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Although useful to extract excitation energies of states of double-excitation character in time-dependent density func-
tional theory that are missing in the adiabatic approximation, the frequency-dependent kernel derived earlier [J. Chem.
Phys. 120, 5932 (2004)] was not designed to yield oscillator strengths. These are required to fully determine linear
absorption spectra and they also impact excited-to-excited-state couplings that appear in dynamics simulations and
other quadratic response properties. Here we derive a modified non-adiabatic kernel that yields both accurate excitation
energies and oscillator strengths for these states. We demonstrate its performance on a model two-electron system, the
Be atom, and on excited-state transition dipoles in the LiH molecule at stretched bond-lengths, in all cases producing
significant improvements over the traditional approximations.

The challenge of describing excited states of double-
excitation character has grown from being a relatively minor
nuisance in certain regions of linear response spectra to be-
ing a real hindrance in our ability to simulate photo-excited
dynamics in molecules. These states are loosely defined in
the sense of having a significant proportion of doubly-excited
determinants with respect to a reference ground-state Slater
determinant, where a doubly-excited determinant promotes
two occupied orbitals of the reference determinant to two
virtual ones!. In ground-state spectra these states have typ-
ically smaller transition strengths (“‘darker") than predomi-
nantly singly-excited states but they can siphon off oscilla-
tor strength of neighbouring single-excitations whose absorp-
tion peaks will be overestimated in simulations that do not
account for double-excitations. Moreover, these states are
readily accessible when a molecule is excited, offering photo-
chemical/physical pathways that play a role in a range of ap-
plications, from photocatalytic design, photo-induced charge
transport, to laser-driven or polariton-enabled control. While
the true correlated excited-state wavefunctions contain con-
tributions from double excitations, these are either absent in
approximate electronic structure methods or poorly approxi-
mated, resulting in states missing from the spectrum, or with
energies and transition strengths with typically larger errors
than for states with predominantly single-excitation charac-
ter especially when there is a large contribution from double-
excitations>>, wreaking havoc on predictions of excited-state
dynamics.

The problem is particularly severe for single-reference
methods in their usual modus operandi, such as time-
dependent density functional theory (TDDFT) within the
adiabatic approximation'*-%, equation-of-motion coupled-
cluster (EOM-CC) with singles and doubles only>’, or the
Bethe-Salpeter equation with the GW approximation (GW-
BSE) with static screening®~'. While double-excitation char-
acter can be adequately included in EOM-CC if triple ex-
citations are included in the cluster expansion, and in GW-
BSE with full frequency-dependence or equivalently in an ex-
panded excitation space, these procedures increase the com-
putational cost of these methods, both of which are already
more expensive than TDDFT. Multiconfigurational methods

may be better platforms for these states, but aside from their
higher computational cost, other issues enter such as gauge-
sensitivity, and the sizes of an adequate active space which
can change during a dynamical process. For determination
of oscillator strengths for these states (or any excited state)
the difficulty increases significantly since increased accuracy
requires cranking up the number of electronic configurations
more so than for corresponding improvement in energies,
which results in a large increase in the computational cost!!>12,

Fixing adiabatic TDDFT thus becomes an attractive op-
tion. Indeed, double-excitations provide a prime example
where TDDFT in theory and in practise diverge: in the-
ory, their excitation energies and oscillator strengths are cap-
tured exactly, but the approximate functionals used in prac-
tise cannot capture them. It is now well-known that the cul-
prit is the adiabatic nature of the approximation*-®: the ex-
act exchange-correlation (xc) kernel has a strong frequency-
dependence (a pole) that effectively folds a double-excitation
of the non-interacting Kohn-Sham (KS) system into the
TDDFT response equations, but adiabatic approximations use
a frequency-independent kernel. The frequency-dependence
implicit in orbital-dependence of a hybrid functional does
not have the correct structure'3. Using first-principles argu-
ments, Ref.® proposed a frequency-dependent kernel, some-
times called “dressed TDDFT", that has been shown to suc-
cessfully capture the energies of double-excitations in a range
of molecules'4'8. However, it is unable to yield information
on the oscillator strengths because it is designed to operate
within the framework of a Tamm-Dancoff-like approximation
which does not preserve oscillator strengths.

In this Communication, we derive a kernel designed to
work within full TDDFT linear response, which yields both
excitation energies and oscillator strengths of these states, pre-
serving the oscillator strength sum-rule. We demonstrate its
accuracy on a two-electron model system, the lowest D ex-
citations in the Be atom, and the LiH molecule over a range
of interatomic separations. The kernel provides an approxi-
mation of how the transition density of a KS single excitation
gets distributed into mixed single- and double-excitations of
the true system. This enters into a formula to compute excited-
to-excited state transition densities that was recently derived!®
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to tame unphysical divergences in the adiabatic quadratic
response function giving an improvement in the transition
dipole between two states in the LiH molecule as it begins
to dissociate, with accuracy similar to that of the more ad hoc
pseudowavefunction approximation®%-24,

In TDDFT, excitation spectra are extracted from the linear
response of the density, usually cast in the form of a matrix
equation in the space of single KS excitations, g = i — a, with

i(a) labelling occupied (unoccupied) orbitals?>~28:
Q(0)G; = w}G; (1)
where
Qg (©) = V84 +4/VgVy firxcqq (). 2)

Here fuxcqy = Jdrdr'Fy(r) fuxc(r,x',@)Fy(x') is the ma-
trix element of the Hartree-exchange-correlation kernel,
fiuxe(r,r, @) = Flr‘ + fxe(r,r', @) with F, = ¢;*¢,, being
the product of occupied and unoccupied orbitals. The KS
frequencies v, = &, — & are corrected to the true ones @y
through solving Eq. (1). While the square-root of the (pseudo-
)eigenvalues, @y, give the excitation frequencies of the physi-
cal system, the oscillator strength of the transition can be ob-
tained from G; when normalized according to®>
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Oscillator strengths f7 (or any one-body transition properties)
can be obtained from these eigenvectors, through
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where on the right r = (x,y,z) with x being a vector in single-
excitation space with matrix elements x, = (¢;|x|¢,) and S is

a diagonal matrix Sy, = viq The oscillator strength sum-rule,

Y, fi = N is satisfied by both the true and KS systems and
Eq. (4) gives the contributions of the KS oscillator strengths
to a given true f; through the normalized eigenvector Gj.
In the adiabatic approximation Q(®) = € has no frequency-
dependence so the (pseudo-)eigenvectors are just normalized
to 1, but a frequency-dependent kernel causes a redistribution
of oscillator strengths through Eq. (3).

A key point is that, whether with a frequency-dependent
kernel or not, accurate oscillator strengths fulfilling the os-
cillator strength sum-rule can only be obtained when the full
TDDFT matrix Eq. (2) is used, i.e. including both back-
ward and forward transitions?®?°. Backward transitions are
neglected in the Tamm-Dancoff approximation where eigen-
values of the corresponding matrix are directly the frequen-
cies @y (rather than @?). Although this approximation has
been argued to sometimes give more accurate excitation en-
ergies with some approximate functionals?*~3!, the oscillator
strengths are generally worse, and the sum-rule violated.

Eq. (3), derived in Ref.2%, does not appear to be well known
and, to our knowledge, used only once before3? in a detailed

study of the linear response of the Hubbard dimer. An analo-
gous redistribution of weights appears in many-body pertur-
bation theory where dynamical kernels have also been ex-
plored®-33. In general, there has been much more attention
paid to excitation energies than to oscillator strengths and the
latter have only been studied with the adiabatic approxima-
tion!>36-3% with eigenvectors normalized to 1. Most interest-
ing for present purposes, Eq. (3) tells us how the oscillator
strength of a KS single excitation that lies near a KS double
excitation shatters into oscillator strengths of the mixed sin-
gle and double excitations, when an appropriate frequency-
dependent kernel is used.

Consider the limit that a KS excitation is isolated enough
in energy from neighbouring excitations, such that the diago-
nal corrections in the TDDFT matrix dominates, and the full
TDDFT matrix Eq. (2) locally reduces to a 1 x 1 diagonal ap-
proximation called“small-matrix approximation (SMA) "%,

Q(0) = v, +4V, fixcqq(©) (5)

Setting this equal to ®?, we observe that frequency-
dependence of the kernel fxc(r,r’,®) creates more than one
TDDFT excitation from this single KS excitation. The eigen-
vectors Gy reduce to one number for each eigenvalue, and in-
dicate the fraction of the KS oscillator strength that goes into
the corresponding true transition, with the second equality in
Eq. (4) reducing to

;| (Wolr|¥)|*

G = =
Val(@o|r|@g)[?

(6)

where ‘¥ indicates the /th interacting excited state and @, the
KS excited state. In this case, the oscillator strength associated
with this isolated KS transition will be preserved over the true
excitations in this subspace provided that the approximation
for fuxc(®) that will go into Q(w) gives eigenvectors with
the property ¥, G = 1:

LG =1 = Vol(@olal®) P = Y ar|(Fol¥)*  (7)
7 1

where [ labels the excitations generated from the single KS
excitation by the frequency-dependent kernel. This is an im-
portant condition for the approximation for fyxc(®). We note
that it is satisfied for any Q(w) of the form

Q(w) =A+B/(w* - D) (8)

where A, B, D are constants, with B > 0 to ensure the weight
falls between 0 and 1.

We further note that since the matrix elements in Eq. 4
(Eq. 6) involve a one-body operator, then in the limit that the
true ground-state is dominated by a single Slater determinant
(weak interaction limit), only the underlying single-excitation
components of ¥; contribute to |G;|?. Since ¥; G7 = 1, this
means that 1 —|Gy|? contains the double-excitation (and any
higher-excitation) contribution, in this limit.

While the “dressed TDDFT" kernel derived in Ref.® has
the correct form of frequency-dependence to yield energies of



double-excitations, it is based on the Tamm-Dancoff approxi-
mation, which reduces to the single-pole approximation (SPA)
in the isolated KS excitation case, and cannot be used in a
consistent way to obtain oscillator strengths. Instead, here we
follow a similar approach to Ref. but within the SMA. We be-
gin by writing the many-body time-independent Schrédinger
equation such that square of the frequency is the eigenvalue:
(H — Ep)*¥ = w?V¥, evaluating this eigenvalue problem in
the KS basis, and working in the limit where a KS single-
excitation g and double-excitation d are well-separated in en-
ergy from all the other excitations of the system. We define
Vg = Vy1 + Vg as the sum of the KS single-excitations vy and
Vs2 such that v, is close to v,. Diagonalization then yields

H -‘erd—ZE()z
@* = (Hyg—Eo)* +|Hyal* | 1+ (Hyg )

[oﬂ - ((Hdd —Ey)? +qudﬂ

)
where H;; are the matrix elements of the interacting Hamil-
tonian in the basis {¢g,d} which spans the truncated Hilbert
space containing the single and the double excitations, and Ey
is the ground state energy. However Eq. (9) is nothing but
exact diagonalization in the KS basis; to take advantage of
the correlation contained in ground-state TDDFT approxima-
tions and to extract a frequency-dependent kernel for an im-
proved TDDFT approximation, we replace H,, — Eo with its
adiabatic SMA value, and identify the remainder as defining a
frequency-dependent kernel:

0% = V2 + 4V, fireq” (@), where (10)

DSMA, A
fHXquO (w) = fHXqu

+ |qu|2 1+ (qu +Hgq — 2HOO)2
4Vq [(1)2 — ((Hdd 7H()())2 +H§d)]
(11

In Eq. (11) we also replaced Ej in Eq. (9) by Hyp to better
balance errors in the truncated matrix elements (as was done
for the dressed SPA of Ref.%).

Eq. (11) is our central equation, and it becomes exact in the
limit that the coupling between the single and double excita-
tion induced by the electron-interaction is much stronger than
the coupling with other single excitations. While the adia-
batic approximation merely shifts the KS frequency, Eq. (11)
creates a new one, yielding two positive frequencies @;, @,
which approximate the mixed single- and double- excitations
of the true system, similar to the dressed SPA kernel of Ref.5.
However, unlike that kernel, Eq.(11) preserves the oscillator
strength: It has the form of Eq. 8 and using Eq. (5) with
Eq. (11), Eq. (3) explicitly finds that the eigenvectors Gy
(one number for each eigenvalue in this 1 X 1 case) are such
that G% + G% = 1, thus satisfying the sum-rule (Eq. 7),

Vol (@o|x| @) [* = @1 (Wolx|P1)|* + @] (Polx|F2)[>  (12)

The resulting G1 > from Eq. (3) gives the fraction of the KS
oscillator strength that goes into the respective transition =
1,2 (see Eq. (6)), with 1 — G% giving the double (and higher)

excitation contribution to that state in the limit that the ground-
state is dominated by a single determinant (see earlier).

In the limit that the coupling between the single and dou-
ble excitation Hyy goes to zero, Eq. 11 correctly reduces to
the adiabatic approximation chosen for f3.. When Hyq is
much smaller than all the other terms, then one frequency is
a slightly corrected adiabatic value, while the other reduces to

\/ (Hgq — Hpp)? +Hq2d. This motivates a variation of Eq. (11)

where we replace the diagonal matrix element differences
with KS values:

|qu‘2 1+ (Vq+vd)2
ERNCECED)
(13)

Another possibility is to replace them with their adiabatic
TDDFT counterparts:

DSMAs A
fHXqu b((’0) = fHXqu +

DSMA A
fHXqua(w) = fHXqu

|Hyql? (9’3 +Qf +Q)?
4vq [wz - (((9?1 +Qf)? +H3d)}
(14)

+

where Q/;.shsz are the adiabatic TDDFT frequencies that cor-
rect the bare KS frequencies v, s 2. Eq. (13) and (14) have
a numerical advantage in requiring less two-electron integrals
than in Eq. (11) but all three flavours of DSMA capture exci-
tation energies and oscillator strengths of double excitations
as we will now demonstrate on explicit examples.

Figure 1 shows the performance on an exactly-solvable
model system: two electrons in a one-dimensional harmonic
plus linear potential, vex (x) = 3x% + y|x| where 7y is a param-
eter in the range[0, 1]; varying y tunes the degree of mixing
of the single and double-excitation character in the interact-
ing excited states. The electrons interact via a soft-Coulomb

interaction: —————. We observe in Fig. 1(a) that for
(x17x2)2+1

small enough ¥ the exact KS system has a double excita-
tion lying very close to the second KS single excitation, with
which it mixes strongly when the interaction is turned on as
in the physical system, producing two states. As expected, the
adiabatic approximation, here chosen to be exact exchange
(AEXX), is blind to the double excitation and has only one
excitation in this region of the spectrum, while all DSMA ap-
proximations correctly yield two excitations. (Note that the
exact ground-state KS potential is used to find the bare KS
orbitals and energies, while AEXX is used for f.). Out of
the DSMA’s outlined above, DSMA( performs the best, giv-
ing excitation frequencies very close to the exact. The exci-
tation energies provided by each variant of DSMA are close
to those given by the corresponding version of DSPA (see the
Supplementary Material). However, the real and significant
improvement of DSMA over DSPA lies in its capacity to ac-
curately determine oscillator strengths. Fig. 1(b) shows the
fractions of oscillator strength shared by the two states. Again
we see that DSMA is closest to the exact, but all give a signif-
icant improvement over the adiabatic result of 1 and O for any



v and the DSPA fractions shown in the Supplementary Mate-
rial. All three flavors of DSMA respect the oscillator strength
sum rule, Eq. (6) as shown in the figure, in contrast to the
DSPA (see Supplementary Material for the analogous plot).
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FIG. 1: Two electron model: a) Exact, AEXX, and the three
flavors of DSMA frequencies in the second multiplet, as a
function of y. The inset shows the lowest KS excitation
frequencies. b) The fraction of KS oscillator strengths, G7 in
the exact and the three DSMA calculations. Also shown is
the sum-rule G% + G% =1.

We next turn our attention to the Beryllium atom. Here the
lowest two singlet 'D states, have a mixed single and dou-
ble excitation character. Ref.? reports a roughly 30% single-
excitation character to the predominantly doubly-excited 1!D
state (1'S(2s%) — 1'D(2p?). As a result, adiabatic TDDFT
fails to describe the states accurately. Figure 2 shows a plot
of the two excitation frequencies of the 1! D multiplet; the ex-
treme right shows the exact reference from Ref’, with the
lower one of predominantly 2p> nature while the upper pre-
dominantly 2s3d (Ref?). Adiabatic TDDFT with the PBE
functional gives only one state in this frequency region which
is closer in energy to the upper exact state, which would take

4

up all the oscillator strength (Gé = 1) within the SMA. The
three flavors of DSMA give two states, but overestimate their
energy splitting. Whether and how the splitting improves with
the inclusion of more diffuse basis functions is left to future
study. Still, DSMAj and especially DSMA; yield oscilla-
tor strengths which are close to that of the reference Ref.3
for the lower excitation, within the assumption that Be is
weakly enough correlated that G? meaningfully approximates
the single-excitation component of the state /. On the other
hand, the three flavors of DSPA also give two excitation fre-
quencies but yield wrong oscillator strengths and violate the
oscillator sum rule.
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FIG. 2: Be atom 1'D excitation frequencies marked with
their fraction of KS excitation oscillator strength, G% of
Eq. 6.The dotted line in the KS column indicates the value of
the frequency of the KS double excitation 2p?, 2(&; »—€2);
note that it is absent in the linear KS spectrum. All the
TDDFT results are computed in the aug-cc-pVQZ basis.

Finally we turn to the LiH molecule at stretched bond
lengths, which we will use to illustrate the use of our DSMA
to calculate coupling matrix elements between excited states.
Adiabatic approximations to calculate these within quadratic
response are plagued with unphysical divergences that appear
when the difference between two excitation energies €,, and
Q. coincides with another excitation frequency Q;, = Q. —
Q,2021.2324 (see Supplementary Information for a figure of
this). In Ref.!” a frequency-dependent approximation for the
second-order response kernel, gﬁg P was derived in a truncated
Hilbert space containing these states, that eliminated these di-

vergences. This kernel was used to derive the transition den-
sity ngq(r) = (¥ |A(r)|¥,) for a case where Q, ~ Q; ~ Q. /2:
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and v3 are the frequencies of the dom-
inant KS states contributing to the interacting
levels Q, and Q. respectively, (fuxc(Q))1 =
S 00(r)01 (1) fie (1., Q)00 (F) 01 (F)dPrdPr. In  the
case considered, state a has predominantly single-
excitation character, and a frequency-independent ker-
nel suffices for this kernel.  The third term involves

gadia(rl r,r;) = _ OExcln] an adiabatic ap-
X (ro,r, SaE)3n(02)07(E5] |

proximation to the second-order response kernel. The first
term is the contribution from a double excitation, which
should be weighted by the doubles contribution to state c,
which, in the limit of weak enough interaction is /1 — |G.|2,
however until the present work, how to calculate this was
unknown. We note that Eq. (15) differs a little from that given
in Ref.!: there we had instead proposed to approximately
weigh the doubles contribution with /1 — o2, where o

is a spatially-independent approximation to 4/ag 3'ac with
ac(r,r') = (Pol|a(r)|¥e) (Fola(r')|¥.) and likewise as3 is
the product of the KS transition densities where we use the
subscript 3 to denote the KS state that the TDDFT state c is
dominated by, but the weights in Eq. (15) are better justified
in the weak-interaction limit. In the specific application to
the LiH transition dipole in Ref.!?, reproduced in the Supple-
mentary Material here, only the second term was computed
(with G, = 1), since the underlying linear response TDDFT
calculation was done in the adiabatic approximation over
all frequencies, so would not detect any double-excitation
contribution. In reality, a KS double-excitation lies near Q.
(see Supplementary Material and also Fig. 3 shortly). The
approximation of Ref.!” has an overall trend that follows the
exact results, but becomes an overestimate to the left of the
resonance region while underestimating it to the right.

We now use DSMA to compute the proper weight G, as-
sociated with the first and second terms in Eq. (15) for the
transition dipole moment between the Ist and 4th singlet ex-
cited states in LiH, 4 = (¥ |%|Wa) = fxnﬁ,pp(r)dr, where
x is along the internuclear axis. In Fig. 3 all calculations are
done in the aug-cc-pVDZ basis set using PySCF*’, while the
pseudo-wavefunction calculation is performed with the Tur-
bomole package*!4?. As demonstrated in the Supplemen-
tary Material, both the TDDFT and reference Full Configura-
tion Interaction (FCI) results show significant basis-set depen-
dence; the transition dipole moments more so than the excita-
tion energies, but convergence appears to be reached with the
aug-cc-pVDZ basis. The top panel shows the intersection of
the energy of the KS double-excitation 2vf*P BEO with the 4th
KS excitation frequency, justifying the need for the DSMA
approach. The black lines demonstrate the “resonance condi-
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FIG. 3: LiH frequencies and p14. Upper panel: The 4th
APBEQ KS excitation frequency, v4 is shown intersecting
with the KS double excitation, 2v; (green). Also shown is the
intersection of the 1st singlet excitation frequency, Q; with
the difference of the 4th and the Ist excitation frequencies,
Q4 — Qy, computed using APBEO (blue), and FCI (black),
both within aug-cc-pVDZ basis. Middle panel: Excitation
frequencies Q4 and Qs from FCI (black dashed), Q4
(APBEQ, light blue) and the two states obtained by applying
DSMAg (blue) and DSMA (red) (for which the upper state is
out of the scale of the figure). Lower panel: Transition dipole
moment U4 given by FCI (black), pseudo-wavefunction
approximation (orange), DSMA (red) and DSMA; (blue).
Also shown is the contribution coming from the 2nd term in
Eq. 15 for DSMA (red dotted) and DSMA; (blue dotted).

tion" for FCI, Q4 = 2Q, while near the intersection of the cor-
responding curves for APBEO (blue lines), u/¥BEC diverges
(see Refs.!”?* and Supplementary Material). The middle

panel shows the 4th and 5th singlet excitation energies of the



exact, and the one APBEO excitation in this frequency-range,
consistent with its blindness to the KS double-excitation in
the top panel. Applying our DSMA to this 4th state, we re-
trieve two states, le) and Qf), but with some error com-
pared to the exact; both DSMAg and DSMA,, overshoot the
splitting between the two states, with the upper level of the
latter being off the scale of the graph. The lowest panel com-
pares U4 computed from Eq. (15) (@, = le)) using G, ob-
tained from DSMA( and DSMAg, against the reference FCI
and the pseudo-wavefunction approximation?®-2* 43 The lat-
ter is often used to tame the divergence of the raw adiabatic
transition dipole, but is somewhat ad hoc in that its under-
lying kernel structure is not yet known. In the indicated re-
gion of strong mixing between the single and double excita-
tion R ~ [2.6A —3.4A], although they overestimate the dipole,
DSMAg and especially DSMA( both have a better trend as
a function of R and are closer to the FCI reference than the
pseudo-wavefunction approach. The dotted curves indicate
the importance of the double-excitation contribution.

Note that the analysis here applies not just to transi-
tion dipole moments between excited states, but also to any
one-body multiplicative coupling matrix element, since the
TDDFT formalism is based on the one-body density. In par-
ticular, it applies also to non-adiabatic couplings between ex-
cited states that arise due to coupled electron-nuclear motion,

diyy = (¥|Vy¥)) = % (inner product is over the
electronic Hilbert space only), where V, is the gradient with
respect to the Ry ’th nuclear coordinate and V,, the electron-
nuclear Coulomb interaction.

By providing oscillator strengths and excitation energies of
states of double-excitation character, the new kernel presented
here improves the reliability of TDDFT for linear response
spectra, as well as for quadratic response properties where it
provides an otherwise missing contribution to the excited-to-
excited state transition densities. Future work involves exten-
sive tests on a range of systems including to cases when more
than one single-excitation couples strongly with a double-
excitation. Also, ramifications of Eq. (3) outside the problem
of double excitations will be explored. For example, calculat-
ing oscillator strengths using an orbital-dependent functional
(exact exchange, hybrids, meta-GGAs) within pure DFT im-
ply a frequency-dependence and an analogous formula for the
generalized KS framework may be needed.

SUPPLEMENTARY

The supplementary material provided consists of two sec-
tions that offer additional details and figures related to the
main paper’s content. (1) "Three Flavors of Dressed Sin-
gle Pole Approximation (DSPA)," three variants of the DSPA
method are introduced, and their equations are presented. (2)
"LiH: Basis Set Dependence of FCI Results and Transition
Dipole Moment from Quadratic Response TDDFT," discusses
the sensitivity of FCI results to different basis sets. Addition-
ally, it provides a comparison of transition dipole moments
between the 1st and 4th excited states of the LiH molecule

using different computational methods and basis sets.
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