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Abstract

Through approximating electron-nuclear correlation terms in the exact factoriza-

tion approach, trajectory-based methods have been derived and successfully applied

to the dynamics of a variety of light-induced molecular processes, capturing quan-

tum (de)coherence effects rigorously. These terms account for the coupling among

the trajectories, recovering the non-local nature of quantum nuclear dynamics which

is completely overlooked in traditional independent-trajectory algorithms. Neverthe-

less, some of the approximations introduced in the derivation of some of these methods

do not conserve the total energy. We analyze energy conservation in the coupled-

trajectory mixed quantum-classical (CTMQC) algorithm and explore the performance

of a modified algorithm, CTMQC-E where some of the terms are redefined to restore

1



energy conservation. A set of molecular models is used as test, namely 2-cis-penta-2,4-

dienimium cation, bis(methylene) adamantyl radical cation, butatriene cation, uracil

radical cation, and neutral pyrazine.

1 Introduction

The accurate description of non-adiabatic processes where the electronic and nuclear motion

is highly correlated is fundamental to our understanding of a wide variety of phenomena rang-

ing from photosynthesis,1–3 DNA photo-damage4–6 or charge transfer in photovoltaic cells.7–9

The full quantum-mechanical treatment of the dynamics beyond the Born-Oppenheimer ap-

proximation10 remains limited to a few degrees of freedom and approximate methods that

treat the nuclei quantum-mechanically become unfeasible for large systems without a heavy

investment in computational resources, or recent cutting-edge technologies. 11 Justified by

the large nuclear-electron mass ratio, trajectory-based schemes are the basis for many ap-

proximations for coupled electron-nuclear dynamics, where one propagates an ensemble of

classical-like nuclear trajectories, each associated with a set of quantum electronic coeffi-

cients of, typically, a Born-Huang basis. The methods stem from a quantum evolution

equation such as the time-dependent Schrödinger equation in the conventional Born-Huang

picture,12–14 the exact factorization equations15–18 or the Liouville equation.19–23 In those

frameworks, the classical limit for the nuclear motion is taken, while the electronic degrees

of freedom are kept quantum-mechanical. Different trajectory-based schemes involve differ-

ent approximations, and as a result of those approximations some exact physical constraints

might be broken. One important example is the conservation of total energy which is a

manifestation of the symmetry of the system under time-translation. Specifically, in the full

quantum-mechanical picture the expectation value of the molecular Hamiltonian over the

total molecular wavefunction is a constant of motion when no external fields are present. In

the approximate trajectory-based view, energy can be exchanged between the ensemble of

classical (nuclei) and quantum (electrons) degrees of freedom but should be such that the
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total energy of the system remains invariant. The most widely used trajectory-based meth-

ods, Ehrenfest dynamics and surface-hopping,13,24 impose this conservation law although in

a somewhat restrictive way: each individual trajectory in the ensemble conserves its clas-

sical energy in these schemes but it is the energy of the trajectory ensemble as a whole

that should be conserved, as it is the ensemble that represents the time-dependent nuclear

probability density. In principle, trajectories should be able to exchange energy, but this

is not possible with independent-trajectory schemes such as these. This tight constraint

on the energy conservation of the system might prevent opening channels for the classical

trajectories in the energy landscape that are accessible in the quantum dynamics, leading

to inaccuracies. More sophisticated SH methods that involve interacting trajectories 22 or

additional Ehrenfest-like quantum forces on independent trajectories 25,26 conserve the total

energy of the ensemble with neither the too-strong constraint of individual-trajectory-energy

conservation nor the need of enforcing the ad-hoc momentum rescaling of standard SH. Fur-

ther, the disconnect between coherent electronic evolution and incoherent nuclear trajectory

propagation in surface-hopping means that energy is only conserved when the potential en-

ergy of the system is defined in terms of the instantaneous active state energy rather than

from the coherent electronic evolution. This will be further discussed in the next section.

While the exact factorization27–36 has offered a new framework to develop new trajectory-

based methods, capturing quantum (de)coherence effects in a variety of photochemically

interesting systems from first principles, these methods are not immune to the breakdown

of physical constraints such as energy conservation due to approximations made in their

derivation. The coupled-trajectory mixed quantum-classical (CTMQC) algorithm was the

method that was derived first and, at its core, consists of an ensemble of classical-like trajec-

tories that are coupled throughout their dynamics. Such coupling provides new mechanisms

to correctly reproduce quantum (de)coherence effects. A modification in the algorithm was

recently proposed, dubbed CTMQC-E, which restores energy conservation for the ensemble

of coupled trajectories.37 In this work, we extensively analyze the extent and implications
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of energy (non)conservation in CTMQC and in CTMQC-E with a detailed study of elec-

tronic and nuclear properties for a variety of molecular models parametrized to reproduce

the dynamics of a set of molecules with different features, e.g. different topologies of con-

ical intersections and of growing complexity. We study the ultrafast dynamics through a

2-dimensional conical intersection in bis(methylene)adamantyl (BMA) radical cation, buta-

triene cation and pyrazine, the photoisomerization dynamics of 2-cis-penta-2,4-dieniminium

cation (PSB3) and the photo-relaxation dynamics after photo-ionization through a 3-states

conical intersection in the uracil radical cation.

The paper is organized as follows. In Section 2 we begin first by reviewing the exact fac-

torization approach and the trajectory-based methods derived from it, then examine energy

conservation in these methods and introduce the modified CTMQC-E algorithm. Section 3

is devoted to numerical simulations of the molecular models comparing the performance of

CTMQC-E with respect to CTMQC as well as surface-hopping with energy-based decoher-

ence correction. Section 4 at last provides the main conclusions of our work as well as an

outlook.

2 Theoretical Background

2.1 The Exact Factorization Approach

Let’s briefly review the exact factorization (EF) equations. In the EF, the full molecular

wavefunction is factorized into a single correlated product 33,34

Ψ(r,R, t) = χ(R, t)ϕR(r, t) (1)

where variables r, R denote all the electronic and nuclear coordinates respectively. The time

evolution of the electronic (ϕR(r, t)) and nuclear (χ(R, t)) subsystems are governed by a set
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of coupled equations

i∂tΦR(r, t) =
(
Ĥel(r,R, t)− ε(R, t)

)
ΦR(r, t) (2)

i∂tχ(R, t) =
(
ˆ̄TN(R, t) + ε(R, t)

)
χ(R, t) (3)

with the electronic Hamiltonian Ĥel and the mechanical nuclear kinetic energy operators1

ˆ̄TN defined as

Ĥel(r,R, t) = ĤBO(r,R) + Ûen[ΦR, χ] (4)

ˆ̄TN(R, t) =
Nn∑
ν=1

1

2Mν

(−i∇ν +Aν(R, t))2 (5)

Atomic units are used throughout this article. Nuclear masses are indicated with the symbol

Mν , with ν labelling the Nn nuclei. ĤBO is the Born-Oppenheimer (BO) Hamiltonian (the

sum of the electron kinetic energy, electron-electron, nuclear-nuclear, and electron-nuclear

interaction operators). The electron-nuclear coupling term reads

ÛeN [ΦR, χ] =
Nn∑
ν=1

1

Mν

[
(−i∇ν −Aν(R, t))2

2

+

(
−i∇νχ(R, t)

χ(R, t)
+Aν(R, t)

)(
−i∇ν −Aν(R, t)

) ]
(6)

and the time-dependent potential energy surface (TDPES) is

ε(R, t) =
〈
ΦR(t)

∣∣∣Ĥel(R, t)− i∂t

∣∣∣ΦR(t)
〉
r

(7)

1We name the operator ˆ̄TN (R, t) mechanical kinetic energy operator in analogy with the mechanical
momentum p̃ν = mvν = pν − Aν in the presence of an electromagnetic field with pν = −i∇ν being the
canonical momentum operator that satisfies the conmutation relations [pν,i, Rν,j ] = iδij for i = x, y, z
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Together with the time-dependent vector potential (TDVP) appearing in Eqs. (2) and (6)

Aν(R, t) =
〈
ΦR(t)

∣∣∣ −i∇νΦR(t)
〉
r
, (8)

these three terms capture exactly electron-nuclear correlation. The symbol ⟨...⟩r stands

for an integration over the electronic variables. In this framework, the total energy of the

molecule can be written as

⟨E⟩ = ⟨Ψ(t)|ĤBO + T̂N |Ψ(t)⟩r,R (9)

The nuclear kinetic energy can be written as a sum of two contributions 34,38,39

⟨T̂N⟩r,R = ⟨χ(t)| ˆ̄TN |χ(t)⟩R + TN,geom (10)

where the first term stands for the expectation value of ˆ̄TN over the nuclear wavefunction

only, and second term is a geometric term which can be expressed as the nuclear-density-

weighted integral of the electron-nuclear coupling operator

TN,geom =

∫
dR|χ(R, t)|2⟨ΦR|ÛeN |ΦR⟩r (11)

This geometric term accounts for the difference between the nuclear kinetic energy evaluated

from the full molecular wavefunction and that evaluated as the expectation value of the

mechanical nuclear kinetic energy operator on the nuclear wavefunction.
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2.2 Exact-Factorization based mixed quantum-classical methods

CTMQC15,16 was derived by taking the classical limit of the nuclear motion, expanding the

time-dependent electronic wavefunction in the Born-Huang (BH) basis

ϕR(r, t) =
∑
l

Cl(R, t)ϕl
R(r) (12)

and neglecting some terms in the equations based on exact studies: 40,41 the gradients of

the moduli of the electronic coefficients, terms of order O(m/M) which essentially contain

second-order derivative couplings, a term in the expression of the TDVP that depends on

the nonadiabatic coupling (NAC) vector, and terms that contain the product of the NAC

vector and the nuclear quantum momentum. Let us briefly review the CTMQC equations.

The electronic coefficients evolve as

Ċ
(α)
l (t) = Ċ

(α)
l,Eh(t) + Ċ

(α)
l,CT (t) (13)

and the nuclear force is given by

F(α)
ν (t) = F

(α)
ν,Eh(t) + F

(α)
ν,CT (t) (14)

where the first terms in both equations are Ehrenfest-like terms:

Ċ
(α)
l,Eh = −iϵ

(α)
l C

(α)
l −

∑
k

Nn∑
ν

Ṙ(α)
ν · d(α)

ν,lkC
(α)
k (15)

F
(α)
ν,Eh = −

∑
l

ρ
(α)
ll ∇νϵ

(α)
l +

∑
l,k

ρ
(α)
lk ∆ϵ

(α)
lk d

(α)
ν,lk (16)

We have adopted the shorthand notation f (α) = f(R(α)(t)) denoting evaluation of a function

f of the nuclear coordinates at the position of trajectory α. From this point forward we

omit the t-dependences of the quantities to avoid notational clutter. The electronic density-

7



matrix elements are ρ
(α)
lk = C

(α)∗
l C

(α)
k , d(α)

ν,lk is the NAC vector along the ν nuclear coordinate

between BO states l and k, i.e. ⟨ϕl
R(r)|∇νϕ

k
R(r)⟩

∣∣
R(α) ; the sums over Latin indices go over

the electronic states. The eigenvalues of ĤBO, i.e. the adiabatic or BO potential energy

surfaces (PES), are denoted ϵ
(α)
l and ∆ϵ

(α)
lk is the energy difference between states l and k at

the nuclear configuration R(α)(t). The second terms in Eqs (13) and (14) are the corrections

arising from EF

Ċ
(α)
l,CT =

Nn∑
ν

∑
k

Q
(α)
ν

Mν

·∆f
(α)
ν,lkρ

(α)
kk C

(α)
l (17)

F
(α)
ν,CT (t) =

Nn∑
µ

∑
l,k

2Q
(α)
µ

Mµ

· f (α)µ,l ρ
(α)
ll ρ

(α)
kk ∆f

(α)
ν,lk (18)

with subscript CT used to denote that these terms involve coupled trajectories. ∆f
(α)
ν,lk =

f
(α)
ν,l − f

(α)
ν,k , where f

(α)
ν,l is the time-integrated adiabatic force on nucleus ν accumulated on the

l-th BO PES along the trajectory α (i.e. an adiabatic momentum)

f
(α)
ν,l = −

∫ t

0

∇νϵ
(α)
l dτ , (19)

and Q
(α)
ν is the nuclear quantum momentum evaluated at the position of the trajectory

R(α)(t)

Q(α)
ν = −∇ν |χ(α)|2

2|χ(α)|2
(20)

Variations of the CTMQC algorithm have been explored, for example, using the elec-

tronic equation Eq.(13) within a surface-hopping (SH) or Ehrenfest (Eh) scheme for the

nuclear evolution,18,42–44 resulting in a family of trajectory-based methods. A central feature

of these methods is the coupling of trajectories through the nuclear quantum momentum

Eq. (20) appearing in the EF terms. This term can be computed in two different ways. The

original definition (Q0) implies using Eq.(20) where the nuclear density is reconstructed as

a sum of gaussians centered at the position of the classical trajectories or by placing the

gaussian functions on auxiliary trajectories43 created on non-active BO PES to approximate
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this coupling locally. This definition potentially leads to unphysical spurious net electronic

population transfer in regions of zero NAC.16,17,45 To circumvent this problem, the quan-

tum momentum is redefined (Qm) by imposing, per degree of freedom, zero net population

transfer between each pair of electronic states coming from the CT term16,17

Ntr∑
α

Q
(α)
µ,i,lk

Mµ

ρ
(α)
ll ρ

(α)
kk ∆f

(α)
µ,i,lk = 0 i = x, y, z (21)

Note that even though the trajectory-averaged population-transfer coming from the CT

term is zero, the quantum momentum can induce population transfer associated with an

individual trajectory, a mechanism that is lacking in traditional methods. 36 The modified

definition of the quantum momentum (Qm) resulting from Eq. (21) has been successfully

applied in CTMQC calculations of photo-induced molecular dynamics. 17,46–49 This condition

of zero net population transfer in regions of zero NAC may be viewed as an exact condition to

be imposed within the algorithm, as we will shortly do for the conservation of total energy. 37

While the coupling of the trajectories adds computational complexity with respect to

independent-trajectory methods, an efficient parallelization scheme could mitigate this in-

creased cost. The scaling of these methods with system size is linear 50 and quadratic with

the number of trajectories. Note that when interfaced with ab initio quantum chemistry

codes, the computational bottleneck is generally the electronic structure calculations rather

than the coupled-trajectory dynamics (since the coupling among the trajectories does not

require additional electronic structure calculations).

2.3 Energy conservation in trajectory-based methods

Let us start by reviewing energy conservation in standard trajectory-based schemes, i.e. Eh

and SH. Both treat the nuclear degrees of freedom classically, therefore the nuclear kinetic
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energy term simply reduces to the classical kinetic energy of the nuclei

T̂N = −
∑
ν

1

2Mν

∇2
ν → T

(α)
N =

∑
ν

1

2
MνṘ

(α) 2
ν (22)

which would then be ensemble-averaged. In Eh dynamics the effective potential energy, U (α),

of the system along the α-th trajectory is the expectation value of the time-independent

electronic Hamiltonian over the instantaneous electronic wavefunction along that trajectory:

U (α) = ⟨Φ(α)|ĤBO|Φ(α)⟩r =
∑
l

ρ
(α)
ll ϵ

(α)
l (23)

This effective potential, when used in conjunction with the mean-field force acting on the nu-

clei MνR̈
(α)
ν = −⟨Φ(α)|∇νĤBO|Φ(α)⟩ = F

(α)
ν,Eh given by Eq. (16), results in the time-derivative

of the total energy along a trajectory

dE(α)

dt
=

dT
(α)
N

dt
+

dU (α)

dt
=

dT
(α)
N

dt
+ ∂tU

(α) +
∑
ν

∇νU
(α) · Ṙ(α)

ν

=
∑
ν

F
(α)
ν,Eh · Ṙ

(α)
ν +

Nst∑
l

ρ̇
(α)
ll,Ehϵ

(α)
l +

∑
l

ρ
(α)
ll

∑
ν

(
∇νϵ

(α)
l

)
· Ṙ(α)

ν = 0 (24)

which by inserting Eqs. (15-16), can be shown to be zero, implying energy conservation.

In the case of SH, energy conservation is more subtle. This stems from the inconsistency

of having a coherent electronic evolution while each nuclear trajectory is collapsed on a given

surface at any time. The potential that drives the nuclear motion is the instantaneous active

state BO energy, i.e, MνR̈
(α)
ν = −∇νϵ

(α)
active. If the electronic potential energy is determined

from the quantum-mechanical electronic populations along a trajectory then the potential

energy is given by Eq. (23), and energy is not conserved since F(α)
ν ·Ṙ(α)

ν = −∇νϵ
(α)
active ·Ṙ

(α)
ν ̸=

∇νU
(α) · Ṙ(α)

ν + ∂tU
(α). However if instead the electronic populations in the definition of the

energy are obtained from the fraction of trajectories, i.e. ρ
(α)
ll → δ

(α)
l,active, then we would
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define the potential energy through

U (α) = ϵ
(α)
active (25)

and each trajectory in the ensemble conserves total energy. Further, when a hop occurs the

velocity of the trajectory can be rescaled in different ways 51–53 to satisfy energy conservation.

Let us now analyze energy conservation in EF trajectory-based schemes. We start by

defining the total energy of the molecule from the expectation value of the full Hamiltonian

over the factorized wavefunction

⟨E⟩ = ⟨Ψ|ĤBO|Ψ⟩r,R + ⟨χ| ˆ̄TN |χ⟩R + TN,geom (26)

The geometric contribution to the kinetic energy will be set to zero to be consistent with the

neglect of the first term of ÛeN in Eq. (6) within CTMQC. To analyze the marginal kinetic

term, we write the nuclear wavefunction in its polar representation χ(R, t) = |χ(R, t)|eiS(R,t)

such that

⟨χ| ˆ̄TN |χ⟩R =

∫
dR|χ(R, t)|2

[∑
ν

1

2Mν

(
∇νS(R, t) +Aν(R, t)

)2
+Q(R, t)

]
(27)

where we can identify the mechanical momentum MνṘν = ∇νS(R, t) + Aν(R, t) and the

quantum potential

Q(R, t) = −
∑
ν

1

2Mν

∇2
ν |χ(R, t)|
|χ(R, t)|

. (28)

Since the quantum potential is neglected in deriving the CTMQC equations of motion for

the trajectories,15,16 we neglect it in the expression of the energy for consistency. Writing the

electronic wavefunction in a BH-like expansion, i.e Eq. (12), and reconstructing the nuclear
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density from the classical distribution of point-like trajectories

|χ(R, t)|2 = 1

Ntr

Ntr∑
α

δ(R−R(α)(t)) (29)

we derive2

⟨E⟩ =
1

Ntr

Ntr∑
α

(
1

2

Nn∑
ν

MνṘ
(α)2
ν +

∑
l

ρ
(α)
ll ϵ

(α)
l

)
(30)

Thus the time-derivative of the CTMQC energy yields

⟨Ė⟩ =
1

Ntr

Ntr∑
α

(∑
ν

F
(α)
ν,CT · Ṙ(α)

ν +
Nst∑
l

ρ̇
(α)
ll,CT ϵ

(α)
l

)

=
1

Ntr

Ntr∑
α

∑
µ

Q
(α)
µ

Mµ

·
∑
l,k

ρ
(α)
ll ρ

(α)
kk ∆f

(α)
µ,lk

[∑
ν

∆f
(α)
ν,lk · Ṙ

(α)
ν +∆ϵ

(α)
lk

]
(31)

which shows that, in general, energy-conservation is not guaranteed in this scheme. It should

be noted that total energy conservation is also not assured in the other members of the fam-

ily of EF trajectory-based methods. MQCXF43 (independent-trajectory mixed quantum-

classical scheme based on the exact factorization, introduced originally as EhXF) uses the

same electronic evolution and nuclear force as in CTMQC using auxiliary trajectories to com-

pute the quantum momentum, and thus it does not satisfy energy conservation. CTTSH 42

(coupled-trajectory Tully surface hopping) and SHXF 18 (decoherence-induced surface hop-

ping based on the exact factorization, introduced originally as DISH-XF) use the electronic

equation Eq.(13) within a SH framework, and as we discussed previously, the total energy

of each trajectory will only be conserved if the electronic populations in the definition of the

energy are obtained from the fraction of trajectories. On the other hand, CTEh 54 (coupled-

trajectory Ehrenfest) and EhXF (independent-trajectory Ehrenfest based on the exact fac-

torization) use the electronic equation Eq.(13) with an Eh force acting on the nuclei, and as
2Note that the second term in parenthesis is the gauge-invariant part of the approximated TDPES in

CTMQC.
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we can see from Eq.(31) this implies energy non-conservation ⟨Ė⟩ = 1
Ntr

∑Ntr

α

∑Nst

l ρ̇
(α)
ll,CT ϵ

(α)
l .

2.4 The CTMQC-E algorithm

As we mentioned in section 2.2, the quantum momentum is redefined in CTMQC to satisfy

an exact condition of zero net population transfer in regions of zero NAC. 16,17 In the same

spirit, some of us recently proposed a modification to CTMQC, named the CTMQC-E algo-

rithm,37 where an exact constraint, namely total energy conservation, is imposed by redefin-

ing the time-integrated adiabatic force f
(α)
µ,l . This approach was inspired by the work of Min

and coworkers43 which fixed energy conservation along each trajectory in the independent-

trajectory version of CTMQC that uses auxiliary trajectories to evaluate the quantum mo-

mentum. Instead CTMQC-E preserves the coupled-trajectory nature of CTMQC and allows

the trajectories to exchange energy. It is the total energy of the ensemble rather than the

energy of each trajectory, that is the conserved quantity. In the framework of the modified

definition of the quantum momentum Eq. (21), we see from Eq. (31) that energy will be

conserved in situations where the quantity in the square brackets,
∑

ν ∆f
(α)
ν,lk · Ṙ

(α)
ν +∆ϵ

(α)
lk is

independent of the trajectory index. CTMQC-E enforces this by redefining the accumulated

force f
(β)
ν,l → f̃

(β)
ν,l in such a way that such term equals its trajectory average, namely

∑
ν

f̃
(β)
ν,l · Ṙ(β)

ν +∆ϵ
(β)
lk =

1

Ntr

(∑
α,ν

f
(α)
ν,l · Ṙ(α)

ν +∆ϵ
(α)
lk

)
(32)

It automatically follows from Eq. (31) that ⟨Ė⟩ = 0. A solution that satisfies Eq. (32) is:

f̃
(β)
ν,l =

(
−ϵ

(β)
l + 1

Ntr

∑
α,ν f

(α)
ν,l · Ṙ(α)

ν + ϵ
(α)
l

)
∑

µ n
(β)
µ · Ṙ(β)

µ

n(β)
ν (33)

where n
(β)
ν is an arbitrary vector defining the direction of f̃ (β)ν,l . While any direction for n

(β)
ν

in Eq. (33) guarantees energy conservation, we choose n
(β)
ν as the instantaneous mechanical

momentum of the trajectory n
(β)
ν = MνṘ

(β)
ν , with the reasoning that the accumulated force,
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Eq. (19), represents a momentum along the trajectory

f̃
(β)
ν,l =

(
−ϵ

(β)
l + 1

Ntr

∑
αν f

(α)
ν,l · Ṙ(α)

ν + ϵ
(α)
l

)
2E

(β)
kin/Mν

Ṙ(β)
ν (34)

The choice of this direction results in the EF-contribution to the nuclear force in Eq. (18)

being parallel to the trajectory’s momentum. The correction to the accumulated force in

Eq. (34) to the CTMQC algorithm, namely CTMQC-E, is currently implemented in the G-

CTMQC package55 and can be freely accessed on GitLab under GNU Lesser General Public

License (LGPL).

The purpose of our numerical studies, reported in Section 3, is to clarify the problem of

energy conservation in CTMQC and to understand how CTMQC-E effectively acts on the

systems. Specifically, CTMQC-E is a strategy to a posteriori correct the CTQMC equations

rather than to impose energy conservation in the course of the derivation of the quantum-

classical equations. For this reason, we investigate a broad class of models with different

properties and we report on several observables. As we will see in the following, imposing

energy conservation via CTMQC-E by correcting the accumulated force of CTMQC affects

the electronic populations and the behavior of the trajectories, in terms of their positions and

momenta. We will observe that the trajectories are somehow “better behaving” in CTMQC-E

than in CTMQC, as some of those exploring unphysical regions of phase space are corrected

so as to follow more closely the quantum nuclear distribution. Unexpectedly, however, some-

times the electronic populations and coherences calculated according to CTMQC-E deviate

from CTMQC and from the reference results.

3 Numerical Simulations

In this section, we present studies of nonadiabatic dynamics in different molecular models

exploring the performance of CTMQC-E imposing energy conservation when CTMQC fails
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doing so. Our main findings are summarized in Table 1. In the table we report the name of

the molecular model that will be presented in the first column, i.e. BMA, butatriene cation

and pyrazine (section 3.1), PSB3 (section 3.2) and uracil radical cation (section 3.3). The

following columns are the total nuclear masses, the number of the nuclear degrees of freedom,

the length of the simulations and the excitation energies. The excitation energies are the

differences between the energy of the initially populated state and the ground state at the

Franck-Condon point. For the uracil radical cation, where more than one state is initially

populated, we give only the energy of the dominant D2 state. Over those propagation times

we observe a certain deviation (∆E) of the total energy for a CTMQC dynamics which is

strongly reduced by CTMQC-E. To quantify the improvement of the energy conservation

we compute (∆E(CTMQC)−∆E(CTMQC− E) /∆E(CTMQC) to estimate the relative

improvement of CTMQC-E over CTMQC, which is given in the last column of the table.

In the following sections, we will give an overview of various observables affected by the

correction proposed in CTMQC-E.

Table 1: Total mass (M) in atomic units, number of degrees of freedom (Ndof ), total simu-
lation time (T) in fs, excitation energy (ω∗) in eV, total energy deviation (∆E) in eV and
reduction in % of energy deviation of CTMQC-E with respect to CTMQC for the studied
models.

M Ndof T ω∗ ∆E (CTMQC) ∆E (CTMQC-E) %E
BMA 2.0 2 24 0.79 0.1000 0.0090 91.00

Butatriene 2.0 2 48 0.44 1.6142 0.4040 74.97
Pyrazine 2.0 2 100 0.84 2.1611 0.2656 87.70

PSB3 53482.8 3 180 4.21 2.5556 0.3486 86.34
Uracil cation 204321.67 8 60 1.05 2.2597 0.9003 60.16

3.1 Dynamics through a 2D-CI in BMA, Butatriene cation and

Pyrazine

Our first example is a set of 2-dimensional 2-state linear vibronic coupling models 56 which

represent molecular systems with a conical intersection (CI): bis(methylene) adamantyl

(BMA) radical cation, butatriene cation and pyrazine (Figure 1). The dynamics through
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the CIs in these systems was studied with ab initio multiple spawning (AIMS) and SH in

Ref. [ 57], where both AIMS and SH performed well in describing the dynamics through

the CI in these systems. It is has been argued56 that the lack of geometric phase effects in

methods such as AIMS (SPA0) and SH is compensated by their neglect of the diagonal BO

corrections.

We will test the performance of CTMQC-E, with respect to CTMQC and SH with energy

decoherence correction58 (SH-EDC) having quantum dynamical results as benchmark.

Figure 1: Lewis structures of BMA, butatriene cation and pyrazine.

The BO Hamiltonian for these systems is modelled in the diabatic basis by

HBO(x, y) =

V1(x, y) λ(y)

λ(y) V2(x, y)

 (35)

where the diabatic potentials V1(x, y) and V2(x, y) are two identical two-dimensional har-

monic oscillators with centers shifted with respect to one another in the x direction and

displaced in energy. They are coupled through a linear potential λ(y) in the y-direction.

Figure 2 shows the adiabatic PESs obtained from diagonalizing Eq. (35) for the BMA model.

The details of the models can be found in appendix A.1 (Table 2). For the quantum dynam-

ics (QD) simulations, the time-dependent Schrödinger equation is solved on a grid in the

diabatic basis using the split-operator method. 59,60 The initial gaussian nuclear wavepacket

is initialized in the excited adiabatic state χS1(x, y, 0) = N e−(
x−x0
σx

)
2

e
−
(

y−y0
σy

)2

with widths,

in bohr, of σx =
√

2
ω1

and σy =
√

2
ω2

. This yields to widths of (16.07, 17.30) bohr for

BMA, (14.47, 24.43) bohr for butatriene cation and (23.41, 21.86) bohr for pyrazine. The
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Figure 2: Adiabatic PESs for the BMA molecular model. The black dot indicate the loca-
tion of the conical intersection, and the red cross the center of the initial Gaussian nuclear
wavepacket.

centers of the wavepacket correspond to the Franck-Condon point of the ground state of

the full dimensional model, i.e., (15.53, 0.0) bohr for BMA, (−2.08, 0.0) bohr for butatriene

cation and (5.10, 0.0) bohr for pyrazine. For the trajectory-based simulations Ntr = 1000

Wigner-distributed trajectories are run starting on the excited state and the time-step used

in the calculations is dt = 0.0024 fs (0.1h̄/Ha). For SH-EDC the value for the C parameter

that determines the decoherence rate was chosen to be C = 0.1 Ha. The populations and

coherences in the QD simulations are obtained via numerical integration

P QD
l (t) =

∫ ∫
dxdy |χl(x, y, t)|2

σQD
lk (t) =

∫ ∫
dxdy

|χl(x, y, t)|2|χk(x, y, t)|2

|χ(x, y, t)|2
(36)

where {χl(x, y, t)} are the nuclear-coordinate and time-dependent coefficients in the BH

expansion of the full state of the system and |χ(x, y, t)|2 =
∑

l |χl(x, y, t)|2 is the total
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nuclear density. The trajectory-based (quantum-classical) analogous quantities are ensemble-

averages

P QC
l (t) =

1

Ntr

Ntr∑
α

ρ
(α)
ll (t)

σQC
lk (t) =

1

Ntr

Ntr∑
α

|ρ(α)lk (t)|2 . (37)
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Figure 3: Total energy deviation (upper panel), coherences (middle panel) and excited
state populations (lower panel) as a function of time for BMA using CTMQC (blue lines),
CTMQC-E (red lines), SH-EDC (green lines) and QD (black lines).

The total energy deviation is computed from Eq. (30) by subtracting the total energy at

the initial time.

Figure 3 shows the excited state population (lower panel), the coherences (middle panel)

and the total energy deviation (upper panel) for BMA obtained from CTMQC, CTMQC-

E, SH-EDC and QD calculations. CTMQC-E and especially CTMQC both closely follow
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Figure 4: Snapshots of the nuclear density and distribution of trajectories for BMA.

the exact S1 population decay up to 6 fs and subsequent back-transfer from around 15

to 20 fs for a later decay from 20 to 24 fs. SH-EDC underestimates the repopulation of

S1 that starts at 15 fs. In terms of coherences all 3 trajectory-based methods predict the

right trend qualitatively with CTMQC being closest to the reference quantum dynamics

result. Concerning the total energy, CTMQC-E significantly corrects the violation of energy

conservation displayed in the CTMQC calculation, with a small energy increase which is

caused by two effects. First, for trajectories for which the denominator in Eq. (34) becomes

smaller than a fixed threshold, the accumulated force reverts to its original definition, which

does not conserve energy. Second, even when the new definition is used, the quantum

momentum computation may revert to the original quantum momentum Q0 definition when
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populations (lower panel) as a function of time for butatriene cation using CTMQC (blue
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Figure 6: Average values of the nuclear positions (upper panels) and corresponding variances
(lower panel) for butatriene using CTMQC (blue lines), CTMQC-E (red lines), SH-EDC
(green lines) and QD (black lines).

a denominator involved in imposing Eq. (21) becomes too small: 17,45 our redefined force is

guaranteed to conserve energy only when used in conjunction with the modified definition

Qm.

Although the electronic populations and coherences may be a little worse with CTMQC-

E than in CTMQC, the violation of energy conservation of the latter adversely affects the

nuclear dynamics. This can be seen in the distribution of classical-like trajectories plotted

together with the quantum nuclear density in Figure 4. We observe at 20 fs that the position

of some CTMQC trajectories diverge from the nuclear density exploring regions of large

negative values of the x-coordinate, as a consequence of an increase in the total energy of

the ensemble. Applying the correction to the accumulated force in CTMQC-E remarkably

improves energy conservation and the trajectories follow closely the exact density.

Let us now focus on the results for the butatriene cation in Figure 5. We observe that

all trajectory-based methods underestimate the rapid S1 population decay up to 20 fs. In-

terestingly, SH-EDC is the best performing method. CTMQC underestimates the initial

population transfer event prior to 10 fs, and overestimates both the back-transfer at about
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12 fs and a subsequent transfer around 20 fs. CTMQC-E on the other hand underestimates

the initial population transfer but the subsequent two transfer events follow the trend of

the exact more closely (the populations are shifted up due to the initial underestimate).

Interestingly, all the trajectory-based methods miss the repopulation of the excited state at

36 fs. In terms of coherences, CTMQC and SH-EDC predict the QD trend with a decay in

the coherence after the passage through the CI rising later at around 40 fs. CTMQC-E on

the other hand, remains overcoherent. In terms of energy conservation, CTMQC-E improves

energy conservation reducing the energy leakage of CTMQC, which impacts the nuclear

dynamics. Figure 6 shows the trajectory-averaged values of the nuclear coordinates as a

function of time and the QD expectation values together with their corresponding variances.

We observe that all trajectory-based methods capture the dynamics along x. In terms of the

variance σx all the trajectory-based methods show similar behavior up to 10 fs differing from

the QD reference when the wavepacket funnels through the CI. CTMQC starts clearly devi-

ating from the QD reference trend at 10 fs, growing rapidly due to a gain of the total energy

of the ensemble. CTMQC-E corrects the behavior and shows similar variance than SH-EDC

and both slightly over-dampen the oscillations on σx. The increase in the total energy of

the ensemble is manifested also in the dynamics along y. We observe that in CTMQC the

average value of y deviates significantly from the QD reference showing a very large positive

oscillation. CTMQC-E on the other hand overcompensates this behavior showing reduced

oscillation on the opposite direction, while SH-EDC matches pretty well the QD reference in

terms of both y and its varaince σy. CTMQC-E shows reduced increase in the variance, while

CTMQC underestimates it more initially before then showing an increase later on at 45fs.

The CT contribution to the force on the nuclei appears to be responsible for the incorrect

behavior in the y-coordinate, since this does not occur for CTTSH (not shown here).

Finally, let us take a look at the case of the pyrazine model. The populations, coherences

and total energy deviation are shown in Figure 7. As in the previous case for the butatriene

cation, all methods underestimate the first initial population decay, with SH-EDC outpe-
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forming CTMQC and CTMQC-E with a population behaviour similar to the QD results. In

terms of coherences, SH-EDC simulates the decoherence and recoherence closely, and CT-

MQC captures the decoherence well but shows a more gradual recoherence than the exact.

CTMQC-E, on the other hand, remains overcoherent. The increase in the total energy of the

system is notably reduced with the accumulated force correction of CTMQC-E as evidenced

in the lower panel.

In summary, for these models we observe that the quality of the dynamics is improved in

terms of nuclear properties, while the electronic, are either slightly improved by CTMQC-E

in comparison to CTMQC or remain not very much affected by the correction. Nonetheless,

such a correction affect sometimes the coherences, which is a probably fair price to pay since

the overall dynamics is stabilized by reducing the energy drift observed in CTMQC.

3.2 Ultrafast photoisomerization of PSB3

Our second example is a 3-dimensional two-state model 61 of the photo-induced isomerization

of PSB3 (Figure 8), which has been studied in Ref. [ 47,62] with various trajectory-based

methods as well as in Ref. [ 37] with CTMQC-E. Here, we will extend the analysis on the

mechanism of action of CTMQC-E and the consequences for some nuclear observables.

Figure 8: Schematic representation of isomerization process of PSB3.

The diabatic Hamiltonian is

HBO(r, θ, ϕ) =

V1(r, θ, ϕ) λ(θ, ϕ)

λ(θ, ϕ) V2(r, θ, ϕ)

 (38)

The nuclear degrees of freedom R = (r, θ, ϕ), are the bond-length-alternation stretching
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(r), the torsional deformation around the double reactive bond C=C (θ) and the hydrogen-

out-of-plane wagging (ϕ). These modes drive the ultrafast isomerization of PSB3 after

photo-excitation to the first singlet excited state (S1).63,64 The expression for the diabatic

potentials and couplings can be found in Appendix A.2 (Table 3).

In our trajectory simulations, we propagated Ntr = 600 Wigner-distributed trajectories

starting in the S1 state, with centers at (0.172459 bohr, 0◦, 0◦) for the r, θ and ϕ coordinates,

all with zero center momentum. The variances were (0.154449 bohr, 0.183302◦, 0.406143◦).

Periodic boundary conditions were applied to the θ and ϕ degrees of freedom, with peri-

odicities of 2π and 4π, respectively. The same periodicity was imposed on the centers of

the quantum momentum. We used a nuclear and electronic time-step of dt = 0.00024 fs

(0.01h̄/Ha). For the QD simulations, the initial wavepacket is propagated with a time-step

of 1 fs in the diabatic representation with the short iterative Lanczos approach 65,66 imple-

mented in ElVibRot.67 Furthermore, the wavepacket is expanded on the same basis sets as

the ones used in Ref [ 47].

Figure 9 shows the excited state population decay and the total energy deviation for

PSB3. All methods overestimate the initial population transfer to S0, and tend to incorrectly

plateau around 90 fs for some time before subsequently continuing to transfer. After about

120 fs, the trend in CTMQC-E is close to the exact, giving a small improvement over CTMQC

and SH-EDC. In terms of total energy, CTMQC-E reduces the total energy violation of

CTMQC with some energy drift after 90 fs due to the numerical implementation as discussed

in Sec. 3 when considering the results for BMA.

In our previous work37 we showed how CTMQC-E correctly captures the kinetic energy

along r, whose average increases in a monotonic way due to the wavepacket moving through

the CI towards S0, while its oscillations decrease in amplitude as a result of a loss in vibra-

tional coherence as the wavepacket spreads along θ.47 There we showed that, while CTMQC

captures the initial behavior, it starts to deviate from the exact reference at around 80 fs.

The lower panel of Figure 10 shows the value of the momentum along the r coordinate (Pr)
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Figure 9: Total energy deviation (upper panel) and excited state populations (lower panel)
as a function of time for PSB3 using CTMQC (blue lines), CTMQC-E (red lines), SH-EDC
(green lines) and QD (black lines).

and the upper panel the corresponding variance (σPr). We observe that all methods follow

the trend of the expectation value of the momentum along r with SH-EDC slightly over-

damping the oscillations around the average value towards the end of the simulated dynamics

with respect to CTMQC, CTMQC-E and the QD reference. Despite this observable agreeing

with QD, it is clear that CTMQC deviates from the reference at 90 fs since the variance of

the momentum grows rapidly, as expected from the incorrect behavior of the kinetic energy

along the r coordinate pointed out in Ref. [ 37]. With the redefined integrated force of

CTMQC-E, this rapid growth is prevented, yielding a variance along r that follows closely

the QD reference. To further illustrate this conclusion, we analyze some representative tra-

jectories of the ensemble. Figure 11 shows the values of the position and momenta along
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Figure 10: Variance of the momentum along the r coordinate (upper panel) and average
value of the momentum along the r coordinate (lower panel) for PSB3.

r for two trajectories. We observe how in CTMQC the momenta along r starts oscillating

with high amplitudes after 150 fs which makes the r coordinate, in turn, fluctuate also far

away from its average value. CTMQC-E dampens these oscillations and results in a kinetic

energy along r (and a variance of the momentum along r) that matches the QD calculations.

3.3 Photo-relaxation dynamics through a 3-state CI: the uracil rad-

ical cation

The last model is an 8-mode linear vibronic coupling (LVC) model with the four lowest lying

electronic states (D0, D1, D2, D3) of the uracil radical cation68 (Figure 12), with diabatic
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Figure 12: Lewis structure of the uracil radical cation.

Hamiltonian in terms of the mass-weighted vibrational normal modes R = q

HBO(q) =



H11(q) λ12(q) λ13(q) λ14(q)

λ12(q) H22(q) λ23(q) λ24(q)

λ13(q) λ23(q) H33(q) λ34(q)

λ14(q) λ24(q) λ34(q) H44(q)


(39)

The analytical expression for the matrix elements in the model is summarized in appendix

A.3 (Tables 4 and 5). The normal modes are 6 modes of A′ symmetry (q18, q20, q21, q24, q25, q26)
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and 2 modes of A′′ symmetry (q10, q12) within the uracil Cs point group. Modes q25 and q26

correspond to the two C=O stretches, mode q24 correspond to the C=C stretch, modes q18,

q20 and q21 contain CN stretch and NCH/CNH bending motions and q10 and q12 are out of

plane motions. This system, after photoionization to the D2 excited cationic state, undergoes

relaxation to the ground state before fragmentation involving ultrafast dynamics through a

D0/D1 and a D0/D1/D2 CIs.68,69 Ref.[ 36] studied this process, benchmarking against the

multiconfigurational time dependent hartree method (MCTDH), 70 with traditional decoher-

ence corrected SH methods and with SHXF, a EF-based SH algorithm where the electronic

coefficients evolve according to Eq. (13). It was shown that the extra term in the electronic

evolution coming from EF was crucial to capture the dynamics through such multistate in-

tersection through quantum-momentum-driven transitions. We perform SH-EDC, CTMQC

and CTMQC-E simulations comparing with MCTDH reference. For the SH-EDC calcu-

lations, an ensemble of Ntr = 1000 trajectories is initialized in an incoherent mixed state

described by the density operator ρ̂ = 0.01|D0⟩⟨D0|+0.05|D1⟩⟨D1|+0.94|D2⟩⟨D2|, where 1%

of the trajectories are initialized with ρD0 = 1, 5% with ρD1 = 1, and 94% with ρD2 = 1 to

match the MCTDH adiabatic populations. For CTMQC(-E) Ntr = 400 trajectories are run

starting in a pure state where each trajectory has initial populations ρ
(α)
D0

= 0.01, ρ(α)D1
= 0.05

and ρ
(α)
D2

= 0.94. The initial electronic state used in the MCTDH reference is a pure state

at each nuclear configuration, so this is likely a more accurate representation of the initial

electronic state, however, with the assumption that the initial coefficients are real. It has

an important effect on the dynamics: the quantum momentum is active from the start, in a

region where the wavepackets overlap. The time-step used in the calculations is 0.25 fs for

SH-EDC and 0.001 fs (0.04h̄/Ha) for the coupled-trajectory schemes. The initial conditions

for the nuclear trajectories are obtained via Wigner sampling of the neutral uracil ground

state (S0) at the equilibrium geometry with variances obtained from the frequencies of the

eight modes in the model.

Figure 13 shows the electronic populations and total energy deviation as a function of
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time computed with SH-EDC, CTMQC and CTMQC-E, along with the MCTDH bench-

mark extracted from Ref. [ 68]. We observe that SH-EDC largely underestimates the rate of

population transfer from D2 to D0 and cannot describe the fast initial decay of the D0 pop-

ulation. Instead, CTMQC captures the initial decay very accurately, following the MCTDH

populations very closely up until 30 fs. Afterwards, it slightly deviates from the MCTDH

reference and plateaus before continuing to decrease at the same rate. Overall the D2 to

D0 population transfer is underestimated and some population is transferred to the high

energy D3 state, not observed in MCTDH or SH-EDC. Applying the energy correction in

CTMQC-E yields worse population behavior than CTMQC, underestimating the D2 to D0

transfer and provides a relatively small improvement over SH-EDC. Nonetheless, the top

panel of Figure 13 confirms that the drift in total energy observed in CTMQC is reduced in

CTMQC-E. As in the other cases, we see that the improved energy conservation improves

the nuclear observables: in Figure 14 we plot the values of the C-N, C=O and C=C bond

lengths as a function of time obtained with CTMQC, CTMQC-E and SH-EDC, together with

the MCTDH reference values. These bonds are related to the important modes included in

the linear vibronic coupling model. In some cases, e.g., for the C=N and C=O bonds, af-

ter around 20 fs CTMQC deviates from the MCTDH reference predicting oscillations with

larger amplitudes, reminiscent of our observations reported for the bond-length-alternation

coordinate in PSB3. The energy correction in CTMQC-E reduces the oscillations and yields

better energy conservation.

4 Conclusions

We reported an extensive analysis of the performance of the CTMQC-E algorithm for

electron-nuclear non-adiabatic dynamics, an exact-factorization-based approach recently de-

signed to mitigate the deviation from the conservation of total energy of CTMQC. The

conservation of the total energy is a fundamental law that any isolated physical system must
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the ground D0 state (red), D1 (green), D2 (black) and D3 (blue) states as a function of time
for the uracil radical cation with MCTDH (bold lines), CTMQC (squares) and CTMQC-E
(circles) and SH-EDC (triangles).

obey and, as we have seen in our numerical simulations, breaking this constraint might ad-

versely affect observables especially at long simulation times where energy violation builds-up

over time leading to wrong dynamics.

While the original coupled-trajectory algorithm derived from the exact-factorization, i.e.,

CTMQC, was derived from first-principles, the approximations introduced result in some

exact conditions not being guaranteed. In a similar spirit to the fix made in CTMQC to

ensure the physical condition of zero trajectory-averaged electronic population transfer when
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the NAC between pairs of states is zero, CTMQC-E was proposed37 as a fix on CTMQC

to ensure energy conservation over the trajectory ensemble, extending an idea proposed for

independent trajectories in Ref. [ 43]. Correcting the trajectory-averaged energy may have a

significant effect on general observables of the system, nuclear and electronic, and our results

here have explored this over a range of systems where the electronic and nuclear dynamics

are strongly and non-trivially coupled after a photo-excitation.

In this work, we used the G-CTMQC55 code to compare CTMQC-E with CTMQC and

with surface hopping (with energy decoherence corrections) as well as to validate the accu-

racy of the correction towards energy conservation. We employed several molecular models

that offer a broad test-bed for CTMQC-E, involving two-state or three-state conical inter-

sections, two, three and eight (with 36 Cartesian coordinates) vibrational modes, and with

and without periodic boundary conditions. In all cases, CTMQC-E efficiently improves en-

ergy conservation with respect to CTMQC, thus allowing us to expect stabilization of the

dynamics at long times, particularly for the nuclear observables. In some cases, however,
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electronic observables are affected in such a way that they deviate from CTMQC and from

the reference, suggesting that there is still room for improvements and novel developments.

The deviation may be viewed as a result of the energy-conservation fix in CTMQC-E being

imposed a posteriori on the derivation of the CTMQC equations, resulting in a different def-

inition of the integrated force to that arising from the first-principles derivation. Imposing

energy-conservation consistently during the derivation may provide a more robust algorithm

without detriment to the population traces. Future work also includes, for example, using

other directions for the redefined accumulated force in CTMQC-E to ensure energy conserva-

tion, and the possibility of tuning the CTMQC-E correction only in certain ranges of energy

deviations, while using the original CTMQC when the total energy is well-behaved.
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A Appendix

A.1 Analytical Potentials for 2D-CI Models

The matrix elements of the diabatic potential energy matrix are

V1(x, y) =
ω2
1

2

(
x+

a

2

)2
+

ω2
2

2
y2 +

∆

2

V2(x, y) =
ω2
1

2

(
x− a

2

)2
+

ω2
2

2
y2 − ∆

2

λ(y) = cy (40)

Where the parameters for BMA, butatriene and pyrazine are summarized in Table 2.

Table 2: Parameters for BMA, butatriene and pyrazine models. ω1 and ω2 are given in
Ha1/2/bohr x and y in bohr, c in Ha/bohr and ∆ in Ha.

ω1 · 10−3 ω2 · 10−3 a c · 10−5 ∆ · 10−2

BMA 7.743 6.680 31.05 8.092 0
Butatriene 9.557 3.3515 20.07 61.27 1.984
Pyrazine 3.650 4.186 48.45 49.46 2.757

A.2 Analytical Potentials for PSB3

For PSB3 the diabatic potentials and couplings are

V1(r, θ, ϕ) = Hcov2D(r, θ, ϕ) +Hcorr(ϕ)

V2(r, θ, ϕ) = Hct2D(r, θ, ϕ) +Hcorr(ϕ)

λ(θ, ϕ) = k1sin(2θ − ϕ) (41)
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Where

V1(r, θ, ϕ) = (VMorse1(r) + d2) sin
2

(
θ − ϕ

2

)
+ d3cos

2

(
θ

2
− ϕ

4

)
+ VMorse2(r)cos

2

(
θ − ϕ

2

)
+ h1sin

2

(
ϕ

4

)
V2(r, θ, ϕ) =

(
1 + c5sin

2(θ)
) (

c1r
2 + c2r + c3

)
+ c4cos(θ)

+ h1sin
2

(
ϕ

4

)
(42)

Being the Morse potentials

VMorse1(r) = dr
(
e−d1(r−rTS) − 1

)2
VMorse2(r) = dr

(
e−d4(r−rmin) − 1

)2
(43)

The values for the parameters are summarized in the following table

Table 3: Parameters for the PSB3 model. h1 and k1 are given in kcal/mol, d2, d3, and dr in
kcal/(mol·Å), kf1 and kf4 in kcal/(mol·Å2), and rmin and rTS in Å.

Hcov2D Hcorr Hcp

h1 155.7
k1 24.04
kf1 3733
d2 54.63
d3 3.801
kf4 1097
dr 2000
rTS 0.02508
rmin 0.09126
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A.3 Analytical Potentials for uracil radical cation

For the uracil cation the diabatic potentials and couplings have the following form

Vi(q) = Ei +
∑
ν

(
fi(qν) + κ

(ν)
i qν +

1

2
γ
(ν)
i q2ν +

1

24
k
(ν)
i q4ν

)
λij(q) =

∑
ν

λ
(ν)
ij qν (44)

where {qν} are the mass-frequency-scaled normal coordinates related to the cartesian coor-

dinates {Rν} via

qν =
√
ων

∑
µ

Kµν

√
Mµ (Rµ −R0,µ) (45)

with K denoting the orthogonal cartesian-to-normal modes conversion matrix and {R0,ν}

the cartesian coordinates at the reference geometry. {Ei} are the electronic state energies

at a reference geometry q = q0 and fi(qν) is a harmonic function for modes 10,12,18,20,21

and a Morse function for modes 24,25,26

fi(qν) =


ων

2
q2ν ν = 10, 12, 18, 20, 21

d(ν)
(
ea

(ν)
i (qν−σ

(ν)
i ) − 1

)2
+ η

(ν)
i ν = 24, 25, 26

(46)
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