A geometric conjecture about phase transitions
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As phenomena that necessarily emerge from the collective behavior of interacting particles, phase
transitions continue to be difficult to predict using statistical thermodynamics. A recent proposal
called the topological hypothesis suggests that the existence of a phase transition could perhaps
be inferred from changes to the topology of the accessible part of the configuration space. This
paper instead suggests that such a topological change is often associated with a dramatic change in
the configuration space geometry, and that the geometric change is the actual driver of the phase
transition. More precisely, a geometric change that brings about a discontinuity in the mixing
time required for an initial probability distribution on the configuration space to reach steady-state
is conjectured to be related to the onset of a phase transition in the thermodynamic limit. This
conjecture is tested by evaluating the diffusion diameter and e-mixing time of the configuration
spaces of hard disk and hard sphere systems of increasing size. Explicit geometries are constructed
for the configuration spaces of these systems, and numerical evidence suggests that a discontinuity
in the e-mixing time coincides with the solid-fluid phase transition in the thermodynamic limit.

PACS numbers:
I. INTRODUCTION

Phase transitions are essential to a variety of scientific
and engineering applications, but continue to be difficult
to predict from fundamental considerations. Instead, a
phase transition is usually identified by an observed dis-
continuity in one of the derivatives of a thermodynamic
potential. There have been several proposals concerning
the origin of these discontinuities. For example, Lan-
dau theory [1, 2] associates first-order phase transitions
with spontaneous symmetry breaking as quantified by
an appropriately-constructed order parameter. Such or-
der parameters often need to be defined ex post facto
though, after the characteristics of the phases involved in
the phase transition are already known. An understand-
ing of phase transitions that derives from more funda-
mental considerations would therefore be valuable.

Statistical thermodynamics suggests that thermody-
namic observables can be calculated as time averages of
the relevant microscopic quantity along the system’s tra-
jectory through the phase space. The ergodic hypothesis
[3, 4] implies that, provided such time averages are con-
ducted over a period longer than a characteristic mixing
time, they can be replaced by an average over the entire
phase space using a measure that is independent of the
system’s initial microstate; that is, they can be replaced
by an ensemble average. Omne question that has been
raised about this procedure is whether the ensemble av-
erage could really be independent of the system’s initial
conditions in general. Consider that any system with a
disconnected configuration space (i.e., a system that is
not metrically transitive [5, 6]) is necessarily confined to
the component of the configuration space where it be-
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gins, meaning that the average behavior of an ensemble
of such systems would not resemble the time-averaged
behavior of any one system. Instead, the measure used
for the average should depend on the system’s initial mi-
crostate, since that defines the component of the config-
uration space to which the system is confined. Following
this line of thought further, changes to the connectivity
of the configuration space could discontinuously change
the support of the measure used for thermodynamic av-
erages, and thereby lead to the discontinuities in ther-
modynamic observables required for a phase transition.
This is one way to motivate the topological hypothesis
[7, 8] which roughly proposes that changes in the topol-
ogy of the accessible part of the configuration space are
necessary for a phase transition to occur.

The application of these ideas to a toy model is shown
in Fig. 1. Suppose that there is an isolated system with
the configuration space in the left panel, and that the
potential energy is strictly monotone increasing with the
y-coordinate in the figure. The system’s internal energy
then defines a value of y called the filtration value above
which the system’s trajectory cannot pass. Further sup-
pose that the system’s initial microstate corresponds to a
point in the bottom left corner of the configuration space,
and that the observable of interest is the z-coordinate in
the figure. The middle panel shows the ensemble aver-
age of this observable as a function of filtration value for
both the ergodic hypothesis and the topological hypoth-
esis. Since the configuration space is symmetric about
x = 0 and the ergodic hypothesis stipulates that the mea-
sure should be independent of the initial microstate, the
ensemble average of the observable is zero for all filtra-
tion values. By comparison, the topological hypothesis
recognizes that for sufficiently small filtration values the
configuration space is disconnected, the system is con-
fined to the left side of the configuration space, and the
ensemble average of the observable should be zero only
when the filtration value increases enough for the space to
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FIG. 1: The left panel shows the evolution of a model configuration space with points colored (shaded) by their y-coordinate.
The filtration value is an upper bound for the y-coordinate of any point on the system’s trajectory. The middle panel shows
the average z-coordinate (x) calculated using the ergodic hypothesis and the topological hypothesis as a function of filtration
value, assuming that the system starts at the lower left corner of the configuration space. The right panel shows the diffusion
diameter and e-mixing time of the configuration space as functions of filtration value and that they are sensitive to changes in
the configuration space geometry. The diffusion diameter, but not the e-mixing time, is also sensitive to the bottleneck. The
five dotted lines show the filtration values used in the left panel.

become connected. Moreover, the discontinuous change
in the integration measure at this filtration value leads
to a discontinuous observable, precisely of the type that
would be expected for a system undergoing a phase tran-
sition. It is significant that it was not necessary at any
point to pass to the thermodynamic limit for there to be
a discontinuity in the observable, though this line of rea-
soning does require that the limiting distribution of mi-
crostates be described by the microcanonical ensemble.
Connecting the system to a heat bath formally introduces
a nonzero probability of arbitrarily large thermal fluctu-
ations, makes the entire configuration space accessible,
and only allows discontinuous changes in observables to
occur in the thermodynamic limit. That said, since ex-
perimental systems are necessarily finite, there is util-
ity in further exploring the indications and predictors of
nascent phase transitions in finite systems.

Let F be the potential energy of a system, gq; be the
coordinates of the system’s particles, and V(q; ...qn)
be a smooth, stable, confining and short-range interac-
tion potential. The topological hypothesis [9, 10] initially
claimed that a topological change in the equipotential
energy submanifolds X = V! ((—o0, E]) of the con-
figuration space was a necessary condition for a phase
transition. Kastner and Mehta [11] observed a second-
order phase transition in a two-dimensional ®* system at
an energy where no topological change occurred, disprov-
ing this claim. Gori et al. [12] subsequently refined the
hypothesis and observed that the phase transition in the
two-dimensional ®* system was caused by a diverging
transition time between two parts of the configuration
space, and that this was associated with an asymptotic
topological change. That is, a continuous change in the
configuration space geometry brought about a divergence
in the mixing time, and while such events are often ac-
companied by topological changes they are not always.
The significance of the configuration space geometry is
supported by a recent study of the topological and geo-
metric properties of the two-dimensional XY model by
Bel-Hadj-Aissa et al. [13]; they computed the mean ge-

ometric curvature of the equipotential energy level sets
and observed that the location of the phase transition
could be inferred from the level set curvatures.

With this as background, the fundamental conjecture
of this work is:

Conjecture 1. A necessary condition for a first-order
phase transition is a discontinuity in the mizing time on
the configuration space.

This is not intended to suggest that the mixing time di-
rectly regulates the appearance of phase transitions, but
merely that the mixing time is sensitive to any geometric
changes that could discontinuously change the integra-
tion measure for thermodynamic averages.

A natural question at this point is whether it is actu-
ally possible to measure the mixing time of a thermody-
namic system by means of the convergence of an initial
probability distribution on the configuration space to the
limiting distribution. We hypothesize that the relevant
geometric changes are so severe that any geometric quan-
tity reasonably sensitive to the accessible volume of the
configuration space and the length and number of paths
connecting distant regions should exhibit measurable dis-
continuities for the same values of the control variable as
the mixing time. The two quantities used here are the dif-
fusion distance [14, 15] and the e-mixing time. The first
measures the difference between two distributions that
start as Dirac delta distributions at different locations
on the configuration space and evolve by diffusion; max-
imizing the diffusion distance over all starting locations
of the two distributions gives the configuration space’s
diffusion diameter. The second measures the time re-
quired for a Dirac delta distribution to diffuse to the
steady-state distribution within a tolerance defined by
€, averaged over all starting locations of the distribution
in the configuration space. This is intended to resemble
the thermodynamic mixing time, though the distribution
evolves by the diffusion equation rather than the Liouville
equation and the similarity to the steady-state distribu-
tion is quantified by the Kullback—Leibler divergence [16].



thor Of course, there have been considerable prior ef-
forts to predict the onset of phase transitions that do
not involve the topological hypothesis or considerations
along the lines of Conj. 1. The Yang—Lee theory stands
out as a particularly successful approach for predicting
the locations and orders of equilibrium phase transitions
for a variety of model systems [17-19]. Suppose that
the partition function of a system can be written in the
form of a polynomial with real positive coefficients; the
grand canonical partition function can be written as such
a polynomial in the fugacity z = exp[u/(kpT)] where u
is the chemical potential. Provided that the degree M
of the polynomial is finite (a generic property of finite
systems), this polynomial necessarily has M roots that
occur as complex-conjugat pairs on the complex-fugacity
plane. A non-analyticity in the free energy as is required
for there to be a phase transition can only occur at one
of these roots of the partition function. The Yang-Lee
theory therefore considers the distribution of these roots,
and particularly their proximity to the real positive semi-
axis, as a function of system size to infer the existence
and properties of equilibrium phase transitions. While
this is an elegant approach, not all systems of interest
allow a partition function with the necessary form, and
even when they do solving for the distribution of complex
roots can be an extremely difficult task.

The conjecture made above is tested here by evalu-
ating the diffusion diameter and e-mixing time for the
configuration spaces of hard disk and hard sphere sys-
tems, collectively called hard disk systems in the follow-
ing. These systems are frequently used to model simple
fluids [20], and are governed by the hard disk potential
for which the energy is infinite if any disks overlap and is
zero otherwise. The phase transitions for these systems
have been studied extensively, starting with the semi-
nal work of Alder and Wainwright [21] who observed a
phase transition in a system of hard disks as a function
of packing fraction 7 (the fraction of the area covered by
the disks). The solid for n > 0.72 is characterized by the
presence of a long-range translational and orientational
order, whereas the fluid for n < 0.70 is characterized by
the absence of any long-range order [22, 23]. The in-
terval 0.70 < n < 0.72 was initially believed to contain
coexisting solid and fluid phases as would be expected
of a first-order transition, but more recent evidence [24—
26] suggests that this interval contains a hexatic phase
[27, 28]. Tt is significant that the phases and phase tran-
sitions that have been observed are surprisingly complex
and varied, even for this simple system. Similar studies of
hard spheres in three dimensions include those by Isobe
and Krauth [29] and Pieprzyk et al. [30] who observed
solid-fluid phase coexistence in the 0.49 < n < 0.548 in-
terval.

The configuration spaces of hard disk systems have
been studied before. Carlsson et al. [31] explored the
topology of the configuration space of five hard disks
in a unit square box by regularizing the potential en-
ergy surface (explained in Sec. IIB) and using classical

Morse theory [32, 33] to calculate the Betti numbers of
the configuration space, roughly indicating the number
of holes of various dimensions. Baryshnikov et al. [34]
developed a min-type Morse theory for the configuration
spaces of hard disk systems and proved that the criti-
cal points where the topology changes as a function of
packing fraction are precisely the mechanically-balanced
disk configurations (explained in Sec. II B). Ritchey [35]
studied configuration spaces of hard disks in the hexag-
onal torus (shown in the left of Fig. 2) for n = 1...12
disks, created a database of the critical points, defined
their critical index (specifying the nature of the associ-
ated topological change), and found their plane symme-
try groups. The authors previously [36] proposed dis-
tance functions on the configuration spaces of hard disks
quotiented by various symmetry groups, where quotient-
ing means that configurations related by a symmetry op-
eration are considered the same. They subsequently [37]
used these distances to explicitly triangulate the quo-
tients of the configuration space of two spheres in the
rhombic dodecahedron (shown in the right of Fig. 2) and
measure the diffusion diameters of the resulting spaces.
They also observed an accumulation of critical points in
the configuration space at packing fractions in the phase
coexistence interval, suggesting the possibility of a topo-
logical and geometric catastrophe there in the thermody-
namic limit.

The technical contribution of this work is a set of tech-
niques described in Sec. II that collectively allow the con-
figuration space geometries for hard disk systems with
n < 7 disks and hard sphere systems with n < 6 spheres
to be evaluated in practice. The diffusion diameters and
e-mixing times (defined in Sec. III) of these spaces are
computed as functions of particle diameter and particle
number, and in Sec. IV significant discontinuities are ob-
served at the packing fractions of critical points close to
the phase coexistence intervals. Along with the observa-
tion [37] that critical points accumulate in the phase co-
existence intervals with increasing particle number, this
suggests that there should be a discontinuity in the mix-
ing time at the packing fraction of the phase transition
in the thermodynamic limit, offering preliminary support
for Conj. 1.

II. CONFIGURATION SPACES
A. Tautological function

The configuration space of n points on a d-dimensional
torus T is

An) = {x = (z1...2,) |z € T (1)

A two-dimensional torus T2 for hard disks is obtained by
identifying opposite edges of a regular hexagon, whereas
a three-dimensional torus T for hard spheres is obtained
by identifying opposite faces of a rhombic dodecahedron.
Figure 2 shows these domains with some of the periodic



FIG. 2 A two-dimensional torus T2 (left) and a three-
dimensional torus T° (right) are shown with some of their
periodic images. The unit vector a; points in the x-direction
in both cases. All the unit vectors pass through the centers
of the corresponding faces.

images of the fundamental unit cells. The center to center
distance to the neighboring cells is one in both cases.

The tautological function 7 : A(n) — R is the maxi-
mum radius that the disks could have without overlap-
ping, or

= 1 ol 2
r(x) = min_ 7, e

where 7;; is half the geodesic distance between the centers
of disks 7 and j. This allows the configuration space of n
disks of radius p to be written as

L(n,p) =7~ ([p, 00)) 3)

or the set of all configurations of points where the mini-
mum point separation is at least p.

B. Critical configurations

Morse theory [32, 33] stipulates that the topology of
the sublevel sets of a generic real-valued function f de-
fined on a smooth manifold M can change only at the
critical points of f. Intuitively, a critical point is a point
where the gradient of the function vanishes. The index of
a critical point is defined as the number of negative eigen-
values of the Hessian matrix there, and roughly indicates
the number of independent directions along which f de-
creases to second order. Let M, = {z € M|f(z) < a} be
a sublevel set of M. One of the results of Morse theory
is that the topology of M, and M, are equivalent if the
interval [a, b] doesn’t contain any critical points of f.

Classical Morse theory does not apply to the tauto-
logical function in Eq. 2 though since it is a min-type
function that is not differentiable everywhere. For this
reason, Baryshnikov et al. [34] began to develop a min-
type Morse theory specifically for hard disk configuration
spaces, and proved that the critical points of the tauto-
logical function are precisely the mechanically-balanced
configurations. Consider the critical points of the config-
uration spaces of four hard disks in Fig. 3 where they are
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FIG. 3: The equivalence classes of the critical points of the
configuration space of four hard disks. The tautological func-
tion values are reported below the figures. The critical points
are ordered from index-0 (bottom) to index-3 (top).

ordered from index-0 (bottom) to index-3 (top). An edge
exists between any pair of disks if the distance between
the disk centers is exactly twice the value of tautologi-
cal function for that configuration (reported below the
figure). Suppose that the edge between disks ¢ and j ex-
erts a force on those disks with magnitude f;; directed
along the edge. A configuration is mechanically-balanced
if there is a way to apply forces along the edges such that
at least one force is nonzero and the net force on each disk
vanishes. The result is then that such configurations are
precisely those associated with changes to the topology
of the superlevel sets of the tautological function.

The critical points of the configuration spaces of hard
disks can also be shown to coincide with the critical
points of a regularized hard disk potential energy func-
tion in the following way. Observe from the definition of
the tautological function that the radius p of the disks in
a given configuration could be increased by as much as

T—p= Jnin (rij —p)
1
~—tig] 3 ewluty - o))

1<i<j<n

without the disks overlapping, where the second line uses
a soft-min approximation. The argument of the loga-
rithm is interpreted as a regularized hard-disk potential



E =3, _jexp[—w(ry — p)] that converges to the true
hard disk potential in the w — oo limit. Since the equa-
tion above relates 7 to E by strictly monotonic transfor-
mations and these preserve the locations of any critical
points, the critical points of F should converge to the
critical points of 7 in the limit. This allows the critical
points of 7 to be found by applying standard numeri-
cal minimization procedures |V E||? since the minima of
this function are by definition the critical points of FE.
Interactive databases of the critical points found in this
way for the hard disk! and hard sphere? configuration
spaces are available online. The distributions of critical
points as functions of index and packing fraction in Refs.
[35, 37] suggest that an accumulation of critical points in
a narrow packing fraction interval with increasing num-
ber of disks could be associated with the onset of a phase
transition; one of the purposes of this work is to explore
this observation further.

C. Geometric representation

The procedure followed previously [36, 37] when study-
ing hard disk configuration spaces involved repeatedly
sampling points in the configuration space of points A(n),
connecting nearby points in the resulting point cloud to
reconstruct A(n), and restricting to the hard disk con-
figuration space I'(n, p) by retaining only those regions
with suitable values of the tautological function. The
difficulty with this procedure is that the dimension and
complexity of I'(n, p) increases rapidly with n, quickly
requiring a point cloud with an overwhelming number of
points to accurately capture the geometric details. This
section describes several techniques that, while they do
not solve the problem, reduce the required number of
points enough to allow us to study the geometry of con-
figuration spaces with up to 18 dimensions.

The first is to quotient the configuration space by vari-
ous symmetry groups, thereby reducing the relevant vol-
ume. The three isometry groups considered here are
the group of rigid translations 7, the group of disk la-
bel permutations P, and the point group symmetries of
the fundamental unit cell £. As described previously
[36, 37], the configuration space is quotiented by these
groups by changing the distance function used to iden-
tify and connect nearby points in the point cloud. More
precisely, there is a natural distance function d(x,y) =
Soiilles — yill on A that is the sum of the geodesic dis-
tances each point in a configuration x would need to
travel to be converted into configuration y. Given an
isometry group S, the distance dp /s in the quotient space
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FIG. 4: The configuration space quotient by rigid transla-
tions A(2)/7T (left) and the configuration space quotient by
rigid translations, disk label permutations, and point group
symmetries A(2)/{7,P, L} (right) for two hard disks. Color

(shading) represents the tautological function values and ar-
rows indicate the locations of the critical points.

A/S can be written as [38]
drss(x,y) = élég dalx, S(y)]- (4)

Observe that T is a continuous group, that Eq. 4 involves
solving a global optimization problem when 7 C S, and
that this problem can have multiple local minima. While
algorithms like Tabu search [39, 40] can be used in such
situations, the number of problems to be solved increases
rapidly with the number of isometry groups considered.
For example, when § = {7, P, L}, the global optimiza-
tion over rigid translations needs to be solved n! x O(L)
times to evaluate Eq. 4 where O(L) is the order of £. Fig-
ure 4 shows the configuration spaces of two hard disks
quotiented by rigid translations A(2)/7 (left) and by
rigid translations, permutations of disk labels and point
group symmetries of the hexagon A(2)/{T,P, L} (right)
constructed using the distance in Eq. 4 with the pro-
cedure of Ref. [36]. The color represents the tautolog-
ical function values at each point. These configuration
spaces have only two critical point types [36], local min-
ima (index-0) where each disk has three connections and
saddle points (index-1) where each disk has two connec-
tions; these critical points are indicated with the corre-
sponding disk configurations. Observe that the topolo-
gies and geometries of these spaces are substantially dif-
ferent and depend on the choice of symmetries by which
to quotient. This work mainly considers the quotient
spaces A(n)/T and A(n)/{T,P,L} for increasing num-
ber of disks.

The second technique reduces the number of optimiza-
tion problems that need to be solved in Eq. 4. The idea
is to construct an approximation to the solution of the
global optimization problem over rigid translations, al-
lowing the discrete symmetry operations that are unlikely
to realize the minimum to be quickly rejected. The pro-
cedure followed here samples a fixed number of random
translations for a fixed discrete symmetry operation, and
uses the minimum over the random translations as the
approximation. The details of this procedure and various
numerical results are provided in App. A. This reduces
the computational cost enough to be able to evaluate
a small number of distances dj /s, but not all the pair-
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wise distances in the point cloud when identifying nearby
points to reconstruct A/S.

The third technique reduces the number of times that
dp/s needs to be evaluated. Points sampled from A are
initially mapped to a Cartesian space with coordinates
given by descriptors that are invariant to the action of
T, P, and £ [36, 37]. This mapping is conjectured to
be an embedding and therefore to preserve the neigh-
borhood of every point in A, but is not isometric in the
sense that distances between configurations are distorted.
That said, there are efficient algorithms to calculate k’-
nearest neighbor graphs in the descriptor space with the
Euclidean metric. Since neighborhoods are preserved,
the k’-nearest neighbor graph of a point in the descrip-
tor space should contain the k-nearest neighbor graph of
the point in A/S for sufficiently large k' > k; our nu-
merical experiments suggest that k' ~ 5k is usually suffi-
cient. The procedure therefore involves constructing the
k’-nearest neighbor graph in the descriptor space, evalu-
ating dp /s for each edge of this graph, and constructing
the approximate k-nearest neighbor graph in A/S using
these distances.

It is useful at this point to discuss the relationship of
the k-nearest neighbor graph in A/S to the geometry of
the underlying space. It is clear that the apparent con-
nectivity of the space depends on the value of k; for very
small k the graph would likely contain many disconnected
components, whereas for very large k every point would
share an edge with every other point, regardless of the
actual properties of the space. While there does not seem
to be an established canonical approach to selecting the
value of k, the strategy followed here involves the use
of topological information. Observe that, for any filtra-
tion of the k-nearest neighbor graph by the tautological
function, the number of disconnected components in the
resulting graph should be at most the number of index-0
critical points with disk radius larger than or equal to
the filtration value. Moreover, when the filtration value
is equal to the smallest value such that all of the index-
1 critical points (which correspond to saddle points) are
included, only a single connected component should re-
main. The smallest value of k for which these conditions
are satisfied seems a reasonable choice, and for the num-
bers of points in our point clouds (indicated in Fig. 5)
is approximately £ = 100 x n where n is the number of
disks.

The fourth technique is to directly use the k-nearest
neighbor graph rather than a simplicial complex (a tri-
angulation) to evaluate the geometric properties of A/S.
Previously, the configuration spaces for small numbers of
hard disks and spheres were triangulated as a-complexes
[36, 37]. While such simplicial complexes can accurately
represent all the geometric properties of the underly-
ing space, the number of simplices required generally in-
creases exponentially with dimension, quickly making the
computational memory requirements prohibitive [41, 42].
Fortunately, the only geometric information required to
calculate the diffusion diameter and the e-mixing time are
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FIG. 5: Number of points used in the graph representations
for hard disks and spheres.
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FIG. 6: The quotient space A(2)/{T,P, L} of two points on
T? represented as an a-complex (left) and a graph (right),
with color (shading) indicating the value of the tautological
function. The red (outlined) path connecting two points is a
straight line on the left, but is slightly longer on the right.

geodesic distances, and these can be reasonably approx-
imated from the k-nearest neighbor graph alone. Figure
6 shows the quotient space A(2)/{T,P, L} of two points
on T? represented as an a-complex (left) and as a graph
(right). While the shortest path connecting two points
is a straight line on the left, the path through the edges
of the graph on the right is slightly longer. Since both
the diffusion distance and the e-mixing time are designed
to be robust to small geometric perturbations like these,
using the k-nearest neighbor graph of A/S directly is suf-
ficient for our purposes.

The fifth and final technique is related to the construc-
tion of the point cloud on A, and is intended to reduce
the number of points required to accurately represent the
relevant geometric features of A/S. Figure 7 shows the
distributions of tautological function values p for point
clouds on A(4) sampled by three different procedures,
with the dashed lines indicating the radii of previously-
identified critical points. The left panel shows the distri-
bution of points sampled uniformly on A(4), and reveals
that the overwhelming majority of the space’s volume
has comparatively small values of p where only a single
pair of disks would be in contact. The critical points are
concentrated at relatively high values of p though. This
motivates the use of importance sampling [43] to sample
points more uniformly over p, concentrating points in the
regions where the topology and geometry of I'(4, p) are
most likely to change and giving the distribution in the



middle panel. The sampling density around the criti-
cal points can be increased further by perturbing known
critical configurations and adding the resulting configura-
tions directly to the point cloud, giving the distribution
in the right panel. The intention is to ensure that the
density of sampled points is high enough to accurately
reflect the parts of A that are most relevant to the hy-
pothesis without unnecessarily sampling points elsewhere
in the space.

III. CONFIGURATION SPACE GEOMETRY

Diffusion is a smoothing process. Flows from regions of
high concentration to low concentration necessarily make
a concentration field more uniform with time. This also
makes diffusion processes relatively insensitive to small
perturbations in the initial concentration field or to the
geometry of the underlying space. This property is likely
one of the reasons that diffusive processes are often used
to learn about the geometry of a space represented by a
sampled point cloud, since the resulting insights do not
depend sensitively on the distribution of the points.

A. Diffusion Distance

Let G be the k-nearest neighbor graph on A/S con-
structed by the procedure in Sec. ITC. The diffusion dis-
tance d;;; on G measures the L? distance between two
distributions that begin as Dirac delta distributions on
vertices ¢ and j and diffuse on G for a time t. Let the
kernel matrix K have entries k;; = exp(—I3;/0”) where
l;; is Dijkstra’s distance between vertices ¢ and j and o
is twice the median length of edges in G, and the diag-
onal degree matrix D has entries d;; = > j ki;. Then
P = D 'K is the transition rate matrix of a continuous-
time Markov process where the effect of raising P to the
tth power is equivalent to propagating the process by a
time ¢. Let {)\;, ¢} be the set of eigenvalues and eigen-
vectors of P for 0 <[ < N — 1 where N is the number of
vertices. Since P is normalized, the largest eigenvalue A\g
is associated with a constant eigenvector ¢g. Discarding
Ao and ¢, the diffusion coordinates are defined as

i = [Ng1(), ..., Ay_10n-1(9)] (5)

and encode a distribution starting as a Dirac delta distri-
bution on vertex ¢ and diffusing for a time ¢. The diffusion
distance between vertices ¢ and j is then defined as

dijt = [|Pri — Pl (6)

where || - || is the Euclidean norm. Note that the sig-
nificance of the time ¢ depends on the diffusion rate im-
plicit in the kernel K. Since the eigenspectrum of P?
decays very quickly for sufficiently large ¢, the diffusion
distance d;;,; can often be accurately approximated us-
ing only the first few eigenvalues and eigenvectors for a

substantial time and memory savings [15]. Details about
this approximation are provided in App. B.

B. Mixing Time

Thermodynamics is generally concerned with equilib-
rium or quasiequilibrium systems, where there is no net
redistribution of matter or energy and thermodynamic
observables are time independent. From the standpoint
of statistical thermodynamics, this means that the time
average of any thermodynamic observable over the sys-
tem’s trajectory through the phase space does not depend
on the initial microstate provided that the averaging is
performed over a sufficiently long time interval; the short-
est such interval is known as the mixing time.

Let © be the phase space of a thermodynamic system,
q and p be the canonical coordinates and momenta, and
(g, p,t) be the probability distribution of microstates on
Q at time t. Suppose that the system has an arbitrary
initial condition po(q,p) = wp(q,p,0). Briefly setting
aside the specifics of the time evolution of u(g,p,t), the
steady-state distribution peo(q,p) = limy_ o (g, p,t)
defines the equilibrium condition on €2, and the mixing
time could in principle be defined by the approach of
(g, p,t) to peo(g,p). That said, the literature does not
seem to precisely define the necessary conditions for the
two distributions to be effectively indistinguishable, nor
the effect of the initial condition po(g,p) on the result-
ing mixing time. A likely reason for this is the historical
emphasis on equilibrium states for which, by hypothesis,
the observation time can be made as long as necessary
for there to be complete mixing.

Classically, the time evolution of u(q,p,t) is governed
by the Liouville equation [44, 45]. Liouville’s theorem
states that the resulting convective derivative of the prob-
ability distribution is zero, or that the flow of probability
density resembles that of an incompressible fluid. This
raises questions relating to the convergence of probabil-
ity distributions that are closely related to those about
the origins of irreversibility, and that continue to be dis-
cussed in the literature. This discussion is avoided by
simply supposing that u(q,p,t) evolves by the diffusion
equation; there is evidence in the literature that the re-
laxation behavior of similar systems is independent of
the choice of microscopic dynamics up to an overall mul-
tiplicative constant [46-48], meaning that the use of dif-
fusive dynamics likely does not substantially change the
relative values of the e-mixing time as defined below as
a function of packing fraction. One consequence of this
supposition is that the marginal probability distributions
on the configuration and momentum subspaces evolve in-
dependently, though only the marginal probability distri-
bution on the configuration space has a limiting distri-
bution (the momentum subspace is unbounded). This
suggests that the mixing time be defined by the conver-
gence of the marginal probability distribution v(g,t) on
the configuration space ), to the limiting distribution
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Voo (q).-

The Kullback-Leibler divergence [16] is often called the
relative entropy, and is a standard way to quantify how
much a probability distribution v differs from a reference
probability distribution v..:

v(g,t) dq.

Voo (q)

I(t:v0) = /Q v(q,t)log (7)

We propose that the condition for v(q,t) to have con-
verged to Voo (q) be that I(t;1) < €, where € is an ad-
justable parameter analogous to a conventional conver-
gence threshold.

Now suppose that v is a Dirac delta distribution cen-
tered at qo (the initial configuration is precisely known),
and that t.(qo) is the minimum time required for this
initial condition to converge to the limiting distribution
Vso(g) on Qg in the sense above. The e-mixing time (t).
is defined as the weighted average of t. over all possible
choices of the initial condition, or

)= [ tlala)da (5)
where the measure of integration is taken to be v (q)
in the absence of a natural alternative; the purpose of
averaging over all possible choices of the initial condi-
tion is to make t.(qo) independent of this choice. The
e-mixing time is employed as a precisely-defined proxy
for the thermodynamic mixing time on the configuration
space in the following. While the reader is cautioned that
the e-mixing time and the thermodynamic mixing time
should differ by at least an overall multiplicative constant
[46-48], this should not affect the detection of packing
fractions where either mixing time changes rapidly.

This leaves only the definition of a diffusive process
occurring on a connected graph G instead of on a contin-
uous space Q. Let v(t) be the probability masses on the
vertices of G at time ¢, and define the graph Laplacian as
L =D — K [49]. The governing equation for a diffusive
process is

(9/0t + L)v(t) = 0. (9)

Let A be the diagonal matrix of the eigenvalues A\g =
0< A1--- < An_1 of L, and ® be the matrix of the cor-

responding eigenvectors where the first column is a con-
stant vector. Since L is a symmetric matrix, the columns
of @ form an orthogonal basis and the solution to the dif-
fusion equation is

v(t) = ®e @7y, (10)

for the initial condition vy. The steady-state distribu-
tion is readily calculated using the fact that all of the
diagonal elements of e A go to zero in the limit of long
time except the first term which goes to one. This sug-
gests that the steady-state distribution v, is always the
uniform distribution over all vertices of G.

The right panel of Fig. 1 shows the different behaviors
of the diffusion distance and the mixing time in prac-
tice. Observe that while both exhibit a discontinuous
jump at the filtration value where the two components
of the space merge, the diffusion diameter has an addi-
tional peak at the filtration value of the bottleneck. The
initial rise is attributed to the probability mass having
difficulty diffusing to the point of the bottleneck through
a small number of paths. Since the space is constructed
by means of k-nearest neighbor graphs, more paths span-
ning the neck appear with further increases in the filtra-
tion value, subsequently reducing the diffusion diameter.
That is, the peak in the diffusion diameter is effectively
an artifact of the construction of the space and the pre-
cise sequence in which the edges appear. By comparison,
the average mixing time (t). is unaffected by the bot-
tleneck since the small volume of that region reduces its
contribution to the average in Eq. 8. More details about
the calculation of the e-mixing time for this system are
given in App. C.

IV. RESULTS

The hard disk equation of state usually appears in the
literature as a function of packing fraction 7 [50, 51]. The
radius p of the disks appearing in Eq. 3 can be converted
to a packing fraction using n = nmp®/A for hard disks
and 1 = 4nmp3/(3V) for hard spheres, where A = 1/3/2
and V' = /2/2 are respectively the area of the fundamen-
tal hexagon and the volume of the fundamental rhombic
dodecahedron in Fig. 2.



The authors previously constructed quotient spaces of
two hard disks [36] and two hard spheres [37] and studied
the topological and geometric properties of both the orig-
inal and quotient spaces as functions of packing fraction.
They observed that while the geometric and topologi-
cal features of these spaces changed dramatically with
the choice of symmetry groups by which to quotient, the
general behavior of the diffusion diameter (and signifi-
cantly the locations of the discontinuities) as a function
of packing fraction did not. This suggests that the quo-
tient space has the advantage of a substantially reduced
volume while retaining the essential geometric and topo-
logical features of the full configuration space. If the
behavior of the e-mixing time is similarly robust to the
choice of symmetry groups by which to quotient, this
would allow Conj. 1 to be tested more easily and for sys-
tems with larger numbers of disks.

Figure 8 shows the e-mixing times of the quotient
spaces I'(2,n)/T and I'(2,n)/{T,P,L} for hard disks
(top) and hard spheres (bottom). Since only relative
changes in the e-mixing time are significant, all the re-
sults in this section are normalized to their maximum
value for ease of comparison. Initially consider the hard
disk results in the top row. There are only two criti-
cal points, one index-0 and one index-1. The volumes
and e-mixing times of both spaces initially grow slowly
with decreasing n, with a discontinuity appearing at pre-
cisely the packing fraction of the index-1 critical point;
the discontinuity is stronger for I'(2,71)/T since the ge-
ometric change is more severe, though at the price of
greatly increased computational cost. The bottom row
shows the results for hard spheres, for which there are
two distinct index-0, one index-1, and one index-2 crit-
ical points. Since having distinct index-0 critical points
results in the space having multiple disconnected com-
ponents for certain intervals of 7, the e-mixing times for
each component are shown with an opacity that indicates
the fraction of vertices participating in that component.
As before, there is a discontinuity in the e-mixing time
at the packing fraction of the index-1 critical point, in
this situation indicating that the disconnected compo-
nents are joined. Notice that a similar discontinuity does
not occur at the packing fraction of the index-2 critical
point, nor indeed at any other critical point of the tau-
tological function. Since the behavior of the diffusion
diameter was previously found to be similarly robust to
the choice of symmetry groups by which to quotient, the
quotient spaces T'/{T,P, L} will be used exclusively in
the following.

Figure 9 shows the diffusion diameters and e-mixing
times of the quotient spaces I'/{T,P,L} forn =3...7
hard disks as functions of packing fraction, with dashed
lines indicating the packing fractions of the critical
points. The first observation is that not all of the crit-
ical points correspond to substantial geometric changes,
at least not ones to which the diffusion distance and e-
mixing time are sensitive. The second is that the diffu-
sion diameter is generally much noisier than the e-mixing
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FIG. 8: e-mixing times of the quotient spaces I'(2,71)/7 and
'(2,n)/{T, P, L} for hard disks (top) and hard spheres (bot-
tom). Dashed lines represent the packing fractions of the
critical points.

time, and while the structure in the signal could perhaps
be analyzed for further geometric information that is not
the purpose of our study. The third is that while the dis-
continuities in the diffusion distance and e-mixing time
do not always occur at the same packing fractions, the
largest discontinuities generally do.

Figure 10 shows the corresponding results to Fig. 9
for n = 3...6 hard spheres. While the number of crit-
ical points is greatly increased relative to the hard disk
systems in Fig. 9, the number of discontinuities in the
diffusion diameter and e-mixing time are approximately
the same. This suggests that there is perhaps a small
class of critical points associated with substantial geo-
metric changes to the configuration space, and that the
distribution of these critical points is the most relevant to
the underlying hypothesis. Notice particularly that the
packing fraction of the largest discontinuities appears to
be approaching the packing fraction of the lower end of
the phase-coexistence interval with increasing n. Unfor-
tunately, even using all of the techniques in Sec. II C, the
memory requirements increase so rapidly with n that we
could not realistically examine the spaces for n > 7. Even
for five and six hard spheres, the volume of the space in-
creases so rapidly with decreasing packing fraction that
we cannot report diffusion diameters and e-mixing times
over the entire domain. This does not substantially affect
our conclusions though, since the sampled domain of 7
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FIG. 9: Diffusion diameters and e-mixing times of the spaces I'/{T,P,L} for n = 3...7 hard disks as functions of packing
fraction. Dashed lines shows the packing fractions of the critical points.

already extends well below the coexistence interval, and
notably includes all of the index-1 critical points.

There is evidence that, at least for the hard disk sys-
tems, the substantial geometric changes leading to dis-
continuities in the e-mixing time are often associated with
the lowest-packing-fraction index-1 critical point. Figure
11 shows the packing fractions of the largest discontinu-
ities in Figs. 9 and 10 as black squares, with the number
of hard disks (top) and hard spheres (bottom) increas-
ing on the vertical axes. The packing fractions of all
known critical points are also shown, with index-0 criti-
cal points in purple, index-1 critical points in blue, and
all others in green. While e-mixing time data is only
available for n < 7 hard disks and n < 6 hard spheres,
populations of critical points for n < 12 hard disks and
hard spheres have been sampled using established tech-
niques that are described elsewhere [35-37]. Apart from
the increasing concentration of low-index critical points
around the phase coexistence interval with increasing n,
the most striking aspect of the figure is that the largest
discontinuities almost always occur close to the packing
fraction of the last index-1 critical point to appear with
decreasing packing fraction (each of the black squares
comes slightly before an index-1 critical point due to fi-
nite sampling). This is not entirely unexpected, since
each index-1 critical point either joins previously discon-
nected components or add a new class of closed paths to
the space. Supposing that discontinuities in the e-mixing
time are associated with the former, it also makes sense
that the largest discontinuity would be observed at lower
packing fractions where the disconnected components be-
ing joined had the opportunity to grow to substantial
volumes. The increasing concentration of low-index crit-
ical points around the phase coexistence interval draws
the discontinuity closer to the liquid limit with increasing
n, though that is admittedly a noisy trend for the small
numbers of disks considered here. Nevertheless, this does

provide evidence that something along the lines of Conj.
1 could be true for hard sphere systems, and perhaps for
thermodynamics systems as well.

V. CONCLUSION

A phase transition is necessarily related to a discontin-
uous change in the probability density function describ-
ing the distribution of the system’s microstates on the
phase space. The question of how this could occur as the
thermodynamic control variables are continuously varied
has not been conclusively answered in the literature. One
proposal called the topological hypothesis [7, 8] suggests
that topological changes to the accessible region of the
configuration space is a necessary condition for a phase
transition. This paper instead suggests that a substan-
tial change to the geometry of the accessible region is a
necessary condition for a phase transition, and that such
a change is often (but not always) associated with a topo-
logical change. More specifically, Conj. 1 proposes that
a discontinuity in the mixing time on the configuration
space is a necessary condition for a first-order phase tran-
sition in the thermodynamic limit. Our main result is a
preliminary test of this conjecture for hard disk and hard
sphere systems with few enough disks that the configu-
ration space geometry can be explicitly studied.

The configuration spaces of hard disks and hard
spheres are represented as graphs with vertices represent-
ing specific configurations of disks and edges indicating
the distances between the configurations. The vertices
of the graph are sampled more densely around critical
points, or locations where the topology of the configura-
tion space is known to change as a function of disk radius,
to more accurately capture the topological and geomet-
ric changes in those regions. The diffusion diameters and
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the e-mixing times of the resulting graphs are calculated
as functions of packing fraction for n < 7 and n < 6 hard
spheres; the e-mixing time is proposed here, and is de-
signed to be a proxy to the thermodynamic mixing time
that can be explicitly evaluated.

The geometric signals obtained for the diffusion diame-
ter and the e-mixing time are consistent in the sense that
their discontinuities generally occur at the same packing
fractions. Apart from relating more directly to the con-
tent of Conj. 1, the e-mixing time is a much smoother
function of packing fraction than the diffusion diame-
ter. The discontinuities in the e-mixing time are found
to occur at comparatively few critical points; for the hard
disk and hard sphere systems at least these are predom-
inantly index-1 critical points. Along with the observa-
tion that the low-index critical points are increasingly
concentrated around the phase coexistence interval with
the number of disks, this suggests that a discontinuous
change in the e-mixing time could indeed coincide with
the first-order phase transitions in the hard disk and hard
sphere systems in the thermodynamic limit.

Future studies along these lines would likely need to
extend the analysis to larger numbers of disks to make
the trends in the approach to the thermodynamic limit
clearer. Given the rate of increase in the computational
requirements with number of disks, this would require at
a minimum more efficient algorithms to search for crit-
ical points and calculate the distances between configu-
rations. The computational requirements would also be
reduced by using a further-reduced representation of the
spaces by means of witness graphs [52], or by restricting
to particular intervals of disk radius close to the phase
coexistence region. Further development of a suitable
min-type Morse theory would also be helpful [34, 53].
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Appendix A: Heuristic for the distance

Let S = {T,P,L} in Eq. 4. Since T is a continuous
group and {P, L} is discrete, Eq. 4 can be rewritten as

i d S
sluin, A%, S(y)]

day7[x,8(y)] = tiél%’_dA[x,S(y) + t]

dpays(x,y) =

Aalx S(v) ) = >l = S(w) — t].

Evaluating dy /7[x, S(y)] involves solving a global opti-
mization problem over rigid translations for a fixed dis-
crete symmetry operation S. Since evaluating dj /s(x,y)
involves solving n! x O(L) of these global optimization
problems, the computational cost could be significantly
reduced if a suitable approximation for dj,r[x,S(y)]
could be found to quickly reject some of the S.

Such an approximation is constructed by, for a fixed
number of iterations m, randomly sampling a random
translation t, calculating the distance dj[x, S(y) + t] for
that translation, and accepting that translation only if
it reduces dp[x,S(y) + t] [54]. The resulting approxima-
tions for dp,7[x,S(y)] are sorted by increasing magni-
tude, and the full optimization problem is solved only for
the first M symmetry operations in the sorted list. The
rationale for this procedure is that calculating the ap-
proximations using a moderate m is less expensive than
solving the global optimization problem.

For two generic configurations of 7 hard disks there
are 7! x 12 = 60480 symmetric versions of the second

12

configuration due to the actions of P and L. Figure 12
shows the sorted true distances dj /7, and dp;s is the
minimum of this set. Figure 13 shows the same configu-
rations sorted by the approximate values of dy /7[x, S(y)]
for m = 1, 10, 50, and 100 plotted with the true values
of da/7[x,S(y)] on the vertical axis. Observe that with
increasing m these curves should converge to the one in
Fig. 12, and that even for small m the true minimum dis-
tance should appear within the first M < 60480 sym-
metry operations. Numerical experiments suggest that
m = 50 and M = 200 are generally sufficient for an ap-
proximation with a relative error on the order of 1074,

Appendix B: Eigenspectrum analysis

The diffusion coordinates in Eq. 5 involve the tth pow-
ers of the eigenvalues of P sorted by decreasing magni-
tude. This means that for sufficiently large ¢, the compu-
tational expense of calculating the diffusion distance can
be considerably reduced with negligible loss of accuracy
by truncating the eigenspectrum and only considering the
first few diffusion coordinates [15]. Figure 14 shows the
tth powers of the eigenvalues of P for A(4)/{T,P,L} at
times t = 1, 5, and 10. Observe that even for the rela-
tively small ¢ = 5 most of the diffusion coordinates will
be numerically indistinguishable from zero. Only the first
200 diffusion coordinates are used here unless otherwise
specified, changing the diffusion diameter to a relative
error of less than 1078 and making this source of error
negligible compared to other sources.

Appendix C: Mixing time of an example system

Figure 15 shows the e-mixing times t.(qg) as a func-
tion of g for the example system in Fig. 1. The k-nearest
neighbor graph is constructed with k = 7, the length of
an edge is given by the Euclidean distance between the
corresponding vertices, and € = 0.001 is used since the
steady-state probability mass at each vertex is 0.0005
(the inverse of the number of vertices). Points closer
to the center have smaller e-mixing times since the ini-
tial Dirac-delta distribution can spread to the upper and
lower regions more easily as compared to distributions
starting near the corners. The average mixing time (t).
for this example is around 15 000.
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