note that applying  to the target population yields a welfare of

W(3,P,) :=SE,[Y,(D)] + (1 - )E,[Y,(0)]
and a regret of
Reg(6,P)) := W(1{0, > 0},P)— W(,P,) = 0,{1{6, > 0} - 5}
to the planner. The mean square regret of § is defined as

R,,(8.6,.P) := E, [Reg*(3,P))],

where [, [-]is with respect to RCT data 0, ~ N(8,,62). As Reg(8, P,) depends on P,
only through 6,, we can simplify qu(é 0,,P,) as

s Ves

R, (3.0) := 0°E, [(1{9, >0} — 8)2],

where 0 := < Ze > € O C R? are the unknown parameters in the problem, and
t

® = {(ge’gt)f eR?*|6, eR,0, € 1(96)}

is the associated parameter space.

3 Minimax optimal rules

We aim to find a minimax optimal rule in terms of mean square regret. Viewing
qu(S, 0) as the risk function in statistical decision theory, we introduce the follow-
ing standard definition of minimax optimality.

Definition 3.1 Let D be a set of statistical decision rules that are functions of §,. A
rule 6* is mean square regret minimax optimal if it is such that

sup Ry, (6*,6) = minsup R, (3, ).
[4=C) 6€D 9O
Since # € O is a two-dimensional parameter, finding a minimax optimal rule is

more challenging than in a point-identified case, which can be viewed as a special
case when 6, = 0, and the unknown parameter is one-dimensional. That said, note
the standard guess-and-verify approach (Proposition 4.2, Kitagawa et al., 2022) is
still valid. In theory, we can still try to figure out a least favorable prior in R? and
show the Bayes optimal rule with respect to that hypothetical least favorable prior,
say 6, is such that
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r(5,) = sup R, (5,.6),
0e®

where r(z§7[) is the Bayes mean square regret of 5” under the hypothetical least favora-
ble prior. Here, we take a different, but related approach that was adopted by Yata
(2021), who follows Donoho (1994) to find a minimax optimal rule by searching for
a hardest one-dimensional subproblem. We discuss the connections between these
two approaches in Sect. 3.2 and Remark 3.4.

Below, we present the core results of this paper. We first review and extend
some existing results in the one-dimensional problem, which will be useful for
the derivation of the minimax optimal rule in one-dimensional subproblem and
also for our two-dimensional problem.

3.1 Review of the existing results in one-dimensional problem

Example 3.1 [Stylized one-dimensional problem] Let ¥; ~ N(z, 1) be normally dis-
tributed with an unknown mean = € [—c, c] for some 0 < ¢ < oo, and a known vari-
ance normalized to one, with the likelihood function

fGilt) =G — 1), VY, €R, 3.1
where ¢(x) is the pdf of a standard normal distribution. The mean square regret of a
rule 6 : R — [0, 1] based on data Y, is
» Ao 2
R, (8,7) = rz[E[(l{r > 0} - 8(¥))) ]

where the expectation E[-]is with respect to Y 1 ~ N(z, 1)

Kitagawa et al. (Example 4.1, 2022) focus on the general result when ¢ = co. The
following lemma extends the result of Kitagawa et al. (2022) by allowing ¢ to be

1

bounded and sufficiently small. Let p(a) :=E [(m

2
) ], where the expecta-

tion E[-]is with respect to ¥; ~ N(a, 1).

Lemma 3.1 (Mean square regret minimax rule in a stylized one-dimensional prob-
lem) In terms of mean square regret, a minimax optimal rule in Example 3.1 is

2.7, .
M’ lfC 2 T*,
5 = exp (2-7%-Y)+1
- exp(2-c-¥)) . "
ifc < 7*,

exp (2-c-¥)+1°

where T* =~ 1.23 solves sup t2p(t). Moreover, the worst-case mean square regret
7€[0,00)

~

of o* is
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R;‘q i= sup qu(g*,r)z

T€[—c,c]

() p(r*) = 0.12, if ¢ > ¥,
cp(c) if c < 7.

Proof See Appendix 1. O

Remark 3.1 The result of Lemma 3.1 implies that when ¢ > ¥, minimax optimal
decision rule is the same as the one found in Kitagawa et al. (Theorem 4.2, 2022),
while the optimal rule differs when ¢ < z*. This result is very intuitive. We know
that a global least favorable prior (when c is allowed to be as large as we want) puts
equal probabilities on 7* and —z*. If ¢ > ¥, the global least favorable prior is always
feasible, so the minimax optimal rule must remain the same. If ¢ < 7%, the global
least favorable prior is no longer feasible. Instead, Lemma 3.1 shows that the con-
strained least favorable prior when ¢ < 7* puts equal probabilities on the boundary
points ¢ and —c, and the minimax optimal rule is the Bayes optimal rule with respect
to that constrained least favorable prior.

3.2 One-dimensional subproblem

In this and next subsections, we explain in detail how to derive a minimax opti-
mal rule under mean square regret by using the approach taken by Donoho (1994)
and Yata (2021). The key idea is to find a one-dimensional subproblem (which we
know how to solve from results in Sect. 3.1) that is as difficult as the original two-
dimensional problem. In this particular example, as the parameter space ® C R?
is symmetric, it is natural to consider a one-dimensional subproblem in which the
parameter space is simply the line connecting two symmetric points around (0, 0)’ in
O (to be formally introduced below). For such one-dimensional subproblem, we can
use Lemma 3.1 to find its minimax optimal rule and the associated worst-case mean
square regret. Then, we search among all such one-dimensional subproblems. The
one with the largest worst-case mean square regret is our hardest one-dimensional
subproblem, and its associated minimax rule is our “guess” of the minimax optimal
rule for the original two-dimensional problem. A final crucial step is to verify that
this candidate minimax rule derived from the hardest one-dimensional subproblem
is indeed a minimax rule of the original problem—this corresponds to the “verify-
ing” step. Therefore, the approach taken by Donoho (1994) and Yata (2021) still
has a “guessing” component and a “verifying” component, and is very much related
to the guess-and-verify approach that focuses on finding a least favorable prior
(exploited in, e.g., Azevedo et al., 2023; Kitagawa et al., 2022; Stoye, 2009a, 2012).
We further discuss the connections between the two approaches in Remark 3.4.

To be more concrete, a one-dimensional subproblem embedded in the two-
dimensional problem can be constructed as follows. Let a, > 0 and a, € I(a,) be

two known constants. It follows then < Ze ) € 0 and < _Z“ ) € 0. Let
t Yy

0, = {9 € R2|9=S<Ze>,se [—1,1]} )
t
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. . a —-a . .
be the line connecting < ¢ > and < ¢ ) The parameter space ©, , is one-dimen-
a —-a et

t t
sional as it contains only one unknown parameter s € [—1, 1]. We call the problem

of finding a minimax optimal rule when 6 € ®, , a one-dimensional subproblem.

Indeed, for intuition, suppose a, > 0 and let § := Z— Simple algebra shows that

2

. o
s~N<s,—2>,

a

e

which further implies that

That is, a,§ is normally distributed with an unknown mean sa, (since s is unknown)

2
and with a known variance Z—’ 2. Note that sq, is the average treatment effect of

the target population. We maS/ then apply Lemma 3.1 to characterize a minimax
optimal rule for the one-dimensional subproblem. The case when 6, = 0, in contrast,
requires a separate consideration, as this corresponds to the case when data
ée ~ N(0, 6°) reveals no information regarding s. See Remark 3.3 for further discus-
sions. Considering both cases when 6, > 0 and 6, =0, we have the following
lemma.

Lemma 3.2 (Mean square regret minimax rule of a one-dimensional subproblem) A
minimax optimal rule for the one-dimensional subproblem is

That is,

sup qu(g;“ ,»0)=min sup RSQ(S, 0).
0€® et €D 9e06,

a.a; ac.ay

Moreover, the worst-case mean square regret of o is
et

a’c? ) w4,
oy raz (T ) p(T )9 ; 2 1*3
sup RSq(sa(,,a,’ 0) = 2e a a, %
0€®,, ., apl =), 0<=<r1
c c
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Proof See Appendix 1. O

Remark 3.2 The interpretation of the minimax optimal rule in the one-dimensional
subproblem is as follows. Intuitively, note as long as a, # 0, ﬁee :=11s a stand-

ard t-statistic. Consistent with the conclusion from Kitagawa et al. (2022), a mini-
max optimal rule in this parametric problem is a logistic transformation of 7. If
Z > 7*, then the minimax optimal rule is a logistic transformation of 27*. If, in
contrast 0 < % < 7%, then the minimax optimal rule is a loglstlc transformation of
24 ”t As we can see, if 7 > 0, the treatment fraction when 0 < % < 7* is smaller than
the case when % > 7*. Such a structure has intuitive 1mp11cat10ns on the minimax
optimal rule derived later. See Remark 3.5 for a further discussion.

Remark 3.3 The situation when a, = 0 is particularly interesting and demonstrates
further difference between the criterion of mean square regret and that of mean
regret. If it holds a, = 0, then §, ~ N(0, 62). That is, data is completely uninforma-
tive and reveals no information regarding the unknown s. In this situation,
0, € [-|a,|, |a,]]. This subproblem coincides with what was analyzed by Manski
(2007a). If the mean of the regret is the criterion, Manski (2007a) shows that any
rule 5 such that [E[5(0 )] == 1s a minimax optimal rule, where the expectation is

with respect to 8, ~ N(0, 62). That is, there are many minimax optimal rules for this
particular subproblem. Using the uninformative data can still be minimax optimal
under mean regret criterion, as using random data may be purely utilized as a rad-
omization device without affecting the mean of regret. This draws a sharp contrast
with mean square regret, under which the minimax optimal rule is 5(’;’01 = % That is,
the minimax optimal rule under mean square regret is to not use data at all and allo-
cate a fraction of % of the whole population to treatment. Such a fractional rule may
be implemented via a randomization device that does not depend on data. This is
intuitively easy to understand: any other rule that (1) is optimal in terms of the mean
of regret and (2) uses random data and generates a positive variance of regret is not
optimal in terms of mean square regret as they introduce further variance with
respect to data without decreasing the mean of regret.

3.3 Hardest one-dimensional subproblem

From Lemma 3.2, we see that for each one-dimensional subproblem where
6 € 0, ,,the worst mean square regret of the minimax optimal rule depends on the
value of a, and a,, both of which are assumed to be known. Leta’ > 0 and a; el (a:)
be two constants. We call the problem of finding a minimax optimal rule when
0 e @a:’a? the hardest one-dimensional subproblem if

sup R, (5% ..0)= sup  sup R, (5a 0 0)-

0€0 s et a,>0,a,€l(a,) H€0,

ey
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That is, G)a:’a;‘ is the one-dimensional parameter space that yields the largest possible
worst-case mean square regret of its associated minimax rule. If we view the mini-
max problem as a game between the adversarial Nature and the econometrician,
then the hardest one-dimensional subproblem is the problem that the Nature will
pick, provided that the Nature is restricted to choose only among the one-dimen-
sional subproblems. To characterise the hardest one-dimensional subproblem, let

k 2
a'cag swp (a,+7) p(a) (32)

0<a,<r*

Lemma 3.3 (Mean square regret minimax rule of the hardest one-dimensional
subproblem)

(i) The hardest one-dimensional subproblem corresponds to a’ = a*c, and
ar =a*c +k.Let®y 1= 0O, ..,y be the hardest one-dimensional parameter
space. The minimax optimal rule with respect to this hardest one-dimensional
subproblem is

; )

b,

exp (

exp (2 a* -

fx

* .
H aaaa+k

Q |

and

2
sup R,,(5:,0) = o (a" + 5 ) pla®).
0€6y (2
(i) O0<a* <™
(iii) a* is strictly decreasing in k and strictly increasing in o.

Proof See Appendix 1. O

It turns out 3;'; is not only a minimax optimal rule of the hardest one-dimensional
subproblem, but also a minimax optimal rule of the original two-dimensional prob-
lem. That is, choosing the hardest one-dimensional subproblem is still the adver-
sarial Nature’s best move, even if they are allowed to choose any parameter in the
two-dimensional parameter space.

Theorem 3.1 supye qu(gf’_‘l, 0) = ming.p, SUPyeq qu(c‘?, 0). That is, 3; is a minimax
optimal rule in terms of mean square regret for the original two-dimensional prob-

lem analyzed in Sect. 2.

Proof See Appendix 1. O
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Remark 3.4 By now, we can see a clear connection between the approach taken by
Donoho (1994) and Yata (2021) in finding minimax optimal decisions and the guess-
and-verify approach (Proposition 4.2, Kitagawa et al., 2022). Intuitively, we can view
finding the hardest one-dimensional subproblem as one way of finding the least

favorable prior. Indeed, in the original two-dimensional problem, the least favorable

. . a‘c —a*c
prior can be verified to be supported on (a*a + k) and < —do —k

probabilities. Technically, once an econometrician figures out the structure of the
least favorable prior (which is possible given prior work in the literature, e.g., Stoye,
2012), they can proceed without using the techniques employed in this paper, by
directly invoking Kitagawa et al. (Proposition 4.2, 2022). Therefore, it is not entirely
clear which approach has a relative advantage in solving these minimax problems.

> with equal

Remark 3.5 (Comparison with Kitagawa et al., 2022) If the treatment effect of the
target population is point-identified (k = 0), the theory of Kitagawa et al. (2022)
exp (2~‘r*< e )

applies and the minimax optimal rule is 6* = —~——%/—, which agrees with the
exp (2-1*»%" )+1

conclusion from Theorem 3.1 by mechanically setting k = 0. Theorem 3.1 clearly

demonstrates the effect of partial identification (k > 0) on the optimal decision rules.

Partial identification moves the worst-case location of the point-identified parameter

0, further toward zero and away from r*: the minimax optimal rule becomes

3* _ exp (Zu‘%“)

H exp (2-a*~%)+1
the decision maker to be more cautious against the adversarial Nature: optimal treat-
ment fraction under partial identification will be closer to 0 compared to a point-
identified situation. From Lemma 3.3(iii), we know the value of a* decreases as k
becomes larger: more partial identification results in more ambiguity, leading to
more prudent or cautious treatment allocation. If kK = co, then a* = 0 and the optimal

2 1
treatment rule becomes 5;‘{ =3

with a* < 7*. Therefore, partial identification further encourages

Remark 3.6 (Comparison with Stoye, 2012 and Yata, 2021) The conclusion of Theo-
rem 3.1 is quantitatively and qualitatively different from the conclusion of Stoye
(2012) and Yata (2021), who both use the mean of regret as a risk criterion and
derive optimal fractional rules when k is large enough. As shown by Stoye (2012)
and generalized by Yata (2021) to setups with multivariate signals, if mean of the
regret is the risk criterion, whether or not a minimax optimal rule is fractional

depends on the magnitude of k. If k£ < \/ga, the naive empirical success rule

1{9e > 0} is minimax optimal. When &k > \/? o, a minimax optimal rule is found to

be fractional and admits 6* = @(9e /\N2k 7 — 0'2), under which the worst-case
location for 6, is at O, i.e., when data are uninformative. Theorem 3.1 draws a very
different picture compared to the existing literature: first of all, optimal rules are
always fractional, irrespective of the magnitude of k. Second, the worst-case loca-
tion for 6, is at +a*c # 0, which implies that data is still informative regarding the
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true unidentified treatment effect of the target population. See Fig. 1 for an illustra-
tion of the minimax optimal rules in terms of mean regret and mean square regret
with respect to different values of k.

4 Conclusion

In this paper, we study optimal binary treatment choice with mean square regret and
with partially identified welfare, extending the analyses by Kitagawa et al. (2022).
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Fig. 1 Minimax optimal rules in the Gaussian experiment with a unit variance and an unknown mean. In
each of the graphs, k represents the width of the identified set. The dashed line is minimax optimal rule
with respect to mean regret as a function of z, where z represents each possible realization of the Gauss-
ian experiment. The solid line is minimax optimal rule with respect to mean square regret as a function
of z. Note in the limiting case k = oo, the two rules coincide
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Our results lead to a simple and intuitive rule that is sharply different from the exist-
ing literature on treatment choice under partial identification with mean regret crite-
rion. In particular, minimax optimal rules are always fractional, irrespective of the
width of the identified set. The optimal treatment fraction is a logistic transformation
of the commonly used t-statistic multiplied by a factor that is calculated by a simple
constrained optimization. Our results are useful for policy makers who wish to make
fractional treatment assignment but are concerned that the true optimal policy can
not be identified from data. For future research, it would be interesting to consider
optimal treatment choice with a general and arbitrary identified set, or with an esti-
mated identified set. It would also be interesting to consider optimal individualised
treatment choice with mean square regret.

A Proofs of main results

Proof of Lemma 3.1

By Remark 3.1, we focus on the case when ¢ < 7*. Let 7. be a prior on 7 such that
w.(c) =rm.(—c) = % It can be verified that the Bayes optimal rule with respect to z
is

c

exp(2-c-Y)
¢ _exp(Z-c-Y)+1

=5*(Y).

By applying integration by change-of-variable, we may find the Bayes mean square
regret of 6, () as

rsq(gﬂt_,frc) :=/qu(5A,[l_,r)dn'C(f)
~1r 6 L ¢
- 5 sq( ][L’c)+§ sq( ”l’_c)
= czp(c).

By Lemma B.5, sup ¢_. qu(g,[(,f) = ¢?p(c), implying 3”1_ is indeed a minimax
optimal rule by applying Kitagawa et al. (Proposition 4.2, 2022).

Proof of Lemma 3.2

We prove the lemma by considering two cases.
Case 1: a, = 0. In this case, for each 6 € @0’(41,

R.,(3,0) = (a,s)’E [(1{a,s >0} — 5(@6))2],

where §, ~ N(0,62). This is a case where data @, reveals no information regarding
the unknown s. If in addition to a, =0, it holds that a, = 0. Then, any rule is
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minimax optimal. Focus on the case when a,#0. Let pu;:= E6(,),
Vs :=E [(3(@6) - [Eé(ée))z], We have the following decomposition

R, (3,0) = (a,s)z{ ({a,s > 0} — ;)" + vg}.

That is, the mean square regret of each rule depends on  only via uz and Vi, both of
which are independent of s. Thus, for each &

giui R,,(6.6) = max {af[(l - /45)2 + Vg],af[(ﬂg)z + Vg] }
= at2 [max ((1 - /43)2,#;) + Vg].

Asa, # 0, itis easy to see that a minimax optimal rule would set V5 = 0 and y; = %
That is, 5* =2 ! which means that the minimax optimal rule does not use data 9 at
all. Moreover, SUPyeo,,, qu(é(’;’ar, 0) = 7’

Case 2: a, > 0. In this case, note for each 0 € ®a,,a,’
N 2 A A 2
R,,(6.0) = (a5)E,, [(1{a,s >0} - 58,)) ]

where 6, ~ N(a,s, 6%). If a, = 0, then any rule is minimax optimal. Focus on a, # 0.

Then, it follows
a a\’
—'ée ~ N(sa,, <—[> 62>.
a, a,

In this one-dimensional subproblem, ﬂé is a sufficient statistic for s (and for a,s
too). Therefore, to show SUPgeo, , R (6a o) = mingp, SUpgeo, , R,,(6,0), it suf-

fices to focus on rules that are functions of the statistic %6, and show

ae

sup R, (5a a,0) min sup R, (3,9),
0€0 5eD 9o,

ae.ap dg.ap

where D is a set of rules that is a function of the statistic %ée. To this end, let
7, i=sa, € [-|a,|.|a,|], and let 2, := z—’ée. Then, for each 6 € Dand each6 € ©, ,,

we can write

R, (5.0) = rf[E[(l{rs >0} - 5@))1

2
where the [E[ ]is with respect to £, ~ N (rs, o’ ), where 62 = <ﬁ) &2, Furthermore,

s a,

note
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qu(g, 9) = TSZ/ (1{1-5 > 0} _ S(X))2L¢<x— Ts)dx
GT.,. GT.;
2 2
2 Ty A
=0 <—> / (1{ > } - 5(%@) ¢<z - —)d(z)
\ 0, . .
2 2
2 Ts T, N
= Grj<6_> [EZ~N(‘:T‘J,I) <1{ P > 0} - 5](Z)>
(A.1)

where the first equality follows from the definition, the second equality follows from
applying integration by-change-of-variable and letting z = O_i, and letting

Ts

| <

)

5,(z) = b(c, 2). As o2 is known, solving ming.p SUpgee qu(g, 0) is equivalent to
solving

T
min sup R 5 ,— ,
51 _p vq( 1 TS ) (A2)

2 2
where qu(Sl,;—:) = <:—‘> [EZ~N(6’—;,1> l(l{;—‘ > 0} —SI(Z)> ] is the mean

square regret of rule 5 1> a function of L ~N (i, 1) with an unknown mean — and

fv Or, T

unit variance. As = = ] by applying Lemma 3.1, we find the

Ory ||

solution of (A.2) as follows

-

exp <2r*1:7‘>
—“ if &
n T exp <2 T >+1 4
5T = =< s
7)) nleet)
() , lf a

—_— < T*,
exp(Z'%';—“>+l 4
Ts

which coincides with 5* . Furthermore, by applying Lemma 3.1 and (A.1), we
derive the worst-case mean square regret of 6* as

27

L

2 2
. 72 (EP0e) = (&) ey m0.12( %) 0% & 2 v,
sup qu(é;k”al, 0) = 2 a, :
0€0,,,, ‘ oL 02 p( )=a p( ) =< *
cdot
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Proof of Lemma 3.3
Proof of statement (i)

When £ > 7%,
o

a,+k 2 2. w2
sup sup R, (éa a 0) = sup o (t%) p(tr")

%” >7*,a,€l(a,) HEGHMI %” > e
2
_ (1 + L ) o2 p(*) (A3)
T*C
2
= 0'2<T* + E) p(t™)
c

where the first equalify follows from 6, € [0, — k, 8, + k], and the second equality is

because (“jk) is decreasing in a,. Similarly, when 0 < = < 7%,

e

a
sup sup R, (5aa, 0) = sup a +k <_e>
0§%"<T*,a,€[(ae) 0e€0,, ., 0< <z* o
a,
< AP
0<% <z o (A4)
kN2
=0 sup (Eze + —> p(a,).
0<a,<t* o

Considering both (A.3) and (A.4), we see that finding the worst-case one-dimen-
sional subproblem is reduced to finding

a* €arg sup (a,+ )2 (a,).

0<a,<t*

Since a, = %, the hardest one-dimensional subproblem corresponds to a; = ca”,
ar=oca" + kA. Applying Lemma 3.2 yields the formula for 6; and the expression for
SUPgep, Ry, (0f;, 0) as stated in (i) of the current lemma.

Proof of statement (ii)

2
Write g(a,) = (Eze + f) p(@,), which is a continuous and differentiable function.

Therefore, a* € arg supy; (@, + f)zp(&e) is finite. First, we show a* > 0. Let
FD(-) be the first derivative of function f(-). Algebra shows
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Dgy = 1 3 1 exp (23 x)2xdb (x — @ ) dx
V@, /2<CXP(ZZlex)+])< (exp(ZZzex)+1)2> p (2a,x)2x¢( )d
1 P
_/(W> ¢V (x—a,)dx
_ (e ar
) 4/<(6Xp(2&ex)+1)3¢( e)>dx

2
1
e s— —a —a,)dx.
+/<exp (Z&L,x)+l> « aE)d)(x ae)

Thus,
p(0) = —% / xp(x)dx + % / xp(x)dx =0
as [ x¢(x)dx = 0. It follows then
Oay=2(a + 5, (z R ARt
ga, = Z(ae + —)p(ae) + (ae + —) p (ae),
(o (o3

and gV(0) = 2§p(0) = %f > 0 as k > 0. This implies that moving away from &, = 0
to a small positive number always increases g(a,). Thus, 0 is never a solution of
SUPo<z,<1.23 §(4,)-

Next, we show a* < t*. By algebra,

V(%) = 2(7* + f)p(r*) + (r* + g)zp(l)(r*). (A5)
Note 7% solves S[lép )sz(r) and satisfiy the following FOC:
7€[0,00
20 p(x") + () pV(e*) = 0, (A.6)
implying
Pty = -2 (A7)

(A.5), (A.6) and (A.7) together yield

2
g(l)(f*) = 2Ep(1*) + <k_2 + 21*&)[}(1)(1*)
o o o

2
= —2p(t%) [E + k 2] <0,
o T*0o

implying 7* is not a solution of supy<; <; 23 8(@,).
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Proof of statement (iii)
By statement (ii), a* is an interior solution and must satisfy the following FOC:
2
2(a* + E)p(a*) + <a* + K) pV(a*) = 0.
o o
As (a* + f) > 0, a* must also satisfy
2p(a*) + (a* + E),;“)(a*) —0. (A.8)
o

Moreover, as a* is a local maximum of a continuously differentiable function, it
must also satisfy the following second-order condition:

3#%%+W+§M%ﬁ<0 (A.9)

Viewing the right-hand-side of (A.8) as a function of a* and k, say F(a*, k), we may
write

OF(a* k 1
da* (;k : ;p(l)(a*)
ok WD 35(0(a%) + (a* + £)pD(ar)

From (A.8), we know p(a*) < 0. Together with (A.9), we conclude that % <0.

The proof for % > 0 is similar and omitted.

Proof of Theorem 3.1

Firstly, note the following inequalities hold:
supqu(SI’fI, 0) > sup qu(S*’ 0)
0€0 0€0

> sup qu(é*,e)

vy (A.10)

> sup R, (3};,0),
0e0y

where the first inequality follows from the definition of *, the second relation fol-
lows from ®y C O, and the third relation follows from the fact that 51"_‘1 1S a minimax
optimal rule of the hardest one-dimensional subproblem. Secondly, Theorem B.1
establishes

sup R, (6%,0) < sup R, (5%, 6).
eeg ¢\%n eeei 7\%n (A.11)

Combining (A.10) and (A.11) yields the desired conclusion.
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B Additional technical results

- 2 -
Recall the definition of a* in (3.2). Let p*(8,) = / (ﬁ) &y — 0,)dy.

Theorem B.1 supyeq R, (55, 0) < supyee, R, (5. 0).

. 2
Proof By Lemma B.1, supycqR,,(6};.0) = ¢* SUP_k <7 oo (Zle + f) p*(a,). By

Lemma 3.3, 3;'_‘, is a minimax rule with respect to the hardest one-dimensional prob-
lem, and it holds

Sx * k *
sup R, (oy,0) = o2 sup @@, + — )2 ( ) = o%(a* + =) p(a®).
q
0€0y 0<a,<1.23 c

Furthermore, Lemma B.2 establishes

~ k 2*~ * k2 *
sup <ae+;> p*(a,) < (a +;) pa),

—KS&E<00
o

yielding the conclusion. O
P \2
LemmaB.1 sup,cq qu(é ,0) = 6% sup_x L <o <ae + ;) p*(a,).

Proof For any ( Ze > € 0, note < _Ze > € ©. Thus, consider each § = < ZE ) €0
t Yt

1

where 6, > 0. Applying change-of-variable yields

R (55, —0) =07E_, || 1{-6, > 0} —

t

exp ( ) (yﬂ‘)
=62 / i
! o
exp ( f) +1
exp ( . a*y ) (—\:9 )
exp (— T’) +1 o
: 0
1 ¢( }_H e )
1+ exp <2 f) °
2
=0’E, =R, (0.0)
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Therefore, we deduce

supqu(gg,G) = sup 0[2[E96 1{6, > 0} — i
6] 0.€R.0,€1(0,) exp (2 .a* - 6, )

= max { sup qu(gﬂ’ 0), eefau9p<o qu(S* i 0)},

0€0,0,>0
2

= sup R (5;.0)= sup 07E,, ! -
0€0.,6,20 0€0.,6,20 exp (2 ar- Hf ) 1
Moreover, note
2
sup 0[2[Ege ! -
6€0,6,>0 exp (2 car - %) +1
2
2 1
= sup (6, +Kk)Ey -
kb <oo exp (2 car- %) +1
2 06’ k ? * 98 2 A k 2 (D
=0 sup [Z+=)p(=)=0> sup (99+—>p(09),
Skl o N0 O o —E<h, <o o
where p*(0,) = [ (=t ) $0 = B0dy. 7

QI

~ 2 ~
LemmaB.2 sup_:_j (@ + ) p*(0,) < (a* + f)zp(a*).

s

2 ~ ~ 2

Proof Recall g(a,) := <Zze + f) p(a,). Write g*(@,) := <6’e + f) p*(6,). Note
gla*) =g*(a*) as p*(a*) = p(a*). Thus, it suffices to show that a* solves
SUP_k <5 <o g*(ée). We take two steps:

Step 1: we show that a* is a local extremum point of g*(d,). To see this, note
a* € argsupy; < 3(@, + f)zp(&e). By Lemma 3.3 (ii), a* is an interior point in
[0, *]. Therefore, a* must satisfy the following FOC

* k * * k : D), *
2(a +—>p(a )+<a +—) p(a*) =0.
c c
Asa* + f > 0, it implies
20(a)+ (a" + f)p%*) =0. (B.1)

We evaluate the first derivate of g*(-) at a™
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&M@ = (a* + S) [2p*(a*) + <a* + ﬁ) *<1>(a*)]

= (a* + S) [ZP(a )+ (a + L )(p)(l)(a )] o, (B.2)

where the second equality follows from Lemma B.3, and from using p(a*) = p*(a*)
again, and the third equality follows from (B.1). Thus, we conclude that ¢* is also a
local extremum point of g*(-)

Step 2: we show a* is in fact a global maximum of the problem sup_« <b,<c0 g*(@,).

We analyze (g*)(l)(ée) more in detail. Algebra shows
@)@ = (0.+ 2 )e@,

where g(0,) = 2p*(0,) + (96 + f)(p*)(l)(ée). As 0, + f > 0, it follows the sign of
(g*)(l)(ée) only depends on g(ée), which we further analyze below. To this end, write
1 1= w*(y). Using integration by parts twice, it follows

i o sotr—4,
80) =2 / WP = Bdy + (@, + %) / Ll iR
o do,
5 \dy— @ 0
= Z/W*(y)2¢(y_ ee)dy_ (08 + k)/w*(y)ZMdy
c dy

=2 / w* )2y — 8,)dy — (6, + 5) / w* () de(y — 0,)

- (/w(y)2¢<y 9)dy+/ ok (y)(e + 500 9>dy>
- </W(y)2¢(y 0)dy+/ o (y)w )y — B,)dy
/*() (”("+y>¢<y 0)dy>

—2</W 0’0 - 9)d)’+/¢(y 0,w* ()

; / w2 (y)<"+y>¢<y 9>dy>

) d(@w@}m % (y)> )
=2 /W*(y)2¢(y - 0,)dy — / d—y¢(y —0,)dy

/*() (y)("+y>¢<y 0>dy>

=2 / w()d(y — 0,)dy,

*(y)

dp(y -6,
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where

d *
id (y)(g +y). (B3)

dw*(y))2 P (y)

w(y) = w () - < o

e RO

Lemma B.4 shows that / w)o(y — ée)dy has a unique sign change from + to — at

a*, which verifies immediately that a* is in fact a global maximum of the problem
SUp_i 5 o 8°(6)). O

s

LemmaB.3 pV(a*) = (p*)V(a*).

Proof Note for all §, € R:

2
»H"(8,) =- / ( ! ) ¢V - 8,)dy,

exp2-a*-y)+1

while algebra shows

2
D@ )= F.(d _/ L ) y0(x-d dy,
p ( e) 1( e) <exp (206))) T 1> d) (X e) Yy

where  F,(0,) = —4 / %ydy. We can further verify that
exp (20,
Fi(0,)=-4/ wg (v)ydy, where
(}52()/ B é6)¢2(y + 56)
(‘l)(y - 56) + ¢(y + ée))3

is such that Wge(y) = w,;e(—y) for all y. Thus, it holds Fl(ée) =0 for all 96 eR. It
then holds

wy, () =

2
D@, =- L ) e (x=d.)ay.
re) /(exp (20,y) + 1> = 0c)y

Evaluating (p*)\" (6,) and p"(d,) at a* yields the conclusion. m]
Lemma B.4 g(0,) has a unique sign change from + to — at a*.

Proof Note by Lemma B.2, g(8,) =2 [ w(y)$(y — 8,)dy, where w(y) is defined in
(B.3). Also,
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= —_ L
W) = 1+exp2-a*-y)
DO _ _(wr ) exp@-a* - y)2a"
dy
P
: :Zvyz(y) = 2w () (exp (2 - a* - y)2a")’ — (W* (1))’ exp (2 - a* - y)(2a")’,

5h(0) = w' () exp (2 - a* - y).

Thus,
w(y) = w* () = 3w ) (exp 2 - a* - y)2a*)’
+ W) exp2-a*-y)(2a*)
— ) exp 2" 32" (5 +)
= W PEL()4 —— — 385027 + Qa): - 2a* (X +y)
55 ) o
= w*()* 85 ()W ()
where
~ 1 Qe 52 $2 % k
w(y) = = —-36;,(»)2a*) + 2a*) —2a*"| —+y).
5 ) H (G ) (B.4)

As w*(y)zg;fl(y) > 0, the sign of w(y,) is determined by w(y,). It is straightforward to
verify that

~ dg*
dv;(y) _ |- 1 126 # gt <0,
Y (650)) Y

Thus, it holds that W(y) is strictly decreasing and has at most one sign change from
+ to —. Moreover, note lim,_,_, W(y) = oo, and lim_,, W(y) = —oo. Thus, W(y) has
one and only one sign change from + to —, implying that w(y) has one and only one
sign change from + to — as well. It follows from Kitagawa et al. (Theorem C.1(i),
2022) that g(ée) at most has one sign change.

Next, we show that g(ée) indeed has one sign change at a*. To this end, note

ga") =2 / Wby — a*)dy = 0
() =2 / WON — a*)bly — a*)dy

=2 / WO — a*)dy - 2a° / WONP(y — a*)dy = 2 / WO — a*)dy.

~
0
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Algebra shows
W) = w*()285 ()W)
= (1-8,0))°8:0)%()

=< ¢ +a*) >2 Po-a)
¢ —a)+y+a")) PO —a)+ O +a*)

(y)’
Thus,

g =2 / W (NW()ydy,
% > 0 and is such that w,.(—y) = w,.(y) for all y € R,

and w(y) is strictly decreasing from +oo0 to —oo. Let #* be the unique point such that
w(t*) = 0. Suppose t* > 0. Then, we have the following decomposition

where w,.(y) =

gD@*) =2 / W, (Y)W(y)ydy
y<—t*
+2 / W (V)W(y)ydy
—r*<y<r*
+2 / W (NW(O)ydy,
y>t*

where all three terms above can be signed to be negative. A similar decomposition
also reveals that g'(a*) < 0 holds true when ¢* < 0. Thus, we we conclude that
g¥(a*) < 0 and a* is indeed a sign change of g. Then, we apply Kitagawa et al. (The-
orem C.1(i), 2022) to conclude that g(ée) indeed has one and only on sign change at
a*. Furthermore, Kitagawa et al. (Theorem C.1(ii), 2022) implies that g(ée) and w(y)
in the same order. The conclusion follows. |

LemmaB.5 Ler 0 < ¢ < t*. Then, it holds sup,¢(_, qu(éﬂc, 7) = 2 p(o).

Proof By a symmetry argument, it can be shown that qu(Sﬁc, T) = qu(gﬂ(_, —1) for
all 7. Thus,

sup R, (8, .7)= sup gi(z),

T€[—c,c) 7€[0,c]

2
where we define g*(z) 1= z2p*(z), and p¥(z) := [ (m) Py — 7)dy. As

gi(c)= c2p(c), it suffices to show that

c €arg sup g (7).
7€[0,c]

Below we show that gj(-) is increasing in [0, c], and the conclusion will follow. We
take two steps.
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Step 1: show (g*)(-) is first increasing and then decreasing in [0, c0). Note (g*)(-)
may be analyzed by using the same technique employed in Kitagawa et al. (Lemma
C.5, 2022). That is, by first re-writing (gj)(])(-) using change-of-variable twice, and
then invoking Kitagawa et al. (Theorem C.1, 2022), we can conclude that ( gj)(l)(-) at
most has one sign change in [0, c0). Furthermore, note g*(0) = 0, lim__,, g7(z) = 0,
and g7(r) > 0 at any 0 < 7 < co. As g7 is a continuous and differentiable function,
there must exist some 0 < x < co such that g7(x) > g7(z) for all = € [0, o) with the

inequality strict for some = € [0,x) and 7 € (x, o). Thus, ( gj)(l)(.) at least has one
sign change in [0, o0). Applying Kitagawa et al. (Theorem C.1, 2022), we conclude
that (gj)(l)(-) has a unique sign change from + to — in [0, c0), implying that (g*)(7)
is first increasing and then decreasing in [0, c0).

Step 2: show (gj)(l)(c) > 0. Suppose not. Then, by the conclusion from the first
step, it must hold that (g*)(c) < 0 and

(87)(©) > (g7) (@),

as ¢ < t*. Furthermore, by Lemma B.6, we know (g*)(z*)> (g% )(r*), and
(£7)() < (g% )(c) forall 0 < ¢ < ¥, implying

(85.)(0) > (g%.)@). (B.5)

However, we know it must hold that (gj*)(r*) > (g’;*)(c) as (gi)(’r*) corresponds
to the worst-case mean square regret of the global minimax optimal rule. Therefore,

it must hold that (g:‘)(l)(c) > 0. And we conclude that g*(-) is increasing in [0, c] by
combining steps 1 and 2. O

Lemma B.6
(i) (&)@ > (g8) @) forall0 < c < 7%
(i1) (gj)(c) < (g’;*)(c)for all0 < ¢ < 7™

Proof Recall the definition of g*(b):

2
* e 1.2 1 _
g,(b) :=b /<—exp(2~a-y)+l> $(v = b)dy.

Statement (i). Viewing g7(z*) as a function of ¢, we aim to establish that
for all 0 < ¢ < 7%, and statement (i) will follow directly. For all 0 < ¢ < 7*:

")z
(g(.)(f)<0
dc
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d(gr)(@*) " / exp(2cy)y .
2l = At —— " oy —1H)d
P (c*) oo+ 17 By — )dy
P+ )Py — )
(0 +0) + (y — ©))

— _4(1*)2

Y(y — t)dy

9(2) (@) )( )

To show
0(g )( )

<0 for all 0 < ¢ < 7% fix each 0 < ¢ < 7¥. We now study how

changes as a function of 7. We can apply Kitagawa et al. (Theorem C.1, 2022)

)
to conclude that (ga)(f)

(=) .
pprEr——" has one sign change from — to + as a function of y. Furthermore,

note

has at most one sign change (as a function of 7), as

a *
Ae)@
oc

and we may verify

A )DY _ o [P0
ocor | ¢ (O + ) + Py — ©))
H*3 + )by —©)
(PO + ) + p(y — ©))°
)( )

3Py — o)y — o)dy

= —4¢?

Yoy — o)dy < 0,

implying 7 = c is indeed a point of sign change of ——<— (g . Applying Kitagawa et al.

(Theorem C.1, 2022), we conclude that % (as a function of 7) is first positive
and then negative with one unique sign change at 7 = c. As 7" > ¢, we conclude
Heo)e) ) @) _ e ).(T) |;=.~< Oforall 0 < ¢ < 7* Statement (i) follows.

Statement (n) The proof is similar. Viewing ( )(c) as a function of s, we aim to

show that —=— (g )( ) > Oforalle < s < 7* . Algebra shows
a(g;)(©) 2y + -
()@ _ o [ _#0+9b0=5) b ey
ds (P +35)+ Py — )
Now fix each ¢ < s < 7*. Viewing —~— (g )( ) as a function of ¢, we can conclude that it
has at most one sign change by applylng Kitagawa et al. (Theorem C.1, 2022). As
9(g;)(©)
“os ==
and
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9(g;)©

(v + )Py = 5)
_=—4 2 d(y — —d
dsoc = * (PO +5)+ Py — s))3y 0= 9=y

P+ )Py =)

= —4s’ SV 0y — s)dy
(PO +5) + ¢y —5)

< 0.
Therefore, M indeed has one unique sign change from positive to negative (as a
function of ¢). As @ = (0, we conclude that

a(g¥)(c
(g)© oo
as

for all ¢ < s < 7*. Thus, statement (ii) follows. O
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