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We present a workflow of practical calculations of electron-phonon (e-ph) coupling with many-electron 
correlation effects included using the GW perturbation theory (GWPT). This workflow combines 
BerkeleyGW, ABINIT, and EPW software packages to enable accurate e-ph calculations at the GW self-
energy level, going beyond standard calculations based on density functional theory (DFT) and density-
functional perturbation theory (DFPT). This workflow begins with DFT and DFPT calculations (ABINIT) 
as starting point, followed by GW and GWPT calculations (BerkeleyGW) for the quasiparticle band 
structures and e-ph matrix elements on coarse electron k- and phonon q-grids, which are then interpolated 
to finer grids through Wannier interpolation (EPW) for computations of various e-ph coupling determined 
physical quantities such as the electron self-energies or solutions of anisotropic Eliashberg equations, 
among others. A gauge-recovering symmetry unfolding technique is developed to reduce the computational 
cost of GWPT (as well as DFPT) while fulfilling the gauge consistency requirement for Wannier 
interpolation. 
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I. Introduction 

First-principles calculations of electron-phonon (e-ph) coupling have become a standard, essential 
approach in understanding and predicting a wide range of phenomena in real materials including electronic 
and thermal transport, phonon-assisted optical absorption, phonon-mediated superconductivity, electron 
and phonon spectral functions, to name a few [1]. The core building blocks of e-ph theories for different 
phenomena are the electron band energies and e-ph matrix elements [1]. To date, a prevailing and successful 
ab initio approach for accurate e-ph coupling calculations is through the combination of density functional 
theory (DFT) and density-functional perturbation theory (DFPT), along with Wannier interpolation [1-11]. 
However, growing evidence shows that the exchange-correlation potential in DFT (used to determine the 
Kohn-Sham orbital energies) sometimes fails to properly capture the self-energy effects on the real 
quasiparticles, leading to inaccuracy in describing their energies [12-14] and e-ph matrix elements [15-23]. 

The recent development of GW perturbation theory (GWPT) [21], along with the well-established 
GW method [12,13,24,25], allows for first-principles e-ph computation at the many-electron level, where 
the self-energy effects are consistently formulated within the GW approximation and included in both the 
electron band energies and the e-ph matrix elements [21-23]. Using the GW and GWPT approaches beyond 
the widely-used DFT and DFPT methods, we have revealed strong correlation-enhancement effects in the 
e-ph coupling of several oxide superconductors, namely, Ba1-xKxBiO3 [21], La2-xSrxCuO4 [22], and Nd1-

xSrxNiO2 [23]. The computation of many e-ph phenomena however requires fine sampling of the electron 
and phonon states in the Brillouin zone (BZ), to which the Wannier interpolation of materials’ electronic 
structure and e-ph matrix elements provides an effective solution [4]. We have developed here a workflow 
that connects BerkeleyGW [26,27], ABINIT [28,29], and EPW [7], enabling the Wannier interpolation (using 
EPW) of GW electron states and GWPT e-ph matrix elements (from BerkeleyGW), as well as those of DFT 
and DFPT (from ABINIT). Consequently, accurate ab initio e-ph calculations at the many-electron GW level 
can now be carried out with significant increase in computational ease. 

In this paper, we present details of this workflow for practical e-ph calculations at the GW level, in 
particular with GWPT. Like standard GW calculations which use DFT outputs as the starting point, GWPT 
calculations use DFPT outputs as the starting point. A wrapper code takes DFT-DFPT outputs from ABINIT 
[29] and GW-GWPT outputs from BerkeleyGW [26], and then prepares data into a specific format for a 
modified version of EPW [7] to read. The e-ph properties then are computed using the interpolated electron 
states and e-ph matrix elements with EPW. To reduce the computational cost using the symmetry of the 
crystal, the e-ph matrix elements from DFPT and GWPT need only be computed on the symmetry-reduced 
q-grid (and full k-grid). A gauge-recovering symmetry unfolding technique is developed to fulfill the gauge 
consistency requirement for the Wannier interpolation procedure. This workflow not only enables the first-
principles e-ph calculations at the GW-GWPT level with Wannier interpolation, but also extends the 
interface options of EPW going beyond the use of Quantum ESPRESSO [30,31] by including ABINIT and 
BerkeleyGW, and in general any software packages that produce e-ph matrix elements. 

 

II. GWPT calculations with DFPT as start point 

The recently developed GWPT method within the linear-response framework enables the systematic 
computation of e-ph matrix elements at the GW level [21]. The theoretical essence and some applications 
of GWPT have been discussed in Refs. [21-23], and the detailed derivations of the theory and extended 
discussions of different aspects of GWPT will be published elsewhere [32]. Here, we focus on the practical 
workflow of GWPT calculations. We shall also restrict, in this paper, to the formalism and calculations of 
non-magnetic systems, i.e., time-reversal symmetry is present, and no spin polarizations nor spin-orbit 
coupling are included. 
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The linear-response framework of DFPT and GWPT decouples the different phonon modes (labeled 
by the phonon wavevector q and branch index ν), and the responses (changes in physical quantities) to each 
mode can be computed within a single primitive unit cell. GWPT computes all needed e-ph matrix elements 
at the GW level, denoted in the phonon-mode basis as [21], 𝑔௠௡ఔீௐ (𝐤, 𝐪) = 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉୧୭୬|𝜓௡𝐤〉 + 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉ୌ|𝜓௡𝐤〉 + 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝛴|𝜓௡𝐤〉, (1) 
where m and n label the electron bands, k and q are wavevectors, 𝑉୧୭୬  is the ionic potential 
(pseudopotential), 𝑉ୌ  is the Hartree potential, and 𝛴 = i𝐺𝑊  is the electron self-energy in the GW 
approximation. Through DFPT, the DFT e-ph matrix elements is computed with [1], 𝑔௠௡ఔୈ୊୘ (𝐤, 𝐪) = 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉୏ୗ|𝜓௡𝐤〉= 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉୧୭୬|𝜓௡𝐤〉 + 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉ୌ|𝜓௡𝐤〉 + 〈𝜓௠𝐤ା𝐪|Δ𝐪ఔ𝑉୶ୡ|𝜓௡𝐤〉, (2) 

where 𝑉୏ୗ is the Kohn-Sham potential, and 𝑉୶ୡ is the exchange-correlation potential. Comparing the two 
equations, 𝑔௠௡ఔீௐ (𝐤, 𝐪) can be practically constructed by replacing the 𝑉୶ୡ contribution by the self-energy 
contribution [21], 𝑔௠௡ఔீௐ (𝐤, 𝐪) = 𝑔௠௡ఔୈ୊୘ (𝐤, 𝐪) − 〈𝜓௠𝐤ା𝐪หΔ𝐪ఔ𝑉୶ୡห𝜓௡𝐤〉 + 〈𝜓௠𝐤ା𝐪หΔ𝐪ఔ𝛴ห𝜓௡𝐤〉. (3) 
In the above equations, the differential operator Δ𝐪ఔ in the phonon mode basis is defined as [1,21], 

Δ𝐪ఔ = ඨ ℏ2𝜔𝐪ఔ ෍ 1ඥ𝑀఑఑ఈ 𝑒఑ఈ,ఔ(𝐪) ෍ 𝑒௜𝐪⋅𝐑೗ே೗
௟

𝜕𝜕𝜏఑ఈ௟ , (4) 

where 𝜔𝐪ఔ is the eigenfrequency of the phonon mode 𝐪𝜈, 𝜅 labels the atoms within a unit cell, and l labels 
unit cells (with Born-von Karman boundary conditions), 𝑀఑  is the atomic mass, 𝛼 = 𝑥, 𝑦, 𝑧 labels the 
Cartesian directions, 𝜏఑ఈ௟ is an basis atom coordinate, and 𝑒఑ఈ,ఔ(𝐪) is the 𝜅𝛼 component of the phonon 
eigenvector 𝑒𝐪ఔ . In practice, without prior knowledge of phonon frequencies and eigenvectors, DFPT 
typically solves for the responses to static atom perturbations along Cartesian directions or lattice vectors, 
rather than in the phonon eigen-mode basis. ABINIT uses differential operators with respect to periodic atom 
displacements along the three primitive unit cell lattice vectors, which are defined as, 

Δ𝐪఑௔ = ෍ 𝑒௜𝐪⋅𝐑೗ே೗
௟

𝜕𝜕𝜏఑௔௟ , (5) 

where 𝑎 = 𝒂ଵ, 𝒂ଶ, 𝒂ଷ labels the lattice vectors, and we denote this reference frame as in crystal coordinates. 
The GWPT implementation follows the same convention as in ABINIT. 

Standard first-principles GW codes, such as BerkeleyGW, use eigenvalues and wavefunctions of DFT 
as a starting point to construct and compute the quasiparticle self-energy operator 𝛴. Similarly, for GWPT, 
outputs of DFPT - including 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪) and the first-order change in the wavefunctions Δ𝐪఑௔𝜓௡𝐤 - are 
used for computing 𝑔௠௡఑௔ீௐ (𝐤, 𝐪). The complete first-order change in the wavefunction at the DFT level 
reads, Δ𝐪఑௔𝜓௡𝐤(𝐫) = ෍ 〈𝜓௠𝐤ା𝐪หΔ𝐪఑௔𝑉୏ୗห𝜓௡𝐤〉𝜀௡𝐤 − 𝜀௠𝐤ା𝐪 𝜓௠𝐤ା𝐪(𝐫)௠ = ෍ 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪)𝜀௡𝐤 − 𝜀௠𝐤ା𝐪 𝜓௠𝐤ା𝐪(𝐫)௠ , (6) 

where 𝜀௡𝐤 is the Kohn-Sham DFT eigenvalues, and the summation over the band index m includes the full 
Hilbert space (defined by the wavefunction energy cutoff for a planewave basis set). Standard DFPT 
implementations solve a Sternheimer equation to obtain the first-order change in the wavefunctions, but 
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project Δ𝐪఑௔𝜓௡𝐤(𝐫)  on the subspace of certain unoccupied states [33]. However, GWPT calculations 
require the complete form of Δ𝐪఑௔𝜓௡𝐤(𝐫) defined in Eq. (6), without any restriction on the band index m. 
We have thus enabled ABINIT to construct and output the complete Δ𝐪఑௔𝜓௡𝐤(𝐫) on demand. In the above 
equation, we introduced the e-ph matrix elements in the crystal-coordinate basis, 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪) = 〈𝜓௠𝐤ା𝐪|Δ𝐪఑௔𝑉୏ୗ|𝜓௡𝐤〉, (7) 
which can be directly computed in ABINIT. Moreover, the first-order change in the exchange-correlation 
potential Δ𝐪఑௔𝑉୶ୡ(𝐫) can be readily obtained from DFPT, and therefore its corresponding matrix elements 
are computed as, 𝑔௠௡఑௔୶ୡ (𝐤, 𝐪) = 〈𝜓௠𝐤ା𝐪|Δ𝐪఑௔𝑉୶ୡ|𝜓௡𝐤〉. (8) 
Eqs. (6) – (8) are quantities imported from DFPT for the GWPT calculations. 

The main workload of GWPT is to construct the first-order change in the GW self-energy operator 
and to evaluate its matrix elements. With the wavefunctions 𝜓௡𝐤(𝐫) from DFT and their first-order changes Δ𝐪఑௔𝜓௡𝐤(𝐫) from DFPT, the first-order change in the Green’s function can be constructed as [21], 

Δ𝐪఑௔𝐺(𝐫, 𝐫ᇱ; 𝜀) = ෍ Δ𝐪఑௔𝜓௡𝐤(𝐫)𝜓௡𝐤∗ (𝐫ᇱ) + 𝜓௡𝐤(𝐫)ൣΔି𝐪఑௔𝜓௡𝐤(𝐫ᇱ)൧∗𝜀 − 𝜀௡𝐤 − 𝑖𝛿௡𝐤௡𝐤 , (9) 

where 𝛿௡𝐤 = 0ା(or 0ି) for 𝜀௡𝐤 < 𝜀ி (or 𝜀௡𝐤 > 𝜀ி) and 𝜀ி is the Fermi energy. Here, the summation over 
the band index n includes both occupied and unoccupied states, and a large number of bands is typically 
needed for the convergence of the self-energy and its first-order changes. We further take a constant-
screening approximation by neglecting the responses in the screened Coulomb interaction, i.e., Δ𝐪఑௔𝑊 =0 [19,21], which is expected to be a good approximation in semiconductors (insulators) and metals where 
the screening environment is robust against phonon perturbations. This approximation is equivalent to the 
standard and well-justified approximation of ఋௐఋீ = 0 in constructing the electron-hole kernel in the GW-
Bethe-Salpeter equation (GW-BSE) approach [34,35]. Consequently, the first-order change in the GW self-
energy operator is written, in the frequency domain, as [21], Δ𝐪఑௔Σ(𝐫, 𝐫ᇱ; 𝜀) = 𝑖 න 𝑑𝜀ᇱ2𝜋 𝑒ି௜ఋఌᇲΔ𝐪఑௔𝐺(𝐫, 𝐫ᇱ; 𝜀 − 𝜀ᇱ)𝑊(𝐫, 𝐫ᇱ; 𝜀ᇱ), (10) 

where 𝛿 = 0ା. BerkeleyGW directly computes the corresponding matrix elements, 𝑔௠௡఑௔ఀ (𝐤, 𝐪) = 〈𝜓௠𝐤ା𝐪|Δ𝐪఑௔𝛴|𝜓௡𝐤〉. (11) 
The e-ph matrix elements at the GW level are constructed in practice as, 𝑔௠௡఑௔ீௐ (𝐤, 𝐪) = 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪) − 𝑔௠௡఑௔୶ୡ (𝐤, 𝐪) + 𝑔௠௡఑௔ఀ (𝐤, 𝐪). (12) 
Using the phonon frequencies and eigenvectors, e-ph matrix elements in the crystal-coordinate basis can be 
rotated to the phonon-mode basis as in Eq. (1). 

 

III. ABINIT-BerkeleyGW-EPW interface wrapper 

In this section, we present a workflow enabled by a wrapper code elph_interface for connecting 
ABINIT and BerkeleyGW with the EPW code, which is a popular software package for performing Wannier 
interpolation of e-ph matrix elements. The standard public version of the EPW code thus far is distributed 
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and interfaced with the Quantum Espresso package. Our workflow allows us not only to interpolate GWPT 
e-ph matrix elements 𝑔௠௡ఔீௐ (𝐤, 𝐪) from BerkeleyGW using the EPW code, but also to connect EPW with 
ABINIT for the interpolation of DFPT e-ph matrix elements. 

Fig. 1 shows the whole workflow. The workflow starts with the DFT calculations using ABINIT, 
producing DFT electronic structure of the material system being studied. One central quantity from the 
DFT step is a single set of wavefunctions {𝜓௡𝐤} uniformly sampling the full k-BZ. Because the e-ph matrix 
elements 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪) and 𝑔௠௡఑௔ீௐ (𝐤, 𝐪), the first-order change in the wavefunctions Δ𝐪఑௔𝜓௡𝐤 , and the 
Wannier transformations are all gauge-dependent, these quantities are required to be fixed to the particular 
gauge unique to this set of wavefunctions {𝜓௡𝐤}. In Fig. 1, gauge-consistent quantities (defined to be 
quantities need to have the same gauge in the computation) are highlighted in the green boxes. Note that 
this set of wavefunctions {𝜓௡𝐤}  should have enough empty bands for converged GW and GWPT 
calculations. With {𝜓௡𝐤} on the full k-grid, Wannierization [36-38] can be performed using the Wannier90 
package [39,40] to generate the Wannier transformation matrix 𝑈௡௪𝐤, where w labels the Wannier basis 
functions. The 𝑈௡௪𝐤 matrix will be used later at the EPW step. With the implementation of DFPT in ABINIT, 
phonon frequencies 𝜔𝐪ఔ and eigenvectors 𝑒𝐪ఔ (or equivalently, dynamical matrices), e-ph matrix elements 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪), first-order changes in wavefunctions Δ𝐪఑௔𝜓௡𝐤, and exchange-correlation potentials Δ𝐪఑௔𝑉୶ୡ 
can be computed (in the crystal-coordinate basis). 

The GW and GWPT calculations both need the inverse dielectric matrix 𝜖𝐆𝐆ᇲିଵ (𝐩), where 𝐆 and 𝐆ᇱ are 
the reciprocal lattice vectors, and 𝐩 is a wavevector for internal summation in constructing the self-energy 
operator and its derivatives. In BerkeleyGW, 𝜖𝐆𝐆ᇲିଵ (𝐩) is constructed using the executable epsilon.cplx.x 
(complex flavor required in BerkeleyGW for GWPT) within the random-phase approximation. Its frequency 
dependence is treated with the Hybertsen-Louie plasmon-pole model [13] for the current GWPT 
implementation. The executable sigma.cplx.x performs GW and GWPT calculations, computing the GW-
level quasiparticle energies 𝜀௡𝐤ீௐ and e-ph matrix elements 𝑔௠௡఑௔ீௐ (𝐤, 𝐪), respectively. The wrapper code 
elph_interface then postprocesses the data from DFPT and GWPT. Symmetry reduction of the q-mesh can 
be utilized for GWPT (as well as DFPT). The full e-ph matrix elements on the full q-BZ can be obtained 
by an unfolding process using the executable sympert.x within BerkeleyGW, as discussed in the next section. 
Finally, elph_interface prepares input data - following the EPW convention (formats and units) – to be read 
by an in-house modified version of EPW (v4), and in particular, the e-ph matrix elements are rotated into 
Cartesian-coordinate basis 𝑔௠௡఑ఈୈ୊୘ (𝐤, 𝐪) and 𝑔௠௡఑ఈீௐ (𝐤, 𝐪). 

Within our workflow, the Wannierization using Wannier90 code is performed as a separate step. The 
modified EPW skips its original reading of DFT wavefunctions and calculations of 𝑔௠௡఑ఈୈ୊୘ (𝐤, 𝐪), but instead 
it directly reads in all precomputed data (from GWPT with BerkeleyGW or DFPT with ABINIT) prepared by 
elph_interface. All symmetries are disabled in the modified EPW. Using Wannier functions, EPW 
interpolates the electronic structure and e-ph matrix elements from the coarse k- and q-meshes to fine k- 
and q-meshes or to arbitrary k- and q-points, as well as rotating the e-ph matrix elements into the phonon-
mode basis. Then subsequent EPW calculations can be performed as usual. The interpolated 𝑔௠௡ఔୈ୊୘ (𝐤୤୧, 𝐪୤୧) 
and 𝑔௠௡ఔீௐ (𝐤୤୧, 𝐪୤୧) can be used for computing many e-ph properties, such as e-ph induced electron self-
energy 𝛴௡𝐤௘ି୮୦(𝜔), electron spectral function 𝐴(𝐤, 𝜔), phonon self-energy Π𝐪ఔ௘ି୮୦(𝜔), electric and thermal 
transport coefficients, and phonon-mediated superconductivity via the anisotropic Eliashberg equations, 
among others [1]. 

 

IV. Gauge-recovering symmetry unfolding technique for e-ph matrix elements 
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Due to the heavy computational expense of GWPT in computing 𝑔௠௡ఔீௐ (𝐤, 𝐪), symmetry reduction in 
the number of matrix elements needed from direct calculations is paramount. However, a complication 
arises when performing a Wannier interpolation of e-ph matrix elements obtained on a symmetry-reduced 
q-mesh. The Wannierization procedure with wavefunctions on a full k-grid generates a basis transformation 
matrix with its gauge fixed to this specific set of wavefunctions {𝜓௡𝐤}. As illustrated in Fig. 2 with a 
symmetry-reduced q-mesh [Fig. 2(a)], the unfolding process (for wavefunctions and e-ph matrix elements) 
generates a different gauge at the rotated k-point [Fig. 2(b) and (c)]. The gauge must be recovered to that 
of the original and specific set of wavefunctions to correctly proceed with the Wannier interpolation of the 
e-ph matrix elements. In other words, the symmetry-unfolded e-ph matrix elements (complex numbers) 
must be exactly the same (up to numerical convergence accuracy) as those directly computed without using 
any symmetries, in both their magnitudes and phases. 

To achieve this goal, we developed and implemented a symmetry unfolding technique for e-ph matrix 
elements with gauge recovering. This technique is implemented as an executable sympert.x in the 
BerkeleyGW software package and is suitable for both DFPT and GWPT e-ph matrix elements. It is 
designed to request the direct computation of e-ph matrix elements only within the symmetry-reduced q-
grid (along with full k-grids for each q-point), and then the e-ph matrix elements on the full q-grid can be 
obtained by symmetry unfolding. The gauges of the unfolded matrix elements are recovered to be consistent 
with the original and specific set of wavefunctions {𝜓௡𝐤}. 

We first obtain a set of wavefunctions and denote their lattice-periodic parts of the Bloch 
wavefunctions as 𝑢௡𝐤(𝐫) where k ∈ full BZ. We define a symmetry operator {𝑆|𝐯} (which represents a 
symmetry of the crystal being studied) acting on vectors in the Cartesian coordinates, {𝑆|𝐯}𝐫 = 𝑆𝐫 + 𝐯, (13) 
where 𝑆 is a 3×3 rotation matrix and v is a fractional lattice translation vector. For each symmetry operation, 
we apply the symmetry operator to all the wavefunctions and obtain a new set of rotated wavefunctions 𝑢෤௡ௌ𝐤(𝐫), 𝑢෤௡ௌ𝐤(𝐫) = 𝑒ି௜ௌ𝐤⋅𝐯𝑢௡𝐤(𝑆ିଵ𝐫 − 𝑆ିଵ𝐯). (14) 
At a given k, we now have two different u(r)’s – one from the direct full k-set calculation, and the other 
one rotated from a symmetry-related wavefunction at a different k-point. The gauge (phase) difference 
between the rotated wavefunction and the original directly computed wavefunction at k is 〈𝑢෤௡𝐤|𝑢௡𝐤〉 for 
non-degenerate states. We generalize this gauge difference by introducing an overlap matrix D (for each 
symmetry operation), spanning over all bands of interest, such that all degenerate states can naturally be 
taken care of, 𝐷௠௡𝐤 = 〈𝑢෤௠𝐤|𝑢௡𝐤〉. (15) 

Now we look at the symmetry relation for atom positions. Each atom within the Born-von-Karman 
supercell can be located by its position vector, 𝐱(𝑙, 𝜅) = 𝐑௟ + 𝝉఑ , (16) 
where 𝐑௟ is a lattice vector for the l-th unit cell and 𝝉఑ is the coordinates within a unit cell of the 𝜅-th atom. 
A symmetry-equivalent site 𝐱(𝐿, 𝐾) = 𝐑௅ + 𝝉௄  under {𝑆|𝐯}  (up to a lattice vector translation) can be 
related as [41], 𝐱(𝐿, 𝐾) = {𝑆|𝐯 + 𝐑௠}𝐱(𝑙, 𝜅) = 𝑆𝐱(𝑙, 𝜅) + 𝐯 + 𝐑௠, (17) 
where 𝐾 labels a 𝜅-equivalent atom and 𝐑௠ is a lattice vector needed in general to fulfill the symmetry 
relation. 
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To perform the e-ph matrix elements symmetry unfolding, we first work in the Cartesian-coordinate 
basis with 𝛼, 𝛽 = 𝑥, 𝑦, 𝑧. Given that we have 𝑔௠௡఑ఈ(𝐤, 𝐪) on the irreducible q-wedge (with full k-grid), we 
can generate the e-ph matrix element for 𝑆𝐪 and the displacement perturbation 𝐾𝛼 with gauge recovering 
as [32], 𝑔௠௡௄ఈ(𝐤, 𝑆𝐪) = 𝑒௜𝐪⋅𝝉ഉି௜ௌ𝐪⋅𝝉಼ା௜ௌ𝐪⋅𝐯 ෍ ቀ𝐷௠ᇲ௠𝐤ାௌ𝐪ቁ∗ 𝐷௡ᇲ௡𝐤௠ᇲ௡ᇲ ෍ 𝑆ఈఉ𝑔௠ᇲ௡ᇲ఑ఉ(𝑆ିଵ𝐤, 𝐪)ఉ . 

(18) 

Lastly, we rewrite the above gauge-recovering symmetry-unfolding relation in crystal-coordinate 
basis as used by ABINIT and BerkeleyGW. We introduce the lattice vector matrix 𝐴 as, 𝐴 = (𝒂ଵ, 𝒂ଶ, 𝒂ଷ)் , (19) 
and then the rotation matrix in the crystal-coordinate basis can be found as, 𝑆௖௥௬௦ = (𝐴்)ିଵ𝑆𝐴் . (20) 
Eq. (18) can then be rewritten in the crystal-coordinate basis as [32], 𝑔௠௡௄௔(𝐤, 𝑆𝐪) = 𝑒௜𝐪⋅𝝉ഉି௜ௌ𝐪⋅𝝉಼ା௜ௌ𝐪⋅𝐯 ෍ ቀ𝐷௠ᇲ௠𝐤ାௌ𝐪ቁ∗ 𝐷௡ᇲ௡𝐤௠ᇲ௡ᇲ ෍ 𝑔௠ᇲ௡ᇲ఑௕(𝑆ିଵ𝐤, 𝐪)[(𝑆௖௥௬௦)ିଵ]௕௔௕ , 

(21) 

where 𝑎, 𝑏 = 𝒂ଵ, 𝒂ଶ, 𝒂ଷ  label the primitive unit cell lattice vectors. The expression of Eq. (21) and its 
implementation in sympert.x within BerkeleyGW allow us to perform direct GWPT (and DFPT) 
calculations only on the symmetry-reduced q-grid. Then the unfolded full q-grid e-ph matrix elements with 
gauge recovering can be interpolated by the Wannier functions whose gauge has been fixed to the original 
and specific set of wavefunctions {𝜓௡𝐤} on the full k-grid. Note that the above Eqs. (13) – (21) are defined 
for one symmetry operation {𝑆|𝐯} . Typically, to unfold the irreducible q-BZ to full q-BZ, multiple 
symmetries are needed following the same procedure. This symmetry unfolding technique with gauge 
recovering dramatically reduces the computational expense, especially for GWPT. 

 

V. Example: Boron-doped diamond 

We demonstrate the workflow using an example of boron-doped diamond, BxC1-x [3,4], a 
superconductor with experimental Tc ~ 4 K [42]. Previous DFT and DFPT calculations have shown that B-
dopant derived phonon modes enhance the e-ph coupling [3]. Here, as a demonstration of the GWPT 
workflow, we neglect the disorder effect and adopt a virtual crystal approximation (VCA) [43] for 
B0.0185C0.9815 (x = 0.0185), working with a two-atom primitive unit cell. The calculations involve different 
sets of k-, q-, and p-meshes that are tabulated in Table I. Only the phonon q-mesh is symmetry reduced. 
Before interpolation, the k-, q-, and p-meshes are required to be commensurate such that all (𝐤 + 𝐪), (𝐤 −𝐩), and (𝐤 + 𝐪 − 𝐩) points should exist in the k-mesh. Norm-conserving pseudopotentials are taken from 
the PseudoDojo library [44], and a wavefunction energy cutoff of 60 Ry is used in DFT and DFPT 
calculations with ABINIT. The screened Coulomb interaction is built with an energy cutoff of 15 Ry and 
200 bands, and the self-energy operator and its first-order changes are constructed by summing over 200 
bands using BerkeleyGW. The EPW code interpolates the band energies, phonon frequencies, and e-ph 
matrix elements to the fine k- and q-meshes.  

Like DFPT calculations, GWPT calculations are carried out in the primitive unit cell, and typically 
the computational cost of a single-mode-𝐪𝜅𝑎 GWPT calculation is similar to that of a single GW calculation. 
Therefore, full GWPT calculations of one material system can be a few orders of magnitude 
computationally heavier than GW due to the large number of phonon modes, i.e., 𝑁୫୭ୢୣ = 3 × 𝑁ୟ୲୭୫ × 𝑁𝐪. 
The advantage of linear-response approaches (used in DFPT and GWPT) is that all phonon modes are 
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independent, and therefore the computational cost scales virtually linearly with 𝑁୫୭ୢୣ being considered. 
Fig. 3 shows the computational costs of several main steps in this B-doped diamond example. Here, the 
DFPT and GW calculations have similar computational costs, which are one to two orders of magnitude 
heavier than the DFT calculations. Comparing GW and GWPT, GWPT is around two orders of magnitude 
heavier than GW. This strong contrast shows the significant computational resources required for GWPT 
calculations. 

With the workflow, we can compute various e-ph properties of B-doped diamond at the full GW level 
(including both the GW band energies and GWPT e-ph matrix elements). Fig. 4 shows the Wannier-
interpolated DFT and GW band structures. States near the Fermi energy EF remain similar, despite an 
increased band width due to GW self-energy effects. Fig. 5 shows the calculated Eliashberg function 𝛼ଶ𝐹(𝜔) at both the DFT and GW levels. The GW self-energy effects enhance the overall e-ph coupling 
strength, mostly from the renormalization in the e-ph matrix elements. We arrive at a DFT-level e-ph 
coupling constant of λDFT = 0.228, in good agreement with previous DFPT-VCA calculations with a value 
of 0.237 [3]. At the GW level, we arrive at a λGW = 0.302, showing a 32% enhancement compared with λDFT. 
Table II presents the superconducting Tc analysis using the McMillan-Allen-Dynes formula [45,46]. Within 
a physical range of 0.05 – 0.1 for the effective Coulomb parameter μ*, the DFT superconducting Tc is 0.65 
– 0.015 K, and the GW superconducting Tc is 4.2 – 0.69 K. The GW results show enhanced Tc values due 
to correlation effects, in better agreement with experiments. Note that the phonon modes from disordered 
boron dopants can possibly further enhance the e-ph coupling strength [3], and its cooperative interaction 
with the GW renormalization effects is beyond the scope of this work. 

 

VI. Summary 

We presented a practical workflow for GWPT calculations of e-ph couplings at the many-electron 
level. This workflow combines three ab initio software packages – namely, BerkeleyGW, ABINIT, and EPW. 
To reduce the computational cost, especially for GWPT, we have developed a gauge-recovering symmetry 
unfolding technique, fulfilling the gauge consistency requirement for Wannier interpolation. An example 
of B-doped diamond shows a 32% enhancement in the e-ph coupling constant near EF due to many-electron 
correlation effects. This workflow enables rich e-ph research opportunities based on GWPT. 

 

 

Acknowledgements 

This work was mainly supported by the National Science Foundation under Grant No. OAC-2103991. 
Advanced code for GW and GWPT calculations were provided by the Center for Computational Study of 
Excited-State Phenomena in Energy Materials (C2SEPEM) at LBNL, which is funded by the U.S. 
Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering 
Division under Contract No. DEAC02-05CH11231, as part of the Computational Materials Sciences 
Program. Computational resources were provided by Frontera at the Texas Advanced Computing Center 
(TACC), which is supported by National Science Foundation under Grant No. OAC1818253. 

 

References 
[1] F. Giustino, Electron-phonon interactions from first principles, Rev. Mod. Phys. 89, 015003 (2017). 
[2] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, Phonons and related crystal properties from 
density-functional perturbation theory, Rev. Mod. Phys. 73, 515 (2001). 



9 
 

[3] F. Giustino, J. R. Yates, I. Souza, M. L. Cohen, and S. G. Louie, Electron-Phonon Interaction via 
Electronic and Lattice Wannier Functions: Superconductivity in Boron-Doped Diamond Reexamined, Phys. 
Rev. Lett. 98, 047005 (2007). 
[4] F. Giustino, M. L. Cohen, and S. G. Louie, Electron-phonon interaction using Wannier functions, Phys. 
Rev. B 76, 165108 (2007). 
[5] M. Calandra, G. Profeta, and F. Mauri, Adiabatic and nonadiabatic phonon dispersion in a Wannier 
function approach, Phys. Rev. B 82, 165111 (2010). 
[6] J. Noffsinger, F. Giustino, B. D. Malone, C.-H. Park, S. G. Louie, and M. L. Cohen, EPW: A program 
for calculating the electron–phonon coupling using maximally localized Wannier functions, Comp. Phys. 
Commun. 181, 2140-2148 (2010). 
[7] S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, EPW: Electron–phonon coupling, transport and 
superconducting properties using maximally localized Wannier functions, Comp. Phys. Commun. 209, 
116-133 (2016). 
[8] H. Lee et al., Electron-phonon physics from first principles using the EPW code, arXiv:2302.08085 
(2023). 
[9] J.-J. Zhou, J. Park, I.-T. Lu, I. Maliyov, X. Tong, and M. Bernardi, Perturbo: A software package for ab 
initio electron–phonon interactions, charge transport and ultrafast dynamics, Comp. Phys. Commun. 264, 
107970 (2021). 
[10] N. H. Protik, C. Li, M. Pruneda, D. Broido, and P. Ordej´on, The elphbolt ab initio solver for the 
coupled electron-phonon Boltzmann transport equations, npj Comput. Mater. 8, 28 (2022). 
[11] A. Cepellotti, J. Coulter, A. Johansson, N. S. Fedorova, and B. Kozinsky, Phoebe: a high-performance 
framework for solving phonon and electron Boltzmann transport equations, J. Phys. Mater. 5, 035003 
(2022). 
[12] M. S. Hybertsen and S. G. Louie, First-Principles Theory of Quasiparticles: Calculation of Band Gaps 
in Semiconductors and Insulators, Phys. Rev. Lett. 55, 1418 (1985). 
[13] M. S. Hybertsen and S. G. Louie, Electron correlation in semiconductors and insulators: Band gaps 
and quasiparticle energies, Phys. Rev. B 34, 5390 (1986). 
[14] S. G. Louie, Y.-H. Chan, F. H. da Jornada, Z. Li, and D. Y. Qiu, Discovering and understanding 
materials through computation, Nat. Mater. 20, 728–735 (2021). 
[15] M. Lazzeri, C. Attaccalite, L. Wirtz, and F. Mauri, Impact of the electron-electron correlation on 
phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite, Phys. Rev. B 78, 
081406 (2008). 
[16] C. Faber, J. L. Janssen, M. Côté, E. Runge, and X. Blase, Electron-phonon coupling in the C60 fullerene 
within the many-body GW approach, Phys. Rev. B 84, 155104 (2011). 
[17] Z. P. Yin, A. Kutepov, and G. Kotliar, Correlation-Enhanced Electron-Phonon Coupling: Applications 
of GW and Screened Hybrid Functional to Bismuthates, Chloronitrides, and Other High-Tc 
Superconductors, Phys. Rev. X 3, 021011 (2013). 
[18] G. Antonius, S. Poncé, P. Boulanger, M. Côté, and X. Gonze, Many-Body Effects on the Zero-Point 
Renormalization of the Band Structure, Phys. Rev. Lett. 112, 215501 (2014). 
[19] C. Faber, P. Boulanger, C. Attaccalite, E. Cannuccia, I. Duchemin, T. Deutsch, and X. Blase, Exploring 
approximations to the GW self-energy ionic gradients, Phys. Rev. B 91, 155109 (2015). 
[20] B. Monserrat, Correlation effects on electron-phonon coupling in semiconductors: Many-body theory 
along thermal lines, Phys. Rev. B 93, 100301 (2016). 



10 
 

[21] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and S. G. Louie, Electron-Phonon Coupling from Ab 
Initio Linear-Response Theory within the GW Method: Correlation-Enhanced Interactions and 
Superconductivity in Ba1−xKxBiO3, Phys. Rev. Lett. 122, 186402 (2019). 
[22] Z. Li, M. Wu, Y.-H. Chan, and S. G. Louie, Unmasking the Origin of Kinks in the Photoemission 
Spectra of Cuprate Superconductors, Phys. Rev. Lett. 126, 146401 (2021). 
[23] Z. Li and S. G. Louie, Two-gap superconductivity and decisive role of rare-earth d electrons in infinite-
layer nickelates, arXiv:2210.12819 (2022). 
[24] L. Hedin, New Method for Calculating the One-Particle Green's Function with Application to the 
Electron-Gas Problem, Phys. Rev. 139, A796 (1965). 
[25] L. Hedin and S. Lundqvist, Effects of Electron-Electron and Electron-Phonon Interactions on the One-
Electron States of Solids, Solid State Phys. 23, 1 (1970). 
[26] J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, S. G. Louie, BerkeleyGW: A 
massively parallel computer package for the calculation of the quasiparticle and optical properties of 
materials and nanostructures, Comp. Phys. Commun. 183, 1269-1289 (2012). 
[27] M. Del Ben, C. Yang, Z. Li, F. H. da Jornada, S. G. Louie, and J. Deslippe, Accelerating large-scale 
excited-state GW calculations on leadership HPC systems, SC20: International Conference for High 
Performance Computing, Networking, Storage and Analysis 1, 36–46 (2020). 
[28] X. Gonze et al., ABINIT: First-principles approach to material and nanosystem properties, Comp. 
Phys. Commun. 12, 2582-2615 (2009). 
[29] X. Gonze et al., Recent developments in the ABINIT software package, Comp. Phys. Commun. 205, 
106-131 (2016). 
[30] P. Giannozzi et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum 
simulations of materials, J. Phys.: Condens. Matter 21, 395502 (2009). 
[31] P. Giannozzi et al., Advanced capabilities for materials modelling with Quantum ESPRESSO, J. Phys.: 
Condens. Matter 29, 465901 (2017). 
[32] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and S. G. Louie, to be published. 
[33] X. Gonze, Adiabatic density-functional perturbation theory, Physical Review A 52, 1096 (1995). 
[34] M. Rohlfing and S. G. Louie, Electron-hole excitations and optical spectra from first principles, Phys. 
Rev. B 62, 4927 (2020). 
[35] G. Onida, L. Reining, and A. Rubio, Electronic excitations: density-functional versus many-body 
Green’s-function approaches, Rev. Mod. Phys. 74, 601 (2002). 
[36] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite 
energy bands, Phys. Rev. B 56, 12847 (1997). 
[37] I. Souza, N. Marzari, and D. Vanderbilt, Maximally localized Wannier functions for entangled energy 
bands, Phys. Rev. B 65, 035109 (2001). 
[38] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and David Vanderbilt, Maximally localized Wannier 
functions: Theory and applications, Rev. Mod. Phys. 84, 1419 (2012). 
[39] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, and D. Vanderbilt, and N. Marzari, Wannier90: A tool 
for obtaining maximally-localised Wannier functions, Comp. Phys. Commun. 178, 685-699 (2008). 
[40] G. Pizzi et al., Wannier90 as a community code: new features and applications, J. Phys.: Condens. 
Matter 32, 165902 (2020). 
[41] A. A., Maradudin and S. H. Vosko, Symmetry properties of the normal vibrations of a crystal, Rev. 
Mod. Phys. 40, 1 (1968). 



11 
 

[42] E. A. Ekimov et al., Superconductivity in diamond, Nature 428, 542–545 (2004). 
[43] Ph. Ghosez, D. Desquesnes, X. Gonze, and K. M. Rabe, First-principles study of lattice instabilities in 
Ba𝑥Sr1−xTiO3, AIP Conference Proceedings 535, 102 (2000). 
[44] M. J. van Setten et al., The PseudoDojo: training and grading a 85 element optimized norm-conserving 
pseudopotential table. Comp. Phys. Commun. 226, 39 (2018).  
[45] W. McMillan, Transition temperature of strong-coupled superconductors, Phys. Rev. 167, 331 (1968). 
[46] P. B. Allen and R. C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed, 
Phys. Rev. B 12, 905 (1975).  
  



12 
 

Table I. Different wavevector meshes used in the B-doped diamond example. Only the coarse phonon q-
mesh is symmetry reduced. 

Software Procedure Key quantity k-mesh q-mesh p-mesh 

ABINIT 

DFT 𝜓௡𝐤 8×8×8 – – 

DFPT 
Δ𝐪఑௔𝜓௡𝐤 𝑔௠௡఑௔ୈ୊୘ (𝐤, 𝐪) 

8×8×8 
4×4×4 

(8 irreducible 
q-points) 

– 

Wannier90 Wannierization 𝑈௡௪𝐤 8×8×8 – – 

BerkeleyGW 

GW 
𝜖𝐆𝐆ᇲିଵ (𝐩) 8×8×8 – 8×8×8 〈𝜓௡𝐤|𝛴|𝜓௡𝐤〉 8×8×8 – 8×8×8 

GWPT 𝑔௠௡఑௔ீௐ (𝐤, 𝐪) 8×8×8 
4×4×4 

(8 irreducible 
q-points) 

8×8×8 

EPW Interpolation 𝑔௠௡ఔ(𝐤୤୧, 𝐪୤୧) 40×40×40 20×20×20 – 
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Table II. Calculated e-ph coupling constant λ, logarithmic-averaged phonon frequency ωlog, and McMillan-
Allen-Dynes superconducting transition temperature Tc with different values of effective Coulomb potential 
parameter μ*. 

 λ ωlog (K) 
Tc (K) 

(μ* = 0.05) (μ* = 0.08) (μ* = 0.1) 
DFT + DFPT 0.228 1360.6 0.65 0.099 0.015 
GW + GWPT 0.302 1348.7 4.2 1.6 0.69 
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Fig. 1. Practical workflow for GWPT calculations, combining BerkeleyGW, ABINIT, and EPW software 
packages. The workflow starts with DFT and DFPT calculations using ABINIT, along with Wannierization 
using Wannier90. The GW and GWPT calculations are performed using BerkeleyGW, which includes a 
wrapper step which performs elph_interface and gauge-recovering symmetry unfolding (for the q-grid) of 
e-ph matrix elements using sympert.x. The DFT-level and GW-level electron states and e-ph matrix 
elements are then taken by EPW for interpolation and computation of e-ph properties on fine k- and q-grids. 
Quantities highlighted by the green boxes are gauge-consistent with each other and are fixed to the specific 
gauge of the set of wavefunctions {𝜓௡𝐤} in the DFT step. 
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Fig. 2. Illustration of the gauge-recovering symmetry unfolding scheme. (a) Phonon q-mesh is symmetry-
reduced, where the irreducible wedge is represented by the light orange shadow. With a rotation operation 
S, the q-BZ can be unfolded from the irreducible part to another part. (b) Electron k-BZ is always populated 
with directly computed electron wavefunctions in the full BZ in this scheme. Each wavefunction acquires 
a random gauge (phase) from solving an eigen-equation. The gauge is illustrated as an arrow at every k-
point. Under the same symmetry operation S, a new set of rotated wavefunctions is generated. (c) 
Comparing the wavefunction at the same 𝑆𝐤 = 𝐤ᇱ  point from the unrotated and rotated sets, a gauge 
difference 𝑒௜ఏ can be found. Since all e-ph matrix elements depend on the gauge of the wavefunction of 
both the initial and final states, by computing the gauge differences, the gauge of the e-ph matrix elements 
can be recovered to that derived from the original specific set of wavefunctions {𝜓௡𝐤}. 
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Fig. 3. Computational costs of the DFT, DFPT, GW, and GWPT steps for the B-doped diamond example. 
Calculations were performed for a two-atom primitive unit cell, using Intel 8280 “Cascade Lake” CPUs 
(56 cores per node) on Frontera at the Texas Advanced Computing Center. 
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Fig. 4. DFT and GW band structures of B-doped diamond with 1.85% B-dopant concentration. The Fermi 
energy EF is set to 0 eV. 
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Fig. 5. Eliashberg function 𝛼ଶ𝐹(𝜔) computed at DFT (blue) and GW (red) levels. The dashed lines 
represent the running integral of 𝜆ழ(𝜔) = 2 ∫ ఈమி൫ఠᇲ൯ఠᇲఠ଴ 𝑑𝜔ᇱ. The fully-integrated e-ph coupling constants 
are λDFT = 0.228 and λGW = 0.302. 


