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Catastrophic forgetting remains an outstanding challenge in continual
learning. Recently, methods inspired by the brain, such as continual
representation learning and memory replay, have been used to combat
catastrophic forgetting. Associative learning (retaining associations be-
tween inputs and outputs, even after good representations are learned)
plays an important function in the brain; however, its role in continual
learning has not been carefully studied. Here, we identi!ed a two-layer
neural circuit in the fruit "y olfactory system that performs continual as-
sociative learning between odors and their associated valences. In the
!rst layer, inputs (odors) are encoded using sparse, high-dimensional rep-
resentations, which reduces memory interference by activating nonover-
lapping populations of neurons for different odors. In the second layer,
only the synapses between odor-activated neurons and the odor’s associ-
ated output neuron are modi!ed during learning; the rest of the weights
are frozen to prevent unrelated memories from being overwritten. We
prove theoretically that these two perceptron-like layers help reduce
catastrophic forgetting compared to the original perceptron algorithm,
under continual learning. We then show empirically on benchmark data
sets that this simple and lightweight architecture outperforms other
popular neural-inspired algorithms when also using a two-layer feed-
forward architecture. Overall, fruit "ies evolved an ef!cient continual
associative learning algorithm, and circuit mechanisms from neuro-
science can be translated to improve machine computation.
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1798 Y. Shen, S. Dasgupta, and S. Navlakha

1 Introduction

Catastrophic forgetting, when neural networks inadvertently overwrite old
memories with new memories, remains a long-standing problem in ma-
chine learning (Parisi et al., 2019). Here, we studied how fruit !ies learn
continuously to associate odors with behaviors and discovered a circuit mo-
tif capable of alleviating catastrophic forgetting.

While modern machine learning algorithms excel at learning complex
and discriminating representations (LeCun et al., 2015), an equally chal-
lenging problem in continual learning is "nding good ways to preserve
associations between these representations and output classes. Indeed, the
performance of deep arti"cial neural networks is considerably degraded
when classes are learned sequentially (one at a time), as opposed to being
randomly interleaved in the training data (Goodfellow et al., 2013). The ef-
fect of this simple change is profound and has warranted the search for
new mechanisms that can preserve input-output associations over long pe-
riods of time. In addition, catastrophic forgetting has been shown to ef-
fect deeper layers of neural networks more than feature extraction layers
(Ramasesh et al., 2021). This "nding highlights the importance of preserv-
ing good associations for reducing catastrophic forgetting.

Since learning in the natural world often occurs sequentially, the past
few years have witnessed an explosion of brain-inspired continual learn-
ing models. These models can be divided into three categories: (1) reg-
ularization models, where important weights (synaptic strengths) are
identi"ed and protected (Hinton & Plaut, 1987; Fusi et al., 2005; Benna
& Fusi, 2016; Kirkpatrick et al., 2017; Zenke et al., 2017; Douillard et al.,
2020; Peng et al., 2021); (2) experience replay models, which use external
memory to store and reactivate old data (Lopez-Paz & Ranzato, 2017) or
use generative models to generate new data from prior experience (van de
Ven et al., 2020; Tadros et al., 2020, 2022; Shin et al., 2017) and (3) com-
plementary learning systems (McClelland et al., 1995; Roxin & Fusi, 2013),
which partition memory storage into multiple subnetworks, each subject
to different learning rules and rates. Importantly, these models often take
inspiration from mammalian memory systems, such as the hippocampus
(Wilson & McNaughton, 1994; Rasch & Born, 2007) or the neocortex (Qin
et al., 1997; Ji & Wilson, 2007), where detailed circuit anatomy and physi-
ology are still lacking. Fortunately, continual learning is also faced by sim-
pler organisms, such as insects, where supporting circuit mechanisms are
understood at synaptic resolution (Takemura et al., 2017; Zheng et al., 2018;
Li et al., 2020).

Most brain-inspired algorithms use backpropagation-based supervised
learning, whose existence in the brain is still controversial. On the other
hand, associative learning (a local learning scheme that strengthens con-
nections between representation neurons and output neurons) plays an
important role for learning in the brain, though its role toward reducing
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Reducing Catastrophic Forgetting With Associative Learning 1799

catastrophic forgetting in arti"cial neural networks has not been carefully
analyzed.

Here, we developed an associative continual learning algorithm in-
spired by the fruit !y olfactory system. This algorithm tackles an important
yet underappreciated subproblem within continual learning: after good
representations are learned, how do you best preserve associations between
representation neurons and output classes in a class-incremental learning
framework? The algorithm we propose stitches together two well-known
computational ideas—sparse coding (Maurer et al., 2013; Ruvolo & Eaton,
2013; Ororbia et al., 2019; Ahmad & Scheinkman, 2019; Rapp & Nawrot,
2020; Hitron et al., 2020) and perceptron-like associative learning (Hinton
& Plaut, 1987; Fusi et al., 2005; Benna & Fusi, 2016; Kirkpatrick et al., 2017;
Zenke et al., 2017; Minsky & Papert, 1988)—in a unique and effective
way, which we show effectively reduces catastrophic forgetting under
a simple feedforward network architecture. The fruit !y circuit uses a
perceptron-like architecture, which we prove theoretically helps reduce
catastrophic forgetting compared to the original perceptron algorithm.
We also show empirically that the fruit !y circuit outperforms alternative
perceptron-like circuits in design space (e.g., replacing sparse coding with
dense coding, associative learning (freezing synapses) with supervised
learning (modi"able synapses), which provides biological insight into the
function of these evolved circuit motifs and how they operate together in
the brain to sustain memories.

2 Methods

2.1 Circuit Mechanisms for Continual Learning in Fruit Flies. How
do fruit !ies associate odors (inputs) with behaviors (classes) such that
behaviors for odors learned long ago are not erased by newly learned
odors? We "rst review the basic anatomy and physiology of two layers of
the olfactory system that are relevant to the exposition here (Modi et al.,
2020).

The two-layer neural circuit we study takes as input an odor after a se-
ries of preprocessing steps have been applied, including gain control (Root
et al., 2008; Gorur-Shandilya et al., 2017), noise reduction (Wilson, 2013), and
normalization (Olsen et al., 2010; Stevens, 2015). After these steps, odors are
represented by the "ring rates of d = 50 types of projection neurons (PNs),
which constitute the input to the two-layer network motif described next.

2.1.1 Sparse Coding. The goal of the "rst layer is to convert the dense in-
put representation of the PNs into a sparse, high-dimensional representa-
tion (Cayco-Gajic & Silver, 2019) (see Figure 1A). This is accomplished by a
set of about 2000 Kenyon cells (KCs), which receive input from the PNs. The
matrix connecting PNs to KCs is sparse and approximately random (Caron
et al., 2013); each KC randomly samples from about 6 of the 50 projection
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1800 Y. Shen, S. Dasgupta, and S. Navlakha

Figure 1: A two-layer circuit for continual learning in the fruit !y olfactory sys-
tem. (A) An input (odor) is received by the “nose” and preprocessed via a series
of transformations. In the fruit !y, this preprocessing includes noise reduction,
normalization, and gain control. In a deep network, preprocessing is similarly
used to generate a suitable representation for learning. After these transforma-
tions, the dimensionality of the preprocessed input (PNs) is expanded via a ran-
dom projection and is sparsi"ed via winner-take-all thresholding. This leaves
only a few Kenyon cells active per odor (indicated by red shading). To asso-
ciate the odor with an output class (MBON), only the synapses connecting the
active Kenyon cells to the target MBON are modi"ed. The rest of the synapses
are frozen. (B) A second example with a second odor, showing different Kenyon
cells activated, associated with a different MBON.

neurons and sums up their "ring rates. Next, each KC provides feedfor-
ward excitation to a single inhibitory neuron, called APL. In return, APL
sends feedback inhibition to each KC. The result of this loop is that approx-
imately 95% of the lowest-"ring KCs are shut off, and the top 5% remain
"ring in what is often referred to as a winner-take-all (WTA) computation
(Turner et al., 2008; Lin et al., 2014; Stevens, 2015). Thus, an odor initially
represented as a point in R50

+ is transformed, via a 40-fold dimensionality
expansion followed by WTA thresholding, to a point in R2000

+ , where only
approximately 100 of the 2000 KCs are active (i.e., nonzero) for any given
odor.

This transformation was previously studied in the context of similarity
search (Dasgupta et al., 2017, 2018; Papadimitriou & Vempala, 2018; Ryali
et al., 2020), compressed sensing (Stevens, 2015; Zhang & Sharpee, 2016),
and pattern separation for subsequent learning (Babadi & Sompolinsky,
2014; Litwin-Kumar et al., 2017; Dasgupta & Tosh, 2020).

2.1.2 Associative Learning. The goal of the second layer is to associate
odors (sparse points in high-dimensional space) with behaviors.
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Reducing Catastrophic Forgetting With Associative Learning 1801

The main locus of associative learning lies at the synapses between KCs
and a set of mushroom body output neurons called MBONs (Aso et al.,
2014), which encode behaviorally relevant odor information important for
decision making (see Figure 1).

During training, say the !y is presented with a naive odor (odor A) that
is paired with a punishment (e.g., an electric shock). How does the !y learn
to avoid odor A in the future? Initially, the synapses from KCs activated by
odor A to both the “approach” MBON and the “avoid” MBON have equal
weights. When odor A is paired with punishment, the KCs representing
odor A are activated around the same time that a punishment-signaling
dopamine neuron "res in response to the shock. The released dopamine
causes the synaptic strength between odor A KCs and the approach MBON
to decrease, resulting in a net increase in the avoidance MBON response.1
Eventually the synaptic weights between odor A KCs and the approach
MBON are suf"ciently reduced to reliably learn the avoidance association
(Felsenberg et al., 2018).

Importantly, the only synapses that are modi"ed in each associative
learning trial are those from odor A KCs to the approach MBON. All
synapses from odor A KCs to the avoid MBON are frozen (i.e., left un-
changed), as are all weights from silent KCs to both MBONs. Thus, the vast
majority of synapses are frozen during any single odor-association trial.

To summarize, associative learning in the !y is driven by dopamine sig-
nals that only affect the synapses of sparse odor-activated KCs and a target
MBON that drives behavior.

2.2 The FlyModel. We now introduce an associative continual learning
algorithm based on the two-layer olfactory circuit above.

As input, we are given a d-dimensional vector, x = (x1, x2, . . . , xd ) ∈ Rd.
As in the !y circuit, we assume that x is preprocessed to remove noise
and encode discriminative features. Biologically, this is often accomplished
by peripheral sensory circuitry that is separate from learning-related cir-
cuitry; computationally, the representations extracted from models trained
on other data sets, as often done in transfer learning, could serve a similar
role. To emphasize, our goal here is not to study the complexities of learn-
ing good representations but rather to disentangle representation learning
from associative learning and focus exclusively on the latter.

The "rst layer computes a sparse, high-dimensional representation of
x. This layer has m units, where m ≈ 40d. The input layer and the "rst
layer are connected by a sparse, binary random matrix, !, of size m × d.
Each row of ! contains about 0.1d ones in random positions, and the

1 Curiously, approach behaviors are learned by decreasing the avoid MBON response,
as opposed to increasing the approach MBON response, as may be more intuitive.
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1802 Y. Shen, S. Dasgupta, and S. Navlakha

rest of the positions in the row are set to zero. The initial representation
ψ (x) = (ψ1,ψ2, . . . ,ψm) ∈ Rm is computed as

ψ (x) = !x. (2.1)

After this dimensionality expansion, a winner-takes-all process is applied,
so that only the top l most active units remain on and the rest of the units are
set to 0. This produces a sparse representation φ(x) = (φ1,φ2, . . . , φm) ∈ Rm,
where

φi =
{

ψi if ψi is one of the l largest positive units of ψ (x)

0 otherwise.
(2.2)

For computational convenience, a min-max normalization is applied to
φ(x) so that each unit has a value between 0 and 1. The matrix ! is "xed and
not modi"ed during learning; that is, there are no trainable parameters in
the "rst layer. The winner-takes-all competition could be implemented in
alternative ways (Holca-Lamarre et al., 2017) besides the direct inhibition
we show here. But direct inhibition has the bene"t of easily specifying the
number of neurons remaining active per input.

The second layer is an associative learning layer, which contains k output
class units, y = {y1, y2, . . . , yk}. The "rst and second layers are connected with
all-to-all synapses. If an input x is to be associated with target yj, the only
weights that are modi"ed are those between the active units in φ(x) and yj.
No other weights, including those from the active units in φ(x) to the other k
− 1 units in y—are modi"ed. We refer to this as “partial freezing” of weights
during learning.

Formally, let wij ∈ [0, 1] be the weight between φi and yj. Then, for all i ∈
[1 . . . m], j ∈ [1 . . . k], the weight update rule after each input x is

wi j =
{

(1 − α)wi j + βφi if j = target

(1 − α)wi j otherwise.
(2.3)

Here, β is the learning rate, and α is a very small forgetting term that mimics
slow, background memory decay. In our experiments, we set α = 0 to min-
imize forgetting and to simplify the model. The problem of weight satura-
tion arises when α = 0, since weights can only increase and never decrease.
However, despite thousands of training steps, most weights did not satu-
rate (see Figure S1) since most φi are inactive for most classes (sparse cod-
ing) and only a small fraction of the active φi weights are modi"ed during
learning (partial freezing). Nonetheless, in practice, some small, nonzero α

may be desired to avoid every synapse from eventually saturating.
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Reducing Catastrophic Forgetting With Associative Learning 1803

Finally, biological synapses have physical bounds on their strength, and
here we mimic these bounds by capping weights to [0, 1].

3 Theoretical Results

The fruit !y associative learning algorithm (partial freezing) resembles
a well-known supervised learning algorithm: the perceptron (Rosenblatt,
1958). On an instance φ, the multiclass perceptron predicts a label in
[1 . . . k] and then performs an update if this prediction is incorrect:

wi j =






wi j + φi if j = target

wi j − φi if j = prediction

wi j otherwise.

(3.1)

In contrast, the partial freezing algorithm always updates and modi"es only
the weights of the target class. We now see how these differences affect
catastrophic forgetting. (See supplement for details.)

3.1 Even the Perceptron with Linearly Separable Data Suffers from
Catastrophic Forgetting. It is well known that if the data points (x, y) pre-
sented to the perceptron algorithm have linear margin γ > 0 and have
lengths bounded by ‖x‖ ≤ R, then the algorithm will make at most 2kR2/γ 2

wrong predictions over its entire lifetime, where k is the number of classes.
This is true regardless of the order in which the data are presented.

Nonetheless, catastrophic forgetting is possible. One way this can hap-
pen is if the data are not perfectly separable. In that case, the linear margin
condition does not hold and the perceptron will not converge. But forget-
ting can occur even when the data are separable, as we now show.

Suppose we introduce one class at a time, or a couple of classes at a time,
as is commonly done in continual learning. The guarantees of the percep-
tron need to be interpreted carefully in this setting. After new classes are
introduced, the algorithm will, in general, need to see more examples of ear-
lier classes and tweak their weight vectors further. It is thus never “done”
with a particular class.

To make this more concrete, suppose that we introduce one class at a
time, and the margin so far, after seeing the "rst j classes is γ j. That is, γ j
is the linear margin of classes {1, 2, . . . , j}, which can only get smaller as
j grows: γ 1 ≥ γ 2 ≥ γ 3 ≥ !!! Upon introducing the kth class, the mistake
bound goes up by 2kR2/γ 2

k − 2(k − 1)R2/γ 2
k−1 ≥ 2R2/γ 2

k ; we can think of this
quantity as the additional number of mistakes we might make in accommo-
dating the kth class. Crucially, in order to get convergence, some of these
mistakes may need to be made on classes that have been seen earlier.

We now construct a concrete example of this phenomenon.
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1804 Y. Shen, S. Dasgupta, and S. Navlakha

Lemma 1. Pick any positive integer d that is a power of two. Then there exists
a set of d −1 vectors x1, . . . , xd − 1 ∈ {0, 1}d with the following two properties:
(1) each vector xi has exactly d/2 ones and (2) any pair of vectors has a dot product
exactly d/4.

Proof. Start with the d × d Hadamard matrix and remove the row that is
all ones. In the resulting (d − 1) × d matrix, replace every −1 with a 0, and
take x1, . . . , xd − 1 to be the rows of the matrix. !

Now consider a situation with d − 1 classes, where class j is supported
on the single point xj. The ideal classi"ers are wj = xj:

w j · xi =
{

d/2 if i = j

d/4 otherwise.

Suppose the classes are introduced one at a time, in order:

• Class 1 is introduced: w1 is set to x1, which is perfect.
• Class 2 is introduced: point x2 is misclassi"ed as coming from class

1. Thus, w2 is set to x2, which is perfect, but w1 is changed to x1 − x2,
which no longer correctly classi"es class 1:

w1 · x1 = (x1 − x2) · x1 = d/2 − d/4 = d/4,

w2 · x1 = d/4.

Moreover, for any j > 2, we have w1 · xj = (x1 − x2) · xj = 0. Thus, all
such points xj will be classi"ed as class 2.

• Class 3 is introduced: point x3 is misclassi"ed as coming from class 2.
Thus w3 is set to x3, but now w2 becomes x2 − x3, suffering a similar
fate to w1.

And so on. By the time xd − 1 has arrived, all of w1, . . . , wd − 2 have been
corrupted to the point of uselessness, even though they were originally set
perfectly.

Thus, even in the case where the perceptron algorithm is known to fare
best (i.e., when the data are linearly separable), catastrophic forgetting oc-
curs under continual learning.

3.2 The Partial-Freezing perceptron Does Not Suffer from Catas-
trophic Forgetting. The partial-freezing algorithm in equation 2.3 is an as-
sociative version of the perceptron. We now show that even in a continual
learning framework, this algorithm will provably learn to correctly distin-
guish classes if the classes satisfy a separation condition that says, roughly,
that dot products between points within the same class are, on average,
greater than between classes. We will then show that adding sparse coding
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Reducing Catastrophic Forgetting With Associative Learning 1805

enhances the separation of classes (Babadi & Sompolinsky, 2014), making
associative learning easier.

De!nition 1. Let π1, . . . , π k be distributions over Rd, corresponding to k classes
of data points. We say the classes are γ -separated, for some γ > 0, if for any pair of
classes j (= j′ and any point xo from class j,

EX∼π j [xo · X] ≥ γ + EX ′∼π j′ [xo · X ′].

Here, EX∼π refers to expected value under a vector X drawn at random from dis-
tribution π .

Under γ -separation, the labeling rule,

x +→ arg max
j

w j · x,

is a perfect classi"er if the wj (i.e., the KC → MBON weight vector for class
j) are the means of their respective classes, that is, w j = EX∼π j [X]. This holds
even if the means are only approximately accurate, within O(γ ) (in the sup-
plement, see theorem 8). The partial freezing algorithm, in turn, provably
produces such mean estimates (in the supplement, see theorem 5).

3.3 Sparse Coding Provably Creates Favorable Separation for Contin-
ual Learning. The separation condition of de"nition 1 is quite strong and
might not hold in the original data space. But we will show that subsequent
sparse coding can nonetheless produce this condition, so that the partial
freezing algorithm, when run on the sparse encodings, performs well.

To see a simple model of how this can happen, suppose that there are N
prototypical inputs, denoted p1, . . . , pN ∈ X , where X ⊂ Rd, that are some-
what separated from each other: for some ξ ∈ [0, 1),

pi · p j

‖pi‖‖p j‖
≤ ξ .

Each pi has a label yi ∈ [1 . . . k]. Let Cj ⊂ [N] be the set of prototypes with label
j. Since the labels are arbitrary, these classes will in general not be linearly
separable in the original space (see Figure S2).

Suppose the sparse coding map φ : X → {0, 1}m generates k-sparse rep-
resentations with the following property: for any x, x′ ∈ X ,

φ(x) · φ(x′) ≤ k f
(

x · x′

‖x‖‖x′‖

)
,
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1806 Y. Shen, S. Dasgupta, and S. Navlakha

where f: [− 1, 1] → [0, 1] is a function that captures how the coding pro-
cess transforms dot products. Some earlier work (Dasgupta et al., 2018) has
characterized f for two types of random mappings: a sparse binary matrix
(inspired by the !y’s architecture) and a dense gaussian matrix (common in
engineering applications). In either case, f(s) is a much shrunken version of
s; in the dense gaussian case, for instance, it is roughly (k/m)1 − s.

We can show that for suitable ξ , the sparse representations of the
prototypes—that is, φ(p1), . . . , φ(pN) ∈ {0, 1}m—are then guaranteed to be
separable, so that the partial freezing algorithm will converge to a perfect
classi"er.

Theorem 1. Let No = max j |Cj|. Under the assumptions above, the sparse rep-
resentation of the data set, {(φ(p1), y1), . . . , (φ(pN ), yN )}, is (1/No − f (ξ ))-
separated in the sense of de!nition 1.

Proof. This is a consequence of theorem 9 in the supplement, a more gen-
eral result that applies to a broader model in which observed data are noisy
versions of the prototypes. !

4 Experimental Evaluation

4.1 Testing Framework and Problem Setup. We tested each algorithm
(see below) on two benchmark data sets using a class-incremental learning
setup (Farquhar & Gal, 2019; van de Ven et al., 2020), in which the training
data were ordered and split into sequential tasks. For the MNIST-20 data
set (a combination of regular MNIST and Fashion MNIST; see the supple-
ment), we used 10 nonoverlapping tasks, where each task is a classi"cation
problem between two classes. For example, the "rst task is to classify be-
tween digits 0 and 1, the second task is to classify digits 2 and 3, and so on.
Similarly, the CIFAR-100 data set is divided into 25 nonoverlapping tasks,
where each task is a classi"cation problem among four classes.

Testing is performed after the completion of training of each task and is
quanti"ed using two measures. The "rst measure, the accuracy for classes
trained so far, assesses how well classes from previous tasks remain cor-
rectly classi"ed after a new task is learned. Speci"cally, after training task
i, we report the accuracy of the model tested on classes from all tasks ≤ i.
The second measure, memory loss, quanti"es forgetting for each task sep-
arately. We de"ne the memory loss of task i as the accuracy of the model
when tested (on classes from task i only) immediately after training on task
i minus the accuracy when tested (again, on classes from task i only) af-
ter training on all tasks, that is, at the end of the experiment. For example,
say the immediate accuracy of task i is 0.80, and the accuracy of task i at
the end of the experiment is 0.70. Then the memory loss of task i is 0.10. A
memory loss of zero means memory of the task was perfectly preserved
despite learning new tasks.
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4.1.1 Comparison to Other Algorithms. There are, of course, many heavy-
duty continual learning algorithms in the literature, and our intention here
is not to perform an exhaustive comparison to them. Instead, we compared
the FlyModel with three neurally plausible methods that are popular in
the literature and represent the broad strategies of brain-inspired contin-
ual learning (e.g., synapse protection, memory replay) outlined in section 1.
All of these methods use backpropagation-based supervised learning as op-
posed to associative learning. Moreover, none of these methods have prov-
able convergence guarantees, as ours does:

1. Elastic weight consolidation (EWC; Kirkpatrick et al., 2017) uses the
Fisher information criterion to identify weights that are important
for previously learned tasks and then introduces a penalty if these
weights are modi"ed when learning a new task.

2. Gradient episodic memory (GEM; Lopez-Paz & Ranzato, 2017) uses a
memory system that stores a subset of data from previously learned
tasks. These data are used to assess how much the loss function on
previous tasks increases when model parameters are updated for a
new task.

3. Brain-inspired replay (BI-R; van de Ven et al., 2020) protects old mem-
ories by using a generative model to replay activity patterns related
to previously learned tasks.

4. Vanilla is a standard fully connected neural network that does not
have any explicit continual learning mechanism. This is used as a
lower bound on performance.

5. Of"ine is a standard fully connected neural network, but instead of
learning classes sequentially, for each task, it is retrained from scratch
on all classes (current and previously seen) together, presented in a
random order. This is used as an upper bound on performance.

For a fair comparison, all "ve methods (except BI-R; see the supplement)
use the same architecture as the FlyModel—the same number of layers, the
same number of units per layer (m units in the "rst layer, k units in the
second layer)—and they all use the same hidden unit activation function
(ReLU). In addition, all methods, including the FlyModel, use the same rep-
resentation for each input. Thus, the primary difference among methods is
how learning mechanisms store and preserve memories.

See the supplement for full details on data sets, preprocessing, network
architectures, and parameters.

4.2 TheFlyModelOutperformsExistingMethodsinClass-Incremental
Learning. The FlyModel reduced catastrophic forgetting compared to all
four continual learning methods tested. For example, on the MNIST-20 data
set (see Figure 2A), after training on 5 tasks (10 classes), the accuracy of the
FlyModel was 0.86 ± 0.0006 compared to 0.77 ± 0.02 for BI-R, 0.69 ± 0.02
for GEM, 0.58 ± 0.10 for EWC, and 0.19 ± 0.0003 for Vanilla. At the end
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Figure 2: The FlyModel outperforms existing continual learning methods in
class-incremental learning. (A) The x-axis is the number of classes trained on,
and the y-axis is the classi"cation accuracy when testing the model on the classes
trained on thus far. The of!ine method (dashed black line) shows the optimal
classi"cation accuracy when classes are presented together, instead of sequen-
tially. Error bars show standard deviation of the test accuracy over "ve random
initializations for GEM, BI-R, EWC, and Vanilla, or over "ve random matrices
(!) for the FlyModel. (B) The x-axis is the task number during training and the
y-axis is the memory loss of the task. (A–B) MNIST-20 data set. (C–D) CIFAR-
100. The memory loss of all tasks is shown in Figure S3.

of training (10 tasks, 20 classes trained), the test accuracy of the FlyModel
was at least 0.19 higher than any other method and only 0.11 lower than the
optimal of!ine model.

Next, we used the memory loss measure to quantify how well the “mem-
ory” of an old task is preserved after training new tasks (see Figures 2B
and S3). As expected, the standard neural network (Vanilla) preserves al-
most no memory of previous tasks; it has a memory loss of nearly one
for all tasks except the most recent task. While GEM, EWC, and BI-R per-
form better—memory losses of 0.24, 0.27, and 0.42, respectively, averaged
across all tasks—the FlyModel has an average memory loss of only 0.07.
This means that the accuracy of task i was only degraded on average by 7%
at the end of training when using the FlyModel.

Similar trends were observed on a second, more dif"cult data set (CIFAR-
100; see Figures 2C and 2D), where the FlyModel had an accuracy that was
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Figure 3: Sparse coding and partial freezing are both required for contin-
ual learning. Axes are the same as those in Figure 2A. Both sparse coding
methods outperform both dense coding methods. When using sparse cod-
ing, partial freezing outperforms logistic regression (one-layer neural network).
(A) MNIST-20. (B) CIFAR-100.

at least 0.15 greater than all continual learning methods and performed only
0.13 worse than the of!ine model.

4.3 Sparse Coding and Partial Freezing Are Both Required for Contin-
ual Learning. An important challenge in theoretical neuroscience is to un-
derstand why circuits may be designed the way they are. Quantifying how
evolved circuits fare against putative, alternative circuits in design space
could provide insight into the biological function of observed network mo-
tifs. We explored this question in the context of the two core components in
the FlyModel: sparse coding of representations in the "rst layer and partial
freezing of synaptic weights in the associative learning layer. Are both of
these components required, or can good performance be attained with only
one or the other?

We piecemeal explored the effects of replacing sparse coding with dense
coding and replacing partial freezing with a traditional single-layer neu-
ral network (i.e., logistic regression), where every weight can change for
each input. This gave us four combinations to test. The dense code was
calculated in the same way as the sparse code, minus the winner-take-all
step. In other words, for each input x, we used ψ(x) (see equation 2.1, with
min-max normalization) as its representation, instead of φ(x) (see equa-
tion 2.2). For logistic regression, the associative layer was trained using
backpropagation.

Both sparse coding variants (with partial freezing or with logistic regres-
sion) performed better than the two dense coding variants on both data sets
(see Figures 3A and 3B). For example, on MNIST-20, at the end of training,
the sparse coding models had an average accuracy of 0.64 versus 0.07 for the
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two dense coding models. Furthermore, sparse coding with partial freezing
(i.e., the FlyModel) performed better than sparse coding with logistic re-
gression: 0.75 versus 0.54 on MNIST-20 and 0.41 versus 0.21 on CIFAR-100.

Hence, on at least the two data sets used here, both sparse coding and
partial freezing are needed to optimize continual learning performance.

4.4 Comparison of the FlyModel with the Perceptron. In our the-
oretical analysis, we highlighted two important differences between the
perceptron-supervised learning algorithm and the FlyModel associative
learning algorithm. Next, we studied how the four combinations of these
two differences affect continual learning.

The "rst combination (Perceptron v1) is the classic perceptron learning
algorithm, where weights are modi"ed only if an incorrect prediction is
made, by increasing weights to the correct class and decreasing weights to
the incorrectly predicted class. The second combination (Perceptron v2) also
learns only when a mistake is made, but it increases weights only to the cor-
rect class (i.e., it does not decrease weights to the incorrect class). The third
combination (Perceptron v3) increases weights to the correct class regard-
less of whether a mistake is made, and it decreases weights to the incorrect
class when a mistake is made. Finally, the fourth combination (Perceptron
v4) is equivalent to the FlyModel; it simply increases weights to the correct
class regardless of whether a mistake is made. All models start with the
same sparse, high-dimensional input representations in the "rst layer.

Perceptron v1 (Original Perceptron) Perceptron v2

1: for x in data do 1: for x in data do
2: if predict (= target then 2: if predict (= target then
3: weight[target] += βx 3: weight[target] += βx
4: weight[predict] −= βx 4:
5: end if 5: end if
6: end for 6: end for

Perceptron v3 Perceptron v4 (FlyModel)

1: for x in data do 1: for x in data do
2: if predict (= target then 2: if predict (= target then
3: weight[target] += βx 3: weight[target] += βx
4: weight[predict] −= βx 4:
5: else 5: else
6: weight[target] += βx 6: weight[target] += βx
7: end if 7: end if
8: end for 8: end for
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Figure 4: Continual learning performance for the four perceptron variants.
Axes are the same as those in Figure 2A. Compared to the classic perceptron
learning algorithm (Perceptron v1), the FlyModel (Perceptron v4) learns regard-
less of whether a mistake is made, and it does not decrease weights to the in-
correct class when mistakes are made. These two changes signi"cantly improve
continual learning performance. (A) MNIST-20. (B) CIFAR-100.

Overall, we "nd a striking difference in continual learning with these two
tweaks, with the FlyModel performing signi"cantly better than the other
three models on both data sets (see Figures 4A and 4B). Speci"cally, learn-
ing regardless of whether a mistake is made (v3 and v4) works better than
mistake-only learning (v1 and v2), and decreasing the weights to incorrectly
predicted class hurts performance (v4 compared to v3; no major difference
between v2 and v1).

As we showed analytically, decreasing weights to the incorrect class (v1
and v3) suffers from catastrophic forgetting when inputs from different
classes are overlapping. While this feature of the perceptron algorithm is
believed to help create a larger boundary (margin) between the predicted
incorrect class and the correct class, it also causes shared weights to be hi-
jacked by recent classes observed. This leads to more catastrophic forget-
ting, albeit faster initial learning. The FlyModel, on the other hand, avoids
this issue because the shared neurons are split between both classes and
thus cancel each other out. As a result, the weight vectors in the associa-
tive layer converge to the mean of its class inputs, scaled by a constant (see
the supplement, lemmas 3 and 4 and theorems 5 and 8). See supplement
"gures S4 and S5 for an empirical demonstration of this result.

5 Discussion

While learning mechanisms in the brain have been the source of inspi-
ration for many continual learning algorithms, one commonly used neu-
ral learning mechanism (associative learning) has been largely overlooked.
Here, we developed a simple and lightweight associative continual learning
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algorithm that reduces catastrophic forgetting, inspired by how fruit !ies
learn odor-behavior associations. The FlyModel outperformed three popu-
lar class-incremental continual learning algorithms on two benchmark data
sets (MNIST-20 and CIFAR-100), despite not using external memory, gener-
ative replay, or backpropagation. The !y’s associative learning algorithm is
strikingly similar to the classic perceptron algorithm but for two modi"ca-
tions that we show are critical for retaining old memories. Indeed, alterna-
tive circuits in design space suffered more catastrophic forgetting than the
FlyModel, potentially shedding new light on the biological function and
conservation of this circuit motif. Finally, we grounded these ideas theo-
retically by proving that associative layer weight vectors in the FlyModel
converge to the mean representation of its class and that sparse coding fur-
ther reduces memory interference by better separating classes compared to
the conventional perceptron algorithm, which we proved suffers under the
continual learning scenario even when classes are linearly separable.

Given the same architecture, the FlyModel requires less memory and has
comparable training ef"ciency compared to alternative methods (see the
supplement, Figures S6 and S7). If the input layer is N-dimensional and the
hidden layer undergoes a 40 times dimensionality expansion, given m in-
puts and t tasks, the number of parameters (weights) the FlyModel needs
to store is of O(N2 + tN) across the two layers, and the total computational
complexity for training is O(mN), since for each input, we only update a few
(5% × 40N = 2N) weights in the second layer. In addition, since FlyModel
makes no distinction between tasks, the computational complexity is inde-
pendent of t. On the other hand, EWC and GEM require additional storage
of weights or data from previous tasks.

The two main features of the FlyModel—sparse coding (Kanerva, 1988,
2009; Babadi & Sompolinsky, 2014) and associative learning (i.e., partial
synaptic freezing; Kirkpatrick et al., 2017; Zenke et al., 2017)—are well ap-
preciated in both neuroscience and machine learning. For example, sparse,
high-dimensional representations have long been recognized as central
to neural encoding (Kanerva, 1988), hyperdimensional computing (Kan-
erva, 2009), and classi"cation and recognition tasks (Babadi & Sompolin-
sky, 2014). Similarly, the notion of freezing certain weights during learning
has been used in both classic perceptrons and modern deep networks (Kirk-
patrick et al., 2017; Zenke et al., 2017), but these methods are still subject to
interference caused by dense representations. However, the bene"ts of such
features toward continual learning have not been well quanti"ed. Indeed,
the !y circuit evolved a unique combination of common computational in-
gredients that work effectively in practice.

The FlyModel performs associative rather than supervised learning. In
associative learning, the same learning rule is applied regardless of whether
the model makes a mistake. In supervised learning, changes are made to
weights only when the model makes a mistake, and the changes are ap-
plied to weights for both the correct and the incorrect class labels. In other
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Reducing Catastrophic Forgetting With Associative Learning 1813

words, the FlyModel learns each class independently compared to super-
vised methods, and hence is !exible about the total number of classes to
be learned; the network is easily expandable to more classes if necessary.
Supervised methods focus on discrimination between multiple classes at a
time, which we showed is particularly susceptible to interference, especially
when class representations are overlapping. Thus, our results suggest that
some traditional bene"ts of supervised classi"cation may not carry over to
continual learning (Hand, 2006) and that association-like models may better
preserve memories when classes are learned sequentially.

However, associative learning alone without good representations is not
suf"cient to achieve good continual learning performance. While conven-
tional backpropagation-based continual learning algorithms try to solve
both representation learning and association learning at the same time, it
could be argued that the brain takes a different approach by separating
these two into different network layers. The associative learning compo-
nent of continual learning has not been well studied in the literature, even
though, as we showed, this seemingly simple problem can have important
consequences on reducing catastrophic forgetting.

Previous studies share conceptual similarities with some features of
FlyModel. For example, PackNet (Mallya & Lazebnik, 2018) uses weight
pruning to free up redundant weights while keeping important weights
"xed. This approach is similar to partial freezing, but instead of pruning
less important weights, partial freezing only modi"es relevant weights dur-
ing learning and requires no computation to determine the importance of
weights in retrospect. Partial freezing also resembles another well-known
continual learning method, iCaRL (Rebuf" et al., 2017). iCaRL selects a few
prototypes per class, stores these, and then, at prediction time, averages the
prototypes for each class (using the current representation) and chooses the
one nearest the query vector. FlyModel maintains one linear function per
class and, at prediction time, takes the one with the highest value.

There are four additional features of the fruit !y mushroom body (MB)
that remain underexplored computationally. First, instead of using one out-
put neuron (MBON) per behavior, the mushroom body contains multi-
ple output neurons per behavior, with each output neuron learning at a
different rate (Hige et al., 2015; Aso & Rubin, 2016). This simultaneously
provides fast learning with poor retention (large learning rates) and slow
learning with longer retention (small learning rates), which is reminiscent of
complementary learning systems (Parisi et al., 2019). Second, the MB con-
tains mechanisms for memory extinction (Felsenberg et al., 2018) and re-
versal learning (Felsenberg et al., 2017; Felsenberg, 2021), which are used
to update inaccurate memories. Third, there is evidence of memory replay
in the MB, which is required for memory consolidation (Yu et al., 2005;
Haynes et al., 2015; Cognigni et al., 2018). Fourth, there exists feedback from
the MB to the input layer that could tune representations during learning
(Hu et al., 2010). We hope our model can be used as a stepping stone as
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circuit mechanisms controlling these computations are discovered. More-
over, although we only evaluated continual learning performance using
simple architectures, follow-up work has already successfully implemented
some variants of FlyModel (Robinson et al., 2023; Bricken et al., 2023), sug-
gesting that better performance can indeed be achieved using more sophis-
ticated architectures.

Finally, a motif similar to that of the fruit !y olfactory system also
appears in the mouse olfactory system, where sparse representations in
the piriform cortex project to other learning-related areas of the brain
(Komiyama & Luo, 2006; Wang et al., 2020). In addition, the visual system
uses many successive layers to extract discriminative features (Riesenhuber
& Poggio, 1999; Tacchetti et al., 2018), which are then projected to the hip-
pocampus, where a similar sparse, high-dimensional representation is used
for memory storage (Olshausen & Field, 2004; Wixted et al., 2014; Lodge &
Bischofberger, 2019). Thus, the principles of learning studied here may help
illuminate how continual learning is implemented in other brain regions
and species.

In all, our work exempli"es how understanding detailed neural anatomy
and physiology in a tractable model system can be translated into ef"cient
architectures for use in arti"cial neural networks.
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