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Microarchitectural attacks, such as side-channel, exploit shared resources to leak
sensitive information. Performing microarchitectural attacks on the cloud is possible
once the attacker’s virtual machine (VM) is co-located with the victim’s VM. Hence, the
co-location requirement with the victim limits the practicality of microarchitectural
attacks on the cloud. In this work, we demonstrate that resource provisioning systems
(RPSs) can be exploited to solve the co-location challenge of microarchitectural attacks
in the cloud by deploying adversarial evasion attacks on RPSs to co-locate attackers’
VMs with victims’ VMs. Moreover, we discuss the adaptability of defense techniques
proposed against adversarial attacks in the image classification domain on the RPSs.

ultitenancy capability enables security and
M privacy vulnerabilities to be exploited. Since

the cloud resources are shared among differ-
ent users in a multitenant environment, it facilitates
the setup for performing a wide range of resource
sharing-based attacks, i.e., microarchitectural attacks.!
The prerequisite for such attacks on the cloud is the
co-location of the adversary and victim on the same
host. Therefore, the co-location step is important and
challenging especially for attacks that exploit micro-
architectural vulnerabilities in the cloud.

It has been shown how resource provisioning sys-
tems (RPSs) could be an Achilles heel and vulnerability
that can be exploited to solve the co-location challenge
of resource sharing-based attacks." In this adversarial
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machine learning analysis, we explore an attack called
Cloak & Co-locate,” which allows an attacker to put
a Cloak on any malicious VM to force the RPS to
Co-locate the malicious VM with the victim's VM, with-
out modifying the malicious program kernel.

The attack methodology is composed of two main
steps: 1) reverse engineering and 2) generating adver-
sarial samples. The assumption is that the attacker has
black-box access to the machine language (ML)-based
RPS; therefore, they require a proxy model for their
adversarial ML attack setup. Thus, reverse engineering
of RPS is necessary to generate the substitute (proxy)
model.

After the reverse engineering, the attacker gener-
ates adversarial examples (an input added with crafted
noises to fool the ML model) for the substitute model,
instead of the black-box original RPS. Adversarial exam-
ples are utilized to create a Cloak that allows an adver-
sary to co-locate with the victim. It is noteworthy that



the Cloak keeps unchanged not only the functionality
of the malicious kernel but also its syntax. The Cloak is
implemented as a fake trace generator (FTG) that
wraps around an adversary kernel to generate adversar-
ial examples based on the victim's performance profil-
ing trace to enforce the co-location in the first phase of
the attack. In the next phase of the attack, the adver-
sarial examples are used to fool the RPS to prevent
malicious behavior detection and migration to another
host.

Although several defense techniques were proposed
against adversarial attacks on computer vision applica-
tions, these defenses are not studied for enhancing the
security of ML models used in RPS. The assumption in
computer vision-based defenses is that the attacker
has a limitation in the amount of perturbation that can
be added to the input (an image) without changing its
content. It is important because in the computer vision
domain, adversaries aim to perturb an image to fool a
machine learning classifier, and at the same time, the
image should be classified correctly by human eyes. In
the RPS domain, there is no such limitation for perturb-
ing a program, and this allows the attacker to have
more freedom in adding perturbations.

IN THE RPS DOMAIN, THERE IS NO
SUCH LIMITATION FOR PERTURBING
A PROGRAM, AND THIS ALLOWS THE
ATTACKER TO HAVE MORE FREEDOM
INADDING PERTURBATIONS.

To the best of our knowledge, this is the first work
that discusses the challenges of adopting defense
mechanisms against adversarial attacks that target
RPSs. We argue that only a few of the current defenses
are applicable to RPSs in the cloud, and we highlight a
serious need for new techniques to be invented that
guarantee security in the RPS domain.

The two major tasks of RPSs are 1) instance initializa-
tion and 2) periodic monitoring.? In the first task, when
an instance is submitted to the RPS, RPS should profile
it and estimate the resources required for meeting the
SLA, based on its profiling trace. Then, RPS allocates a
suitable host in the cloud to the instance.

The second task starts after the resource allocation,
where the RPS monitors the application’s behavior to
guarantee the SLA all the time. If the application's
behavior changes, the RPS should reschedule and
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migrate the instance to a new host to allocate the
appropriate resources for meeting the SLA agreement.

A periodic monitoring phase can be utilized to
improve both security and performance. For security,
the profiling trace can be used to detect abnormal
behavior. RPS predicts the application’s performance
based on the current behavior and server configura-
tion, to prevent performance degradation in the subse-
quent monitoring window of execution. If in the next
window, the behavior of the application (the architec-
tural signature) is not the same as what RPS predicted
previously, it can mark it as unknown or adversary,
since this behavior has not been seen during the train-
ing phase of RPS's ML model. Afterward, the VM will
simply be isolated/migrated, and a signal will be sent to
the operator for further decisions.

Our threat model targets infrastructure as a service
(laaS) which is a platform for mutually untrusting
users. In this model, VMs from different users can be
co-located on the same host. VMs cannot control
where they are placed, and the information of other
VMs running on the host has not been disclosed to
them. The assumption is that the RPS is neutral in a
way that it does not assist attackers or deploy resource
isolation techniques to prevent attacks run by adver-
sarial users. In our threat model, RPS is assumed ideal
and fair to all VMs and allocates resources based on
the workload characteristics of the application rather
than their place of origin or intention. Moreover, a
black-box access to the RPSs is considered and the
underlying model of RPS for placing VM instances is
unknown. In this way, we can only submit VM instan-
ces and monitor the placement outcome.

In this work, we have two types of VMs: adversarial
VM that wants to get co-located with the victims and
evade from detection mechanism of RPS (avoiding
abnormal behavior or behavior which is not known for
RPS) to degrade victims’ performance or steal sensitive
data. A friendly VM is a benign VM that runs one or
more applications. It does not deploy any memory pat-
tern obfuscation, nor does it employ a preventive
detection mechanism from an adversary.

We considered the worst case for an attacker. It
means that if the adversarial application does not
change its behavior and architectural signature, the RPS
will detect its abnormal/unknown behavior. Another
assumption is that RPS uses any arbitrary technique for
detection. In this case, the simplest way is to observe
whether the adversary application’s profiling trace is
predictable, as discussed in the background section.
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Hence, adversarial applications should change their
micro-architectural and system-level profiling trace to
evade detection. Changing the micro-architectural and
system-level profiling trace does not include hacking the
performance counters or accessing the RPS's database.
The adversary application should change its behavior,
e.g., using the CPU less, or performing dummy memory
access to change the cache misses or memory band-
width usage. On the other hand, the adversary must
remain co-located with the victim. For example, in the
case of a change in the application’s behavior, there is a
high chance that RPS migrates the adversary VM to
another host.

Moreover, black-box access to the RPSs is consid-
ered; the attacker has limited information and cannot
access the internal workings of the RPS. Specifically, the
attacker cannot directly observe the metrics/features
used by the RPS to make placement decisions nor have
knowledge about the underlying model of the targeted
RPS. Thus, the attacker can only submit VM instances
and monitor the placement outcome.

Most attackers are not interested in a random service run-
ning on the cloud. They should pinpoint where the target
resides to perform micro-architectural/resource-sharing-
based attacks. Hence, co-location and co-residency
detection is required first. To locate the victim with
high accuracy, in a reasonable amount of time, and with
modest resource costs, the following steps should be
taken.

Pinpointing Victim

As we mentioned before, the prerequisite is that the
adversary VM resides on a host that the victim VM is
running on. To achieve co-residency, several parame-
ters should be considered, such as data center region,
time interval, and instance type. These parameters can
change among laaS clouds. The application type is one
of the most important parameters in the placement
strategy. The attacker can deploy co-residency detec-
tion techniques such as network probing or use data
mining techniques to detect the type of running appli-
cation in the victim VM to make sure it is co-located
with the victim.'

Continuous Co-Location With Victim

Most cloud providers, such as Microsoft Azure and
Amazon AWS, provide consumer performance monitor-
ing tools. For example, Amazon AWS provides full-stack
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observability that includes AWS-native, and application
performance monitoring (APM), allowing users to under-
stand what is happening across their technology stack
at any time. AWS observability lets users collect and
analyze telemetry in their network, infrastructure, and
applications to gain insights into their systems’ behav-
ior, performance, and health.

One of the sources of information that can be
used for monitoring the performance of a system is
hardware performance counters (HPCs), a set of
special-purpose registers, to monitor hardware-related
events such as last-level cache (LLC) load misses.
These events and other architectural-level traces
can be used to detect abnormal behaviors in computer
systems.

THEREFORE, THE ATTACKER MUST
BEHAVE ADAPTIVELY TO PREVENT
DETECTION AND MIGRATION AND TO
BE ABLE TO REMAIN BESIDE THE
VICTIM TO CONTINUE THE ATTACK.

Although a few low-level microarchitectural events
may not be available with fine granularity in some mul-
titenant environments, there are hundreds of other
architectural and system-level information that profil-
ing tools can still extract. While the Cloak & Co-locate
attack does not fundamentally rely on only HPC traces
to show a proof of concept on our infrastructure, we
did not restrict access to any profiling information
available on our systems. Another recent work shows
that even with high-level system information, it is still
possible to perform the co-location attacks.3*

There are two types of malicious behavior detection
using performance traces of applications: 1) signature-
based and 2) threshold-based. Signature-based appro-
aches create the signature of the attack (profiling trace)
and compare the trace of the system with the attack
signature to identify malicious activity. Resource usage
of an application correlates with the type of application.’
For example, cache activity has been shown to be a
very strong indicator of microarchitectural side-channel
attacks. If the application has a very high level-1 instruc-
tion cache (L1-)) and high LLC pressure, with a high
probability it is a cache-based side-channel attack. On
the other hand, threshold-based approaches utilize the
profiling traces to flag anomaly resource utilization that
goes beyond a prespecified threshold. Therefore, the
attacker must behave adaptively to prevent detection
and migration and to be able to remain beside the victim
to continue the attack.
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FIGURE 1. Overview of Cloak & Co-locate.

In any resource-sharing-based attack, instance initiali-
zation plays a preventive role in such attacks by pre-
venting a malicious instance from co-locating with the
victim instance. This phase of the VM placement algo-
rithm is not disclosed for security reasons by cloud
service providers. Despite this, we show how adversar-
ies can bypass the instance initialization phase and
Co-locate with victims in a high percentage of cases.
When co-residency attacks are detected by periodic
monitoring, it depends on the rescheduling policy and
how to mitigate them. Our goal is to demonstrate how
to conceal the adversary’'s malicious behavior so that
the adversary's instance does not migrate and remains
on the same host as the victim.

We propose to use an FTG, called Cloak, to wrap it
around an adversary application, first for getting co-
located with the victim and then evading detection
and migration mechanism. During the instance initiali-
zation phase, to maximize the chance of co-location,
Cloak will perform a trace mimicry task that mimics
the behavior of the targeted victim application. If the
adversary VM does not get co-located with the victim,
it can terminate its VM, and submit a new VM to be
instantiated. The cost of such an approach is lower
than forcing RPS to migrate the adversary VM to
another platform that hosts the victim VM. After
co-residency, the Cloak will change its mode to con-
stantly generate a new specialized trace that changes
the adversary application’s behavior to evade detec-
tion and migration.

We exploit the concept of adversarial samples in
machine learning to create the Cloak, i.e., FTG, to add
specially crafted perturbations to the input signal for
fooling the RPS. Our goal is to change the model’s out-
put to become similar to the victim's output in the first
phase. In the second phase, the FTG performs a tar-
geted adversarial attack on RPS's ML model to find the

minimum amount of perturbation to add to the input
trace for forcing the RPS to keep the VM on the same
host. This is different from the mimicry attack® for the
first phase which tried to mimic the behavior of the vic-
tim’s application. Moreover, when we are performing a
targeted attack, the perturbation is more inclined to be
similar to another legitimate input but in nontargeted
attacks, the perturbation is more randomly distributed.

To achieve this, our attack has two parts. In the first
part, we have to reverse-engineer the RPS using a
machine learning model proxy to know how the RPS
makes decisions. In the second part, we utilize the
reversed-engineered model (proxy model) to craft our
Cloak; an FTG that will add perturbations to the adver-
sary's application trace to force the RPS to Co-locate it
with the victim. Figure 1 illustrates the overview of our
adversarial attack.

In this section, we explain how we reverse-engineered
the RPS and then crafted perturbation to fool it. How-
ever, the detailed scheme is discussed in Makrani
etal

Reverse Engineering RPS

In the first step, we should train an arbitrary ML model,
i.e., a proxy model, that can provision a server with the
same configuration that the original RPS provisions for
a submitted application to the RPS. As a case study,
we consider PARIS, an RPS proposed at UC Berkeley,
to act as our original RPS.!

PARIS is a machine learning-based RPS that pre-
dicts the performance of the application from its
micro-architectural signature to find the most efficient
configuration. PARIS extracts 20 resource utilization
information to create the fingerprint of the application.
The information used for the application’s fingerprint is
collected from the following resources: CPU utilization,
network utilization, disk utilization, memory utilization,
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and other system-level features. Moreover, CPU count,
core count, core frequency, cache size, RAM per core,
memory bandwidth, storage space, disk speed, and
network bandwidth of the server is used to construct
the set of configurations.

We denote the micro-architectural fingerprint and
system-level information of an application as a Fing
vector

M

Fing = {a1,a,...,a}

where a; denotes each architectural feature.
Configuration parameters of the server's platform
referred to as configuration inputs are as follows:

)

where Conf is the configuration vector, and ¢; is the
value of the ith configuration parameter (such as the
number of cores, core frequency, etc).

The RPS is responsible for the provision Conf based
on Fing:

Conf = {c1, ¢, ...,co}

Conf = f(Fing). (3)

We should note that f(Fing) is a data model which
means there is no direct analytical equation to formu-
late it.

We require a training dataset to train the proxy
model to mimic the functionality of the original RPS.
The dataset has two parts: the first part is the applica-
tion's fingerprint and the second part is the corre-
sponding configuration provisioned by RPS. By having
such a dataset, we can use it for training our proxy
model to map those fingerprints to final configurations.
More details can be found in Makrani et al.’

We use an artificial neural network (ANN) to map
the Fing to Conf. We exploit one ANN per each ¢; in the
Conf. In our detailed evaluation reported in Makrani
et al,’ ANNs perform well with an overall accuracy
of 92.7% to mimic the original RPS. Therefore, after

reverse-engineering the RPS using an ANN, we have a
proxy model ready for simulating the actual RPS to be
utilized for generating adversarial samples.

Fake Trace Generator

The Cloak’s (i.e., FTG) design has two modes. The
first mode activates in the instant initialization phase
(before co-location) and the second mode activates in
the periodic monitoring phase. The FTG starts working
during the instant initialization phase to generate a
trace similar to the victim application to get co-located
with the victim on the same host.

The adversary kernel starts after co-location. While
the kernel starts its attack, the Cloak, i.e., the FTG,
switches to mode 2), to carefully generate a fake trace
(adversarial example) and disguise the behavior of the
adversary kernel. This trace must fool the RPS to main-
tain the adversary kernel on the same host as the vic-
tim. Hence, the FTG constantly monitors the system’s
state and extract profiling trace such as the HPCs
information with the use of profiling tools such as the
Perf tool available in Linux.

To craft a trace for fooling the RPS, we employ a
targeted adversarial attack on the RPS. Hence, we
deploy a low-complex gradient loss-based approach,
similar to the fast-gradient sign method (FGSM), which
is widely employed in image processing. The advantage
of this approach is its low complexity and low compu-
tational overheads. We discussed the implementation
of targeted adversarial attack details in Makrani et al.!
When the trace has been calculated [either in mode
1) or mode 2)], FTG uses iBench to put pressure on a
specific shared resource by calling a few tunable micro
benchmarks. iBench consists of a set of carefully
crafted benchmarks that generate contention on the
core, the cache, the main memory, the storage, and
networking subsystems.

Overal Fingerprint with FTG

Benign's Fingerprint Adversary's Fingerprint
(Spark: recommender) Without FTG 90CPU
CPU :
L2 Disk BW
90 CPU 60
L2 ¢ Disk BW 60
I Disk BW 30
[ Bl LLC 0 Disk Cap
1 |
LLe DidkCap o( g Disk Cap
DRAM Cap Net BW
DRAM Cap Net BW DRAM Cap Net BW
DRAM BW DRAM BW DRAM BW

FIGURE 2. Activation of FTG and increase in the similarity of fake trace and victim's fingerprint during instant initialization phase.
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FIGURE 3. Overall trace using FTG, adversary kernel trace,
and the target.

In contrast to the images where the number of fea-
tures is huge, the number of features, i.e, micro-
architectural metrics are limited in RPS. Another issue
is that a negative perturbation value cannot be gener-
ated by an application. The challenges of crafting the
adversarial application to generate the perturbations
in the micro-architectural features during runtime are
discussed in Makrani et al.'

Figure 2 demonstrates a side-channel attack and
its fingerprint's similarity with a victim application
(Spark: recommender system) during the instant initial-
ization phase. The similarity of fingerprint increases to
78%, after the activation of the FTG in mode 1). Hence,
the adversary VM can be identified as a friendly VM.
The similarity is calculated based on the following For-
mula: 100 — Average(|X; — Yi|), where X and Y each
are an item of profiling trace.

Figure 3 shows how the FTG can generate the
desired trace. This example illustrates an adversary
CPU load with/without the FTG. The FTG, first, calcu-
lates how much CPU load is required using FGSM to be
able to fool the RPS. Then it uses iBench to generate
the required contention. The target (black line) is a tar-
get CPU load calculated by the FTG in the previous
monitoring window (this is not the same as the victim’s
CPU load). If the FTG is not enabled, the adversary CPU
load would be the blue line. If the FTG is active, the
CPU load would be the red line. As is shown, FTG can
match the CPU load of the adversary kernel to the tar-
get load by successfully using iBench.

We have demonstrated that adversarial attacks
against RPS are practical and require urgent attention.
Therefore, we survey the popular solutions proposed
for the image classification domain to explore their
effectiveness for the RPS domain in the next section.

In general, there are three approaches for defenses
against adversarial attacks: modifying training data,
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modifying models, and exploiting external models as
network add-ons. The first approach does not impact
the learning models. However, modifying networks and
network add-ons directly deals with the models. A net-
work add-on appends another model to the original one
without changing the original model. Each approach
can be distinguished as detection only or complete
defense. Table 1 summarizes the defense techniques
that we briefly discuss here.

Approach 1: Modifying Training

1) Using adversarial examples in training (adversar-
ial training)®: In this approach, the adversarial
examples will be used as a training set during
the learning process and retrain the model. This
approach regularizes the network and reduces
over-fitting to improve the robustness of the net-
work. However, generating adversarial examples
against the already adversarially trained models is
still possible. Unfortunately, this solution cannot
be applied against a Cloak & Co-locate attack. Sup-
pose that we have an ML model. We can generate
an adversarial example for it by using one of the
well-known methods, such as FGSM, and fool
the model. Now, if the model gets trained with the
adversarial example again, then the adversarial
example generated before cannot fool the model
anymore. However, for the new adversarial-trained
model, we can still generate another adversarial
example by redeploying the FGSM. Back to our
scenario, the FTG calculates and generates a new
adversarial example each time it is called. Hence,
as long as the RPS's ML model is not retrained and
updated after we finish the reverse engineering
process, the FTG will be able to generate an exam-
ple to fool the model. This assumption is mostly
valid since ML models deployed in cloud infrastruc-
tures would not be updated frequently (at least in
a period shorter than the execution of an applica-
tion). If the RPS's ML model gets updated, then
redoing the reverse engineering would mitigate the
issue of the attack.

2) Data randomization®: Researchers showed that
Gaussian data augmentation and random resiz-
ing of inputs reduce the effectiveness of attacks.
Since the number of features in RPS is not as
large as images, resizing the input may have a
large impact on the accuracy of the model. More-
over, the impact of each feature in image classifi-
cation is almost equal to other features, as pixels
are the same type. However, this is not the case
in the RPS domain. Therefore, an evaluation is
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TABLE 1. Summary of defense techniques.

Validation
Method Category Purpose Data Sets | Architecture | Comments on RPS | Effectiveness
Adversarial Modified Robustness CIFAR-10, VGG, ResNet | Possible to *
training® training CIFAR-100 regenerate the
perturbation
Data Modified Robustness ImageNet ResNet Low number of *
compression’ input features in RPS
Gaussian data Modified Robustness MNIST, ResNet Features are not *
augmentation® | input CIFAR-10 the same in RPS
DCN® Modified Complete MNIST Custom Not an *
networks defense up-to-date solution
Gradient Modified Complete MNIST, Custom Penalizing model rx
regularization™ | networks defense SVHN for reacting to
small changes
Distillation™ Modified Complete MNIST, Custom Low number of *
networks defense CIFAR-10 features in RPS
DeepCloak' Modified Complete CIFAR-10 Residual Low number of *
networks defense network features in RPS
Rectify'® Add on Complete ILSVRC CaffeNet, Perturbation ookl
defense 2012 VGG-F, detector
GooglLeNet
GAN™ Add on Complete CIFAR-10 Custom Robust against **
defense and 100 FGSM
Feature Add on Detection MNIST, DenseNet, Applicable to *
squeezing'™ only CIFAR-10, MobileNet images only
ImageNet
PCA'6 Modified Robustness MNIST, ResNet Low number of *
training CIFAR-10 features in RPS
Ensemble'® Add on Robustness | MNIST, Custom Exploiting the ok
CIFAR-10 combination of
solutions

3)

required to analyze the tradeoff of security and
accuracy when using this technique as a defense.
Data compression’: In the image classification
domain, inputs are usually JPEG images. Since
JPEG compression itself can remove the high-
frequency components, it is observed that JPG
compression can be used against FGSM pertur-
bations. The main issue of compression is that
compression with a high rate decreases the
classification accuracy, while compression with
a lower rate is not effective enough. The major
difficulty of compression in the RPS domain is
that several features utilized by RPS are not
suitable for compression.

Approach 2: Model Modifications

1
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Distillation™: Distillation is a training technique
that transfers the knowledge of a complex

model to a simple model. It is also possible to
use the knowledge of the model to enhance its
robustness. The evaluation results showed that
distillation increases the model's resilience for
image classification. However, the applicability
of such techniques is under question for the
RPS domain because of a much lower number
of features available; hence, extracting knowl-
edge and transferring it to itself may not be as
effective as the one in the image classification
domain.

2) AutoEncoders® It has been demonstrated that

denoising contractive auto encoders are able to
reduce adversarial noise. On the other side, when
they stack them with the original models, this
results in a more vulnerable model against pertur-
bations. After the success of deep contractive
networks against the Limited-memory Broyden-



Fletcher-Goldfarb-Shanno-based™ attacks, several
stronger attacks on deep neural networks are
developed. Hence, it may not be an up-to-date
solution for even the RPS domain. However, an
imperial study is required to understand the
impact of autoencoders in RPS models.

3) Masking'® DeepCloak has been introduced to
add a masking layer just before the classifica-
tion layer. The inserted layer should have the
following features: 1) It should be trained by
forward-passing both original and adversarial
examples. 2) For both original and adversarial
examples, it should be able to encode the dif-
ferences between the output features of the
previous layer. This helps to force the dominant
weights of the inserted layer to zero just by
masking them and, therefore, reduces the sen-
sitivity of the model. For the same reason dis-
cussed above, this technique could not be
suitable for increasing the robustness of RPS mod-
els since the number of features is very limited,
and therefore every piece of information is impor-
tant for RPS to keep the overall accuracy high.

4) Regularization™: It has been shown that by penal-
izing the model during training for some degree of
variation in the output with respect to change in
the input, the model can be robust against small
adversarial perturbation. If this method combines
with adversarial training, it significantly increases
the robustness against attacks. Unfortunately,
this will double the complexity of training a model.
However, it might seem an interesting technique
to robust the RPS since, by default RPS is penal-
ized if it frequently changes its classification in
response to a small change in the application’s
behavior. The cost for RPS to change its classifi-
cation is to migrate the application to a new sys-
tem that may lead to SLA agreement violations.

Approach 3: Add-Ons to the Model

1) Feature squeezing™: Feature squeezing is a tech-
nique to detect whether an image is an adversar-
ial example. By using two extra models besides
the main model, extra models can reduce the
color bit depth pixels, and apply spatial smooth-
ing on the input image. If the classification of the
original image and the squeezed is different, the
adversarial example would be detected. Based on
our investigation, the current technique is not
directly applicable to RPS since the input of the
RPS model is not an image. Moreover, it is just a
detection technique, and for a complete defense,
it should be used along with another technique.
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2) Generative adversarial network-based defense'™:
It has been shown that using generative adver-
sarial networks to train a model can be robust
against FGSM attacks. In this approach, The
model is trained by a generator network that is
responsible for creating perturbation for that
model during the training. The model learns to
classify both the clean input and adversarial
examples. It is a common trend now to train ML
models using this approach. Therefore, it could
be the first layer of defense even for the RPS
model to increase its robustness against Cloak &
Co-locate attack.

3) Rectify™: After introducing universal perturbations,
Akhtar et al."® proposed a defense framework that
inserts an extra layer before the input called “pre-
input.” The purpose of the pre-input layer is to
train the target model to rectify an adversarial
example in a way that the model's classification
becomes similar to its classification of the original
input. These pre-input layers will be trained with-
out modifying the parameters of the original
model. Moreover, rectify trains a perturbations
detector for the training inputs by extracting fea-
tures from the differences between the input and
output of the pre-input layer. In this way, when a
perturbation is detected, rectify uses the output of
the pre-input layer for classifying the input. Since
rectify is equipped with the perturbation detector,
it can be a good candidate for defense in the RPS
domain, especially against the Cloak & Co-locate
attack. As soon as the perturbation is detected, a
new feature will be used for the classification that
will alleviate the impact of the FTG.

Other techniques proposed for malware detection,
like ensemble or dimensionality reduction (PCA), can
be applied to the RPS domain.'® Based on our quick
survey, most of the current solutions cannot be directly
used in RPS and need modifications. Few of them are
not effective in the RPS domain at all, and therefore,
we conclude that this domain requires more attention
from academic research groups.

In this work, we explore the effectiveness of defense
techniques against Cloak & Co-locate—a novel
approach to improve the effectiveness of distributed
attacks on cloud infrastructure. For this purpose, we
first demonstrated that by reverse-engineering the
resource provisioning system and employing the adver-
sarial machine learning attack, the adversary VM can
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Co-locate itself with the victim and evade detection, as
well as migration caused by the scheduler. Then we
used an FTG (Cloak) and wrapped it around the adver-
sary kernel. The FTG is spawned as a separate thread,
generating a pattern close to the victim VM's pattern,
fooling the scheduler to Co-locate it with the victim
VM. After co-location, FTG continuously crafts new
behavior to disguise itself and fool the RPS into remain-
ing co-located on the same host as the victim. We then
selected the most popular defense techniques against
adversarial attacks and analyzed them to check if they
are suitable to mitigate the RPS vulnerabilities against
the Cloak & Co-locate attack.

This work was supported in part by the National Sci-
ence Foundation under Awards 2155002 and 2155029.
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