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Abstract

Subcell limiting strategies for discontinuous Galerkin spectral element methods do not provably satisfy a
semi-discrete cell entropy inequality. In this work, we introduce an extension to the subcell and monolithic
convex limiting strategies [1, 2, 3] that satisfies the semi-discrete cell entropy inequality by formulating the
limiting factors as solutions to an optimization problem. The optimization problem is efficiently solved using
a deterministic greedy algorithm. We also discuss the extension of the proposed subcell limiting strategy
to preserve general convex constraints. Numerical experiments confirm that the proposed limiting strategy
preserves high-order accuracy for smooth solutions and satisfies the cell entropy inequality.

1. Introduction

In computational fluid dynamics simulations, higher resolutions are increasingly necessary for a wide
range of applications [4]. In certain scenarios, high-order accurate numerical methods are preferred over
low-order methods due to their improved accuracy per degree of freedom, and comparable efficiency [5].
High-order discontinuous Galerkin (DG) methods are notably well-suited for handling convection-dominated
problems and yield simple and efficient implementations due to the inherent locality of many operations [6].
Among DG methods, the DG spectral element method (DGSEM) is one of the most computationally efficient
high-order discretization techniques, due to the tensor-product structure of the associated operators.

Unfortunately, high-order DGSEM often encounter stability issues when solving nonlinear hyperbolic
conservation laws. These issues arise due to the loss of nonlinear stability and ill-defined physical quantities
such as negative density and pressure in compressible flows. Traditional stabilization techniques, such
as filtering and artificial viscosity [7, 8] are commonly employed in combination with DGSEM. However,
most of these methods require heuristic tuning of parameters and lack provable robustness and high-order
convergence for smooth solutions.

For high-order DG schemes, Zhang, Shu, and their colleagues introduced simple, effective, and high-
order accuracy preserving scaling limiters for systems of conservation laws [9, 10, 11]. The core idea is to
utilize a strong stability preserving Runge-Kutta (SSPRK) time integrator to compute the average of the
DG solution on each element, which satisfies desired properties under a timestep condition. The limited
solution is then constructed by scaling the high-order DG towards the DG average.

Another popular class of limiting strategies is flux-corrected transport (FCT) algorithms [12, 13]. Inspired
by FCT, Kuzmin designed algebraic flux correction (AFC) schemes, which provide a general framework for
designing multidimensional flux limiters [14]. AFC schemes introduce a novel artificial diffusion operator and
a conservative flux decomposition to generalize the limiting technique of FCT algorithms. The underlying
low-order method is a generalization of the local Lax-Friedrichs (LLF) method to nodal finite element
discretizations [14, 15]. A subcell limiting strategy is then proposed to allow the limiting factors to vary
within an element in the context of high-order Bernstein finite element [16]. Pazner later extended this
subcell limiting strategy to the DGSEM in a dimension-by-dimension fashion [1].

In the context of subcell limiting, there are two major approaches to ensure some types of entropy
inequality. One approach involves enforcing a discrete minimum principle on specific entropy [1, 2]. However,
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this approach is limited to compressible flows and may reduce the accuracy of the solution to at most second
order for smooth solutions. Another recent approach is to enforce Tadmor’s entropy condition on subcell
algebraic fluxes [17, 3]. This approach also does not preserve high-order accuracy for DGSEM1.

This work aims to address the loss of high-order accuracy near smooth regions when applying subcell
limiter-based entropy stabilization. The main motivation comes from high-order entropy stable Discon-
tinuous Galerkin (ESDG) discretizations and other schemes, where a semi-discrete cell entropy balance is
satisfied [18, 19, 20, 21, 22, 23, 24, 25, 26]. In contrast, the aforementioned entropy stabilization techniques
enforce an entropy stability inequality at the nodal level. The essential idea of the proposed limiting strategy
is to enforce the cell entropy balance through the subcell limiting strategy, which can be formulated as a
linear program over each element. This linear program can be solved efficiently and optimally with a simple
greedy algorithm. Furthermore, the proposed entropy stabilization can be easily extended to preserve more
general convex constraints.

The outline of the paper is as follows: Section 2 gives a brief overview of the nonlinear conservation laws,
the notations used in the paper, and some background knowledge on DGSEM. Section 3 presents the semi-
discrete entropy stable subcell limiting technique. In Section 4, we provide various numerical experiments in
1D and 2D to verify the high-order convergence, entropy stability, and robustness of the proposed limiting
strategy. Finally, we summarize our work in Section 5.

2. Background knowledge

In this work, we focus on solving the nonlinear hyperbolic conservation laws in two space-dimensions,
with the understanding that the theoretical findings presented in this paper can be readily applied to three-
dimensional settings.

2.1. On notation

We adopt the notation convention introduced in [20]. Lower and upper case bold fonts (for example,
A and u) refer to vector and matrix quantities, respectively. Spatially discrete quantities are written in
bold sans serif font (e.g., x). To ensure clarity, continuous real functions evaluated over spatially discrete
quantities are interpreted as point-wise evaluations. For instance,

x =



x1

...
xn


 , u : R → R, u(x) =



u(x1)

...
u(xn)




We note that we abuse notation and adopt the convention that Au represents the Kronecker product
(A⊗INc)u [24], where operator A is applied to each scalar component u. We will use either a number subscript
A1,A2, or a letter subscript Ar,As interchangeably to indicate the coordinates of discrete operators. For the
sake of notational clarity, this work will present the theory on the reference element D̂ and will ignore the
geometric terms involved. For more information on how the proposed framework can be applied to mapped
elements and curved meshes, readers can look into Appendix A of our recent manuscript [27].

For DG discretizations, let u(x) be a scalar function on an element D. We define u as its “interior” and
u+ as its “exterior” values across the face shared by neighbor D+.

2.2. Nonlinear conservation laws

A d-dimensional nonlinear hyperbolic conservation law with Nc components is given by:

∂u

∂t
+∇ · f (u) = 0, u ∈ R

Nc , fi (u) : R
Nc → R

Nc , i = 1, . . . , d. (1)

1By private communication
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In particular, we are interested in systems with an associated convex mathematical entropy η (u), whose
physically relevant solutions (defined as the limit solutions for an appropriately defined vanishing viscosity)
satisfy an entropy inequality:

∂η (u)

∂t
+∇ · F (u) ≤ 0, (2)

where F (u) is referred to as the entropy flux satisfying the following identity:

(∇uF (u))
T
= vT∇uf (u) , v = ∇uη (u) . (3)

v is referred to as the entropy variables. A cell entropy balance is obtained by integrating the entropy
inequality (2) over a domain D and applying integration by parts and chain rule:

∫

D

∂η (u)

∂t
+

∫

∂D

vTf (u (v))−ψ (v) ≤ 0, (4)

where ψ(v) = vTf(u (v))− F (u (v)) is referred to as the entropy potential.

2.3. Discretizations

The subcell limiting strategy is based on blending a high-order accurate discretization and a low-order
structure-preserving discretization constructed using algebraic viscosity. In this section, we will provide a
brief introduction to the two types of discretizations that form the basis of the proposed limiting strategy. We
will restrict ourselves to 2D for simplicity of presentations, but the idea is straightforward to extend to 3D. For
both discretizations, the domain Ω is decomposed into non-overlapping quadrilateral elements Dk, each of
which is the image of a reference element D̂ under an invertible mapping Φk. The reference approximation
basis of degree N is defined as the Lagrange basis on Legendre-Gauss-Lobatto (LGL) quadrature nodes

{ri}
N+1
i=1 :

ϕi,j (r, s) = Li (r)Li (s) , Li (r) =
∏

j ̸=i

r − ri
rj − ri

. (5)

In this work, we concentrate on Cartesian grids for the sake of simplicity. The extension to curvilinear
meshes is discussed in [1] and [27].

2.3.1. Discontinuous Galerkin spectral element discretization

The DGSEM discretization refers to DG discretizations whose underlying approximation basis is the
Lagrange basis on LGL nodes and lumped mass matrix is defined with LGL quadrature weights. Since the
quadrature nodes collocate with the interpolation nodes, the mass, differentiation, weighted differentiation,
boundary integration, and face extrapolation matrices are defined as

M1D =



w1

. . .

wN+1


 , (D1D)ij =

dLj

dr

∣∣∣∣
r=rj

, Q1D = M1DD1D (6)

B1D =

[
−1 0 · · · 0 0
0 0 · · · 0 1

]
, E1D =

[
1 0 · · · 0 0
0 0 · · · 0 1

]
, (7)

where {wi}
N+1
i=1 are the LGL quadrature weights.

Multidimensional operators are defined based on the tensor product structure of the reference approxi-
mation basis as follows

M = M1D ⊗M1D, E = IN+1 ⊗ E1D (8)

Qr = M1D ⊗Q1D, Qs = Q1D ⊗M1D, (9)

Br = M1D ⊗ B1D, Bs = B1D ⊗M1D. (10)
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Since the mass matrix M is diagonal, we define mi = Mii for simplicity of notation.
We can then write the discontinuous Galerkin spectral element discretization on the reference element

as:

M
du

dt
+

2∑

k=1

Qkfk + ETBk

(
f∗k

(
uf ,u

+
f

)
− fk (uf )

)
= 0, (11)

fk = fk (u) , uf = Eu,

where u+f denotes the interface value at the neighboring element interface. Readers can refer to Chapter 6
of [6] for its extention to multiple elements.

2.3.2. Low order semi-discrete entropy stable and positivity-preserving discretization

We then introduce a low-order discretization that preserves semi-discrete entropy stability and the pos-
itivity of physical quantities, utilizing an appropriate time integrator. To avoid over-dissipation when the
approximation degree N increases, we employ sparse low-order operators [1]. Sparse low-order operators on
LGL nodes are derived by integrating the piecewise linear basis over subcells [1]:

QL
1D =




− 1
2

1
2

− 1
2 0 1

2
− 1

2 0 1
2
. . .


 , QL

r = IN+1 ⊗QL
1D, QL

s = QL
1D ⊗ IN+1. (12)

Then the low order discretization can be written as [27] 2:

M
du

dt
+

2∑

k=1

((
QL

k −QL
k

T
)
◦ Fk

)
1− (Λk ◦D)1+ ETBkf

∗
k

(
uf ,u

+
f

)
= 0 (13)

(Fk)ij =
1

2
(fk (ui) + fk (uj)) , Dij = uj − ui, Λk,ij =

1

2
∥nk,ij∥λmax

(
ui,uj ,

nk,ij

∥nk,ij∥

)
,

nr,ij =

[(
QL

r −QL
r

T
)
ij

0

]
, ns,ij =

[
0(

QL
s −QL

s

T
)
ij

]

The low-order discretization can be interpreted as a finite volume scheme with a local Lax-Friedrichs type
flux on subcells induced by LGL nodes. This discretization satisfies a semi-discrete entropy inequality [27] 3.
If time integration is performed using the strong stability preserving Runge-Kutta (SSP-RK) method, where
the solution at the next time step is a convex combination of forward Euler updates, then, under a suitable
time step condition, the combination of the low-order discretization and SSP time integrator is proven to
be both positivity preserving and entropy stable, as demonstrated in [27].

In this work, we assume the numerical fluxes of both discretizations (11) and (13) are both local Lax-
Friedrichs fluxes:

f∗k

(
uf ,u

+
f , n̂

)
=

1

2

[
f (uf ) + f

(
u+f

)]
−

λmax

(
uf ,u

+
f , n̂

)

2
n̂
[
u+f − uf

]
, (14)

where λmax

(
uf ,u

+
f , n̂

)
is defined as the maximum wavespeed associated with the 1D Riemann problem.

2We didn’t split Λ along dimension k in [27].
3Thoerem 6.1 [27] proves the semi-discrete entropy stability of the low order discretization rather than a fully discrete

entropy stability.
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3. An entropy stable subcell limiting strategy

In this section, we present the main contribution of this paper. We begin with Section 3.1, where we
introduce the core idea in 1D. Specifically, we present a linear program (LP) formulation for determining
optimal subcell limiting parameters. In Section 3.2, we extend the subcell limiting strategy to higher
dimensions. We discuss the adaptation of the proposed limiting strategy as a shock capturing strategy
in Section 3.2.2. Additionally, we discuss efficient and robust implementation techniques for the proposed
limiting strategy in Section 3.4.

3.1. An entropy stable subcell limiting strategy in 1D

In this section, we will illustrate the core idea of the proposed limiting strategy on the 1D reference
element. The 1D algebraic subcell flux form of the DGSEM and the low order updates are defined as follows:

mi
duHi
dt

= rHi = f̄
H
i − f̄

H
i−1, f̄

H
i =

i∑

j=1

rHj , (15)

mi
duLi
dt

= rLi = f̄
L
i − f̄

L
i−1, f̄

L
i =

i∑

j=1

rLj , i = 1, . . . , N + 1 (16)

f̄
H
0 = f̄

L
0 = −f∗

(
u1,u

+
1

)
, f̄

H
N+1 = f̄

L
N+1 = −f∗

(
uN+1,u

+
N+1

)
, (17)

where uHi and uLi denote the DGSEM and the low order update at node i, respectively 4. It should be noted
that the equalities (17) hold because the DGSEM and low order updates are both locally conservative [1]
and use the same local Lax-Friedrichs fluxes at cell interfaces. The subcell limited solution can then be
written as

mi
dui
dt

=
[
lif̄

H
i + (1− li) f̄

L
i

]

︸ ︷︷ ︸
f̄i

−
[
li−1f̄

H
i−1 + (1− li−1) f̄

L
i−1

]

︸ ︷︷ ︸
f̄i−1

, i = 1, . . . , N + 1, (18)

where li ∈ [0, 1] are referred to as the subcell limiting factors, and limited algebraic subcell fluxes f̄i are convex
combinations of low-order and high-order algebraic fluxes. (18) is referred to as monolithic scheme [28, 3],
where we determine appropriate subcell limiting factors to ensure the numerical solution to remain in an
admissble convex set.

3.1.1. Subcell limiting for cell entropy stability

The ESDG discretization ensures a semi-discrete cell entropy balance, while preserving high-order
accuracy for smooth solutions [19, 21]. This motivates us to consider the cell entropy inequality as a
sufficient condition for achieving both entropy stability and high-order accuracy. Furthermore, the subcell
limiting approach (18) enables the use of spatially varying limiting factors within a DG element, which is
essential for enforcing the entropy stability condition.

We will now focus on the technical details of enforcing the cell entropy inequality using the subcell limiting
approach (18). The subcell limited solution can be decomposed into two components: contributions with
numerical fluxes, referred to as surface contributions, and contributions without numerical fluxes, referred
to as volume contributions:

M
du

dt
= q̄vol + q̄surf =




f̄1
f̄2 − f̄1

...
f̄N − f̄N−1

−f̄N



+




−f̄0
0
...
0

f̄N+1



. (19)

4Note that the proposed limiting strategy can also be applied to entropy stable discontinuous Galerkin discretizations by
utilizing an alternative definition of the high-order residual rH

i
, as illustrated by equation (35) in [27].
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If the subcell limited solution satisfies a cell entropy inequality [18], the resulting entropy estimate can also
be divided into volume and surface contributions:

vTM
du

dt
≤ [ψ (uN+1)−ψ (u1)]︸ ︷︷ ︸

Pvol

−
[
vTN+1f

∗
(
uN+1,u

+
N+1

)
− vT1 f

∗
(
u1,u

+
1

)]
︸ ︷︷ ︸

Psurf

. (20)

This observation enables us to enforce the cell entropy inequality separately on the volume and surface
contributions:

vT q̄vol ≤ Pvol, vT q̄surf ≤ −Psurf (21)

The following identity holds for the surface contribution:

vT q̄surf = −vT1 f̄0 + vTN+1f̄N+1 = vTN+1f
∗
(
uN+1,u

+
N+1

)
− vT1 f

∗
(
u1,u

+
1

)
= −Psurf , (22)

since the limited algebraic surface flux does not depend on limiting factors by (17). Therefore, the only step
left is to enforce entropy stability using the volume contribution. In other words, we want to find limiting
factors l1, . . . , lN that satisfy:

vT q̄vol = vT




f̄1 (l1)
f̄2 (l2)− f̄1 (l1)

...
f̄N (lN )− f̄N−1 (lN−1)

−f̄N (lN )



=

N∑

i=1

(vi − vi+1)
T
f̄i (li) ≤ Pvol, (23)

where we abused the notation to emphasize that f̄i has a linear dependence on the limiting factor li:

f̄i = lif̄
H
i + (1− li) f̄

L
i (24)

In addition to ensuring entropy stability, it is often desirable to preserve general convex constraints on
the solutions, such as the positivity of thermodynamic quantities [27] or TVD-like bounds [2]. Let lC denote
the limiting factors that preserve the convex constraints. Readers should refer to [3] for formulas for subcell
limiting factors under different convex constraints. We assume each subcell limiting factor satisfies the bound
lCi ∈ [0, 1]. The objective is to find a subcell limited solution that preserves the convex constraints while
maintaining discrete entropy stability (23). We aim to minimize the difference between the subcell limited
solution and the DGSEM discretization to preserve high-order accuracy. Mathematically, the problem of
finding suitable subcell limiting factors can be formulated as a linear program:

max
li

N∑

i=1

li (25a)

s.t.

N∑

i=1

(vi − vi+1)
T
f̄i (li) ≤ Pvol (25b)

0 ≤ li ≤ lCi (25c)

The constraints (25b) and (25c) correspond to semi-discrete entropy stability and convex constraints,
respectively, and are linear with respect to the subcell limiting factors. In (25a), we define the linear objective
function as the sum of subcell limiting factors. As a result, the optimization problem (25) is a linear program,
and its solution can be efficiently obtained. Maximizing the objective function (25a) is equivalent to finding
the set of subcell limiting factors as close to lC as possible. This ensures that the amount of limiting applied
is as small as possible while satisfying entropy stability constraints.

The optimal solution of the linear program satisfies the following properties, as stated in Theorem 3.1.
It is important to note that the optimal solution in this context refers to a subcell limited solution that
utilizes the optimal solution of the linear program as its limiting factors.
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Theorem 3.1. The linear program 25 is solvable, and the optimal solution to the linear program is locally
conservative, satisfies a semi-discrete entropy stability (20), and preserves the convex constraints enforced
by lC.

Proof. The solvability follows from the entropy stability of the low order discretization (13):

N∑

i=1

(vi − vi+1)
T
f̄i (0) = vT

[
−
((

QL −QLT
)
◦ F

)
1+ (Λ ◦D)1

]
≤ ψ (uN+1)−ψ (u1) (26)

The optimal solution is locally conservative by (18) and (17):

N+1∑

i=1

mi
dui
dt

= f̄N+1 (lN+1)− f̄0 (l0) = f∗
(
u1,u

+
1

)
− f∗

(
uN+1,u

+
N+1

)
. (27)

In addition, the optimal solution satisfies entropy stability (20) due to the satisfaction of the con-
straint (25b). The constraint (25c) preserves the given convex constraints due to convexity.

3.1.2. Efficient solution of the linear program

The linear program we have formulated can be solved using simplex methods, although its specific
structure allows us to exploit certain advantages. To simplify the notation, we can represent the linear
program 25 as follows:

max
x

M∑

i=1

xi (28a)

s.t. aT x ≤ b (28b)

0 ≤ x ≤ U (28c)

This type of linear program is known as a continuous knapsack problem, and can be efficiently solved with
the greedy algorithm 1 [29]. Theorem 3.2 concludes this section by showing the optimality of Algorithm 1.

Algorithm 1: Greedy algorithm for linear program 28

Data: a, b,U ≥ 0

Result: x optimal solution of LP
x = U;
I = {1, . . . ,M};
while aT x > b do

i = argmax
j

aj

I = I\ {i};
if

∑
j∈I

ajxj > b then

xi = 0.0;
else

xi =
b−

∑

j∈I

ajxj

ai
;

break;

Theorem 3.2. The greedy algorithm (1) gives the optimal solution to the linear program 28.

Proof. The optimality follows from a contradiction argument. Note that a similar proof could be found
in [29]. Suppose there is an optimal solution y ̸= x, where x is the solution of the greedy algorithm.
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Since y is optimal, yi = Ui for i : ai ≤ 0. Without loss of generality, we assume ai > 0 for all i and
a1 > a2 > · · · > aM > 0. Let j be the smallest index that xj ̸= yj , and let I = {k, . . . ,M} be the set after
finishing Algorithm 1.

1. If j ∈ I, then xj = Uj . By feasibility and optimality of y, yj ≤ Uj and yj ≥ Uj . Then xj = yj ,

contradiction.
2. If j /∈ I and yj < xj , If j = k − 1, we know yi = xi = 0 for i < j, and yi ≤ Ui = xi for i > j. This

contradicts to the optimality of y. If j < k − 1, yk−1 < xk−1 = 0, y is infeasible.

3. If j /∈ I and yj > xj , then by feasibility of y, there is i > j s.t. yi < xi, otherwise the constraint

aT y ≤ b is not satisfied. We can construct a new solution ỹ, where ỹi = yi + ϵ, ỹj = yj −
ai

aj
ϵ for

sufficiently small ϵ > 0. ỹ contradicts the optimality of y since i > j =⇒ ai < aj , as a result∑
ỹ =

∑
y.

3.2. Entropy stable subcell limiting strategy in higher dimensions

3.2.1. Multidimensional subcell limiting in matrix form

We now discuss in details the limiting framework in higher dimensions. In this section, we reformulate
the subcell limiting strategy discussed in [2, 1] in a matrix form, which facilitates the discussion of the
proposed limiting strategy. In 2D, the DGSEM (11) and the low order updates (13) can be rewritten in an
algebraic subcell flux form

M
duH

dt
=

2∑

k=1

∆k f̄
H
k , M

duL

dt
=

2∑

k=1

∆k f̄
L
k . (29)

The difference operators ∆k are defined using one dimensional difference operator ∆1D of size (N + 1) ×
(N + 2)

∆1D =




−1 1
−1 1

. . .
. . .

−1 1



=




0 1
−1 1

. . .
. . .

−1 0




︸ ︷︷ ︸
∆vol

1D

+




−1

. . .

1




︸ ︷︷ ︸
∆surf

1D

. (30)

The difference operator in multidimension is defined using the Kronecker product, and can be decomposed
into volume and surface contributions,

∆x = ∆vol
x +∆surf

x = IN+1 ⊗∆vol
1D + IN+1 ⊗∆surf

1D (31)

∆y = ∆vol
y +∆surf

y = ∆vol
1D ⊗ IN+1 +∆surf

1D ⊗ IN+1 (32)

Because the high order and low order methods have the same numerical fluxes (14), along each dimension,
the surface contribution can be written as

∆surf
k f̄

H
k = ∆surf

k f̄
L
k = −ETBkf

∗
k, (33)

and the volume contribution can be written as

∆vol
k f̄

H
k = −

2∑

k=1

Qkfk + ETBkfk (uf ) (34)

∆vol
k f̄

L
k = −

2∑

k=1

((
QL

k −QL
k

T
)
◦ Fk

)
1+ (Λk ◦D)1 (35)
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In addition to enforce the cell entropy inequality separately on the volume and surface contributions, we
adopt a dimension-by-dimension approach to enforce the inequality:

vT q̄volk ≤ Pvol
k , vT q̄surfk ≤ −Psurf

k , k = 1, 2. (40)

Along each dimension k, the following identity holds for the surface contributions by (33):

vT q̄surfk = vT∆vol
k f̄k = (vf )

T
Bkf

∗
k = −Psurf

k . (41)

As a result, the semi-discrete entropy balance (39) holds for the subcell limited solution if the volume
contribution satisfies:

vT q̄volk ≤ Pvol
k . (42)

Through algebraic manipulations, we can write the inequality (42) explicitly in terms of the subcell limiting
factors lk as unknowns

lTk



(
∆vol

k

T
v
)T

f̄
H
k

︸ ︷︷ ︸
dH
k

−
(
∆vol

k

T
v
)T

f̄
L
k

︸ ︷︷ ︸
dL
k


+ 1TdLk ≤ 1TBkψk, (43)

Due to the sparsity pattern of ∆vol
k , the number of unknowns in the inequalities (43) can be reduced from

(N + 2) (N + 1) to N (N + 1). In summary, we want to solve for volume subcell limiting factors in each
dimension: {lx,ij}i=1,...,N,j=1,...,N+1, {ly,ij}i=1,...,N+1,j=1,...,N that satisfies the entropy inequality (43):

N+1∑

j=1

N∑

i=1

(vij − vi+1j)
T
(
f̄
H
x,i+1j − f̄

L
x,i+1j

)
lx,i+1j ≤ 1TBxψx − 1TdLx (44)

N+1∑

i=1

N∑

j=1

(vij − vij+1)
T
(
f̄
H
y,ij+1 − f̄

L
x,ij+1

)
ly,i+1j ≤ 1TByψy − 1TdLy (45)

Let lCx denote the limiting factors that preserve the convex constraints. Then, the problem of finding
suitable subcell limiting factors can be formulated as linear programs for each dimension k. We present the
linear program in x-direction for brevity:

max
lx,ij

N+1∑

j=1

N+1∑

i=2

lx,ij (46a)

s.t.

N+1∑

j=1

N∑

i=1

(vij − vi+1j)
T
(
f̄
H
x,i+1j − f̄

L
x,i+1j

)
lk,i+1j ≤ 1TBxψx − 1TdLx (46b)

0 ≤ lx,ij ≤ lCx,ij (46c)

The linear program is still of form (28), and the greedy algorithm 1 can still be applied. The solution of
this linear program (46) satisfies the following properties:

Theorem 3.3. The linear program 46 is solvable. The optimal solution to the linear program is locally
conservative, satisfies a semi-discrete entropy stability (39), and preserves the given convex constraints
enforced by lC.

Proof. The solvability follows from the entropy stability of the low order discretization:

1TdLx =
(
∆vol

k

T
v
)T

f̄
L
k ≤ 1TBxψx. (47)

10



The optimal solution is locally conservative by simple algebra:

1TM
du

dt
=

2∑

k=1

1T∆k f̄k =

2∑

k=1

1T∆surf
k f̄k = −

2∑

k=1

1TBkf
∗
k, (48)

where we used the identity 1T∆ = 1T∆surf , along with the assumption (14) that high and low order
methods share the same surface contributions. The semi-discrete entropy stability and preservation of
convex constraints follows from the constraints (46b) and (46c).

3.3. Incorporating shock capturing

At nonsmooth regions, the volume entropy estimate of the subcell limited solution is expected to dissipate.
To account for this, we propose an alternative upper bound as a replacement for (46b) on the volume entropy
estimate of the subcell limited solution. This new bound combines the original entropy estimate with the
dissipative low order entropy estimate:

vT∆vol
k f̄k ≤ (1− ϵ)

[
1TBkψk − vT∆vol

k f̄
L
k

]
+ ϵ

[
(1− β) 1TBkψk + βvT∆vol

k f̄
L
k − vT∆vol

k f̄
L
k

]

= (1− βϵ)
[
1TBkψk − vT∆vol

k f̄
L
k

]
, (49)

where ϵ ∈ [0, 1] is an elementwise modal smoothness factor. In particular, the smoothness factor is defined
as [1, 31]:

ϵ =





0, if s < s0 − κ

0.5
(
1− sin

(
π s−s0

2κ

))
if s ∈ [s0 − κ, s0 + κ]

1, if s < s0 + κ

, s = log10


max




µ2
Np

Np∑
i=0

µ2
i

,
µ2
Np−1

Np−1∑
i=0

µ2
i





 , (50)

where s is the modal smoothness indicator, and Np = (N + 1) (N + 1) is the number of degrees of freedom

in an element. We set user-defined parameters κ = 1, s0 = log10
(
N−4

)
as in [1]. {µi}

N
i=0 are the modal

coefficients of the polynomial solution in the orthonormal Legendre basis
{
L̃i (x)

}Np

i=0
, such that u (x) =

N∑
i=0

µiL̃i (x). β ∈ [0, 1] is a user-defined parameter that determines the maximum amount of the low-order

entropy estimate to blend. When β = 0, the original bound (46b) is recovered. In smooth regions, entropy
is conserved in the interior of the element. In nonsmooth regions, the amount of entropy dissipation added
is guided by the entropy dissipation from the low-order discretization.

For completeness, we present here the linear program formulation to enforce cell entropy stability with
shock capturing:

max
lx,ij

N+1∑

j=1

N+1∑

i=2

lx,ij (51a)

s.t.

N+1∑

j=1

N∑

i=1

(vij − vi+1j)
T
(
f̄
H
x,i+1j − f̄

L
x,i+1j

)
lk,i+1j ≤ (1− βϵ)

[
1TBxψx − 1TdLx

]
(51b)

0 ≤ lx,ij ≤ lCx,ij (51c)

We note that the only difference between the LP formulations (46) and (51) is the upper bound of the
cell entropy inequality constraint (46b) and (51b). In future sections, we refer to the condition (51b) with
β = 0 as the cell entropy inequality condition. A shock capturing cell entropy stability refers to the same
condition with a nonzero value of β.
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3.4. On implementation

The proposed greedy algorithm can be efficiently implemented by first sorting the coefficient vector a,
and then proceeding with the greedy iterations in the sorted order. It can also be proven that for an
index i where ai is non-positive, the optimal solution is xi = Ui due to the non-negativity constraint on xi.
Furthermore, the number of arithmetic operations in Algorithm 1 can be reduced by iteratively accumulating
the dot product aT x in each greedy step instead of naively evaluating the dot product at each step. Overall,
the number of operations for Algorithm 2 is O (m log (m)), where m = N (N + 1). We note that calculating
the coefficient vector a and the right hand side b involves evaluating the entropy variables and entropy
potentials, which may be nonlinear functions with respect to the conservative variables u 5.

However, in practice, numerical issues can arise due to floating-point errors. One of the issues arises due
to the division by ai. To avoid this, a tolerance ϵ0 > 0, close to machine epsilon, is set, and indices i where
ai < ϵ0 are skipped during greedy iterations. We set ϵ0 = 10−14 in subsequent numerical experiments.

In summary, Algorithm 2 presents the efficient and robust pseudocode implementation of the proposed
limiting strategy. We summarize the proposed subcell limiting strategy that preserves both cell entropy
stability and convex constraints in Algorithm 3:

Algorithm 2: Efficient implementation of Algorithm 1

Data: a, b,U ≥ 0, ϵ0 > 0
Result: x optimal solution of LP
x = U;
Sort a in decreasing order, and permute x with respect to the order of a;

s =
N(N+1)∑

j=1

ajxj ;

if s ≤ b then
return;

for i = 1, . . . , N (N + 1) do
if ai < ϵ0 then

break;

s = s− aixi;
if s ≤ b then

xi =
b−s
ai

;
break;

else
xi = 0.0;

4. Numerical Experiments

In this section, we present various numerical experiments to verify the entropy stability, high-order
convergence, and robustness of the proposed limiting strategy 6. Simulations advance in time with the
optimal third-order, three-stage Strong Stability Preserving (SSP) Runge-Kutta, usually referred to as the
SSPRK(3,3), scheme [32]. We choose the timestep size according to the timestep condition derived in [27] 7:

∆t =
1

2
min
i

mi

2λi
. (52)

5For example, for the compressible Euler equations, calculating the entropy variables involve evaluting a nonlinear transfor-
mation [27]. The entropy potential is a scalar multiple of the momentum (53).

6The codes used for the experiments are available at https://github.com/yiminllin/P2DE.jl
7The SSPRK time integrator and the CFL condition (52) are necessary only for the preservation of positivity and not for

satisfying the cell entropy inequality. However, for the sake of consistency, we choose to use this time integrator and CFL
condition across all numerical experiments.
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Algorithm 3: The entropy stable and convex constraints preserving limiting strategy

Data: un solution at the current time step
Result: un+1 limited solution at the next time step
Compute uH,uL by (11), (13);
for each dimension k do

Compute algebraic subcell fluxes f̄
H
k , f̄

H
k by (33), (34), (35);

Find limiting parameters lCk that satisfies the given convex constraints.
Find new limiting parameters lk that satisfies the entropy stability using Algorithm 2.
Construct the limited solution un+1 by (36)

We note that the time step condition (52) is calculated with the solution at the first SSP stage and is used
in all three SSP stages.

In this section, two nonlinear conservation laws are studied: the compressible Euler equation and the
KPP problem. To avoid repetition, readers can refer to a previous manuscript [27] for the formula of the
compressible Euler equation, and to Section 5.1 of [2] for the formula of the KPP problem.

For the compressible Euler equations presented in [27], the entropy potential is defined as

ψ (u) = (γ − 1)

[
ρu
ρv

]
. (53)

We estimate the maximum wavespeed associated with the 1D Riemann problems using the Davis esti-
mate [33] 8:

λmax (uL,uR,n) = max

(
|uL · n|+

√
γ
pL
ρL

, |uR · n|+

√
γ
pR
ρR

)
. (54)

For comparison, we will investigate some other entropy stabilization techniques for subcell limiting. One
popular approach is to enforce a local minimum principle on a modified specific entropy [1, 2]:

ϕi ≥ min
j∈N (i)

ϕn
j , ϕ (u) = ρ1−γe, (55)

where N (i) denotes the set of indices j such that the sparse low order operator QL
ij −QL

ij

T
is nonzero. We

also consider a relaxed local minimum entropy principle [1]:

ϕi ≥ ϵ min
j∈N (i)

ϕn
j + (1− ϵ)ϕglobal, (56)

where ϵ ∈ [0, 1] is the elementwise modal indicator. Another entropy stabilization proposed in [17] enforced
a Tadmor’s entropy condition for subcell fluxes, and we refer this approach as the subcell entropy fix.

In subsequent numerical experiments, we enforce inflow boundary conditions by regarding them as Dirich-
let boundary conditions, whose values are given by the initial condition at inflow. Readers can refer to Section
7.1.1 of [6] for the implementation of Dirichlet boundary condition for discontinuous Galerkin discretizations.
No boundary conditions are applied at the outflow.

For all numerical experiments, we assume β = 0 in (49) unless otherwise explicitly stated.

4.1. On entropy stability

In this section, we will investigate the entropy stability of the proposed limiting strategy using two
benchmark test cases to check any entropy violation.

8We note the Davis estimate is not always an upper bound of the maximum wavespeed as shown in [34]. As a result, the
low order discretization (13) using the Davis estimate does not provably satisfy the positivity-preservation and semi-discrete
entropy stability. While we have not observed issues using Davis estimate in our numerical experiments, we plan to explore
more robust estimates of the maximum wavespeed [34] in future work.
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4.1.1. Modified Sod shocktube

We will first consider the modified Sod shock tube problem, which can be found in Section 6.4 of [35].
This problem consists of a left sonic rarefaction wave and is useful for testing whether numerical solutions
violate the entropy condition. An entropy-satisfying solution should produce a smooth rarefaction wave.
The initial condition for this test problem is given on the domain [0, 1]:

u (x) =

{
uL, x < 0.3

uR, otherwise
, uL =



ρL
uL

pL


 =



1.0
0.75
1.0


 , uR =



ρR
uR

pR


 =



0.125
0.0
0.1


 , (57)

where we impose inflow boundary conditions at x = 0.0 and outflow boundary conditions at x = 1.0.
We discretize the domain using K = 50 and K = 100 uniform intervals, with polynomial degree N = 3,

and run the simulation until T = 0.2. Figure 2 shows the results obtained using four different types of
discretizations, where ESDG refers to the nodal entropy stable DG discretizations mentioned in [27]. We
observe that the DGSEM solution clearly violates the entropy condition, resulting in a jump discontinuity
at the rarefaction wave. On the other hand, the other three discretizations, including the proposed limiting
strategy using cell entropy inequality, do not violate the entropy condition and produce a smooth rarefaction
wave.

Solutions, N = 3, K = 50 Zoom in view, N = 3, K = 50

Solutions, N = 3, K = 100 Zoom in view, N = 3, K = 100

Figure 2: Modified Sod shocktube

4.1.2. 2D KPP

We next consider the 2D KPP problem [36], where typical high-order methods like DGSEM will converge
to non-entropic solutions. We set up the problem using the same initial condition as in [2]. We adopt the
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blending function and parameters in [31] for shock capturing to eliminate oscillations near shocks for the
DGSEM discretizations. In particular, we define the elementwise blending function α ∈ [0, 1], with

α =
1

1 + exp
(
−s
τ (ϵ− τ)

) , s = ln

(
1− 0.0001

0.0001

)
, τ = 0.5 · 10−1.8(N+1)0.25 (58)

where ϵ is the modal smoothness factor as defined in (50), s is the sharpness factor, and τ is a threshold
value. Then, we apply shock capturing by upper bounding the subcell limiting factors l̄i, who are solutions
of (46), over each element by the elementwise blending function [27]:

li = min
(
l̄i, 1− α

)
, (59)

so that an arbitrary amount of the low-order method may be blended in near shocks, or when α is near 1.
The domain [0, 2] × [0, 2] is discretized into uniform quadrilateral elements by dividing the x and y

directions with K1D,K1D uniform intervals. We plot the values in the range [−0.5, 12]. Figure 3 shows the
solutions obtained using DGSEM with and without the proposed entropy limiting when N = 3. We refine
the mesh from K1D = 64 to K1D = 128 to check the convergence behaviour. We observe that DGSEM
without the proposed entropy limiter converges to a non-entropic solution with nonentropic artifacts, which
is similarly observed in [2]. On the other hand, the addition of the proposed cell entropy limiter results in
a correct entropic solution.

4.2. High order accuracy

In this section, we verify the convergence of the subcell limited solution with cell entropy inequality
and no additional convex constraints. In particular, we assume lC = 1. We examine the convergence of the
limited solution using the proposed strategy in 2D with the isentropic vortex test case for the compressible
Euler equation [37]. Details of the analytical solution can be found in Section 8.2.1 of [27]. The strength of
the vortex is set to βvortex = 5.0, such that no positivity limiting is needed. Periodic boundary conditions
are imposed, and the simulation is run until T = 1.0. The domain [0, 20] × [0, 10] is decomposed into
uniform quadrilateral elements by discretizing the x and y directions with 2K1D and K1D uniform intervals,
respectively.

We evaluate the relative L2 errors in the conservative variables using LGL quadrature:
[
1TM (ρn − ρ)2

]1/2

[
1TMρ2

]1/2 +

[
1TM (ρun − ρu)2

]1/2

[
1TM (ρu)

2
]1/2 +

[
1TM (ρvn − ρv)2

]1/2

[
1TM (ρv)

2
]1/2 +

[
1TM (En −E)

2
]1/2

[
1TME2

]1/2 , (60)

where the numerical solutions and exact solutions evaluated at quadrature nodes are denoted by un and u
respectively.

Table 1 shows that the subcell limited solution with cell entropy stability yields an asymptotic convergence
rate between O

(
hN+1/2

)
and O

(
hN+1

)
. On the other hand, Tables 2 and 3 show that the minimum entropy

principle-limited solutions have at most an O (h) convergence rate and at most an O
(
h2

)
rate after relaxation

for any polynomial order N 9. We note that the proposed strategy of enforcing cell entropy stability does not
provably preserve high order accuracy for smooth problems. This section only provides numerical evidence
of high-order accuracy.

4.3. Kelvin-Helmholtz Instability

We now consider the Kelvin-Helmholtz instability [20] to study the behaviour of the proposed limiting

strategy in presence of turbulence. The domain is [−1, 1]
2
with initial condition:

u (x) =




ρ
u
v
p


 =




0.5 + 0.75B (x, y)
0.5 (B (x, y)− 1)
0.1 sin (2πx)

1


 , B (x, y) = tanh (15y + 7.5)− tanh (15y − 7.5) . (61)

9By private communication, the subcell entropy fix convergence rate reduces to O
(

h2
)

for a smooth sine wave test problem [3]
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N = 1 N = 2 N = 3 N = 4
K L2 error Rate L2 error Rate L2 error Rate L2 error Rate
5 1.084× 100 7.498× 10−1 4.499× 10−1 3.135× 10−1

10 7.012× 10−1 0.63 3.343× 10−1 1.17 2.109× 10−1 1.09 1.486× 10−1 1.08
20 3.373× 10−1 1.06 1.894× 10−1 0.82 1.092× 10−1 0.95 7.509× 10−2 0.98
40 1.841× 10−1 0.87 9.718× 10−2 0.96 5.956× 10−2 0.87 4.160× 10−2 0.85
80 1.015× 10−1 0.86 5.116× 10−2 0.93 3.186× 10−2 0.90 2.157× 10−2 0.95

Table 2: 2D isentropic vortex, uniform quadrilateral mesh, subcell limiting by enforcing minimum entropy principle

N = 1 N = 2 N = 3 N = 4
K L2 error Rate L2 error Rate L2 error Rate L2 error Rate
5 1.086× 100 7.433× 10−1 4.098× 10−1 2.856× 10−1

10 7.047× 10−1 0.62 2.908× 10−1 1.35 1.785× 10−1 1.20 1.109× 10−1 1.36
20 3.154× 10−1 1.16 1.203× 10−1 1.27 5.464× 10−2 1.71 3.352× 10−2 1.73
40 1.295× 10−1 1.28 4.322× 10−2 1.48 1.863× 10−2 1.55 1.532× 10−2 1.13
80 4.500× 10−2 1.52 1.869× 10−2 1.21 6.614× 10−3 1.49 6.120× 10−3 1.31

Table 3: 2D isentropic vortex, uniform quadrilateral mesh, subcell limiting by enforcing relaxed minimum entropy principle

of [0.5, 2.5] in a logarithmic scale for better visibility. For this set of simulations, we enforce the cell entropy
inequality (39) and relaxed positivity conditions on the density and internal energy

ρ (ui) ≥ 0.5ρ
(
uLi

)
, ρe (ui) ≥ 0.5ρe

(
uLi

)
, (62)

using subcell limiting.
We follow [1, 3, 2] to enforce the bounds (62). We illustrate the limiting procedure in 1D for brevity.

The subcell limited solution (36) can be rewritten as a convex combination of substates:

un+1
i =

1

2

[
uLi + li

∆t

mi

(
f̄
H
i − f̄

L
i

)]

︸ ︷︷ ︸
Ai(li)

+
1

2

[
uLi + li−1

∆t

mi

(
f̄
H
i−1 − f̄

L
i−1

)]

︸ ︷︷ ︸
Bi(li−1)

, (63)

If the substates satisfy convex constraints, the limited solution will also satisfy the constraints. Then for
each node i, we need to find the maximum subcell limiting factor lCi ∈ [0, 1] that satisfies the constraints:

ρ
(
Ai

(
lCi
))

≥ 0.5ρ
(
uLi

)
, ρ

(
Bi+1

(
lCi
))

≥ 0.5ρ
(
uLi+1

)
, (64)

ρe
(
Ai

(
lCi
))

≥ 0.5ρe
(
uLi

)
, ρe

(
Bi+1

(
lCi
))

≥ 0.5ρe
(
uLi+1

)
. (65)

The constraints on density (64) are linear inequalities with a closed-form solution, and the constraints on
internal energy (65) can be transformed into quadratic inequalities. Readers can refer to [27] for the explicit
formula of the limiting factors.

Figure 4 shows the proposed limiting strategy applied to DGSEM. We observe the simulation is robust
and resolving fine-scale turbulence features. Additionally, we apply the proposed limiting strategy to nodal
entropy-stable discontinuous Galerkin (ESDG)[27] for comparison, as shown in Figure 5. The proposed
limiting preserves the semi-discrete entropy inequality of ESDG discretizations. Although the same types
of constraints are applied through subcell limiting, the turbulence structures of both solutions are visually
different. In other words, the choice of the high-order scheme in the proposed limiting strategy may have a
significant impact on the solution.

4.4. Astrophysical jet

We conclude the experiments by running the astrophysical jet test case proposed by Ha et al.[38] for the
compressible Euler equation. This test case involves a high Mach number of Ma ≈ 2000 and strong shocks,
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