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Convergence Analysis for Learning Orthonormal
Deep Linear Neural Networks
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Abstract—Enforcing orthonormal or isometric property for the
weight matrices has been shown to enhance the training of deep
neural networks by mitigating gradient exploding/vanishing and
increasing the robustness of the learned networks. However, despite
its practical performance, the theoretical analysis of orthonormal-
ity in neural networks is still lacking; for example, how orthonor-
mality affects the convergence of the training process. In this letter,
we aim to bridge this gap by providing convergence analysis for
training orthonormal deep linear neural networks. Specifically,
we show that Riemannian gradient descent with an appropriate
initialization converges at a linear rate for training orthonormal
deep linear neural networks with a class of loss functions. Unlike
existing works that enforce orthonormal weight matrices for all the
layers, our approach excludes this requirement for one layer, which
is crucial to establish the convergence guarantee. Our results shed
light on how increasing the number of hidden layers can impact the
convergence speed. Experimental results validate our theoretical
analysis.

Index Terms—Convergence analysis, deep neural networks,
orthonormal structure, Riemannian optimization.

1. INTRODUCTION

FORCING orthonormal or isometric properties of the
E weight matrices has numerous advantages for the practice
of deep learning: (i) it provides a better initialization [1], [2],
(ii) it mitigates the problem of exploding/vanishing gradients
during training [3], [4], [5], [6], [7], (iii) the resulting orthonor-
mal neural networks [2], [8], [9], [10], [11], [12], [13], [14], [15],
[16] exhibit improved robustness [17] and reduced overfitting
issues [18].

Various approaches have been proposed for training neural
networks, mainly falling into two categories: soft orthonormality
and hard orthonormality. The first category of methods, such as
those in [10], [12], [17], [19], adds an additional orthonormality
regularization term to the training loss, resulting in weight
matrices that are approximately orthonormal. In contrast, the
other methods, as found in [9], [11], [20], learn weight matrices
that are exactly orthonormal through the use of Riemannian
optimization algorithms on the Stiefel manifold.

While orthonormal neural networks demonstrate strong prac-
tical performance, there remains a gap in the theoretical analysis
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of orthonormality in neural networks. For example, convergence
analysis for training neural networks has been extensively stud-
ied [21],[22],[23],[24],[25],[26],[27], [28]. However, all these
results focus on standard training without orthonormal con-
straints, making them inapplicable to the training of orthonormal
neural networks. To the best of our knowledge, there is a lack
of rigorous convergence analysis even for orthonormal deep
linear neural networks (ODLNNSs). Despite its linear structure,
a deep linear neural network still presents a non-convex training
problem and has served as a testbed for understanding deep
neural networks [21], [22], [23], [24]. In this letter, we aim to
understand the effect of the orthonormal structure on the training
process by studying ODLNN.

Our contribution: Specifically, we provide a local conver-
gence rate of Riemannian gradient descent (RGD) for training
the ODLNN. To achieve this, unlike existing works [9], [11],
[17] that impose orthonormal constraints on all the weight
matrices, we exclude such a constraint for one layer (say the
weight matrix in the first hidden layer). The exclusion of a
specific layer plays a crucial role in analyzing the convergence
rate. Our findings demonstrate that within a specific class of
loss functions, adhering to the restricted correlated gradient
condition [29], the RGD algorithm exhibits linear convergence
speed when appropriately initialized. Notably, our results also
indicate that as the number of layers in the network increases,
the rate of convergence only experiences a polynomial decrease.
The validity of our theoretical analysis has been confirmed by
experiments.

Notation: We use bold capital letters (e.g., A) to denote matri-
ces, bold lowercase letters (e.g., @) to denote vectors, and italic
letters (e.g., a) to denote scalar quantities. The superscript (-)
denotes the transpose. || A|| and || A || r respectively represent the
spectral norm and Frobenius norm of A. o,i, (A) is the smallest
singular value of A. The condition number of A is defined as

K(A) = Unllf(&) .||@||2 is the I, norm of a. For a positive integer

K, [K] denotes the set {1,..., K'}. b = Q(a) represents b > ca
for some universal constant c.

II. RIEMANNIAN GRADIENT DESCENT FOR ORTHONORMAL
DEEP LINEAR NEURAL NETWORKS

Problem statement:Given a training set {(z;,y;)}", €
R% x R%, our goal is to estimate a hypothesis (predictor)
from a parametric family H := {hg : R% — R%|0 € ©} by
minimizing the following empirical risk:

' 1 n N
géler)lg(e) = ;l(he(mi)§yi)’ (M

where l(hg(x;); y}) is a suitable loss that captures the difference
between the network prediction hy(x;) and the label y*. For
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convenience, we stack all the training samples together as X =
[ -+ @, and Y* = [y} yhl.

Our main focus is on orthonormal deep linear neural net-
works (ODLNNSs), which are fully-connected neural networks
of form hg(x;) = Wy - -- Wx; with W, € Ré*di-t for j €
[N], where dy = d,, and dy = d,. In ODLNNs, we further
assume that the weight matrices to be row orthogonal or col-
umn orthogonal depending on the dimension. Without loss of
generality, we assume that all the matrices { W },>, are column
orthonormal, except for W;. This is different to the previous
works [9], [11], [17] which impose orthonormal constraints on
all the weight matrices. Allowing W to be unstructured offers
more flexibility, as otherwise W - - - W can only represent an
orthonormal matrix, which restricts the output the same energy
as input (i.e., ||yZ]|2 = ||@i||2)- The choice of free weight matrix
can vary, and the following analysis would still hold. Now the
training loss can be written as

Hlli-ndv g(WN,...,Wl):L(WN~--W1X;Y*),
s.t. - W/W,=1,,,, i=2,...N, )

where L denotes a loss function encompassing all samples.

Definition 1 (Data model): Following the previous work on
deep linear neural networks [21], [22], we assume that the dataset
X is whitened, i.e., its empirical covariance matrix is an identity
matrix as X X ' = I,,. Also assume that the output is gener-
ated by a teacher ODLNN model,! i.e., Y* = Wi, --- WX,
where W € R%*di-t and {W},;>, are column orthonormal
matrices.

Stiefel manifold:The Stiefel manifold St(m,n) = {C €
R™ " . C"C =1,} is a Riemannian manifold that is com-
posed of all m x n orthonormal matrices. We can regard
St(m, n) as an embedded submanifold of a Euclidean space and
further define TcSt:= {A € R™*": A'C +C" A =0} as
its tangent space at the point C' € St(m, n).Forany B € R"™*",
the projection of B onto TSt is given by [30]

1
Prosi(B) = B — §C(BTC +C'B), (3)

and its orthogonal complement is Pi_g(B) =B —

Prosi(B)= %C(BTC+CTB). When we have a gradient
B defined in the Hilbert space, we can use the projection
operator (3) to compute the Riemannian gradient Pr.s (B)
on the tangent space of the Stiefel manifold. To project

C=C- ¢Prosi(B) with any positive constant ¢ back onto the
Stiefel manifold, we can utilize the polar decomposition-based
retraction, i.e.,

~ ~

~T ~
Retre(C) = C(C C) 2. (4)
Riemannian gradient descent (RGD):Given the gradient
Vw, g(WS\t,) e Wgt) ), we can compute the Riemannian gra-
dient PTW,St(VWig(W%), . .,Wgt))) on the Stiefel man-
ifold via (3). To streamline the notation, let us represent
Vwig(WS\t[), .
can be updated via the following RGD:
1
Wit =w, ® 1YV 9,

, Wit)) as Vi, g. Now the weight matrices

WEtH) = RetrWi(Wl(-t) — WPrw st (Vi) i > 2, (5)

Here, for the sake of simplifying the subsequent analysis, we designate the
teacher model as the ODLNN, which can encompass any linear model.
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where 1 > 0 is the learning rate for {W,} and v > 0 controls
the ratio between the learning rates for W and {W};>,.
The discrepant learning rates in (5) are used to accelerate the
convergence rate of W since the energy of W7 and {W7},-»
are unbalanced, i.e., |[W7T|> = ||[Y*||* and |W}||*> = 1 when
the dataset X is whitened, i.e. X X' =1, .

III. CONVERGENCE ANALYSIS

In this section, we will delve into the convergence rate analysis
of RGD for training ODLNNSs. Towards that goal, we will use the
teacher model introduced in Definition 1 that the training sam-
ples (X, Y™) are generated accordingto Y * = W7, --- Wi X.
Given the nonlinear nature of the retraction operation in the
RGD, we will study the convergence in terms of the weight
matrices W = {W;} and W* = {W7}. But we will show that
the convergence can be equivalently established in terms of the
outputs.

Distance measure:Consider that the factors in W* are iden-
tifiable up to orthonormal transforms since Wi, --- WX =
W4GRy Ry W% Ry »--- W7} X for any orthonormal
matrices R; € Q%> j € [N — 1]. Also, W} and W} could
be imbalanced as W are orthonormal for ¢ > 2. This discrep-
ancy can be quantified by observing that || WT|| = ||Y™|| (since
the input matrix X is whitened) and ||[W|| = 1 for all ¢ > 2.
Thus, we propose the following measure to capture the distance
between two sets of factors:

N
dist’ (W, W*) = min > [Y*|W: - BRI W B[}

R, .
ieN-1) =2
+ Wy - RIWT|[;. (6)

Here the coefficient ||Y*||? is to harmonize the energy levels
between W = {W,},~, and W . The following result eluci-
dates the connection between dist>(W, W*) and ||[Y — Y*|%,
guaranteeing the convergence of Y as W approaches the global
minima.

Lemma 1: Assume a whitened input X € R%*",
ie. XX'=1I;. Let Y=Wxy---W;X and Y*=
WA - WiX, where W,;, W} € R4*di-1 are orthonormal
for i=2,...,N. Given that |Wq|*< QHZJ and
IWT]> = Y|, we can get

1
(16N — 8)r2(Y™)

Y —Y*|% > dist* (W, W*),  (7)

N
Y = Y*|f7 < 9Tdist%w,W*)- ®)

Proof: Using the result [29, eq. (E.4)], forany j > 2, we have
that [Wy - W; — W - W;Rj,l\@g% for any
R; € O%>di_Tt follows that

[Wx-1 = Ry Wi Ry-2|
= [WNRN- W1 = WEWi_ Ry %
<2(WHRn—1 — W|E W
+2WNWyo — WAWR_ Ryo| %
16]]Y — Y*||5

Urznin (Y*) (9)
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Similarly, we get |[W; — R WiR, |3 < —“"‘:n(’; L= for
i=2,...,N —2.Wenow bound | W; — R/ W7|3% by
W1 - RIW|%
=Wy WIRiW, - Wi Wi|%
<YW [P W - Wy = W - W3R |7
+2||WN---W1—W* Wil

where the second inequality uses the fact that Y =
Wy WX and |AX||F = ||Al|F for any A since X is
whitened. Based on the preceding discussion and the definition
of dist>(W, W*), we can conclude (7).

Finally, we can prove the other direction by

Y —Y*|%
N

= ZW}‘V
i=1

Wi R(W,-R/WiR,_)W, - X

F

9|lY*||?
SN(Z H || HW RTW* 7 l||F

i=2
(11)

|
Main results:To establish the convergence rate of RGD, we
require the loss function L to satisfy a certain property. Given
that our primary focus is the analysis of the local convergence,
we will assume that the loss function behaves well only in a local
region. Specifically, we will consider a category of loss functions
that satisfies the so-called restricted correlated gradient (RCG)
condition [29]:
Definition 2: We say the loss function L(-;Y™) satisfies
RCG(a, 3, C) condition for o, 5 > 0 and the set C if

(VLY 1:Y*) = VL(Y2;, Y*), Y1 - Y>)
Yol + BIVL(Y 1;Y7) -

ON
LW - RTWTI%) < 2N gie(w, w)

>a|Y; - VLY 5 Y)| %

(12)

forany Y;,Y, € C.

The RCG condition is a generalization of the strong con-
vexity. When L represents the MSE loss, i.e., L(Y,Y™) =
|Y — Y*||%, which is commonly used in the convergence anal-
ysis of training deep linear networks [22], [23], [31], it satisfies
the RCG condition with &« = 3 = 1 and C = R%*". The RCG
condition may also accommodate other loss functions such as
the cross entropy (CE) loss.

Based on Definition 2, we can initially deduce the Riemannian
regularity condition as an extension of the regularity condition
found in matrix factorization [32], [33], ensuring that gradients
remain well-behaved within a defined region. Specifically, we
have

Lemma 2: (Riemannian regularity condition) Suppose the
training data (X, Y*) is generated according to the data model
in Definition 1. Also assume that the loss function L in (2)
adheres to the RCG (v, 3,C) condition where C £ {Y : ||Y —

afBo? . * . .
Y*% < 72(2Nf)2’(“]‘\;‘2(};),12(y*)}. Under this assumption, for

any W € {W : dis®(W, W*) < 532Zuilr 01 the function g
in (2) satisfies the Riemannian regularity condition as following:
zN:<Wz —R/WIR, |, Pry si(Vw.9))
i—2
| + (Wi - RiW{,Vw,g)
2 5N fyl)nz(y*)distz(W,W*) + W

N
x (Z 1Prw, si(Vw.9)llF + IY*IIZIIlegllfw)- (13)

i=2
Proof: To begin with, we can derive |[W|*> < 2||W7|]> +

2|Wy — Ry Wi|* < 2|y + 2dist*(W, W) <2 Y|+
2007, () < AV \where 08 < L [29] is used
SEN-D)(N*—1) =~ 1 =3 :
Next, through the gradients Vw,g = WZTJrl Wy
VLY;Y*)X"...W/ | i € [N], we need to derive
IVw,gllE < IVLY;Y*) = VLY Y9)[E (4
| P < IWALPIVLY; Y )|l
9 Y* 2
< iy~ vy as)

where we employ VL(Y*;Y™) = 0. Combing (14) and (15),
we can obtain
N
> NPrw s (Vw9 + 1Y PV w, gll
i=2
N
FHIY IV, gllF

=2

9N5

IY*PIVLY;Y™) = VLY Y)|5, (16)

in which the firstinequality follows from the fact that for any ma-
trix B = ,PTL(Xi)Sl(B) + ,P%L(xi)St(B) where ,PTL(x,i)St(B)
and P%L(xi)St(B) are orthogonal, we have || Pr,  s(B) % <
1B|I%-

Before analyzing the lower bound of cross term in (12), we

need to establish the upper bound for the inner product between
the orthogonal complement and the gradient as following:

N
T =Y (Pry s(Wi— RIWiR 1), Vw,g)

=2

N
1 *
<D SIWilllw: - RIW; R |3
i=2

X VLY Y™) = VLY Y)Wl

6 * * *
< JIVLY;Y*) = VLY V)|

IN - DYV & *
MZ||Wi—RZWiR¢_1II%
1=2

16
< VL ¥ - VLY
o(N 1) :
+ Wd 1st (W,W ), (17)
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—aLinear-GD(4, 0.1)
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0 20 40 60 80 100
Number of Iterations ()

Fig. 1. Convergence analysis for GD(/V, p) and RGD(NV, p, ) with different
activation functions and N.

where P o(W;—R/WR;,_ ) =W, (W, - R/W}
R, )W, -R/W!R; |)[30]and VL(Y*;Y*) = 0.

Let us now introduce the notation H=Y"* — Wy
CWLRIWIX + SN Wy W, (W, — R W?
R, { )W, y---W X, enabling us to simplify the expression
of the cross term within (13). Then (13) can be rewritten as

N

> <Wz - R/WIR, PTWiSt(vWig)>

i=2

+ <W1 - RTWTa v‘/V1g>
— (VL(Y;Y*) - VLY Y*).,Y ~Y* + H) - T

* /B * * *
> oY = Y&+ ZIVLY; YY) = VLY YY) 7

QN2 —1) . ,
=2 ) st (W, W
gy VW
a . B
> dis?(W,W*) + —— -
Z BN — D) W WO G e

N

x <Z 1Prw,si(Vw,9)ll + IIY*zllvwlg%), (18)
i=2

where the first inequality follows the RCG condition, (17) and

1|3, < S5 §dist (W, W*) which is established through
a mathematical transformation and the use of norm inequalities.
The detailed proof for the upper bound of ||H |3, has been

omitted here due to space limitations. In the last line, we leverage

afBo? . *
(16), Lemma 1 and dist*(W, W*) < W m

We note that according to (7) in Lemma 1, the set {W :
dist* (W, W*) < %}imphes the region C. By lever-
aging Riemannian regularity condition in Lemma 2 and the
nonexpansiveness property of the polar decomposition-based
retraction in [30, Lemma 1], we ultimately reach the following
conclusion:

Theorem 1: In accordance with the identical conditions
outlined in Lemma 2, we assume the initialization satisfies

aBo? . (Y™)

min

dist> (W) W+) < sen1irv—- When employing the learn-

ing rate ;1 < W and v = ||Y*||> in RGD (5), we have
ao, (YN
1— min di t2 (t) *Y.
52N = 1) ) ist"(W'" W™)

Our results reveal that the RGD demonstrates a linear
convergence rate with polynomial decay concerning N. In

IEEE SIGNAL PROCESSING LETTERS, VOL. 31, 2024

addition, by Lemma 1, we can easily obtain [|[Y®) — Y™*|2%, <
(1- “iﬁ(grjv(fl*))“ e 1%(,’2_12(]3; +3;~ It is worth noting that, through
analogous analysis, Theorem 1 can be extended to a broader
scenario wherein W; takes on an arbitrary matrix, and matrices
W exhibit row orthogonality for ¢ < j and column orthog-
onality for ¢+ > 7. Moreover, we emphasize that our focus is
primarily on the local convergence property of the RGD, and
does not cover initialization methods extensively investigated in
prior research, such as those discussed in [2], [21], [34], [35].
The research most closely related to our work is the conver-
gence analysis of gradient descent in deep linear neural models
across multiple layers, as demonstrated in [22], wherein the MSE

loss function is taken into account. It is established that | Y (") —

Y*||% < e can be deduced when ¢ > Q(% log(1)), pro-
vided that ¢ < o,in(Y™). Applying a similar derivation as pre-
sented in [22, Theorem 1], utilizing both Theorem 1 and Lemma
1, we can infer that ¢t > Q(N?k*(Y*)log(1)) in the RGD is
sufficient to meet the same requirement. This further highlights
the convergence advantage of the RGD.

IV. EXPERIMENTS

In this section, we conduct experiments to compare the per-
formance of the RGD with gradient descent (GD). Specifically,
we concentrate on the multi-class classification task using the
MNIST dataset, where the input feature dimension is 784, while
the output feature is 10, represented as y,; € R'?. In this repre-
sentation, each y, is designed such that it holds a value of 1 solely
at the position that aligns with its categorical label, leaving the
other positions assigned to 0. For our model architecture, we can
deploy an multi-layer perceptron (MLP) with N layers where
W € RIOXTS (py7 AN -2 RI0OXI0 P7 |\ e RIOX100 4
Wy € R'9%50 Each layer in the MLP is connected by a linear
or rectified linear unit (Relu) activation function. While our
theoretical result is only established for linear networks, we will
also test the performance on a nonlinear MLP without bias terms.

We apply the GD and RGD for the CE loss function [36] in
combination with the softmax function to train MLP models.
The weight matrices are initialized using orthogonal initializa-
tion [2], except for W in the RGD, which follows a uniform
distribution within the range of (— ﬁ, \/ﬁ) [34]. In addition,
we perform a grid search to fine-tune the hyperparameters (u
and ).

In Fig. 1, it is evident that RGD achieves a quicker conver-
gence compared to GD. Notably, with an increase in the number
of layers, the convergence rate decreases in alignment with our
theoretical analysis. Moreover, due to the impact of nonlinear
activation functions, algorithms that employ ReLU demonstrate
a comparatively slower convergence rate compared to those
utilizing linear activation functions. However, despite this, the
error of the RGD with Relu outperforms that of the RGD using
a linear activation function.

V. CONCLUSION

In this letter, we have provided a convergence analysis of the
Riemannian gradient descent for a specific class of loss functions
within orthonormal deep linear neural networks. Remarkably,
our analysis guarantees a linear convergence rate, provided
appropriate initialization. This will serve as a stepping stone
for future explorations of training nonlinear orthonormal deep
neural networks with adaptive learning rates.
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