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Abstract:

While surface-hopping has emerged as a powerful method to simulate non-adiabatic dynamics in
large molecules, the ad hoc nature of the necessary velocity adjustments and decoherence corrections
in the algorithm somewhat reduces its reliability. Here we propose a new scheme that eliminates these
aspects, by combining the nuclear equation from the quantum trajectory surface-hopping approach
with the electronic equation derived from the exact factorization approach. The resulting method,
denoted QTSH-XF, yields a surface-hopping method on a firmer ground than previous, and is shown
to successfully capture dynamics in Tully models and in a linear vibronic coupling model of the photo-

excited uracil cation.
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The highly correlated motion of electrons and ions
when a molecule is driven away from equilibrium gives
rise to a rich range of phenomena, occurring both nat-
urally (e.g. in photosynthesis!?, vision®*) as well as
in technological applications (e.g. photocatalyst design
0 molecular motors”®). Theoretical simulation of
these processes reveals the fundamental nature of cou-
pled electron-ion dynamics in general while aiding our
understanding of the mechanisms of the specific pro-
cesses involved, and predictions of new phenomena.

Since its inception about fifty years ago, trajectory
surface-hopping (SH) has remained one of the most the
popular methods to simulate such coupled electron-ion
dynamics®'¥. Due to its computational efficiency, it
can treat complex systems with a large number of de-
grees of freedom without needing to make a priori as-
sumptions about the relevant configurations encoun-
tered in the dynamics. SH couples a classical treat-
ment of nuclear dynamics with a quantum treatment
of electrons, but nevertheless captures the quantum
phenomenon of nuclear wavepacket-splitting, which is
lacking in another widely-used and practically-efficient
method, Ehrenfest dynamics. These features are en-
abled by having independent trajectories each running

on a single adiabatic electronic potential energy sur-
face (PES) at a given time, making hops between them
according to a stochastic algorithm that depends on
the trajectory’s velocity, non-adiabatic coupling vectors
(NACV), and the electronic coefficients that are evolved
quantum-mechanically self-consistently with the classi-
cal nuclear trajectory’s position.

However, SH has proven difficult to derive from first-
principles 1519, and it requires at least three ad hoc pro-
cedures in order to give physically sound results. First,
after a trajectory hop from one PES to another, the nu-
clear velocity is re-scaled so as to preserve the total en-
ergy of the nuclear trajectory, and there is no unique
way to do this, e.g. isotropically, or along the NACV;
results differ depending on how it is done 72D, More-
over, the imposition of energy conservation at an indi-
vidual trajectory level is too tight a constraint: phys-
ically, it should be the energy of the ensemble of tra-
jectories that is conserved, since it is the energy of the
quantum wavepacket as a whole, whose density is mim-
icked by the trajectory ensemble, that is conserved. Fur-
ther, if a hop is rejected because the trajectory does not
have enough energy, channels are closed which would
be open in a quantum treatment. A second ad hoc as-
pect is that, for such a frustrated hop, a choice must
be made as to whether the trajectory’s velocity is ei-
ther kept, or always reversed, or reversed under some
conditions 72229 Third, although the fewest-switches
hopping probability was designed such that the frac-
tion of trajectories evolving on a given PES agrees with
the trajectory-average of the modulus-square of the elec-
tronic coefficient for that state, the latter is not acces-
sible due to the independent-trajectory framework of
SH; the deviation in these two quantities is referred to
as internal inconsistency. The problem is often phrased
as “overcoherence” since the electronic coefficients re-
main always evolving coherently, while the trajectory
they are associated with is always collapsed to a sin-
gle PES. While several decoherence corrections are rou-



tinely applied they are largely ad hoc, even if physically
motivated, and not always reliable.

Modified SH methods have been developed that
overcome some of these three problems. In quantum
trajectory SH (QTSH)®?9 which is an independent-
trajectory approximation of consensus SH®?®, a
“quantum force” arises in the nuclear equation that
eliminates the velocity rescaling procedure while en-
suring energy conservation over the ensemble of in-
dependent trajectories in cases where the internal con-
sistency is not broken. The overcoherence problem
remains however; a correction was proposed outside
the independent-trajectory framework. On the other
hand, SH based on the exact factorization approach
(SHXF)@®-3D incorporates a first-principles description
of decoherence, through an electronic equation derived
from the exact factorization equations®>*¥, but the ve-
locity adjustment problems remain.

In this work, we combine the nuclear equation from
QTSH with the electronic equation from SHXF, result-
ing in an independent-trajectory SH scheme, QTSH-XF,
that eliminates all of the three ad hoc aspects above, thus
providing a more robust method than (decoherence-
corrected) SH, QTSH, and SHXF, while retaining the
practical efficiency of independent-trajectory methods.
We demonstrate its performance on Tully’s extended
coupling region (ECR) model !¥ and on a linear vibronic
coupling model of the uracil cation®®.

In standard fewest-switches SH1%!)  an ensemble of
independent nuclear trajectories {R‘)} is evolved,
each associated with an electronic wavefunction whose
expansion coefficients in the Born-Oppenheimer (BO)
basis evolve as
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where d, i, = (®;|V,®y) is the NACV, while the equa-
tions of motion for the nuclei are
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where B9 (RU)) denotes the PES that trajectory (1) is
evolving on (i.e. the active surface), evaluated at its cur-
rent geometry RV = RY(¢) and v labels the nucleus.
The fraction of trajectories that are evolving on the Ith
surface at a given time ¢, II;(¢) = Zﬁv“"”' Nl(l)(t)/Ntmj,
defines an electronic population distinct from the pop-
ulation obtained directly from the electronic equation,
pu(t) = 37" 0 (1) /Nuag, with i) (1) = GV ()],
and usually it is Hl( ) that is ultimately recorded as
the electronic population. The fewest-switches hopping
probability was derived to try to minimize the difference
between the two population measures (i.e. the “inter-

nal inconsistency”)19: P\") for an instantaneous hop

of trajectory (I) from active surface a to k is calculated
from
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Then, at each time step, a hop from the active state a
to state n is made if S p_, P(D,C <r < Yy OP(I)

where r is a random number uniformly dlstrlbute(a—)l’;
[0,1], provided the change in potential energy after the
hop does not exceed the kinetic energy before the hop.
If the kinetic energy is exceeded, the hop is rejected
(also known as frustrated, or forbidden), and a choice is
made as to whether the trajectory’s velocity is reversed
or kept. When a hop is allowed, the velocity after the
hop is adjusted so as to ensure energy conservation, and
again a choice is made as to how this is done. Two com-
mon choices are to scale the velocity along the direc-
tion of the NACV, or to scale isotropically (17:182022-24);
while the former has been justified by semiclassical ar-
guments, it leads to more frustrated hops so a greater vi-
olation of internal consistency, but the latter is unphysi-
cally size-extensive.

The disconnect between the coherent electronic evo-
lution and the stochastic single-surface evolution of the
nuclear trajectories is partially patched through the use
of decoherence corrections, e.g.13152036-40) which, like
the SH-scheme itself, tend to be somewhat ad hoc, even
if physically motivated. Relatively recently, SHXF was
proposed ®3Y, in which decoherence arises naturally
from a term derived from the exact factorization ap-
proach. In SHXF®-31, while the nuclear trajectories fol-
low the usual SH algorithm, the electronic equation of
motion is rigorously derived from a mixed quantum-
classical treatment®*4142) of the exact factorization ap-
proach #3343 and has the following form
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where Cz gy is the SH evolution from Eq. (1), f ) is the

time- 1ntegrated force on PES [, and Q is the nuclear
quantum momentum:
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Eq. (4) correlates the electronic evolution with the dis-
tribution of nuclear trajectories via the quantum mo-
mentum. To enable an independent-trajectory nature
of the scheme, Q, is computed with auxiliary tra-
jectories launched on PESs in which the electronic
populations have become non-negligible. In addition
to describing decoherence from first principles, SHXF



describes quantum-momentum-driven transitions that
were shown to be essential in multi-state problems such
as arise with three-state intersections, and are com-
pletely missed by all other SH methods“¥.

However, since the nuclear evolution in SHXF is
simply taken from that in SH, SHXF inherits the
momentum-adjustment in the hopping events from the
nuclear treatment. This not only adds uncertainty to the
predictions as discussed earlier, but is also unsettling
from a phase-space analysis of a quantum-classical Li-
ouville equation derivation of FSSH which shows that
the hops should occur locally in phase-space, i.e. the
nuclear trajectories should have the same position and
momenta after the hop®”. With a trajectory ensemble
representing the phase-space density instead, QTSH de-
rives its evolution equations from a semiclassical limit
of the Liouville equation, before taking an independent
trajectory approximation ?>24%. The energy of an indi-
vidual trajectory is not conserved, but energy conserva-
tion over the whole ensemble of trajectories holds up to
the deviation in internal consistency. The QTSH equa-
tions are:
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where Ae?jo = ¢ , and where terms of order
1% /M, are neglected. We note that the last term in Eq. (7)
is active when a state is coupled to more than one state
at a given position through their NACVs; the term gives
a generally much smaller contribution to the force com-
pared with the others. Compared to the SH force, the
additional “quantum forces” in Eq. (7) allow QTSH to
eliminate both the need for momentum rescaling and
the rejection of frustrated hops, and energy is conserved
over the trajectory ensemble provided it is internally
consistent ®>262%)_ The electronic evolution as well as the
hopping probability are obtained as in fewest-switches

SH, but with the velocity R(VI) in Eq. (1) and (3) replaced
by P{") /M, . The independent-trajectory nature of QTSH
reintroduces the internal inconsistency/overcoherence
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problem absent in its “parent” method, consensus SH;
a decoherence correction can be applied artificially ®.

Since the nuclear equation of QTSH overcomes the
ad hoc velocity adjustment and frustrated-hop problems
of traditional SH, and the electronic equation of SHXF
overcomes the ad hoc nature of the decoherence correc-
tions that are applied, a natural development is to com-
bine the electronic equation of SHXF with the nuclear
equation of QTSH. This defines the QTSH-XF algorithm,
in which electronic coefficients obey Eq. (4) while Egs.
(6a) and (6b) guide the underlying trajectories. The re-
sulting nuclear force obtained by combining those equa-
tions and neglecting terms of order #?/M,, reads:

(€3]

M, Ru QrsH-xF = M, R,, qrsu +Fq, where Fq is

(I) (1)
(I o) neon fuitf
1m0l 5 S (S - B
i<k 1% s l

®)

and M, R( )TSH represents the QTSH force of Eq.(7).
While SHXF trajectories purely follow the gradient of
the active state, the forces on QTSH-XF trajectories
then include not only the quantum forces of QTSH but
also a new quantum-momentum-driven contribution,
which is evaluated through auxiliary trajectories as in
SHXF®@). This term however tends to be much smaller
than the others due to the inverse nuclear mass factor,
and the dependence on the product of the nuclear quan-
tum momentum and NACV means that it likely affects
more the tails of the nuclear distribution where there are
less trajectories. We denote then QTSH-XFO to represent
a simpler algorithm that couples electronic coefficients
via Eq. (4) to Eq. (7) for the nuclear force. Comparison
of results from QTSHXF and QTSHXF0 may be found in
the Supplementary Material.

The terms arising from XF in the QTSH-XF algorithm
formally break the energy conservation of the ensem-
ble. However, owing to the aforementioned small con-
tribution that these terms have, whether or not the de-
gree of energy non-conservation in QTSH-XF is a con-
cern in practice has to be assessed. It is worth noting
that although QTSH formally achieves energy conser-
vation when the ensemble is internally consistent®, in
practice it can be violated depending on the quality of
the trajectory sampling. We will check the quality of en-
ergy conservation for both QTSH and QTSH-XF in the
examples below.

We first test QTSH-XF on Tully’s ECR model (see

eg.  Refs(®%) for model parameters).  Specif-
ically, an initial gaussian wavepacket wo(R) =
(2m02)"% exp ( M + zkox) is initialized on the

lower PES at posmon Ry = —15 a.u. with momentum
hko = 10 a.u. and width ¢ = v/2 a.u. Exact results were
obtained by wavepacket propagation with a timestep of



0.1 a.u. on a grid with spacing dz = 1.25 x 1072 a.u.
and boundaries [-35,65] a.u. QTSH-XF calculations em-
ployed 4000 trajectories Wigner-sampled according to
the initial density and used a propagation timestep of
0.5 atomic units. We compared with four other surface-
hopping methods: the original FSSH method, the tradi-
tional energy-based decoherence method SHEDC %¢37),
QTSH, and SHXE. The former two required 1000 trajec-
tories while the latter two required 4000 trajectories for
the same degree of convergence. As in previous SHXF
calculations performed on Tully’s models 3, the widths
of gaussian densities assigned to auxiliary trajectories is
set to 0/10, a tenth of the initial wavepacket’s width, for
QTSH-XF and SHXF simulations.
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FIG. 1: Results for Tully’s ECR model (initial conditions
in the text). a) Population (II; in solid lines and p;; in
dashed lines) on the lower PES, predicted by the
traditional methods SH in green and SHEDC in violet
along with the exact (solid black line). b) As in a) for
QTSH in blue, SHXF in red, and QTSH-XF in orange. c)
Coherences for all methods compared with the exact
result. d) Error in energy conservation for all methods.
The evolution of average energy difference of the PESs
for QTSH-XEF trajectories is also shown in black dashed
line, scaled by a factor 1/500.

The initial wavepacket has a relatively low incom-
ing momentum, so that after the first transfer of pop-
ulation to the upper state in the coupling region, part
of the wavepacket slides back down encountering the
non-adiabatic coupling again. This behavior is evident
in the exact populations shown in Fig. 1, and the ex-
pected large internal inconsistency of SH (in panel (a))
and QTSH (in panel (b)) is evident after the first pop-
ulation transfer. This is cured by applying the first-
principles decoherence term from the exact factoriza-
tion: both SHXF and QTSH-XF give results close to the
exact, with small internal inconsistency. In contrast to

SH and QTSH which remain coherent throughout, both
SHXF and QTSH-XF also capture the coherence well
(panel (c)), although decohering a little faster than the
exact. Panel (d) in Fig. 1 shows the error in conserva-
tion of the total energy for all methods. Note that in
QTSH and QTSH-XF the energy includes a contribu-
tion from a vector potential related to the difference be-
tween the velocity and momentum in Eq. (6a); the for-
mulas are given in the Supplementary Material for clar-
ity. The ensemble-averaged energy difference between
the PESs as a function of time is also shown in black
dashed lines (downscaled by a factor 1/500). While SH,
SHEDC and SHXF perfectly conserve energy by con-
struction, although unphysically on an individual tra-
jectory level, QTSH and QTSH-XF display deviations.
The violation of energy conservation in QTSH tracks the
deviation from internal consistency, as expected. How-
ever, it is relatively minor here on the scale of the elec-
tronic frequencies of the system. On the other hand,
QTSH-XF is much more internally consistent and its en-
ergy error is only about half as much as that of QTSH,
even though it is not formally expected to conserve en-
ergy as discussed earlier. Again, on the scale of the elec-
tronic frequencies, the violation is extremely small. This
example demonstrates that, compared with SHXF and
QTSH, the QTSH-XF scheme captures the decoherence
just as well as SHXF that is missed by QTSH, and ap-
proximately conserves ensemble energy just as well or
even better than QTSH and more physically than SHXF.

To see the full advantage of QTSH-XF we need to
consider an example beyond one-dimension, where am-
biguities from the different choices of velocity rescal-
ings of the traditional SH and SHXF are eliminated.
To this end, we next look at an eight-mode linear
vibronic coupling model of the photoexcited uracil
cation®. We will compare the same algorithms as in
the previous example, with the additional considera-
tion of velocity rescaling ansatz used (either isotropic
or along NACV). Dynamics from the D, cationic state
in this model recently demonstrated the importance of
the quantum-momentum driven transitions in multi-
state problems that are missing in all traditional meth-
ods (even with decoherence corrections), where exact-
factorization based methods such as SHXF gave a qual-
itative improvement much closer to the MCTDH refer-
ence *#49)_ Since the dynamics starts from the second di-
abatic state in the reference MCTDH calculation®”, we
do the following procedure. For all methods, 1000 tra-
jectories are first run starting from the adiabatic Dy, D;
and D, with a timestep of 0.1 fs. All observables are then
obtained as weighted averages of the 3000 trajectories
with respective importance of each initial state follow-
ing the initial pure state of the reference MCTDH calcu-
lation: 94% on Dy, 5% on D; and 1% on Dgy. Gaussian
width of auxilliary trajectories in SHXF and QTSH-XF
are set to that of the initial wavepacket.



The top panels of Fig. 2 show that, while dramatically
improving over the traditional SH and SHEDC in the
overall trend, SHXF is noticeably sensitive to the choice
of velocity rescaling. A similar sensitivity is shown by
SH and SHEDC. The choice of keeping or reversing the
momentum after a forbidden hop did not make so much
of a difference in this case. Instead our new approach,
QTSH-XF, removes this uncertainty in the prediction,
and even slightly improves upon the SHXF performance
at small and intermediate times. At the same time, it im-
proves significantly upon QTSH which shows a similar
behavior as the traditional SH methods. Atlonger times,
QTSH-XF very slightly underperforms SHXF when the
latter is performed with scaling along the NACV, but is
similar to SHXF when scaling is performed isotropically.
While there is a small electronic population of the Ds
state in SHXF (scaling along the NACV) at longer times,
the fraction of trajectory measure correctly yields zero
D3 population, whereas QTSH-XF (and QTSH) populate
D3 in both measures of population shown. This may be
a consequence of energy non-conservation (panel (c) of
Fig. 2): Both QTSH-XF and QTSH see a slight increase
of total energy at later times consistent with the increase
of D3 population, while their trend is different between
10 to 30 fs. This time interval corresponds to the max-
imal internal inconsistency for D, and Dy populations
in QTSH-XF (we can make the same comment for both
SHXF calculations) and corresponds to a decrease in to-
tal energy which is compensated around 30 fs when in-
ternal consistency is retrieved. Internal inconsistency in
QTSH appears slightly later and sees the opposite rela-
tion between the two measures of population compared
to QTSH-XE thus resulting in a slight rise of total en-
ergy starting at 20 fs. QTSH internal inconsistency only
worsens with time. At the end of the dynamics, the to-
tal energy for QTSH has increased by 0.2 eV, while for
QTSH-XF it has increased by 0.1 eV. It is interesting to
note that in comparison, the coupled-trajectory CTMQC
algorithm violated energy conservation by 2.2 eV while,
due to numerical issues, the energy-corrected CTMQC-
E algorithm was able to lower the energy increase only
to 1 eV#4  In the Supplementary Material, in addi-
tion to illustrating the very minor impact on the results
of neglecting Fo in Eq. (8), we also investigate the ef-
fect of a more recent prescription ®® for QTSH equations
when they are coupled with XF-based electronic evolu-
tion. Seeing no substantial improvement of our results,
we favor QTSH-XF and its approximation QTSHXFO as
the original QTSH equations our algorithm is built upon
are explicitly derived from the Quantum-Classical Liou-
ville equation while the new prescription of Ref®? is
not.

While the dynamics presented in Fig. 2 evolve from
a “mixed state”, where each trajectory is launched with
an electronic population purely on the active state, the
actual initial state in the reference MCTDH calculation

. 'SHXE-NAC
SHXF-ISO =
SHEDC-NAC

Populations

Populations

O ~2 - &

AE;,; [eV]
©

0 10 20 30 40 50
1 [fs]

FIG. 2: Results for an LVC model of the uracil cation. a)
Populations (II; in solid lines and filled symbols, p;; in
dashed lines and hollow symbols) for the indicated
states as predicted by SHXF with velocity rescaling
along the NACV and isotropic rescaling. D, and Dg
populations from SHEDC with scaling along NACV are
shown for comparison. The reference MCTDH
calculation is shown in thick lines and darker colors. b)
As in a) for the QTSH and QTSH-XF methods. c¢) Error
in energy conservation for QTSH, SHXF and QTSH-XF
in eV.

is a pure state of the molecular wavefunction which in-
volves a superposition of adiabatic electronic states®?.
In Fig. 3 we approximate this pure state by associat-
ing identical real coefficients to each trajectory, with
magnitude equal to the square-root of the initial adi-
abatic populations; the initial active states for the tra-
jectories are distributed according to these populations.
The results show that for QTSH-XF and SHXF with ei-
ther scaling along NACV or isotropic, which were the
three best-performing methods for the mixed state of
Fig. 2, there is significantly improved agreement with
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FIG. 3: Population dynamics in the LVC model of uracil
cation with different methods starting in the pure state
(see text), shown against the MCTDH reference: a)
SHXF with velocity rescaling along NACV. b) SHXF
with isotropic velocity rescaling. ¢) QTSH-XE.

the MCTDH reference for the first 5 fs, indicating that
the initial conditions used here are even more faithfully
capturing the MCTDH dynamics compared to the pro-
cedure used in Fig. 2; further SHXF with isotropic scal-
ing and QTSH-XF both are remarkably close to the ref-
erence MCTDH curves. Considering SHXF, the popula-
tions with isotropic velocity rescaling agree better with
MCTDH than SHXF-NAC does (contrary to the mixed-
state initial conditions); the latter overestimates the pop-
ulation transfer to Dy. QTSH-XF, although still showing
D3 population, closely matches the MCTDH results, ex-
cept around 20 fs, where all three methods exhibit too
little population in Dy and too much in Dy. The quan-
tum force of QTSH thus plays a crucial role in QTSH-
XF, in eliminating the need for the unphysical trajectory-
wise energy conservation imposed by making an ad hoc
choice of velocity-adjustment in SHXFE.

In summary, QTSH-XF combines the best aspects of
two mixed quantum-classical methods that are derived
from two different, but equivalently exact, formulations
of molecular quantum dynamics, while retaining com-
putational efficiency due to its independent trajectory
nature. QTSH, originating from phase space trajecto-
ries, has no need for velocity rescaling or hop rejec-
tion while still conserving energy on an ensemble level,
thereby eliminating two sources of ad hoc procedures in
comparison with regular SH and incorporating energy
conservation in a way that is closer to the true quan-
tum dynamics. However, QTSH suffers from overco-
herence, manifesting itself in a coherent electronic evo-
lution even away from nonadiabatic coupling regions
and in the lack of internal consistency. SHXEF, on the
other hand, which is derived from the exact factoriza-
tion of the molecular wavefunction, captures decoher-
ence from first principles due to the nuclear quantum
momentum, but has the unsettling features of veloc-
ity rescaling and rejected hops and unphysically con-
serves energy on the individual trajectory level. The
combined method QTSH-XF is of similar accuracy and
efficiency as SHXF, as shown here for Tully’s ECR model
and an LVC model of the uracil cation. In particu-
lar, for the latter, QTSH-XF retains the qualitative im-
provement of SHXF over traditional methods through
the quantum-momentum-driven transitions. QTSH-XF
predicts a small unphysical population of a higher-lying
state in the cation, which SHXF prevents in an equally
unphysical way, through frustrated hops. However,
QTSH-XF requires less manual input parameters and
choices than SHXF, providing a less ambiguous descrip-
tion. In comparison with QTSH, QTSH-XF leads to sig-
nificantly improved results at the expense of introduc-
ing a new parameter, which is the width of the Gaussian
sitting at the auxiliary trajectories’ positions mimicking
a contribution to the nuclear density (which is needed
to calculate the quantum momentum). While the addi-
tional terms do not formally guarantee the conservation
of the ensemble energy, in practice the QTSH-XF energy
varies less than in QTSH, which is most likely due to the
much improved internal consistency.

SUPPORTING INFORMATION

Presentation and performance analysis of QTSH-XF0
and vQTSH-XF compared to the standard QTSH-XF al-
gorithm.
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