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ARTICLE INFO ABSTRACT

Handling Editor: Kathleen Aviso Here, we show production pathways for greenhouse gas (GHG)-negative bio-based plastics from 2nd and 3rd
generation feedstocks. We focus on bio-based plastics that are technically capable of replacing 80% of the global
plastic market. By presenting life cycle inventories and discussing GHG-emissions hotspots, this work will inform
stakeholders along the plastic supply chain of the necessary steps to achieving net-zero emissions by 2050, and
potentially, how to drive net-uptake. This work is of critical importance given the overwhelming mass of plastic
produced annually and the resulting CO5 emissions. To conduct this assessment, we derive life cycle inventories
for nine different bio-based plastics and address the impact of methodological choices, such as allocation method,
on the resulting 100a global warming potential (GWP). Our findings show that resources used and processing
methods implemented have significant effects on the potential for us to derive carbon-negative plastics.
Furthermore, we find that environmental impact quantification methods greatly influence the perceived GWP of
such processes. For example, economic and mass allocation methods resulted in an apparent increase in GWP of
up to 39% and 166%, respectively, compared to no allocation for bio-based plastics made from 2nd generation
crops, whereas mass allocation resulted in the lowest GWP for bio-based plastics made from 1st generation crops.
In considering environmental impact hotspots, our findings show that decarbonization of thermal energy and
electricity, reduced use of ammonia-based fertilizer, renewable hydrogen production, use of bio-based alterna-
tives for petrochemicals and plasticizers, enzyme production pathways from 2nd generation crops, and more
efficient biomass conversion processes to reduce feedstock inputs may be critical steps in creating GHG-negative
bio-based plastics in the future.
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1. Introduction net-zero emissions by 2050 through their use in renewable energy,

electric vehicles, medical devices, food packaging, and many other ap-

The mass of plastics in use today amounts to twice the mass of all
animals on earth - 99% of which is made from petroleum-based feed-
stocks (Elhacham et al., 2020; European Bioplastics, 2022). The petro-
chemical industry as a whole is responsible for 18% of global industrial
greenhouse gas (GHG) emissions, making it the third largest CO-emit-
ting industry (International Energy Agency, 2018). While many efforts
have been taken to decarbonize common materials such as concrete
(Monteiro et al., 2017; Miller et al., 2016a, 2018, 2021) and steel (Yu
et al., 2021; Fan and Friedmann, 2021; Bataille, 2020; Rissman et al.,
2020), the methods for plastic production and disposal have remained
largely the same. Minimizing the demand for plastics would help alle-
viate some of these issues, but consumption trends indicate plastics will
continue to play a vital role in our economy in the coming years. In fact,
plastics may contribute a significant role in the global transition to
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plications. Therefore, there is a need to identify strategies that allows for
the continued growth of plastics while simultaneously mitigating GHG
emissions from their production, and ideally converting this growing
class of materials to becoming a pathway to uptake GHGs (herein
referred to as “GHG-negative plastics™).

Various studies have examined the potential for plastics to act as a
carbon sink and although the methodologies and scopes differ, the same
general conclusion is reached: there is no single solution to achieve
GHG-negative plastics. Initial exploration of decarbonization of
petroleum-based plastics have indicated that achieving net-zero emis-
sions, let alone net-negative, will be a challenge. Even with the use of
renewable energy and recycling, there are several “carbon lock-ins”
associated with petroleum-based plastic production, such as emissions
from steam cracking, that require carbon capture technology to achieve
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net zero emissions (Bauer et al., 2022). Frequently, bio-based plastics,
which use biomass as the carbon feedstock instead of petroleum re-
sources, have been examined as a way to reduce GHG emissions (Walker
and Rothman, 2020; Hottle et al., 2013; Yates and Barlow, 2013). Au-
thors who have explored these pathways still note potentially high
emissions from energy-intensive production processes (Schulze et al.,
2017) and land-use change (Piemonte and Gironi; Brizga et al., 2020),
changes in material performance that can alter use-phase impacts
(Tamburini et al., 2021; Molina-Besch, 2022), and end-of-life pathways
that could lead to GHG emissions, such as incineration or biodegrada-
tion (Van Roijen and Miller, 2022). As such, findings indicate that the
transition to GHG-negative plastics will require a combination of process
electrification, improved waste management, as well as the use of
non-edible biomass feedstocks (Suh and Bardow, 2021).

Recent studies have indicated pathways worthy of deeper explora-
tion when deriving carbon-negative plastics. Sun et al. (2022) examined
pathways to reach carbon-neural plastics and found that the use of
biomass contributed the most to GHG reductions, with remaining stra-
tegies such as recycling only contributing 5-7%. Zibunas et al. (2022)
found that combining renewable energy with increased recycling rates
of plastics could drive down emissions, but it would result in the highest
cost compared to strategies that utilize biomass. Stegmann et al. (2022),
incorporated socio-economic factors to determine future CO, emissions
from plastics and found that a combination of increased CO; prices,
plastic recycling, and biomass use, could lead to carbon-negative ap-
proaches for plastic manufacturing. Similarly, Meys et al. (2021) found
that combining recycling, biomass utilization, and carbon capture and
utilization (CCU) could lead to net-carbon-negative plastics that have
lower cost and energy demands than petroleum-based plastics with CCU.
While findings have been promising, many of these studies have only
considered CO;, emissions. However, to reach the Intergovernmental
Panel on Climate Change (IPCC) targets of 1.5 °C by 2050, a 50% and
22% reduction in CH4 and N2O must simultaneously be achieved
alongside decarbonization strategies (Rogelj and Lamboll, 2024).
Considering the role of chemicals in biomass cultivation and plastic
production, it is critical to understand the impact of other GHGs (e.g.,
NoO from fertilizers (Goglio et al., 2018)) on creating net-negative
emissions pathways. In addition, most existing studies utilize models
that rely on large data sets with life cycle assessment (LCA) data coming
from various sources, thereby limiting the ability to (1) utilize a
consistent approach among all materials, (2) determine what is
contributing most to the environmental impacts of each material, and
(3) determine how biomass feedstock type or LCA methodology can
impact the results.

Carbon feedstock sources and modeling assumptions have been
proven to play a large role in uptake potential for bio-based plastics in
the literature (Miller et al., 2016b). De Oliveira et al. (2021) performed
bottom-up LCAs of bio-based plastics and found that carbon-negative
bio-based plastics could be achieved when considering long-term ap-
plications (e.g., the use Bio-HDPE or Bio-PVC in construction). However,
this study only examined 1st generation feedstocks which compete with
food production. Deriving all plastics from such a resource would
require roughly 5% of global arable land (Bishop et al., 2022). Alter-
natively, 2nd generation feedstocks, or inedible plant-based materials,
and 3rd generation feedstocks, or feedstocks that have negligible land
footprints (i.e. food waste, algae, or biogas), are being investigated in
the literature as potential resources for bio-based plastic production.
Given the extra processing steps required for utilizing these materials (e.
g., pretreatment and enzymatic hydrolysis), it remains unclear if they
could offer substantial GHG emission reductions compared to 1st gen-
eration bio-based plastics or petroleum-based plastics made from
renewable energy. Studies have investigated the environmental impacts
of bio-based plastics from 2nd and 3rd generation biomass such as corn
stover (Zhong et al., 2009; Munoz et al., 2014; Adom and Dunn, 2017),
wheat straw (Parajuli et al., 2017), sugarcane bagasse (Daful et al.,
2016), switchgrass (Chen et al., 2016), vetiver leaves (Raman and
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Gnansounou, 2015), cheese whey (Koller et al., 2013; Asunis et al.,
2021), wastewater (Andreasi Bassi et al., 2021; Vogli et al., 2020),
landfill gas (Rostkowski et al., 2012), and used cooking oil (Moretti
etal., 2020). However, given the variability in methodologies, literature
reviews of LCAs of bio-based plastics from 2nd and 3rd generation
feedstocks report inconclusive results, with analyses considering the
same 2nd generation feedstock leading to both higher and lower GHG
emissions than their 1st generation counterpart (Wellenreuther and
Wolf, 2020). Furthermore, transparent life cycle inventory (LCI) data are
not consistently provided, limiting the ability to reproduce results
(Bishop et al., 2021). To determine the large-scale impacts of a bio-based
plastic economy, harmonization of data is necessary to support repro-
ducible LCAs and to inform quantitative, systematic assessment of
mechanisms to drive carbon-uptake.

In this work, we derive LCIs for nine major bio-based plastics: (1)
polylactic acid (PLA); (2) polyhydroxyalkanoate (PHA); (3) thermo-
plastic starch (TPS); (4) high-density polyethene (Bio-HDPE); (5) poly-
ethylene terephthalate (Bio-PET); (6) polyvinylchloride (Bio-PVC); (7)
polypropylene (Bio-PP); (8) polyurethane (Bio-PUR); (9) polytrimethyl
terephthalate (Bio-PTT). All of these plastics at least partially utilize 2nd
and 3rd generation feedstocks. We use these inventories to perform
cradle-to-gate environmental impact assessments for each material. The
influence of methodological decisions, namely the allocation method,
and hotspots in production that could be targeted to create carbon-
negative plastics are analyzed. The term “GHG-negative” refers to a
below-zero value for the combined emissions of CO5, CH4 and N,O with
100a global warming potentials (GWP) (other GHGs, such as water
vapor and hydrofluorocarbons, are outside the scope of this analysis due
to their minimal impact on resulting GWP for the production processes
examined herein (Environmental Protection Agency, 2023; Sherwood
et al.,, 2018)). Pathways to achieve GHG-negative cradle-to-gate
bio-based plastics and the remaining sources of GHG emissions are
discussed to identify areas for further improvement.

2. Methods
2.1. Scope and goals

The goal of this work is to derive LCIs of plastics that can lead to
GHG-negative pathways during their production, assess methodological
assumptions that could alter outcomes, and identify processes that
should be targeted to drive emissions reductions. The declared unit for
all inventories formulated in this work is 1 kg of bio-based plastic. The
system boundary includes biomass cultivation, refinement, conversion,
processing, and bio-based plastic production. The manufacturing of
specific products (bottles, containers, etc.), the use phase, and end-of-
life stage of bio-based plastics is not considered in this study. Howev-
er, we note that the literature indicates these stages, specifically end-of-
life, can contribute greatly to overall life cycle GHG emissions (Van
Roijen and Miller, 2022) and should be addressed in future work.

To create a systematic basis for inventory development, additional
assumptions are made. Where possible, consistent LCI data sources are
used for similar production processes, and when multiple LCI data
sources exist, average values of the literature are used. We harmonize
LCI flows and modeling assumptions to create a unified method for
assessment and comparison of environmental impacts from bio-based
plastics. Direct land use change associated with feedstock cultivation
is included in these inventories. However, the inventories are based on
an attributional approach, and therefore do not include indirect impacts
from land-use change. In the derivation of inventories, for non-
biodegradable bio-based plastics, some downstream processes are
identical to petroleum-based plastics, and therefore are assumed to have
the same process-based emissions, such as particulate matter emissions.
To determine the feasibility of GHG-negative bio-based plastics, all
electricity and energy demands of the main processes are assumed to be
satisfied by wind electricity and biogas. In addition, a biogenic carbon
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credit is applied based on the carbon content of the plastic. For example,
if a plastic has a carbon content of 0.6 kg C/kg plastic, then a CO; credit
of —2.2 kg COy/kg plastic is applied (determined by multiplying the
carbon content by the molar mass ratio of CO, to carbon, or 3.67 kg
CO,/kg C).

Three allocation methods were considered to determine the cradle-
to-gate GHG emissions for each material: (1) mass, (2) economic, and
(3) no allocation. With no allocation, main crops (such as corn) are
assigned 100% of the impact, while any by-products (such as corn sto-
ver) are attributed 0%. While the International Organization for Stan-
dardization (ISO) recommends system expansion whenever possible
(International Organization for Standardization, 2006), this method is
outside the scope of this work. The life cycle CO2-equivalents (COe) for
each material is determined based on CO;, CH4 and N3O emissions.
Global warming potentials of 28 and 273 are used for CH4 and N5O,
respectively, based on the IPCC sixth assessment report (IPCC, 2021).

2.2. Life cycle inventories of feedstocks

The following feedstocks are considered for bio-based plastic pro-
duction: corn, corn stover, wheat straw, sugarcane sugar, sugarcane
molasses, sugarcane bagasse, rapeseed oil, used cooking oil, reclaimed
potato starch, and biogas. Sugarcane, corn, and wheat were considered
in this analysis given their abundant production volumes. Together,
along with rice, these crops accounted for half of all primary crops
produced globally in 2020 (Food and Agriculture Organization of the
United Nations, 2000), with sugarcane and corn being the two most
produced crops globally (Food and Agriculture Organization of the
United Nations, 2000). While palm oil and soybean oil are the largest
produced vegetables oils (Food and Agriculture Organization of the
United Nations, 2000), here we model rapeseed oil, making up 12% of
global vegetable oil production in 2019. The selection of rapeseed oil for
our inventories was due to the availability of detailed LCI data (Fri-
drihsone et al., 2020a, 2020b). Data availability for soy (Helling and
Russell, 2009) and palm-based polyol (Zolkarnain et al., 2015) LCIs have
not been as robustly reported in the literature. We also consider 3rd
generation feedstocks, such as landfill biogas, reclaimed potato starch,
and used cooking oil. While many 3rd generation feedstocks have po-
tential applications in bio-based plastics production, we again made the
selection of these resources based on data availability.

Journal of Cleaner Production 445 (2024) 141203

We model biomass inventories based on large global producers of
these crops. Land use requirements for every crop are determined by
calculating the global weighted average crop yield from 2017 to 2020
using data from the Food and Agricultural Organization of the United
Nations (FAO) (Food and Agriculture Organization of the United Na-
tions). The mass and economic allocation factors for each feedstock are
determined from the literature (Table 1).

For corn and corn stover production, we base our feedstock models
on corn cultivation in the United States (US), the largest global producer
of corn (Food and Agriculture Organization of the United Nations), with
inventory values based on data from the ecoinvent 2.2 database
(Frischknecht et al., 2005). To quantify production of stover, we assume
1 kg of corn stover is produced per kg of corn, as presented in the
ecoinvent database. Although this value is representative of the US, it is
close to the global average harvest index for corn, 0.45 kg corn/total
biomass (Ludemann et al., 2022). Some studies have found that 30-70%
of the corn stover can be left on the field as a soil amendment to prevent
erosion and maintain appropriate soil organic carbon levels (Wilhelm
et al., 2010; Ruis et al., 2017; Johnson et al., 2013); therefore, we as-
sume only 70% of corn stover is available for bio-based plastic
production.

For sugarcane sugar, bagasse, and molasses, we base our feedstock
models on Brazil, the world’s largest producer of sugarcane (United
States Department of Agriculture). This ecoinvent inventory is supple-
mented with agricultural inputs such as fertilizer and pesticide use
extracted from Seabra et al. (2011) (representative of the 2008/2009
growing season in Brazil). Data for sugarcane processing are from
literature, using average values reported for Brazil (Seabra et al., 2011;
Tsiropoulos et al., 2014), India (Tsiropoulos et al., 2014), and Thailand
(Groot and Borén, 2010), which are the three largest
sugarcane-producing countries (United States Department of Agricul-
ture). The yield of sugar from sugarcane is determined by taking the
average values from studies by Groot and Borén (2010) (Thailand) and
Tsiropoulos et al. (2014) (India). We note that sugarcane mills
commonly utilize the lignocellulosic by-product, bagasse, as an internal
energy source. However, bagasse can be extracted for use in other ap-
plications (such as bioethanol or polylactic acid production), and here
we aim to address potential benefits of use in bio-based plastics, where
the carbon can be stored for a longer period of time.

For wheat straw, LCI data for wheat cultivation, including yield

Table 1
Mass and economic allocation factors for the feedstocks considered in this study.
Feedstock Feedstock Mass allocation Economic allocation Reference
type factor factor
Ist Corn 0.50 0.86 Mass: (Frischknecht et al., 2005)
generation Economic: (Patel et al., 2017)
Corn starch (from corn wet 0.67 0.79 Mass: (Ramirez et al., 2007)
milling) Economic: (Ramirez et al., 2007; United States Department of Agriculture, 2012)
Rapeseed 0.23 0.5 Mass: (Gupta et al., 2022)
Economic: (Stelzer et al., 2021)
Rapeseed oil 0.40 0.62 Mass: (Gupta et al., 2022)
Economic: (Fridrihsone et al., 2020a; Malca et al., 2014)
Sugar, from sugarcane 0.10 0.88 Mass: (Groot and Borén, 2010)
Economic: (Changwichan and Gheewala, 2018; Silalertruksa and Gheewala,
2020; Tsiropoulos et al., 2015)
2nd Molasses, from sugarcane 0.05 0.09 Mass: (Groot and Borén, 2010)
generation Economic: (Changwichan and Gheewala, 2018; Silalertruksa and Gheewala,
2020; Tsiropoulos et al., 2015)
Bagasse, from sugarcane 0.31 0.03 Mass: (Groot and Borén, 2010)
Economic: (Changwichan and Gheewala, 2018; Silalertruksa and Gheewala,
2020; Tsiropoulos et al., 2015)
Wheat straw 0.57 0.13 Mass: (Frischknecht et al., 2005)
Economic: (Patel et al., 2017; Forte et al., 2016)
Corn stover 0.55 0.14 Mass: (Ludemann et al., 2022)
Economic: (Patel et al., 2017)
3rd Used cooking oil 0 0 n/a
generation Landfill biogas 0 0 n/a
Reclaimed potato starch 0 0 n/a
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ratios for wheat straw relative to grain, are taken from ecoinvent 2.2
(Frischknecht et al., 2005). This inventory is based on average values for
wheat production in the US, the largest producer out of the countries
available in the ecoinvent database for wheat production, and the fourth
largest wheat producer globally (Food and Agriculture Organization of
the United Nations, 2000). The harvest index reported in this inventory,
0.45 kg wheat/total biomass, agrees with recent reported average values
for wheat across the US (Dai et al., 2016). Similar to corn stover, studies
have shown that roughly 2/3 of wheat straw can remain on the field as a
soil amendment (Borrion et al., 2012). Therefore, we assume only 1/3 of
wheat straw is available for bio-based plastic production.

LCI data for rapeseed production is taken from Gupta et al. (2022),
which is representative of rapeseed production in Europe, the world’s
largest rapeseed oil producer (United States Department of Agriculture).
The LCI data for agricultural processes, such as fertilizer and pesticide
application rates, are based on rapeseed production guidelines provided
by New Holland Agriculture. Large-scale rapeseed oil production data,
reported in Gupta et al. (2022), is based on industry data.

Potato starch can be retrieved as a residue from manufacturing sliced
potato products, where starchy wastewater is generated, and starch can
be extracted via centrifugation. For this carbon feedstock, we use LCI
data for reclaimed potato starch from Broeren et al. (2017). Due to
limited availability of data, the centrifugation process used to isolate the
starch components is left out of the analysis. Broeren et al. found that
this is a fair omission given that the energy requirements for this step are
much lower than the subsequent evaporation steps that are captured in
the inventory, and that it is part of the wastewater treatment process
and, therefore, should be at least partly allocated to the primary product.

For landfill biogas as a feedstock for bio-based plastic production, we
model the composition of landfill biogas based on a study by Rasi et al.
(2007). It is assumed that if the biogas were not used as a feedstock for
bio-based plastic production, then it would otherwise be burned.
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Therefore, the avoided CO5 emissions from burning methane are applied
as a credit (or negative emissions) to the system.

2.3. Life cycle inventories of bio-based plastic production processes

The various bio-based-plastic production pathways analyzed herein
are outlined in Fig. 1. Together, these bio-based plastics can substitute
roughly 80% of today’s petroleum-based plastic market. To determine
the substitution potential of each bio-based plastic within the current
plastic market, we use the technical replacement potential of bio-based
plastics reported by Shen et al. (2009), which is based on mechanical
performance characteristics, coupled with the current global market of
petroleum-based plastics (Plastics Europe, 2022). Sugarcane molasses is
investigated as a feedstock for bioethanol production given that roughly
95% of molasses is currently used for ethanol production (Tsiropoulos
et al., 2014). Both corn stover and wheat straw are modeled as feed-
stocks for bio-based ethanol, a key intermediate for Bio-HDPE, Bio-PET,
and Bio-PVC production. Using a mass-based allocation approach with
the life cycle inventories outlined herein, corn stover-based ethanol was
found to have lower GHG emissions (3.7 kg COqe/kg ethanol, not
including biogenic carbon) than wheat straw-based ethanol (5.97 kg
CO92e/kg not including biogenic carbon). Therefore, only corn
stover-based ethanol is used for Bio-PET and Bio-PVC production. Corn
is modeled as a feedstock for ethanol and lactic acid to allow for com-
parisons of environmental impacts between 1st, 2nd, and 3rd generation
feedstocks. All electricity and heat requirements were assumed to be
satisfied by wind and biogas (modeled using ecoinvent datasets outlined
in supplemental materials data sheet “Ecoinvent datasets™). See sup-
plemental materials for a full list of the resources (including ecoinvent
datasets) used to generate the LCIs.

Reclaimed S Used ki
eclaime Corn Wheat Sugarcane Landfill biogas Rapeseed € cc')o ng
potato starch oil
54
N/ s > g
— —~o
T | |
grain stover straw bagasse sugar methane rapeseed oil
| l J molasses
1532 lactic acid terephtalic thanol ‘|' | naphth
propanediol acticad acid € i ° polyo aphtha
\A4 v v \ 4 v
TPS H Bio-PTT ‘ PLA Bio-PET Bio-HDPE Bio-PVC PHB Bio-PUR Bio-PP
5% 6% 6% 2% 20 % 11% 12 % 5% 12 %

Substitution potential of entire plastic market (%)

Fig. 1. Overview of bio-based plastic production pathways examined in this study. This figure does not include all the process steps required for the conversion of
feedstock to bio-based plastic, but rather highlights the general production routes with key intermediates. The theoretical substitution potential of each bio-based
plastic within the current petroleum-based plastic market is presented underneath in italics. These values were obtained by combining the technical substitution
potential of each bioplastic (based on material performance), with the current plastic market. Note that these substitution potentials are not reflective of the resource
availability of the feedstocks used. Note the following acronyms: thermoplastic starch (TPS), polytrimethyl terephthalate (Bio-PTT), polylactic acid (PLA), poly-
ethylene terephthalate (Bio-PET), high-density polyethene (Bio-HDPE), polyvinylchloride (Bio-PVC), poly(3-hydroxybuturate) (PHB), polypropylene (Bio-PP),

polyurethane (Bio-PUR).
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2.3.1. LCIs for biodegradable bio-based plastics

PLA is a biodegradable, thermoplastic polyester that has been pro-
posed as a substitute for traditional plastics such as polypropylene (PP),
acrylonitrile butadiene styrene (ABS), polystyrene (PS), polyethylene
(PE) and polyethylene terephthalate (PET), in food packaging and
biomedical applications (Narancic et al., 2020; Hamad et al., 2018). The
LCI for PLA from corn is derived from NatureWorks, the largest global
producer of PLA (Vink et al., 2003). However, their published LCI data is
highly aggregated and therefore difficult to modify. Therefore, we
model the LCI for PLA from corn stover and sugarcane bagasse based on
work by Ioannidou et al. (2022) and Daful et al. (2016), respectively.
Producing lactic acid from lignocellulosic feedstocks involves four main
steps. First, the feedstocks must be pre-treated, breaking down the
biomass prior to enzymatic hydrolysis. LCI data for the pretreatment
process of corn stover is based on a report from the National Renewable
Energy Laboratory (NREL) on bioethanol production which includes two
steps: (1) deacetylation and (2) dilute acid pretreatment. In this study,
the LCI for this pretreatment process is slightly modified based on im-
provements to the design reported in a more recent report from NREL
(Davis et al., 2015) (namely, reducing the loading of sulfuric acid from
22 mg/g dry solid to 9 mg/g dry solid). LCI data for the pretreatment of
sugarcane bagasse is based on a steam explosion process. After pre-
treatment, the slurry is sent to a reactor for enzymatic hydrolysis using
cellulase to convert cellulose into glucose. Glucose is then fermented to
produce lactate. Traditionally, calcium carbonate is used as a neutral-
izing agent to reduce the negative effects of low pH on metabolic ac-
tivities. However, in the LCI of bagasse-PLA, magnesium-hydroxide and
triethylamine are used for the neutralization process to reduce the
generation of gypsum waste products (Daful et al., 2016). To recover
pure L-lactic acid, bacterial biomass is first separated from the fermen-
tation broth via centrifugation, then the lactate is treated with 50%
sulfuric acid to produce dilute lactic acid. Lactic acid is concentrated via
evaporation and then reacted with methanol to produce methyl lactate.
Finally, a distillation column is used for the hydrolysis of methyl lactate
to produce polymer grade L-lactic acid. The LCI data for PLA production
from lactic-acid via ring-opening polymerization reported in Ioannidou
et al. (2022) is based on a study by Gruber et al. (1993). Due to the lack
of necessary data around reaction rates and the thermodynamics of in-
termediate products, the authors conducted a simulation of the com-
ponents to calculate mass and energy balances of the process.

PHAs are microbially produced, readily biodegradable polyesters.
They are suitable to replace traditional plastics in medical and food
packaging applications, but scaling has been limited to date due to high
costs of production (Khatami et al., 2021). One of the most common
types of PHA, poly(3-hydroxybuturate) (PHB), can be produced from
either 1st or 3rd generation feedstocks using a similar process involving:
(1) the accumulation of microbes in a reactor, (2) nutrient limitation
(such as nitrogen or phosphorous) to form intracellular PHB, and (3)
extraction of PHB from cells and purification. The LCI data for PHB
production from sugar is based on Harding et al. (2007), and the LCI
data for PHB production from biogas is based on Rostkowski et al.
(2012). We note that Rostkowski et al. (2012) examined various
extraction methods including solvent extraction, selective dissolution,
and surfactant digestion. Solvent extraction was found to be the least
favorable method in terms of GHG emissions, but is used in the LCI for
this study to remain consistent with the LCI for biogas-PHB and because
it is the most commonly used PHB extraction method (Jacquel et al.,
2008).

Starch is a widely abundant and cheap bio-based plastic, making up
roughly 20% of global bioplastic production capacity (European Bio-
plastics, 2022), but to achieve desired properties it is typically blended
at high temperatures with plasticizers to form TPS, making it only
partially bio-based (Khan et al., 2017). The LCI for TPS is based on the
ecoinvent inventory for modified starch (Frischknecht et al., 2005),
which uses aggregated data from Novamont, the producer of a common
TPS bioplastic called Mater-Bi (Storz and Vorlop, 2013). This inventory
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is representative of TPS made from only 34% bio-based content. Here,
starch is derived from corn wherein a milling process breaks down the
corn into its components (corn starch, meal, germ, and feed). Mass
allocation values reported in Ramirez et al. (2007), are utilized in
combination with market values reported by the United States Depart-
ment of Agriculture (United States Department of Agriculture, 2012) to
determine economic allocation factors for this multi-output process. To
model TPS production from reclaimed potato starch, the same inventory
is used with reclaimed potato starch replacing corn starch.

2.3.2. LCIs of non-biodegradable bio-based plastics

Bioethanol is a common precursor in the production of bio-based,
non-biodegradable plastics. We consider bioethanol production from
two 2nd generation crops, corn stover and wheat straw, based on LCI
data from Byun and Han (2021) and Borrion et al. (2012), respectively.
The production of ethanol from lignocellulosic crops involves the
following steps: (1) the hemicellulose fraction of the biomass is con-
verted to xylose using sulfuric acid catalyst pretreatment; (2) the
remaining fraction (cellulose) is converted into glucose using the
cellulase enzyme; and then (3) the biomass derived glucose is fermented
with a yeast catalyst, corn steep liquor, and diammonium phosphate to
produce an ethanol-rich stream. We also consider bioethanol production
from corn and sugarcane molasses. The corn to ethanol conversion
process is taken from Akanuma et al. (2014). The LCI data for molasses
to ethanol conversion is adapted from Tsiropoulos et al. (2014) and is a
simple process, which only requires fermentation and distillation steps
to produce ethanol.

Here we model a fully bio-based PET LCI using data for the pro-
duction of bio-based ethylene glycol and bio-based terephthalic acid
(TPA) from corn stover using models from Chen et al. (2016) and
Benavides et al. (2018). We model TPA production from isobutanol in-
termediate - an established, high-volume commercial process. This
process includes: (1) pre-treatment of corn stover to destruct lignocel-
lulose into cellulose/hemicellulose; (2) enzymatic hydrolysis to convert
polysaccharides into monosaccharides, which can be fermented into
isobutanol; (3) conversion of isobutanol to paraxylene through dehy-
dration, oligomerization, and dehydro-cyclination; and (4) oxidation of
paraxylene into TPA. This final step results in the production of elec-
tricity and diesel blendstock, but these byproducts are considered
outside of the scope of this work and all environmental impacts of these
processing stages are attributed to the main product, TPA. The pro-
duction of TPA from corn (based on Akanuma et al. (2014)) is similar to
corn stover derived TPA but without the pretreatment step. The LCI for
bio-based ethanol from corn stover and corn are the same as discussed
above, and the conversion process of ethanol to ethylene is based on
Chen et al. (2016). The remaining processing steps (conversion to
ethylene oxide, ethylene glycol and polymerization to PET) are identical
to petroleum-based plastic production processes, which we base on
ecoinvent 2.2 (Frischknecht et al., 2005).

Bio-PVC is produced from the reaction between bio-based ethylene
and chlorine. LCI data for PVC production is therefore the same as
petroleum-based PVC production, reported in ecoinvent, with the
exception that ethanol is derived from biomass using the methods
described above, and again, the conversion process of ethanol to
ethylene is based on Chen et al. (2016).

We model Bio-PP production from a 3rd generation feedstock, used
cooking oil, and 1st generation feedstock, rapeseed oil. The only dif-
ference between the two production routes is the upstream production
of both used cooking oil and rapeseed oil. From there, the process starts
with the pretreatment and de-oxygenation of oil, producing bio-based
naphtha, a by-product of hydrotreated vegetable oil (HVO). The LCI
data for this multi-output process is from Neste, a biorefinery located in
the Netherlands (Johnson, 2017). Mass allocation is applied where HVO
is the main product (91 wt%), followed by bio-propane (6 wt%),
bio-naphtha (2 wt%), and water (1 wt%). Bio-based naphtha is then
converted to smaller hydrocarbons (including propylene) via steam
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cracking. Given that steam cracking produces multiple products, mass
allocation is applied. Ethylene is the major product when naphtha
feedstock is used (35 wt%), followed by pyrolysis gas (20 wt%), methane
(16 wt%), bio-propylene (14%), C4 (8%), pyrolysis fuel oil (5%) and
hydrogen (2%). This process is assumed to be the same for both rapeseed
oil and used cooking oil, given that both feedstocks result in HVOs with
similar properties and yield similar products upon steam cracking
(Karaba et al., 2021). Mass allocation factors for this steam cracking
process are based on current US average industry data (Young et al.,
2022). The final step of polymerization is identical to the
petroleum-based polymerization process, and we model this process
based ecoinvent data (Frischknecht et al., 2005).

Bio-PUR is modeled based on the conversion of rapeseed oil or used
cooking oil to bio-based polyol via amidization with diethanolamine
(DEA). The LCI data for the conversion process comes from a cradle-to-
gate LCA study on rapeseed oil-based polyol production (Fridrihsone
et al., 2020b) and is assumed to be the same for used cooking oil. While
it is possible to have transesterification of rapeseed oil/used cooking oil
with triethanolamine, we model the DEA route due to its known lower
GHG emissions. The LCI for the final step (the generation of poly-
urethane foam) is obtained from ecoinvent as it is assumed to be iden-
tical to petroleum-based PUR foam production (Frischknecht et al.,
2005). Given that the bio-based polyol content varies depending on the
type of foam, both rigid and flexible PUR foam are modeled herein.

We model Bio-PTT production based on the two main ingredients,
1,3-propanediol (PDO) and TPA. The LCI for PDO production from corn
glucose was obtained from Urban and Bakshi (2009), which involves a
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commercialized fermentation process using genetically engineered E.
coli. The impacts from inoculum production are assumed to be negli-
gible because once they are produced, they are self-sufficient, and the
CO emissions from glucose fermentation are determined stoichiomet-
rically. The LCI for TPA production from corn stover is the same one that
is used for Bio-PET. Given the similarities in chemical structure between
PET and PTT, the electricity and heat requirements for the polymeri-
zation of PTT from PDO and TPA are assumed to be the same as PET.

3. Results

3.1. Greenhouse gas emissions and identifying environmental impact
hotspots

Our findings show that it is possible to synthesize GHG-negative
cradle-to-gate emissions for all bio-based plastics assessed with appro-
priate selection of feedstock (Fig. 2). These net-negative fluxes are
achieved primarily by satisfying all energy demands with renewable
electricity and heat, coupled with the biogenic carbon storage in bio-
based plastic. These pathways were selected as the means to reduce
GHG emissions due to known energy contributions to plastics produc-
tion (Daehn et al., 2022) and the role of renewable carbon feedstocks on
net-GHG emissions (Rosenboom et al., 2022). When utilizing the 2018
global average electricity mix (see supplemental data sheet 1), along
with traditional fossil-fuel heat sources such as coal and natural gas,
energy-derived emissions are responsible for up to 96% of production
emissions for these bio-based plastics (see supplemental data sheet 19
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Fig. 2. Process contributions for cradle-to-gate GHG emissions of bio-based plastics using a mass-allocation approach. Process contributions are broken down by
carbon uptake (green), agricultural processes (yellow), energy emissions (orange) from renewable energy, processing and conversion (blue/gray), and “other”
processes contributing to less than 5% of overall emissions (light blue). Net GWP is shown by the black dots. GWP (or COxe) is calculated using GWP factors for COo,
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for a detailed breakdown of process contributions without renewable
energy). By nearly eliminating energy-related emissions through the use
of renewables, life cycle GHG emissions can be up to 30 times lower for
some bio-based plastics (as is the case for PLA from sugarcane bagasse).
Similarly, the cradle-to-gate impacts for PHB from landfill biogas
amounted to —0.53 and 11 kg COze/kg with and without the use of
renewable energy, respectively. Despite the potential for GHG-negative
bio-based plastics, agricultural and chemical processes for bio-based
plastics are still emissions intensive. Therefore, the following section
provides a breakdown of the environmental impact hotspots that exist
when energy-related impacts are nearly eliminated. Noting that process
modifications can help reduce these emissions (Miller et al., 2013), here
we utilize a mass-based allocation approach to examine sources of these
emissions, broadly categorized as: (1) “Agricultural emissions” for
emissions related to the cultivation of agricultural feedstocks (agricul-
tural machinery, fertilizer inputs, irrigation, etc.); (2) “Energy emis-
sions” for emissions associated with renewable energy use; (3)
“Processing/conversion emissions” for emissions related to conversion
of feedstocks to bio-based plastics (such as industrial chemical produc-
tion); or (4) “Other emissions” for sources of emissions that contribute to
less than 5% of the overall GHG emissions and therefore are not
examined on an individual basis.

In general, we find that a primary driver in environmental impacts of
these materials is the type of feedstock used. For example, Bio-PET, Bio-
HDPE, Bio-PVC and Bio-PTT have lower GWP when they are produced
from 1st generation feedstocks, such as sugarcane sugar or corn, rather
than 2nd generation feedstocks, such as corn stover or wheat straw, due
to the removal of pretreatment steps and lower enzyme loading, thereby
reducing impacts associated with enzyme and chemical production. In
addition, even though some of the bio-based plastics are partially
petroleum-based such as PUR and TPS, they are still able to reach GHG-
negative emissions when renewable energy is used. Therefore, future
increases in biomass content in bio-based plastics could offer the ability
to uptake even more CO; during production and potentially drive
greater GHG-negative fluxes.

3.1.1. Agricultural

Fertilizer production and use is one of the largest contributors to
emissions of 2nd generation feedstocks, such as corn stover and wheat
straw. For example, 17% of CO, emissions associated with PLA pro-
duction from corn stover came from the production of ammonia for corn
cultivation. Industrial ammonia production emits more CO, than any
other chemical-producing process (Boerner, 2019) resulting from
extremely high energy demand and the use of hydrogen via the
Haber-Bosch process. Even when high-temperature and high-pressure
process requirements are met with renewable energy (as it is modeled
here), the production of hydrogen required for the reaction is currently
made from natural gas, coal, or oil, via a process that accounts for more
than half of the CO5 emissions from ammonia production. To minimize
these emissions, hydrogen could be produced from renewable resources
via electrolysis (Smith et al., 2020) and alternatives to the Haber-Bosch
process that may improve efficiency could be investigated (Humphreys
et al., 2021).

In addition to the production of ammonia, its application contributes
significantly to N>O emissions due to biological processes, such as
nitrification and denitrification. In 2005, only 17% of nitrogen produced
for agriculture remained in the final product (Mathivanan et al., 2021;
Jan Willem Erisman et al., 2008). As a result, for bio-based plastics with
high agricultural feedstock inputs, such as Bio-PET and Bio-HDPE (7.5
and 4.04 kg corn stover, respectively), N,O emissions from corn stover
cultivation led to substantial GHG emissions - roughly 34 and 29% of the
total mass-allocated GWP for these plastics, respectively. The same
relative contributions hold true for Bio-PVC from corn stover and
Bio-PTT from corn/corn stover, with roughly 27% and 35% of GWP
coming from N3O field emissions, respectively. To reduce the magnitude
of nitrogen emissions from fertilizers, various agricultural process
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improvements could be implemented such as: (1) drainage systems to
help maintain optimal moisture content and reduce denitrification of
ammonia; (2) inserting ammonia-based fertilizer deeper into the soil to
reduce ammonia volatilization; and (3) utilizing a need-based approach
for fertilizer application to reduce excess nitrogen runoff (Wang et al.,
2021).

3.1.2. Processing/conversion

Enzyme production is a significant source of processing and con-
version emissions for bio-based plastics made from lignocellulosic ma-
terials. Enzymes are required for the enzymatic hydrolysis of
lignocellulosic feedstocks, which is an energy and emissions intensive
process. Here we modeled this enzyme production based on the ecoin-
vent LCI for potato starch-derived enzymes. A notable fraction of the
emissions from this enzyme production process, once energy-emissions
are eliminated, are attributable to the agricultural processing of po-
tatoes. In addition to reducing fertilizer use, another potential process
improvement would be to investigate the use of 2nd and 3rd generation
feedstocks for enzyme production (Mihajlovski et al., 2021). Further-
more, reducing enzyme loading while maintaining high yields could
lower energy requirements, as well as make the process more econom-
ically desirable (Wiloso et al., 2012). It has been suggested that such
loading could be lowered by 50% (Humbird et al., 2011). Studies have
also investigated an alternative to enzymatic hydrolysis — a one-step
chemical hydrolysis process — that can help reduce GHG emissions by
54% compared to enzymatic hydrolysis (Byun and Han, 2021).

Beyond enzymes, chemicals required to convert biomass feedstocks
to bio-based plastics can contribute to cradle-to-gate GHG emissions. For
example, triethylamine and magnesium hydroxide (Mg(OH),), both
required for the neutralization of lactic acid in the production of PLA
from sugarcane bagasse, contribute 22% to cradle-to-gate mass-allo-
cated GWP. Similarly, the extraction of PHB from microbial cells,
regardless of the initial feedstock, is an energy and chemical-intensive
process; we note again, different methods (Rostkowski et al., 2012)
could be used for extraction and we model a solvent-based method here
due to wide use. It is likely that the process efficiency for PHB extraction
will improve once production reaches commercial scale (Valappil et al.,
2007). Moving forward, utilizing less carbon-intensive chemicals, such
as NaOH instead of chloroform, could also reduce emissions
(Lopez-Abelairas et al., 2015).

For bio-based plastics that are partially petroleum-based such as Bio-
PUR or TPS, petrochemical production processes can amount to 84-97%
of the production-related emissions. This factor is well exemplified by
flexible and rigid Bio-PUR foam, whose LCIs differ in the ratio of biomass
to petroleum feedstocks and the type of petroleum feedstock used
(toluene diisocyanate (TDI) vs. methylene diphenyl diisocyanate
(MDI)). Driven by its higher biomass to petroleum feedstock ratio, the
cradle-to-gate mass-allocated GWP for the flexible Bio-PUR are over
100% lower than rigid foam. However, even with increased biomass
content, the majority (55%) of GWP for flexible PUR foam comes from
the production of diethanolamine, a chemical required to produce pol-
yol from vegetable oil, whereas for rigid PUR foam, the majority (78%)
of the GWP comes from the production of MDI. Despite the use of
renewable energy, both plastics result in significant emissions due to the
petroleum feedstocks required for production. While this work focuses
on GHG fluxes, there are also human health concerns that should be
addressed, with MDI and TDI resulting in increased asthma risk for
occupational workers in foam manufacturing (Munoz, 2016). Therefore,
deriving less harmful, bio-based alternatives to TDI, MDI, and DEA is a
necessary area for study. Bio-based non-isocyanate urethanes derived
from plant oil have been produced on a lab-scale, but they still require
an in-depth analysis of their potential environmental impacts (Mahen-
dran et al., 2012).

Given that there are no upstream environmental impacts attributed
to the feedstock, used cooking oil, for Bio-PP production, the majority
(93%) of mass-allocated GWP comes from the hydrotreatment process of
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oil. This process requires hydrogen which is produced via natural gas
reformation. To reduce production related emissions, the production of
hydrogen via electrolysis using renewable energy could be explored. In
addition to using waste oil as a feedstock, GHG-negative Bio-PP could be
made by synthesizing methanol from atmospheric CO5 and Hj, again,
assuming all energy demands and hydrogen production are satisfied by
renewables (Kuusela et al., 2021).

In addition to the environmental impacts of agricultural and chem-
ical production processing, a significant source of emissions come from
inefficiencies in the bio-based plastic production processes. For
example, due to inefficiencies in the extraction process of PHB from
microbial cells, 5.26 kg of CH4 from landfill biogas are required to
produce 1 kg of PHB, resulting in significant CO, emissions. If the COy
from biogas were to be captured and utilized as a feedstock for plastic
production, the cradle-to-gate emissions for PHB and associated pro-
duction costs could be reduced. Similarly, the production of Bio-PET and
Bio-HDPE requires 7.5 and 4.04 kg corn stover, corresponding to 3.3 and
1.8 kg of carbon, but only 20 and 48% of the carbon ends up in the final
product, respectively. Therefore, process improvements for these ma-
terials include increasing the efficiency of TPA and ethanol production
pathways to reduce losses and minimize primary feedstock inputs. A
more efficient production route for TPA via direct fermentation of sugars
could reduce the loss of carbon as well as minimize capital and operating
costs (Benavides et al., 2018). Engineering bio-based plastics can capi-
talize on such methods.

3.2. Role of methodological assumptions

When determining the environmental impact of an agricultural by-
product, such as corn stover or wheat straw, the upstream impacts
(such as emissions associated with land-use, fertilizer production and
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application, and fuel consumed by agricultural machinery) need to be
applied to both the main crop and the by-product. ISO 14040 recom-
mends applying system expansion to avoid allocation, thereby encom-
passing the impacts associated with all of the products and byproducts
within a system (International Organization for Standardization, 2006).
However, applying system expansion is data intensive and requires
making assumptions on the behavior of the system, which can lead to
high uncertainty. Alternatively, the impacts of these upstream processes
can be divided up (or allocated) based on economic or physical re-
lationships or can be entirely attributed to one “main” product. Three
common allocation methods are examined herein: (1) mass allocation,
utilizing physical relationships to allocate impacts; (2) economic allo-
cation, addressing economic value of products, which can drive pro-
duction rates and market behavior; and (3) no allocation, which
attributes all impacts to one product and is commonly used in LCAs
examining 2nd and 3rd generation feedstocks (Moretti et al., 2020;
Cherubini and Ulgiati, 2020; Angili et al., 2021). Economic allocation
provides the benefit of potentially reflecting real-world resource con-
sumption patterns based on market values of materials. However, eco-
nomic values vary greatly over time and across different regions, leading
to high variability among results. Mass allocation provides the benefit of
remaining consistent by utilizing a physical relationship to allocate
impacts. However, applying mass-allocation may result in attributing a
large amount of environmental impacts to inevitable waste streams and
simultaneously undervaluing the impacts of the main product.

Our findings show that GWP-negative production pathways are
possible depending on the allocation method used. Fig. 3 shows the
impact of varying allocation methods on the cradle-to-gate GWP of the
bio-based plastics considered in this work. Our findings show that mass
allocation results in the highest apparent GWP for all materials made
from 2nd generation feedstocks (e.g., from corn stover or wheat straw),
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with economic allocation and no allocation resulting in 137% and 170%
lower GWP on average. These findings are expected given that the mass
allocation factor for 2nd generation crops is typically higher than the
economic allocation factor (Luo et al., 2009). No allocation results in the
highest impact for bio-based plastics from 1st generation feedstocks (e.
g., from corn or rapeseed oil). On average, no allocation and economic
allocation resulted in 69% and 28% higher GWP compared to mass
allocation for 1st generation bio-based plastics. These findings are ex-
pected given that under no allocation, all upstream impacts from crop
cultivation are attributed to the 1st generation feedstock. The key ex-
ceptions to these trends are for the bio-based plastics made from sug-
arcane molasses. Sugarcane molasses, a second generation feedstock,
has a higher factor for economic allocation than for mass allocation (see
Table 1) because it is typically sent to distilleries for ethanol production
(Chauhan et al., 2011). However, it is not considered the main product
of sugarcane, which is sugar, therefore no allocation results in the lowest
GWP.

How biogenic carbon is addressed in the GHG fluxes for plastics
production affects not only the GHG emissions profile for the plastic, but
also the extent to which selecting a different allocation method alters the
net impact. Biogenic carbon accounting is a common source of vari-
ability among bio-based plastic LCA studies (Wiloso et al., 2012; Luo
etal., 2009). In this study, biogenic carbon credit is applied based on the
carbon content of the bio-based plastic, meaning that the benefits of
removal of atmospheric CO5 is the same regardless of the allocation
method. We selected this method of accounting as it reflects the bound
carbon in the material. However, other authors have used other
methods. For example, Luo et al. (2009) allocated biogenic carbon the
same way that other emissions, such as N3O, are allocated. For an
assumption like Luo et al.’s, mass allocation correlates to a higher
biogenic carbon credit than economic allocation for 2nd generation
feedstocks. This difference in methodology results in the opposite trend
than what is observed herein, with mass allocation resulting in lower
GHG emissions compared to economic allocation for bio-based plastics
from 2nd generation crops. This notable difference in results highlights
the need for standardization among allocation methods in LCAs, spe-
cifically for 2nd and 3rd generation bio-based materials.

The sensitivity of GHG emissions (or magnitude of net-uptake) to the
allocation methodology used depends on the type of bio-based plastic.
For plastics where the biomass resource used contributes low amounts to
GHG emissions, there is lower variation resulting from selecting a
different allocation method. For plastics where a substantial amount of
the GHG emissions profile is driven by the biomass resource, greater
fluctuation in findings can occur by applying a different allocation
method. For example, given that the feedstock inputs are much higher
for Bio-PET than they are for PLA, the impact of allocation methods are
much more significant.

4. Discussion

The goal of this study is to present LCI data for GHG-negative bio-
based plastic production pathways from 2nd and 3rd generation feed-
stocks. While GHG-negative production pathways were identified, it is
important to address some of the barriers and limitations of such
methods. For example, although the electricity and energy requirements
are modeled as using renewable resources, there are some scenarios
where transitioning to renewable energy could be challenging given the
high-temperature or high-pressure requirements of a given process. The
Haber-Bosch process for ammonia production requires temperature and
pressures above 700 °C and 200 bar (Daehn et al., 2022). Although some
renewable energy technologies (such as solar thermal energy), are
technically capable of satisfying high temperature requirements, the
capacity of such technologies are not yet sufficient to meet the energy
demands of the plastic industry. The petrochemical industry consumes
30% of total final industrial energy use globally (Bauer et al., 2022),
whereas wind and solar energy currently only make up 2.7% of total
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global energy demand (International Energy Agency). Similarly, despite
the growth in installed bioenergy capacity over recent years, biomass
energy only contributes ~9% to total global energy demand (Interna-
tional Energy Agency). Therefore, while the environmental hotspots
discussed herein are still relevant, it is important to note that decar-
bonizing the plastic industry remains a challenge. Proposed solutions to
the environmental hotspots addressed herein, outside of energy de-
mand, include the use of renewable hydrogen, decreased fertilizer de-
mand, isocyanate-free PUR production, and alternative methods for
enzymatic hydrolysis. It is crucial to acknowledge that implementing
these solutions in the near future may face challenges such as high cost,
insufficient infrastructure for scaling, and absence of established value
chains. For example, despite the technological maturity of green
hydrogen production, 99% of hydrogen is still produced from fossil fuels
largely due to cost barriers (Eni and Mattei, 2020).

Another potential limitation to the solutions proposed herein is the
availability of 2nd and 3rd generation feedstocks. While these biomass
residues provide a source for plastic production without limiting food
availability, the total quantity produced may not be sufficient to meet
global plastic demand. In this work, we present LCIs for bio-based
plastics capable of replacing 80% of current petroleum-based plastic.
This assumption is based on their technical performance, rather than on
resource availability. To reach the 80% substitution rate referenced
herein, alternative production routes such as COq-based plastics, may
need to be developed. However, if closed-loop end-of-life strategies are
implemented for bio-based plastics (such as chemical recycling), annual
biomass demand for bio-based plastic production would only amount to
23% of the projected untapped biomass resources (such as lignocellulose
and food waste) estimated to become available due to improved farming
(Meys et al., 2021).

While this study focused on cradle-to-gate impacts of bio-based
plastic production, end-of-life impacts remain significant. These end-
of-life impacts may be notable for biodegradable bio-based plastics
(PLA, PHA, TPS), since anaerobic biodegradation of these materials at
end-of-life can release methane (Van Roijen and Miller, 2022). There-
fore, it is important to note that achieving cradle-to-grave net-negative
emissions for bio-based plastics may only be feasible under certain
end-of-life conditions, such as recycling, anaerobic digestion or com-
posting. Another potential limitation to this study is that some of the LCI
data that is used is region-specific (for example, corn and corn stover
production are based on US average values). Grabowski et al. (2015)
reviewed currently available datasets for bio-based plastic feedstocks,
and found that 60% of the available datasets were based on two regions:
North America and Europe. They also found that the data for most crops
were out-of-date. In this study, this temporal data gap is partially
addressed by using updated crop yield statistics, but it remains a concern
for other inputs such as fertilizer and harvesting methods, which can
vary greatly by region as well as over time. Furthermore, given the
attributional approach of this study, the impacts of alternative scenarios
and/or interconnected processes are not captured. For example, we
model sugarcane bagasse as a feedstock for bio-based plastic production,
when it is typically used as an energy-source. Future work could apply
system expansion in such cases to capture the impacts of such alternative
scenarios.

Countless studies have discussed the necessity to decarbonize the
petrochemical industry, and the global theoretical potential to make the
petrochemical industry net-zero has been explored. However, pathways
to create net-zero or net-uptake systems need to be systematically
quantified and assessed. By creating a harmonized method for system-
atically quantifying GHG fluxes for bio-based plastics, this work shows
the necessary technological advancements to eliminate GHG emissions
from the production process of plastics. As noted, the plastics examined
in this work have the technical potential to substitute roughly 80% of the
current petroleum-plastic market. Given that depending on the alloca-
tion method considered, GHG-negative plastic production methods were
identified, findings can be used to inform stakeholders along the plastic
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supply chain of mechanisms to drive GHG-negative plastics. However,
this shift towards bio-based plastics would not be an economically viable
emissions mitigation strategy if only 1st generation crops are used due to
land-use change impacts and competition with food (Brizga et al., 2020).
By presenting production pathways for bio-based plastics from
non-edible feedstocks, new markets for agricultural byproducts can be
driven (Ni et al., 2021). Such alteration would not only mitigate reliance
on petroleum resources for consumer products, but also potentially
mitigate inefficient utilization of, and create new markets for, the
roughly 1 billion tonnes of agricultural and food waste generated
globally each year (Rosenboom et al., 2022). Such a shift in resource use
could contribute to the reduction of resource transportation, the miti-
gation of harmful emissions from petroleum refinement (Ragothaman
and Anderson, 2017), and the limitation of insecurities associated with
supply chain dynamics if implemented properly.

5. Conclusion

In this study, GHG-negative production pathways were identified for
nine bio-based plastics. Harmonized LCIs were derived for these plastics
to facilitate comparison, analysis, and improved production. This level
of transparency will not only support scientific advancements, but also
help eliminate the black box that exists in many petrochemical pro-
duction methods. Together, the plastics explored are technically capable
of substituting roughly 80% of current petroleum-based plastic demand,
suggesting a potential for the plastic market to become a carbon sink
rather than a significant carbon source. Furthermore, all of the bio-based
plastic production pathways examined herein at least partially utilize
2nd or 3rd generation feedstocks, which reduce competition with food
and land-use change impacts - two major problems typically associated
with bio-based plastic production.

Applying the LCIs synthesized in this work, our analysis of GHG
emissions hotspots highlighted the need for various process improve-
ments outside of decarbonizing energy and electricity demands,
including:

reducing ammonia-based fertilizer use

- engineering greener methods for Hy production, such as electrolysis
via renewable energy

- using bio-based, isocyanate-free PUR production pathways

using 2nd-generation feedstocks for enzyme production

determining alternatives to enzymatic hydrolysis, such as one-step

chemical-hydrolysis

engineering bio-based alternatives to typical petroleum-based TPS

blends

improving process efficiencies in TPA and ethanol production path-

ways to reduce CO, emissions from biomass loss

Our work also considers the sensitivity of modeling outcomes to
allocation methods. Generally, mass allocation of 2nd generation feed-
stocks resulted in the highest GWP, while economic or no allocation
resulted in the highest GWP for 1st generation feedstocks. However,
these results can shift due to changes in methodology such as biogenic
carbon accounting (e.g., either applying biogenic carbon credits based
on the carbon content of the final product or based on an allocation
factor). Therefore, there is a need for standardization and clear guide-
lines regarding biogenic carbon accounting and allocation methods as
they apply to bio-based materials.

When considering drastic changes in production processes, such as
shifting from petroleum-based to bio-based plastics, it is important to
reduce burden shifting or reducing one environmental impact category
at the expense of another. Therefore, future work should aim to un-
derstand the environmental and human health impacts outside of GHG
emissions of the bio-based plastic production pathways presented
herein, such as particulate matter emissions and eutrophication impacts
from fertilizer use (Wyer et al., 2022), human health burdens from the
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combustion and conversion of fuels for energy generation (Macor, 2020;
Shindell and Smith, 2019), and increased water demand associated with
bio-based feedstocks (Brizga et al., 2020). In addition, investigating the
consequential impacts of large-scale bio-based plastic production, such
as indirect land-use change and shifts in biomass markets, should be
further analyzed. Data gaps that exist in plastic production inventories,
such as the use of additives, should be investigated to better understand
the impact of these materials on the environment, and continued inte-
gration of updated life cycle inventory data, particularly when
geographically and temporally relevant, should be studied. Finally, to
achieve net-zero plastics, the end-of-life impacts must also be consid-
ered. Therefore, determining the impact of waste management strategies
on the GHG-negative potential of bio-based plastics is critical.
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