
Energy Management for Fault-Tolerant (m,k)-Constrained
Real-Time Systems that Use Standby-Sparing

LINWEI NIU, Howard University, Washington, USA

DANDA B. RAWAT, Howard University, Washington, USA

DAKAI ZHU, University of Texas at San Antonio, San Antonio, USA

JONATHAN MUSSELWHITE, Howard University, Washington, USA

ZONGHUA GU, Umeå University, Umeå, Sweden

QINGXU DENG, Northeastern University, Shenyang, China

Fault tolerance, energy management, and quality of service (QoS) are essential aspects for the design of real-time embedded

systems. In this work, we focus on exploring methods that can simultaneously address the above three critical issues under

standby-sparing. The standby-sparing mechanism adopts a dual-processor architecture in which each processor plays the role of

the backup for the other one dynamically. In this way it can provide fault tolerance subject to both permanent and transient

faults. Due to its duplicate executions of the real-time jobs/tasks, the energy consumption of a standby-sparing system could be

quite high. With the purpose of reducing energy under standby-sparing, we proposed three novel scheduling schemes: the first

one is for (1, 1)-constrained tasks, and the second one and the third one (which can be combined into an integrated approach to

maximize the overall energy reduction) are for general (�,�)-constrained tasks which require that among any � consecutive

jobs of a task no more than (� −�) out of them could miss their deadlines. Through extensive evaluations and performance

analysis, our results demonstrate that compared with the existing research, the proposed techniques can reduce energy by up

to 11% for (1, 1)-constrained tasks and 25% for general (�,�)-constrained tasks while assuring (�,�)-constraints and fault

tolerance as well as providing better user perceived QoS levels under standby-sparing.

CCS Concepts: • Computer systems organization → Real-time systems; Embedded systems; reliability; Redundancy.

Additional Key Words and Phrases: energy efficiency, fault tolerance, standby-sparing, QoS, real-time systems

1 INTRODUCTION

With the advance of IC technology, energy conservation has been a critical design issue for real-time embedded

systems. With energy efficiency in mind, a lot of techniques have been proposed to reduce energy from different

abstract levels (e.g. [1–3], etc). Among them the system level energy management has been a widely adopted

approach. On the other hand, fault tolerance has also been a major concern for pervasive computing systems as

system fault(s) could occur anytime [4]. Generally, computing system faults can be classified into permanent faults

Authors’ addresses: Linwei Niu, linwei.niu@howard.edu, Howard University, the Department of Electrical Engineering and Computer Science,

Washington, DC, USA, 20059; Danda B. Rawat, Howard University, the Department of Electrical Engineering and Computer Science,

Washington, DC, USA, 20059, Danda.Rawat@howard.edu; Dakai Zhu, University of Texas at San Antonio, 1 UTSA Circle, San Antonio,

TX, USA, 78249, dakai.zhu@utsa.edu; Jonathan Musselwhite, Howard University, 2400 Sixth Street NW, Washington, DC, USA, 20059,

jonathan.musselwhite@bison.howard.edu; Zonghua Gu, Umeå University, the Department of Applied Physics and Electronics, Umeå, , Sweden,

90187, zonghua.gu@umu.se; Qingxu Deng, Northeastern University, the School of Computer Science and Engineering,, Shenyang, Liaoning,

China, 110819, dengqx@mail.neu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from

permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2024/2-ART

https://doi.org/10.1145/3648365

ACM Trans. Embedd. Comput. Syst.

2 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

and transient faults [5]. Permanent faults could be caused by hardware failure or permanent damage in processing

unit(s) whereas transient faults are mainly due to transient factors such as electromagnetic interference and/or

cosmic ray radiations [5].

Recently a lot of research studies (e.g. [6, 7]) have been conducted on improving the energy efficiency for

fault-tolerant real-time systems. Many of them have focused on dealing with transient faults. A widely adopted

strategy is to utilize time redundancy, i.e., to reserve recovery jobs whenever possible, to tolerate transient faults

through re-execution of the faulty jobs. For mission-critical applications such as nuclear plant control systems,

permanent faults are especially hazardous and need to be dealt with by all means to ensure system safety. Otherwise

unrecoverable system failure could occur. More recently, solutions adopting hardware redundancy are proposed

to address this issue. Among them the standby-sparing technique has gained much attention [8–10]. Generally,

the standby-sparing makes use of the redundancy of processing units in multicore/multiprocessor systems. More

specifically, a standby-sparing system consists of two processors, a primary one and a spare one, executing in

parallel. For each real-time job executed in the primary processor, there is a corresponding backup job reserved for

it in the spare processor [10]. As such, whenever a permanent fault occurs to the primary or the spare processor, the

other one can still continue without causing system failure. Moreover, it is not hard to see that the backup tasks/jobs

in the spare processor can also help tolerate transient faults for their corresponding main tasks/jobs in the primary

processor.

In a standby-sparing system, due to time constraint the executions of the main jobs in the primary processor

and their corresponding backup jobs in the spare processor might need to be overlapped with each other. Thus the

total energy consumption could be quite considerable. Regarding that, some recent works have been reported to

reduce energy (e.g. [8–10]). The main idea is to try to let the executions of the main jobs and their corresponding

backup jobs be shifted away as much as possible such that, once the main jobs are completed successfully, their

corresponding backup jobs could be canceled early, thereby saving energy. With that in mind, in [9, 10], approaches

based on EDL (earliest deadline as late as possible) scheme [11] were proposed for standby-sparing real-time

systems. Their works are mainly focused on hard real-time systems, i.e., the systems which require all real-time

tasks/jobs meet their deadlines. However, in practical time-sensitive applications, such as multimedia or time-critical

systems (for example, Webphone [12] and Vehicle Control System [13]), occasional deadline misses are acceptable

so long as the user perceived quality of service (QoS) can be ensured at certain levels. For such kind of systems,

the existing techniques solely based on hard real-time constraints are insufficient in dealing with energy reduction

under standby-sparing and more advanced techniques incorporating the QoS systematically are desired. To this end,

the QoS requirements need to be quantified in certain ways. One popular existing approach is to use some statistic

information such as the average deadline miss rate as the QoS metric. Although such kind of metric can ensure the

quality of service in a probabilistic manner, it can still be problematic for some real-time applications. For example,

for certain real-time systems, when the deadline misses happened to some tasks, the information carried by those

tasks can be estimated in a reasonable accuracy using techniques such as interpolation. However, even a very low

overall miss rate tolerance cannot prevent a large number of deadline misses from occurring consecutively in such

a short period of time that the data cannot be successfully reconstructed [14].

The weakly hard real-time model is more appropriate to model such kind of systems. Under the weakly hard

real-time model, tasks have both firm deadlines (i.e., task(s) with deadline(s) missed generate(s) no useful values)

and a throughput requirement (i.e., sufficient task instances must finish before their deadlines to provide acceptable

QoS levels) [15]. Two well known weakly hard models are the (�,�)-model [16] and the window-constrained

model [17]. The (�,�)-model requires that no more than (� −�) jobs out of any sliding window of � consecutive

jobs of the task could miss their deadlines, whereas the window-constrained model (represented as�/�-model)

requires that no more than (� −�) jobs out of each fixed and nonoverlapped window of � consecutive jobs could

miss their deadlines. It is not hard to see that the window-constrained model is weaker than the (�,�)-model as the

latter one is more restrictive.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 3

To ensure the (�,�)-constraints, Ramanathan et al. [18] adopted a partitioning strategy which divides the jobs

into mandatory and optional ones. The mandatory ones are the jobs that must meet their deadlines in order to

satisfy the (�,�)-constraints. In other words, so long as all the mandatory jobs can meet their deadlines, the

(�,�)-constraints can be ensured. In [17], West et al. tried to set up a correspondence relationship between the

window-constrained model and the (�,�) model. They found that the window-constraints can be converted to the

(�,�)-constraints through certain automatic way.

In this paper, we study the problem of reducing the energy consumption for fault-tolerant weakly hard real-time

embedded systems using standby-sparing. Specifically, our contributions include:

• We proposed an efficient scheduling scheme for reducing energy consumption for (1, 1)-constrained [19]

tasks under standby-sparing.

• We further proposed two flexible and adaptive standby-sparing techniques which could be combined to

maximize the overall energy reduction for general (�,�)-constrained tasks based on mandatory/optional job

partitioning strategy.

The rest of the paper is organized as follows. In Section 2 we discuss the related work. Section 3 presents

the preliminaries. Section 4 presents our approach for (1, 1)-constrained tasks. Sections 5, 6, and 7 present our

approaches for general (�,�)-constrained tasks. In Section 8 and Section 9, we present our evaluation results and

conclusions.

2 RELATED WORK

In last decades, many research studies have been done in integrating QoS assurance into scheduling for real-time

systems. For systems with transient overloaded conditions, Chetto et al. [20] explored scheduling algorithms

for firm real-time systems. For mixed-criticality systems, Gettings et al. [21] and Bruggen et al. [22] proposed

new approaches that can provide QoS-guarantee for low-criticality tasks. Moreover, for general fixed-priority

weakly-hard real-time systems, schedulability analysis based on the Mixed Integer Linear Programming (MILP)

formulation was provided in [23]. Considering given energy budget constraint, Alenawy et al. [24] proposed

an approach to reduce the number of (�,�)-violations for weakly hard real-time systems. Also to minimize the

number of dynamic failures, Kooti et al. [25] proposed a QoS-aware approach for (�,�)-firm real-time systems

with long-term variations of the harvested energy.

Recently, with fault tolerance becoming an important concern for ubiquitous computing systems, a lot of works

(for example, [4, 7, 26–28]) have been presented in combining fault tolerant scheduling and energy management

for real-time embedded systems. Many of them have utilized time redundancy, i.e., to re-execute recovery jobs,

whenever possible, to compensate the faulty jobs. Most of them have focused on dealing with transient faults.

Besides transient faults, the system could be subject to permanent faults as well. More recently, to provide better

system dependability, there has been increasing interest in adopting standby-sparing technique to deal with both

permanent and transient faults simultaneously. With energy consumption in mind, in [8, 9, 29, 30], online power

management schemes applying DVFS in the primary processor and DPM in the spare processor were studied. To

better utilize the slack time in both processors, mixed scheduling schemes which adopt the combination of DVFS

and DPM schemes in both the primary and spare processors were explored in [31]. For standby-sparing systems

with mixed criticality, advanced energy management schemes were proposed in [32]. The biggest contribution in it

was to set up a scheme to reduce energy through convex optimization in combination with power management

heuristics based on joint DVFS and DPM schemes in both the primary and the spare processors. When considering

the chip thermal effect, peak-power-aware standby-sparing techniques utilizing energy management schemes were

presented in [33, 34]. Their approach targeted minimizing the peak-power of the standby-sparing systems such that

the total power consumption generated by the chip would not exceed what the cooling component was designed

to dissipate under any workload. Most of the above works are for real-time systems based on dynamic priority

ACM Trans. Embedd. Comput. Syst.

4 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

scheduling policies. For real-time systems based on fixed-priority scheduling policies, standby-sparing schemes

based on procrastination of the backup tasks were studied in [35, 36]. In [37, 38], more advanced fixed-priority

standby-sparing techniques based on task level preference oriented scheduling schemes were explored. As shown

in later part of this paper, such kind of task level preference oriented schemes could procrastinate some jobs

unnecessarily, which might not be most energy efficient from the system point of view.

For multicore/multiprocessor systems, some works have also been conducted for real-time systems with fault

tolerance capability. In [39], a framework is proposed to maximize the system availability by improving the

mean time to failure (MTTF). In [40], Das et al. proposed an offline approach for mapping tasks onto processor

cores to minimize energy consumption for all processor fault-scenarios. In [41], Safari et al. proposed an energy-

aware solution for mixed-criticality multicore systems, which exploited task-replication to improve the QoS of

low-criticality tasks in overrun situation while satisfying reliability requirements. The work in [31] described an

implementation of standby-sparing through sharing the spare processor among multiple primary processors in

multicore platforms to improve the overall energy efficiency using DVFS. In [38, 42, 43], standby-sparing schemes

applying DVFS for reducing energy consumption based on heterogeneous multicore platforms were proposed.

With thermal effect in mind, thermal-aware power/reliability management scheme were presented in [33, 44, 45] to

meet power and thermal constraints on the chip through distributing power density on the whole chip. In [46], a

reactive triple modular redundancy (TMR) scheme was studied for tolerating both transient and permanent faults.

Although TMR can avoid the potential problem of undetected faults in standby-sparing systems using sanity(or

consistency) checking, since it needs to have at least three copies of each real-time job scheduled among which at

least two must be executed entirely (the third copy could be (partially) canceled depending on the results of the

previous two copies), its vast energy consumption is a grave concern [46, 47].

Note that all of the aforementioned existing fault-tolerant schemes have focused on hard real-time systems only.

For weakly hard real-time systems, in [48], an energy-aware scheme was proposed to combine the standby-sparing

technique and (�,�)-deadlines to achieve better energy efficiency for task sets partitioned based on deeply-red

pattern [49]. However, as shown in [14], the schedulability of deeply-red pattern is generally weaker than that of

the evenly distributed pattern used in this paper. Moreover, the approaches in [48] must rely on the execution of

optional jobs, which cannot deal with the tasks with (1, 1)-constraint in which no optional jobs are available. The

novelty of our proposed work in this paper lies in the fact that we are dealing with task set partitioned based on

evenly distributed pattern. Moreover, our approaches do not always have to rely on the execution of optional jobs.

So it can deal with the tasks with (1, 1)-constraint as well.

3 PRELIMINARIES

3.1 System models

The real-time system considered in this paper contains � independent periodic tasks, T = {�1, �2, · · · , �� }, scheduled

according to the earliest deadline first (EDF) scheduling scheme. Each task contains an infinite sequence of

periodically arriving instances called jobs. Task �� is characterized using five parameters, i.e., (�� , �� , �� , �� , ��).�� ,

�� (≤ ��), and �� represent the worst case execution time (WCET), deadline, and period for �� , respectively. A pair

of integers, i.e., (�� , ��) (0 < �� ≤ ��), are used to represent the (�,�)-constraint for task �� which requires that,

among any �� consecutive jobs, at least�� jobs are executed successfully. The ��ℎ job of task �� is represented with

�� � and we use �� � , �� � (= ��), and �� � to represent its release time, execution time, and absolute deadline, respectively.

Note that, when �� � is an optional job, we also use �� � to represent it when necessary.

The system consists of two identical processors which are denoted as primary processor and spare processor,

respectively. For the purpose of tolerating permanent/transient faults, each mandatory job of a task �� has two

duplicate copies running in the primary and the spare processors separately. Whenever a permanent fault is

encountered in either processor, the other one will take over the whole system (to continue as normal). For

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 5

convenience, we call each task �� main task and its corresponding copy running in the other processor backup task,

denoted as �
′

� . The ��ℎ job of task �
′

� is denoted as �
′

� � . Moreover, we call each mandatory job �� � of task �� main

job and its corresponding job running in the other processor (to compensate its failure, if happened) backup job,

denoted as �̃� � . Note that in this paper �� � ’s backup job, i.e., �̃� � might be different from �
′

� � , i.e., the job of �
′

� in the

same time frame as �� � because, as will be shown in later part of this paper, �� � and �̃� � can be shifted away from

each other completely such that they might belong to different time frames.

3.2 Energy Model

The processor can be in one of the three states: busy, idle and sleeping states. When the processor is busy executing

a job, it consumes the busy power (denoted as �����) which includes dynamic and static components during its

active operation. The dynamic power (����) consists of the switching power for charging and discharging the load

capacitance, and the short circuit power due to the non-zero rising and falling time of the input and output signals.

The dynamic power can be represented [50] as

���� = ��� � ��
2

�� � (1)

where � is the switching activity, �� � � is the effective switching capacitance, ��� is the supply voltage, and � is the

system clock frequency. The static power (���) can be expressed as

��� = �� (��� �����+ | ��� | � �) (2)

where �� is the number of devices in the CMOS circuit , ����� is the subthreshold leakage current, ��� is the body

bias voltage, and � � is the reverse bias junction current in the circuit. The power consumption when the processor is

busy, i.e, ����� , is thus

����� = ���� + ��� (3)

When the processor is idle, it consumes the idle power (denoted as �����) which is equal to ��� whose major

portion comes from the leakage. When the processor is in the sleeping state, it consumes the sleeping power

(denoted as ������) which is assumed to be negligible. Note that although dynamic power can be reduced effectively

by DVFS techniques, the efficiency of DVFS in reducing the overall energy is becoming seriously degraded with the

dramatic increase in leakage power (as part of the static power) with the shrinking of IC technology size [51]. With

that in mind, in this paper we assume that the processors and the hardware platform used for standby-sparing do not

apply DVFS. As such, when the processor is busy, it always consumes ����� at the maximal speed ���� . Moreover,

since Dynamic power down (DPD), i.e., put the processor into its sleeping state, can greatly reduce the leakage

energy when the processor is not in use, we assume that when no job is pending for execution, the processors

can be put into sleeping state with DPD. But DPD needs to consume energy/time overheads for implementing

shutting-down/waking-up the processor dynamically. If we assume the energy overhead and time overhead of DPD

to be �� and �� , respectively, the processor can be shut down with positive energy gains when the length of the idle

interval is larger than ��� = max(��
�����−������

, ��). Correspondingly we call ��� the minimal shut-down interval.

3.3 Fault Model

Similar to the standby-sparing systems in [9, 10], the system we considered can tolerate both permanent and

transient faults. With the redundancy of the processing units, our system can tolerate at least one permanent fault

in the primary or the spare processor. For transient faults which can occur anytime during the task execution, we

assume they can be detected at the end of a job’s execution using sanity (or consistency) checks [52] and the

overhead for detection can be integrated into the job’s execution time. Moreover, following the fault model in [4],

we assume that the transient faults will present Poisson distribution [53] and the average transient fault rate for

systems running at the maximal speed ���� (and the corresponding supply voltage) is � (����). Based on it, for any

ACM Trans. Embedd. Comput. Syst.

6 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

job �� � of task �� , the reliability of it, represented by � (�� �), is defined as the probability that �� � could be completed

successfully under the maximal speed ���� . According to [4], � (�� �) is given as:

� (�� �) = �
−� (����)�� � (4)

With the above system and fault models, in the following we first show how to reduce energy consumption

for (1, 1)-constrained, i.e. periodic hard real-time task sets. After that, we will explore how to deal with energy

reduction for general (�,�)-constrained task sets.

3.4 Problem Formulation

Based on the above system models, the problem to be solved in this paper can be formulated as followed:

PROBLEM 1. Given system T = {�1, �2, · · · , �� }, schedule T with EDF scheme in a standby-sparing system

such that the total energy consumption can be minimized while the (�,�)-constraints for all tasks could be satisfied

under the fault tolerant requirement.

4 STANDBY-SPARING FOR (1, 1)-CONSTRAINED TASK SETS

For task sets with (1, 1)-constraint (or task sets in which �� = �� for all tasks), under standby sparing, all jobs

need to have two duplicate copies running in the primary and the spare processors, respectively. It is not hard to

see that, due to the overlapped executions between them, one way to save energy is to let each main job in the

primary processor be executed as soon as possible and its backup job in the spare processor be executed as late as

possible such that, once the main job is completed successfully, the remaining part of its backup job can be canceled

immediately, therefore saving part of the energy for executing the backup job. To this end, in [9] Mohammad et. al

proposed to run the main tasks in the primary processor according to the EDF scheme and the backup tasks on

the spare processor according to the earliest deadline as late as possible (EDL) scheme such that the overlapped

executions between the main jobs and their backup jobs could be reduced, enabling energy savings. The energy

reduction could be further boosted by adopting the preference oriented earliest deadline scheduling scheme in [10].

The main idea of the preference oriented scheme in [10] is to assume the whole task set could be divided into two

disjoint subsets, i.e., the subset to be executed as soon as possible (ASAP subset) and the subset to be executed as

late as possible (ALAP subset). For any real-time tasks to be scheduled, if it belongs to the ASAP subset in one

processor, then its backup task should belong to the ALAP subset in the other processor, and vice versa. Their idea

could be demonstrated using the following example:

Given a task set of three tasks, i.e., �1 = (4, 16, 20, 1, 1), �2 = (6, 17, 20, 1, 1), �3 = (6, 38, 40, 1, 1), to be executed

in a standby-sparing system. While it is not stated in [10] how to divide the task set into ASAP subset and ALAP

subset, here for convenience we assume a straightforward method of dividing the tasks, i.e., letting the tasks �1 and

�2 belong to the ASAP set and the task �3 belong to the ALAP set. Moreover, since the QoS constraints for the

tasks are all (1, 1)-constraints which equals to the periodic hard real-time case in which all jobs are “mandatory",

there is no optional job in these tasks. For simplicity, in this section all jobs refer to the mandatory jobs.

By applying the preference oriented scheme in [10], the main tasks �1 and �2 and the backup task �
′

3
will be

scheduled in the primary processor (with �1 and �2 executed as soon as possible while �
′

3
executed as late as possible)

while backup tasks �
′

1
and �

′

2
and main task �3 will be scheduled in the spare processor (with �

′

1
and �

′

2
executed as

late as possible while �3 executed as soon as possible). If we assume no fault occurred, the complete schedules for

them within the hyperperiod [0, 40] is shown in Figure 1(a) and (b), respectively. As a result, the total active energy

consumption within the hyperperiod is 32 units 1.

1For easy of presentation, in all examples in this paper we normalize ����� (under the maximal processor speed ����) to 1 and assume that

one unit of energy will be consumed for a processor to execute a job for one time unit.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 7

0
 10

0
 7

(a)

(b)

20
 40
4
 24

20
 40
12
 32

T

1

T

2

T

3

36

32

16
 27

Primary

Processor:

Spare

Processor:

38

T
’

3

6
 10

30

30

T
’

1

T
’

2

Fig. 1. (Emptied block(s) represent(s) the slack time generated by the canceled part(s) of the job(s).) (a) The

schedule for the main tasks �1 and �2 as well as backup task �
′

3
in the primary processor under the preference

oriented scheme [10]; (b) The schedule for the backup tasks �
′

1
, �

′

2
as well as main task �3 in the spare processor

under the preference oriented scheme [10].

t’
t
0
 t
1

Fig. 2. Assuming some task missed deadline at time point � ′,

Note that in the above example, there is still much overlapped time between the executions of all jobs of

task �2 and their corresponding backup jobs, which caused significant energy consumption. On the other hand,

as will be seen, if we adopt a different way of scheduling the task set, we can achieve better energy efficiency.

Before presenting the new scheduling approach in more details, we firstly introduce the following theorem for

implementing the procrastinated execution of any job(s) in the task set.

THEOREM 4.1. Given a task set T= {�1, �2, ..., �� }, if the release time(s) of any job(s) under the EDF schedule

is/are procrastinated to its/their corresponding delayed starting time(s)2 under the EDL schedule, all task deadlines

can be guaranteed.

PROOF. We use contradiction. Assuming under the EDF schedule, after the release time(s) of some job(s) are

delayed to their starting times (i.e., the delayed release times) under the EDL scheule, at certain time point � ′, some

task missed its deadline. Then as shown in Figure 2, we can always find another time point �0 < �
′ such that during

the time interval [�0, �
′] the processor is kept busy executing only jobs with release times or delayed release times

no earlier than �0 and with deadlines less than or equal to (� ′ − �0). Since no job has release time earlier than time 0,

�0 is well defined. Then the total work demand within the interval [�0, �
′] is bounded by

∑

��≤(� ′−�0) ⌈
� ′−�0−��

��
⌉+�� .

Since some job missed the deadline at � ′, we have

︁

��≤(� ′−�0)

⌈
� ′ − �0 − ��

��
⌉+�� > (� ′ − �0) (5)

On the other hand, consider the scenario when we delay the release times of all jobs within the interval [�0, �
′] to

their starting times under the EDL schedule. Then in this case there must be a time point �1 (�0 ≤ �1 < �
′, as shown

in Figure 2) such that during the interval [�0, �1] the processor is either idle or executing jobs with deadlines larger

2Note that for the rest of the paper we use �̂� to represent the delayed starting time of job �� under the EDL schedule. Also when it does not

cause any confusion, the delayed starting time has the same meaning as the delayed release time and they can be used exchangeably.

ACM Trans. Embedd. Comput. Syst.

8 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

0
 10

0
 7

(a)

(b)

20
 40
4
 24

20
 40
12
 32

T

1

T

2

T

3

36

16

16
 27

T

3

T

2

T

1

30

Fig. 3. The schedule for the task set under: (a) the EDF scheme; (b) the EDL scheme.

than (� ′ − �0) while during the interval [�1, �
′] the processor is busy executing only the jobs with deadlines less than

or equal to (� ′ − �0). Moreover, the total work demand within [�1, �
′] will be no larger than the total work demand

within the interval [�1, �
′] under the EDL schedule, i.e.,

︁

��≤(� ′−�1)

⌈
� ′ − �1 − ��

��
⌉+�� ≤

���︁

��≤(� ′−�1)

⌈
� ′ − �1 − ��

��
⌉+�� (6)

Since there is no deadline missing under the EDL schedule, we have

���︁

��≤(� ′−�1)

⌈
� ′ − �1 − ��

��
⌉+�� ≤ (� ′ − �1) (7)

Therefore, we have
︁

��≤(� ′−�1)

⌈
� ′ − �1 − ��

��
⌉+�� ≤ (� ′ − �1) (8)

Meanwhile, since after delay the processor is idle or executing jobs with deadlines larger than (� ′ − �0) between

[�0, �1], the work demand within [�1, �
′] is the same as the work demand within [�0, �

′]. Thus we have

︁

��≤(� ′−�1)

⌈
� ′ − �1 − ��

��
⌉+�� =

︁

��≤(� ′−�0)

⌈
� ′ − �0 − ��

��
⌉+�� (9)

Also since �0 ≤ �1 < �
′, we have (� ′ − �0) ≥ (� ′ − �1). Therefore we have

︁

��≤(� ′−�0)

⌈
� ′ − �1 − ��

��
⌉+�� ≤ (� ′ − �1) ≤ (� ′ − �0) (10)

Which Contradicts to (5)! □

To help understand Theorem 4.1, for the same task set in Figure 1, its schedules under EDF and EDL schemes

are shown in Figure 3 (a) and (b), respectively. It is easy to verify that if the release time(s) of any job(s) (for

example, �21) in Figure 3 (a) is/are procrastinated to the delayed release time(s) of the same job(s) in Figure 3 (b),

(for example, �̂21 = 7 for task �21), all deadlines in Figure 3 (a) can be guaranteed.

COROLLARY 4.2. For an job �� , its delayed starting time calculated by Theorem 4.1 is the maximal time it can

be delayed to while ensuring the deadlines of all other tasks/jobs in the system.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 9

PROOF. The result follows the optimality of EDL in terms of procrastinating all jobs in the system safely while

ensuring their deadlines. □

With Theorem 4.1, our new approach for scheduling the task set under standby-sparing can be implemented

based on the adaptive delay of individual jobs, which is shown in Figure 4. As seen in Figure 4, unlike the

preference oriented approach in Figure 1 which always (and only) delay all backup jobs (in the primary or the spare

processor) uniformly, our approach will adaptively delay each individual job (either a main job or its corresponding

backup job, but not both) depending on the actual need, which is summarized into the following adaptive delay

policies:

• Policy I: at any time, if either a main job or its backup job, whichever first, gets chance to be dispatched and

executed, it should be executed as soon as possible while the other one should be delayed to the starting time

of the same job under EDL scheme and executed as late as possible.

• Policy II: whenever slack time becomes available, the undelayed job(s) should try to reclaim the slack time

for execution (to facilitate early completion) while the delayed job(s) should never reclaim the slack time.

Instead, it should try to utilize the slack time to be delayed further (under dynamic procrastination).

Based on the above adaptive delay policies, as seen in Figure 4(a), at time � = 0, both job �11 and its backup job

�
′

11
got a chance to be dispatched. However, since only one of them can be executed as soon as possible and the

other one must be delayed, we just randomly picked one out of them, say �11, to be executed as soon as possible

in the primary processor (Figure 4(a)) while delaying its backup job �
′

11
in the spare processor to time �̂11 = 12

(Figure 4(b)) (when �11 is completed successfully at time � = 4, the remaining time budget of �
′

11
will be inserted

into the slack queue S of the spare processor). At the same time, since �21 will be preempted by �11 (due to its lower

priority) and could not get a chance to be dispatched/executed at time � = 0 in the primary processor (Figure 4(a))

while its backup job �
′

21
will get a chance to be dispatched/executed at time � = 0 in the spare processor (Figure 4(b)),

�
′

21
will be executed as soon as possible in the spare processor while �21 should be delayed to time �̂21 = 7 in the

primary processor (when �
′

21
is completed successfully at time � = 6, the remaining time budget of �21 will be

inserted into the slack queue S of the primary processor). Similarly, at time � = 4, since �31 got a chance to be

dispatched/executed first, it will be executed as soon as possible while its backup job �
′

31
will be delayed to time

max{�̂31, � + 4} = 21 (where 4 is the slack time with priority higher than or equal to �
′

31
in the spare processor)

and executed as late as possible. Following the same rationale, the complete schedules within the hyperperiod

[0,40] are shown in Figure 4(a) and (b). Under the same fault free assumption as in Figure 1, the total active energy

consumption within the hyperperiod is reduced to 26 units, which is 19% lower than that in Figure 1.

From the above example we can see that, by executing the tasks based on the adaptive delay policies above, there

is great potential for energy saving. Based on the above principles, our standby-sparing scheduling scheme for the

(1, 1)-constrained tasks is presented in Algorithm 1.

As shown in Algorithm 1, each job (either a main or backup job) �� has a category field associated with it whose

value could be “E" (representing as early as possible execution) or “D" (representing as late as possible delay).

Upon dispatching, if �� got chance to be executed earlier than its corresponding job in the other processor, ��’s

category should be set as “E" which means it should always be executed as early as possible (for example, �31
in Figure 4(a)). Otherwise �� ’s category should be set as “D" which means it should always be delayed as late as

possible (for example, �
′

31
in Figure 4(b)). Whenever a job is completed successfully, its corresponding job in the

other processor should be canceled and the remaining part of its time budget will become slack time (line 17).

Note that, during run-time, in both the primary and the spare processors, a slack queue S needs to be maintained

to keep track of the slack time(s) from (partially) canceled job(s). The slack time(s) in S will be sorted according to

their deadline(s). Upon job completion, new slack time from the canceled job, if any, will be inserted into the slack

queue S based on its deadline. Upon the dispatching of a job �� at time � , the slack time from S with priorities

ACM Trans. Embedd. Comput. Syst.

10 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

13

(a)

27
20
 40
4
 24

6

(b)

36
20
 40
12
 32
16
 26

J
’

3
1

Primary

Processor:

Spare

Processor:

7
 33

J

21

J

11

J
’

11

J
’

2
1

16

J

31

J

12

J
’

12
J
’

22

J

22

0

T

1

T

2

T
’

3

T

3
T
’

1

T
’

2

0

Fig. 4. The schedule for the main/backup jobs of each task under adaptive delay of individual job(s) in: (a) the

primary processor; (b) the spare processor.

Algorithm 1 The scheduling algorithm for (1, 1)-constrained tasks based on adaptive delay policies on individual

job(s)

1: For either the primary processor or the spare processor:

2:

3: Upon the execution of a job �� at current time ���� :

4: if its category is “E" then

5: Execute it following the EDF scheme as soon as possible;

6: if any slack time �� (�) with higher priority than �� is available then

7: Reclaim the slack time to execute �� as soon as possible;

8: end if

9: else

10: // �� ’s category is “D" and should be executed as late as possible;

11: Revise the arrival time of �� to max{�̂� , (���� + �� (����))};

12: Execute �� following the EDF scheme;

13: end if

14:

15: Upon the completion of a job �� at current time ���� :

16: if the execution of job �� is successful then

17: Cancel its corresponding (backup) job in the other processor and add the residue time budget to the slack

queue S;

18: if �� was the only job in the job ready queue at time �−��� then

19: Let ��� be the earliest (revised) arrival time of the next upcoming jobs(s) of all tasks;

20: if (��� − ����) > ��� then

21: Shut down the processor and set wake-up timer as (��� − ����);

22: end if

23: end if

24: end if

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 11

(b)

Primary

Processor:

Spare

Processor:

0

(a)

20
 40
8
6
 24
 48
4
 16
 32
28
30

40
 48
10
 28
22

12
 36
 42

6
 24
18
 30
14
 34
 44

0

T

1

T

2

T
’

1

T
’

2

Fig. 5. (Emptied block(s) represent(s) the slack time generated by the canceled part(s) of the mandatory main/backup

job(s).) (a) The schedule for the optional jobs (and canceled mandatory main jobs) for task set �1 = (4, 6, 6, 4, 8), �2 =

(4, 8, 8, 2, 4) in the primary processor under the selective scheme in [48] based on E-pattern; (b) The schedule for the

optional jobs (reclaiming the slack time from the canceled backup jobs) for the same task set in the spare processor

under the selective scheme in [48] based on E-pattern.

higher than or equal to �� will be stored in a variable �� (�). If ��’s category is “E", �� (�) should be reclaimed to

execute �� as soon as possible (line 6-8). Otherwise if ��’s category is “D", �� (�) should be used to implement

dynamic procrastination on �� , which can delay �� to max{�̂� , (���� + �� (�))} (line 11). Moreover, when the system is

idle (or shut down), slack times in S should also be consumed based on their sorted sequence in S.

The complexity of Algorithm 1 mainly comes from computing the delayed release times for the jobs based

on EDL scheme and the reclaimable slack time �� (�) for job �� . Since the former can be computed offline and at

anytime there are at most � jobs in the slack queue S of the primary processor or the spare processor, its online

complexity is � (�).

5 STANDBY-SPARING FOR GENERAL (�,�)-CONSTRAINED TASK SETS BASED ON
WINDOW-TRANSFERRING

For tasks with general (�,�)-constraint in which�� < �� , to ensure the (�,�)-deadlines, a widely adopted strategy

is to judiciously partition the jobs into mandatory jobs and optional jobs [54]. Two well-known partitioning

strategies are the evenly distributed pattern (or E-pattern) [18] and the deeply-red pattern (or R-pattern) [49].

According to E-pattern, the pattern �� � for job �� � , i.e., the ��ℎ job of a task �� , is defined by (here“1" represents the

mandatory job and “0" represents the optional job):

�� � =

{

“1” if � = ⌊⌈
(�−1)×��

��
⌉ × ��

��
⌋ + 1

“0” otherwise � = 1, 2, 3, · · ·
(11)

And according to R-pattern, the pattern �� � for job �� � is defined by:

�� � =

{

“1” if 1 ≤ � ��� �� ≤ ��

“0” otherwise � = 1, 2, 3, · · ·
(12)

The mandatory/optional job partitioning according to equation (11) has the property that it helps to spread out

the mandatory jobs evenly in each task along the time. Moreover, it is shown in [14] that E-pattern has better

schedulability than R-pattern in general and is the optimal pattern when all task periods are co-prime in particular.

In [14], a variation of E-pattern called ��-pattern was achieved by reversing the pattern horizontally to let the

optional jobs happen first, which can preserve the schedulability of E-pattern [14].

ACM Trans. Embedd. Comput. Syst.

12 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

For task sets based on R-pattern, Niu et al.[48] proposed an approach by exploring the flexibility of executing

jobs under (�,�)-deadlines to avoid executing duplicate copies of the mandatary jobs on two processors whenever

possible. Their approach is based on selectively executing some optional jobs with flexibility degree of 1 (i.e., the

optional jobs right before the mandatory jobs) and, once they are completed successfully, their next mandatory

job(s) will become optional (their backup jobs can be simply dropped to save energy) and this procedure can be

progressed further. Their approach is generally efficient in saving energy for task sets already schedulable with

R-pattern. However, as we mentioned, since the schedulability of R-pattern is weaker than E(or ��)-pattern, there

still exist a large number of task sets schedulable with E(or ��)-pattern but not schedulable with R-pattern. For

such kind of task sets, since there are much more optional jobs with flexibility degree of 1 in them, if we apply the

approach in [48] to them, it could result in executing excessive number of optional jobs, which could adversely

affect the overall energy efficiency. This could be demonstrated with the following example.

Consider another task set of two tasks, i.e., �1 = (4, 6, 6, 4, 8), �2 = (4, 8, 8, 2, 4). It is easy to verify that this task

set is schedulable under E(or ��)-pattern but not schedulable under R-pattern. The job patterns based on ��-pattern

for them are “01010101", and “0101", respectively. As can be seen, due to their even distribution property, all

optional jobs in them have a flexibility degree of 1. If we apply the approach in [48] to the task set, the schedules in

the primary and the spare processors are shown in Figure 5(a) and (b), respectively. As shown in Figure 5(a), since

all optional jobs (including those jobs demoted from mandatory to optional) in it have a flexibility degree [48] of 1,

all of them will be selected for execution in the primary or the spare processor alternatively. If we assume no fault

occurred within the first hyperperiod [0, 48], all mandatory main/backup jobs in either the primary or the spare

processor could be demoted/dropped. As a result the total active energy consumption within the hyperperiod is 56

units.

However, if we follow a different way of scheduling the task set, we can achieve even better energy efficiency.

Our new approach will be based on the following lemma to convert a given window-constraint into (�,�)-constraint

automatically.

LEMMA 5.1. [17] For any task �� with (�,�)-constraint of (�� , ��), if it can satisfy the window-constraint of

��/
(��+��)

2
, its original (�,�)-constraint will be satisfied automatically.

The above lemma provides us more opportunities to reduce the energy consumption under standby-sparing.

Before presenting our new approach, we need to define a variation of the E-pattern as followed. Based on it, the

pattern �� � for job �� � , is defined as [54]:

�� � =

{

“1” if � = ⌊⌈
(�−1+��)×��

��
⌉ × ��

��
⌋ + 1

“0” otherwise � = 1, 2, · · ·
(13)

Note that the above definition is actually a rotated version of the original E-pattern which can be regarded as

rotating the E-pattern defined in Equation (11) to the right by �� bits. For example, for a given (�,�)-constraint

of (3, 6), its original E-patten is “101010". If we rotate it to the right by �� = 1 bit, the resulting patterns will be

“010101" which are the same as defined according to Equation (13). For convenience, we call the pattern defined by

(13) a rotation of the original E-pattern and represent it as ��� -pattern.

With the above definition, we can determine the mandatory jobs of each main task �� and their backup jobs based

on the window constraint of��/
(��+��)

2
first. For the tasks in the same task set as in Figure 5, their corresponding

window constraints will be 4/6 and 2/3, respectively. Then under E-pattern, the mandatory jobs of task �1 will

be scheduled in the primary processor, as shown in Figure 6(a) and the backup jobs of �1 will be determined

based on the ��� -pattern with �� = 1 within each separate window of length
(��+��)

2
and scheduled in the spare

processor, as shown in Figure 6(b). Meanwhile, to balance the mandatory workload of two processors, we let the

mandatory main jobs for task �2 based on E-pattern be scheduled in the spare processor and the backup jobs for

them based on the ��� -pattern with �� = 1 be scheduled in the primary processor, as shown in Figure 6. As such,

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 13

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

6
 24
 48
4
 18
 32

48

10
 36
 40

6
 24
18
 32
 36
 42

T

1

14
 20
 28
 44

4
 10
 14
 40
28
 44

0

T

2

T
’

2

0

Fig. 6. The schedule for the mandatory main jobs based on E-pattern and (canceled) backup jobs based on

��� -pattern for same task set as in Figure 5 using our approach in: (a) the primary processor; (b) the spare processor.

each mandatory main job and its backup job will be shifted away completely such that once a mandatory main job

is completed successfully, its backup job in the other processor could be canceled entirely. If any mandatory main

job of task �� failed, its corresponding backup job in the other processor could still be invoked timely. In this way,

the window-constraint of task �� could be guaranteed. Then according to Lemma 5.1, its original (�,�)-constraint

can also be ensured. Following the same rationale, if we assume no fault occurred, the complete schedule within

the hyperperiod is shown in Figure 6. The total active energy consumption for it is reduced to 40 units, which is

28.6% lower than that in Figure 5.

5.1 Dealing with transient faults

In the window-transferring approach above, when the current mandatory main job �� � is completed successfully,

whether its backup job in the other processor should be canceled or not needs to be handled carefully. Specifically,

if job �� � is within the same time frame of the backup job of some other failed job, its backup job cannot be canceled.

For example, in Figure 7, assuming job �11 in the primary processor has failed, then its backup job �̃11 (i.e., �
′

12

in this case) in the spare processor needs to be executed. Meanwhile, in the primary processor, the mandatory

main job �12 will be executed in the same time frame as �
′

12
. Suppose the current job �12 is completed successfully.

Under this scenario, if we had canceled its backup job �̃12 (i.e., �
′

13
in this case) in the spare processor, then in the

time interval [6, 12] there would be only one valid job because �12 and �
′

12
are in the same time frame and would

effectively contribute only one valid job. Consequently the window constraint of 4/6 will be violated in the time

interval of [0, 36]. As a result its original (�,�)-constraint might not be ensured by Lemma 5.1.

The main reason for the above issue is that, due to the pattern rotation on the backup jobs, all mandatory main

jobs and their backup jobs are shifted away into different time frames. As a result it is possible that within the

current time frame the execution of the current mandatory main job could be overlapped with the backup job of

some other failed mandatory main job (for example, �12 and �
′

12
in Figure 7). When that happened, they effectively

contributed only one valid job to the window they belong to. As such, if the backup job of the current mandatory

main job is canceled, the number of valid jobs in the same window will be decreased by 1, which could cause

the window-constraint in it to be violated and consequently the original (�,�)-constraint to be violated as well.

Therefore, in this case, even if the current mandatory main job is completed successfully, its backup job should not

be canceled.

Due to the above reason, when determining the backup job patterns, to save energy, we should let the backup job

patterns be rotated in a way that the total number of mandatory jobs with their time frames overlapped (between

ACM Trans. Embedd. Comput. Syst.

14 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

(a)

(b)

Primary

Processor:

Spare

Processor:

20
 40
6
 24
 48
4
 16
 32

48
4
 14
 32

10
 36
 44

6
 24
18
10
 36
 42

J

24

J’

25

J

25

J’

26

failed

J

11

J’

12

J’

13

J

12

R

24

O’

24

J’

15

J

14

28

28
0

0

T

1

T
’

2

T
’

1

T

2

failed

14

46

Fig. 7. (a) The schedule for the optional jobs (and canceled backup jobs) for task set �1 = (4, 6, 6, 4, 8), �2 = (4, 8, 8, 2, 4)

in the primary processor under the window transferring scheme based on E-pattern; (b) The schedule for the optional

jobs (and canceled backup jobs) for the same task set in the spare processor under the window transferring scheme

based on E-pattern.

the mandatory main jobs and the backup jobs) is minimized. Fortunately, the backup job patterns determined based

on the ��� -pattern with �� = 1 has this property, which is summarized into the following lemma.

LEMMA 5.2. For any task �� with (�,�)-constraint of (�� , ��), if �� =
(��+��)

2
is an integer, let the mandatory

main jobs and the backup jobs of �� within each separate window of �� jobs be partitioned based on E-pattern and

��� -pattern, respectively according to the new (�,�)-constraint of (�� , ��). Then the total number of overlapped

mandatory jobs in time (represented as ��) between the mandatory main jobs and the backup jobs is minimized

when �� = 1. Moreover, in this case �� = max(0, 2�� − ��).

PROOF. We will show that when �� = 1, the total number of overlapped mandatory jobs in time is minimized by

considering three cases in general: (i)�� =
��
2

; (ii)�� <
��
2

; (iii)�� >
��
2

.

For case (i): when�� =
��
2

, due to the property of even distribution of mandatory/optional jobs, the job pattern

under E-pattern can only be in the form of 10... while the job pattern under the ��� -pattern can only be in the form

of 01.... Obviously the total number of overlapped jobs between the mandatory main jobs and the (mandatory)

backup jobs is 0 in this case, i.e., �� = 0. Therefore it is minimized.

For case (ii): when�� <
��
2

, due to the property of even distribution of the mandatory/optional jobs, there is no

consecutive mandatory jobs under E-pattern. In other words, each mandatory job is surrounded by optional jobs(s)

only in both sides. So when we rotate the E-pattern to the right by one position to achieve the ��� -pattern with

�� = 1, each mandatory backup job in the ��� -pattern will correspond to an optional job in the original E-pattern,

which means the total number of overlapped jobs between the mandatory main jobs and the (mandatory) backup

jobs must be 0 in this case, i.e., �� = 0. Therefor it is also minimized.

For case (iii): when�� >
��
2

, due to the property of even distribution of mandatory/optional jobs, there is no

consecutive optional jobs under E-pattern or ��� -pattern. In other words, each optional job in the E-pattern or

��� -pattern is surrounded by mandatory jobs(s) only in both sides. So when we determine the backup job patterns

by rotating the E-pattern to the right by one position to achieve the ��� -pattern with �� = 1, each optional job in the

E-pattern will correspond to a mandatory job in the ��� -pattern, and vice versa. Since in this case all optional jobs

in the E-pattern or ��� -pattern have been “consumed" in terms of corresponding to the mandatory jobs in the other

type of patterns, the total number of overlapped jobs between the mandatory main jobs and the (mandatory) backup

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 15

jobs must have been minimized. Moreover, in this case, since the total number of mandatory jobs from both the

�-pattern and ��� -pattern are 2�� , we shall have

2�� + (�� −��) + (�� −��) = 2�� (14)

Therefore,

�� = 2�� − �� (15)

From all the three cases above, when �� = 1 , �� is minimized and �� = max(0, 2�� − ��). □

As shown above, when�� >
��
2

, �� = (2�� − ��) > 0, which means the overlapping between the time frames of

some mandatory main job(s) and the backup job(s) of some other mandatory main job(s) is inevitable. In this case,

if the current mandatory main job overlapped with the backup job of some other failed mandatory main job, its

backup job cannot be canceled even if it is completed successfully, which will consequently incur extra energy

consumption. Regarding that, to save energy, if we could compensate the failed job in a different way, it is still

possible to avoid the above consequence and therefore achieve better energy efficiency. This could be demonstrated

as follows:

For the same task set in Figure 7, at time � = 24, since the backup job �
′

15
in the spare processor is canceled due

to the successful execution of its mandatory main job �14 in the primary processor, the mandatory main job �24
can reclaim the slack time from �

′

15
for execution. Thereafter, suppose �24 is found to have failed at time � = 26.

Then, instead of executing its backup job �
′

25
in the other processor, we could reserve a recovery job �24 for �24

at time � = 26 by reclaiming the remaining slack time from �� (�) at � = 26, which is 4 units and long enough

to accommodate the recovery job �24 in this case. Once reserved, the recovery job �24 will be scheduled like a

mandatory job. If �24 is completed successfully, we can still cancel the backup job of �24, i.e., �
′

25
, as shown in

Figure 7(b). Thus we can avoid having the next mandatory main job �25 overlapped with the backup job of �24, i.e.,

�
′

25
. So the situation in the above case (i.e., for jobs �12 and �

′

12
) can be avoided.

Note that it is also possible that the available slack time �� (�) is not enough to accommodate a recovery job for

the failed mandatory main job. In this case there is still another option to compensate the failure of the mandatory

main job. That is, we can check the other processor to see whether it is possible to run the optional job from the

backup task that corresponds to the failed mandatory main job in time. If the optional job could be completed

timely and successfully, it will be counted as a valid job which could compensate the failed mandatory main job as

well. For example, for job �24 in this case, if �� (�) < 4, we can still consider invoking the optional job �
′

24
in the

other processor at time � = 26. If it can be completed successfully, it has the same effect as reserving and executing

a recovery job for �24. However, whether to invoke the optional job or not needs to be handled carefully because it

has lower priority than the mandatory jobs and could potentially be preempted by other mandatory and/or optional

jobs and caused to miss its deadline. Obviously, if the optional job cannot meet the deadline, it has no benefit to

energy saving at all. Regarding that, an optional job should be executed, non-preemptively by any other optional

job, only when it could be guaranteed to be finished by the earliest arrival time of the nearest upcoming mandatory

job in the same processor.

5.2 Reliability analysis

In this section, we will analyze the performance of the proposed window-transferring scheme in terms of reliability.

For any task �� , the reliability of an arbitrary window of �� consecutive jobs in it is defined as its probability of

having at least�� jobs out of it completed successfully.

It is not hard to see that, for any task �� with �� =
(��+��)

2
being an integer, since its separate window length

�� ≤ �� , if we inspect each sliding window of �� jobs in it, it is possible that in some sliding window of �� jobs

there are some redundant job(s) in it, i.e., the total number of mandatory jobs in it could exceed�� . For example,

ACM Trans. Embedd. Comput. Syst.

16 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

1
 0

Window 3

1
1
 1
0
 0

Window 2

...
...
 0
 ...
 ...
 ...

Window C

...
 ...

Window B

1
 1
0
 0

Window 1

...
 ...
...

Window A

Fig. 8. The job patterns after window transferring.

in the sample task set in Figure 4, the original (�,�)-constraint of task �1 is (4, 8). However, as shown in Figure

5, since after window transferring, �1’s mandatory jobs was determined based on its window-constraint of 4/6.

The corresponding job pattern for �1 becomes “110110110110110110 · · · " in which each sliding window of 8 jobs

contains at least one redundant job in it. Generally speaking, for any task �� with �� being an integer, after window

transferring based on Lemma 1, with high probability there will be at least one redundant job within any arbitrary

window of �� jobs in it, which is summarized into the following lemma.

LEMMA 5.3. For any task �� with (�,�)-constraint of (�� , ��) (0 < �� < ��), let the mandatory jobs of �� within

each separate window of �� =
(��+��)

2
jobs be partitioned based on E-pattern according to the new (�,�)-constraint

of (�� , ��). The probability for �� to have at least one redundant job in any sliding window of �� jobs in it is 1 if

1 < �� < (�� − 1) and (1 − 1

��
) otherwise.

PROOF. Since �� ∈ A, we know �� =
(��+��)

2
is an integer. Since in the general case, for all (�,�)-constraint in

which�� < �� , we have�� < �� as well. So the value of�� can only be 1, · · · , (�� − 1). We consider three cases in

general, (i) 1 < �� < (�� − 1); (ii)�� = 1; (iii)�� = (�� − 1).

For case (i), without lose of generality, let’s assume the case when two consecutive windows of �� jobs at the

rightmost of the hyperperiod, namely window 1 and window 2, partitioned with E-pattern are shown in Figure 8.

Considering the rightmost sliding window of �� jobs in the current position of Window A, obviously there are

at least�� “1"s in it because �� ≥ �� (thus Window 1 is contained in Window A completely). Moreover, Since

�� = �� + (�� −��), Window A also includes exactly (�� −��) job patterns in Window 2. Obviously, (�� −��)

equals the number of ‘0’s in Window 2. Since 1 < �� < (�� − 1), due to the even distribution property of E-pattern,

any (�� −��) job patterns must contain at least a ‘1’ in it. Therefore the number of ‘1’s in Window A is no less

than (�� + 1). Moreover, each time when we move window A to the left by one position, due to the property of

E-pattern, before it reaches the position of Window C, the number of ‘1’s in it will not decrease. Once it reaches the

position of Window C, the situation in the beginning will repeat. Therefore we can conclude that in this case all

sliding windows of �� jobs much contain at least (�� + 1) ‘1’s, i.e., at least one redundant mandatory job in it.

For case (ii), the situation in the beginning is similar to case (i), the only difference is that since�� = 1, all the

(�� −��) job patterns in the right part of Window 1 (which are covered by Window A as well) are ‘0’s. So the

number of ‘1’s in Window A is exactly�� . But when it moves to the left by one job position, the number of ‘1’s in

it will be increased by one. If we move Window A to the left further, the number of ‘1’s in it will not change until it

reach the position of Window C, where the situation in the beginning will repeat. Therefore in this case, among

every �� sliding window of �� consecutive jobs, there are exactly one out of them containing�� ‘1’s in it while

in all of the other cases there are at least (�� + 1) ‘1’s in them. In other words, the chance for any window of ��
consecutive jobs to contain no redundant mandatory job is 1

��
For case (iii), the situation is similar to case (ii), only in the beginning there are exactly�� ‘1’s in window A. All

the other sliding window of �� jobs before Window C has at least (�� + 1) ‘1’s in them. Once the sliding window

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 17

reaches the position of Window C, the situation in the beginning will repeat. So, the chance for any window of ��
consecutive jobs to contain no redundant mandatory job is also 1

��
.

□

Note that, for each individual mandatory job, the probability for it to be completed successfully is � (�� �) defined

in Equation (4). Therefore its probability of encountering transient fault is (1 − � (�� �)). Moreover, since under

standby-sparing, each mandatory job has a backup job, a mandatory job is regarded as having failed (and counted

as a job failure within its window) only when both the mandatory main job and its backup job have failed, whose

probability is

(1 − � (�� �))
2 (16)

Also the mandatory job is counted as a valid job if either the mandatory main job is completed successfully or

the mandatory main job has failed but its backup job is completed successfully, whose probability is

� (�� �) + (1 − � (�� �)) × � (�� �) (17)

As such, for any sliding window of �� jobs in task �� , based on Lemma 5.3, if 1 < �� < (�� − 1), since the total

number of mandatory jobs in it is (�� + 1) (because there must be a redundant job in it), its probability of having

one mandatory job failed with�� mandatory jobs completed successfully out of it is

(

1

�� + 1

)

× (1 − � (�� �))
2 × [� (�� �) + (1 − � (�� �)) × � (�� �)]

�� (18)

Also its probability of having (�� + 1) mandatory jobs out of it completed successfully is

[� (�� �) + (1 − � (�� �)) × � (�� �)]
��+1 (19)

Therefore under this scenario its window-level reliability, i.e., the probability of having at least�� jobs out of it

completed successfully, represented as � (��), should be the summation of the above two cases, i.e., � (��) = (18) +

(19).

Otherwise (i.e., 1 < �� < (�� − 1) is not true, under which �� = 1 or (�� − 1) ≤ �� ≤ ��), for any sliding

window of �� jobs in task �� , according to Lemma 5.3, its probability of containing no redundant job and at least

one redundant job in it is 1

��
and (1 − 1

��
) , respectively. Therefore, following the same rationale, its window-level

reliability � (��) should be calculated as

� (��) =
1

��
[� (�� �) + (1 − � (�� �)) × � (�� �)]

�� + (1 −
1

��
) × {

(

1

�� + 1

)

× (1 − � (�� �))
2 × [� (�� �)

+ (1 − � (�� �)) × � (�� �)]
�� + [� (�� �) + (1 − � (�� �)) × � (�� �)]

��+1} (20)

As we know, under the original E-pattern, for any task �� , since there are exactly �� jobs out of any sliding

window of �� jobs [18], its window-level reliability � (��) should be calculated as

� (��) = [� (�� �) + (1 − � (�� �)) × � (�� �)]
�� (21)

For example, for the task �1 in Figure 5, if we assume the probability of transient fault under the maximal

speed to be 10−5 per millisecond, its job level reliability according to Equation (4) for each mandatory job is

� (�� �) = �
10−5×4

= 0.99996. Therefore before window transferring, since based on E-pattern any sliding window

in it contains exactly�� mandatory jobs, its window-level reliability based on Equation (21) is (0.99996 + (1 −

0.99996) × 0.99996)4 = 0.9999999936. Therefore, before window transferring, the probability for any window of ��
jobs of task �1 to encounter dynamic failure will be (1 − 0.9999999936) = 6.4 × 10−9

However, after window transferring, its window-level reliability based on the summation of Equations (18) and

(19) is
(

1

5

)

×(1−0.99996)2×[0.99996+(1−0.99996)×0.99996]4+[0.99996+(1−0.99996)×0.99996]5 = 0.99999999957.

ACM Trans. Embedd. Comput. Syst.

18 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

Therefore, after window transferring, the probability for any window of �� jobs of task �1 to encounter dynamic

failure will be (1 − 0.99999999957) = 4.3 × 10−10. As seen, after window transferring, the probability for any

window containing �� jobs of task �1 to encounter dynamic failure is much lower (by nearly one order of magnitude

less) than that before window transferring.

Based on the above calculation of the window-level reliability, the reliability of task �� should be calculated as,

� (��) =

��
∏

�=1

� (���) (22)

where � (���) represents the reliability of the ��ℎ window of task �� and �� is the total number of windows inspected

for task �� within the hyper period.

Then based on (22), the reliability of the whole system T should be calculated as,

� (T) =

�
∏

�=1

� (��) (23)

More results on the reliability of the whole system and its probability to encounter dynamic failure under the

general case can be found in Section 8.1.2

5.3 Probability of tolerating undetected faults

When we use sanity (or consistency) checks [52] to determine if the execution of the main mandatory job is

successful or not, it is possible that such kind of tests are not 100% accurate [55]. Sometimes a fault may remain

undetected [55, 56]. If such kind of situation occurs, dynamic failure will be inevitable in the existing approach

based on the original (�,�)-pattern because any failure on any mandatory job in them will cause the (�,�)-

constraint to be violated. In other words, their probability of tolerating such kind of checking errors is zero. On the

contrary, our approach based on window transferring has much better capability of tolerating such kind of checking

errors mainly due to the existence of the redundant mandatory jobs. From Lemma 5.3, the probability for a task

�� in A to tolerate at least one undetected fault in each and any window of �� jobs is 1 if 1 < �� < (�� − 1), and

(1 − 1

��
) otherwise. More results on the general case can be found in Section 8.1.2.

6 STANDBY-SPARING FOR GENERAL (�,�)-CONSTRAINED TASK SETS BASED ON
DYNAMIC PATTERN VARIATION

Although the above approach based on window-transferring has great potential in energy saving , it also has

the problem that, since
(��+��)

2
≤ �� , after the mandatory jobs are determined under window constraint based

on Lemma 5.1, some task(s) might become non-schedulable. On the other hand, if we want to maintain the

scheduability by using the original �� value as the window length and adopt E-pattern to determine mandatory

main jobs in the primary processor while adopting ��� -pattern to determine the backup jobs in the spare processor,

it is possible that the (�,�)-constraint in some sliding window will be violated if some mandatory main job

failed because E(or ���)-pattern only contains the minimal number of mandatory jobs that “just" satisfy the (�,�)-

constraint. In this case the failed mandatory main job could not be compensated by its backup job timely due to

the strictness of the original (�,�) requirement. To save energy for the tasks whiling maintaining the original

schedulability, a more promising way is to cautiously execute some optional job(s) when possible and vary the

patterns of the future jobs dynamically, which could be demonstrated with the following example.

Consider another task set of three tasks, i.e., �1 = (2, 2.5, 5, 2, 4), �2 = (1, 3, 10, 3, 6), �3 = (3, 6, 15, 2, 4). If we

apply the window-transferring scheme based on Lemma 5.1, �1 and �3 can have their mandatory main/backup jobs

determined based on the window-constraints of 2/3 and 2/3, respectively. However, it is not hard to verify that

after transferring the resulting task set became non-schedulable. So the above window-transferring scheme should

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 19

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

6
 23

10

T

1

0

T

2

0

3

11

10

T

3

30
 32
 35
 40
 50
 52
 60

60

T
’

2
 T
’

3

30
31
 47
 50
51
20

20
2
 22
 42
43
12

5
 7
 15
 17
 25
 27
 35
 37
 45
 55
 57

Fig. 9. The schedule for the task sets �1 = (2, 2, 5, 2, 4), �2 = (1, 3, 10, 3, 6), �3 = (3, 6, 15, 2, 4) based on E-pattern using

the approach from [48] in: (a) the primary processor; (b) the spare processor.

not be adopted. On the other hand, it is also easy to verify that this task set is non-schedulable under R-pattern

but only schedulable under E (or ��)-pattern. So the approach in [48] cannot be applied to it based on R-pattern.

Regarding that, if we partition the jobs of all tasks under the original (�,�)-constraint using ��-pattern and apply

the approach in [48] to it, the fault-free schedule within the hyperperiod [0, 60] is shown in Figure 9 and the total

active energy consumption for it will be 42 units. Note that in this schedule since all optional jobs were executed

(because the flexibility degrees of all of them are 1), no optional job got chance to be skipped.

However, if we adopt a different approach in scheduling the optional/mandatory jobs, the energy efficiency

could be improved further. As shown in Figure 10(a), at time point � = 0, the optional job �11 could be executed

and completed timely. If the execution of �11 was successful, its next mandatory job �12 could be demoted to

optional (the backup job of �12 in the spare processor could be dropped). Note that in order to ensure the original

(�,�)-constraints, all future job patterns of task �1 could be varied by restarting the ��-pattern from the next job

position. Since the optional jobs do not need backup jobs for them, the execution of �11 should be quite helpful in

reducing the energy for executing the mandatory main job �12 together with its backup job under the old patterns.

Similarly, at time point � = 3, the optional job �31 could be executed and completed timely. If the execution of

�31 was successful, its next mandatory job �32 could be demoted to optional and the ��-pattern of task �3 will be

restated from there. Then at the execution of time � = 15, ed job �32 could be re-executed as an optional job and

further demoted �33 to optional. Similarly, �33 could also be re-executed as an optional job at time � = 30. It is easy

to see that, without effective control, this procedure will be repeated further and the complete schedule will be very

similar to that in Figure 9 except that in Figure 9 the optional jobs were executed in different processors. Obviously

that will have no benefit in energy savings compared with Figure 9. Hence, in order to reduce energy, here we need

to control the number of optional jobs to be executed. One reasonable way to implement that is to check, if the

current optional job is executed, whether the expected window energy��′� of the current dynamic window which

the optional job belongs to will exceed the original static window energy��� without running optional jobs. If

��′� >��� , there is no benefit to run the optional job and it should be skipped; otherwise it is energy beneficial to

run the optional job and it should be executed. For example, in Figure 10, the��′
3

values for optional job �31, �32,

and �33 are 3, 6, and 9, respectively which are smaller than the original window energy��3 for task �3 (after partial

job cancellation, the value of��3 is estimated as 11). So �31, �32, and �33 will all be executed (and the job pattern

will be varied correspondingly). However, the��′
3

value for optional job �34 will be 12 which is larger than��3.

So �34 should not be executed. Since �34 is skipped. no pattern variation on �35. So �35 together with its backup job

ACM Trans. Embedd. Comput. Syst.

20 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

still need to be executed as mandatory job. Following the same rationale, the complete schedule within the first

hyperperiod [0, 60] is shown in Figure 10 and the total active energy consumption for it is 33.5 units, which is 20%

lower than that from the schedule in Figure 9

From the above example, we can see that, under E-pattern, the execution of optional jobs needs to be dealt with

carefully. Selecting optional jobs for execution solely based on flexibility degree might not always be most energy

efficient. Instead, incorporating the energy information into the selection criteria can enhance the energy efficiency

significantly. Regarding that, we will formulate the optional job selection criteria into an algorithm as shown in

Algorithm 2.

Algorithm 2 The execution/skip-over of optional jobs for task ��

1: Input: static window energy��� for task �� ;

2: Output: The boolean value of executable function, i.e., ���������� (�� �) for the current optional job �� � of task �� ;

3:

4: For the primary processor:

5:

6: Upon the arrival of optional job �� � of task �� at current time ���� :

7: if �� � is an optional job then

8: Executable (�� �) = true;

9: ��′� = �� � ;

10: for � = 1 to (�� − 1) do

11: if �� (�−�) is an optional job then

12: if �� (�−�) has been executed then

13: ��′�+ = �� (�−�) ;

14: end if

15: else

16: ��′�+ = �� (�−�) + ��
′

� (�−�)
; // ��

′

� (�−�)
is the actual executed part of backup job �

′

� �

17: end if

18: end for

19: if��′� >��� then

20: Executable (�� �) = false;

21: end if

22: end if

Note that in Algorithm 2, one of the essential parts is to estimate the static window energy��� for task �� that

is needed as input for Algorithm 2. Since the exact amount of cancelled part in the backup jobs is unpredictable

during the offline phase, here we will adopt an heuristics in estimating the value of��� . It is not hard to see that,

under the original (�,�)-pattern, for any particular mandatory job �� � , if we assume its backup job �̃� � (in this

case �̃� � is the same as �
′

� �) can be postponed all the way to its deadline �� and executed continuously between the

completion time of its main job and �� , the expected overlapped execution time between �� � and its backup job �̃� �
will be max{0,�� − (�� − �̂�), where �̂� is the average response time of task �� . Correspondingly, the average energy

consumed by �� � together with its backup job (after possible cancellation) is �� +max{0,�� − (�� − �̂�). Therefore,

the average energy consumption within any sliding window of �� jobs will be

Σ
��
�=1�� � (�� +max{0,�� − (�� − �̂�)) =�� (�� +max{0,�� − (�� − �̂�)) (24)

To limit the number of optional jobs selected for execution and skip over optional jobs as necessary, we will use

the value calculated in the above Equation (24) as our static window energy��� for task �� , which will be used as

the input for Algorithm 2.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 21

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

6
 23

10
 22.5

T

1

0

T

2

0

3

12

10

T

3

30
 32
 35
 40
 50
 52
 60

60

T
’

2
 T
’

3

30
 32
33
 40
 43
 47
 50
 52
20

20
2
 22
 42
43

7.5
5.5
 22

13
12
 18
15

17.5
15.5
 43

Fig. 10. The schedule for task sets �1 = (2, 2, 5, 2, 4), �2 = (1, 3, 10, 3, 6), �3 = (3, 6, 15, 2, 4) based on E-pattern using

our dynamic pattern variation approach in: (a) the primary processor; (b) the spare processor (empty rectangles

represent the cancelled part of the corresponding mandatory (or backup) jobs).

Note that in Equation (24), the value of �̂� , i.e., the average response time of task �� could be calculated statistically

through simulation.

7 COMBINED STANDBY-SPARING APPROACH FOR GENERAL (�,�)-CONSTRAINED
TASK SETS

Both the approach in Section 5 based on window transferring and the approach in Section 6 based on dynamic

pattern variation have their own advantages. Generally the approach in Section 5 could be more energy efficient

than the approach in Section 6. But it also has the problem that it could affect the schedulability of the task set

adversely. On the other hand, the approach in Section 6 based on dynamic pattern variation could maintain the

schedulability of the original task set. Therefore, to maximize the overall energy reduction while respecting the

schedulability of the task set, a more reasonable way is to combine these two approaches in an integrated way.

Specifically, we can partition the original task set into two subsets and schedule them with the approaches in

Section 5 and Section 6 correspondingly. Then the problem becomes how to determine the subsets of tasks to

be partitioned with window-constraint and the original (�,�)-constraint in a hybrid way to maximize the overall

energy reduction. In this section, we first adopt a “branch-and-bound" method, similar to that in [57], to divide the

task set T into two parts, i.e., the subset A in which the tasks will be partitioned based on window-constraints and

the subset B in which the tasks will be partitioned based on the original (�,�)-constraints. Before presenting our

approach in detail, we first introduce a sufficient condition for checking the feasibility of such kind of hybrid task

sets consisting of subsets A and B, which is summarized in the following theorem.

THEOREM 7.1. Given periodic task sets T = {�1, �2, ..., �� }. Let B contains the subset of tasks with mandatory

jobs determined with the original (�,�)-constraints and A be the subsets of tasks with mandatory jobs determined

through the corresponding window constraint��/
(��+��)

2
for task �� in it. Let � be the ending point of the first busy

period for executing the mandatory jobs only and ��� (��) be the least common multiple of �� , � = 1, 2, ..., � . Then

T is schedulable if for any mandatory job absolute deadline � ≤ min{�, ��� (��)}.

� ≥
︁

��∈A

⌈
��

⌊
(��+��)

2
⌋
⌈
� − ��

��
⌉+⌉�� +

︁

�� ∈B

⌈
��

��
⌈
� − ��

��
⌉+⌉�� (25)

ACM Trans. Embedd. Comput. Syst.

22 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

The right side of equation (25) represents an upper bound of the total work demand from the mandatory jobs in

A and in B with absolute deadlines less than or equal to � . The proof for this theorem could be done in a similar

way to that for Theorem 1 in [14] and is thus omitted.

Based on Theorem 7.1, our branch-and-bound approach is presented in Algorithm 3.

Algorithm 3 Partitioning the task set T into subsets A and B.

1: Input: task set T with original (�,�)-constraint;

2: Output: task set Z = A∪B, where A is the subset of tasks in T adopting window-constraints and B is the subset of tasks

adopting original (�,�)-constraints;

3: A = ∅; B = T ; Z = A∪B; ��� = 0

4: Try-Window-Constraint (A, B, Z, ���);

5: Output (Z);

6:

7: FUNCTION Try-Window-Constraint (A, B, Z, ���)

8: for each task �� ∈ B do

9: Re-determine the mandatory jobs of �� based on the window-constraint that can be converted to its original (�,�)-

constraint;

10: Remove �� from B and put it into A;

11: if A∪B is schedulable then

12: Compute the expected energy saving ����� according to Equation (26);

13: if ����� > ��� then

14: ��� = ����� ; Z = A∪B;

15: end if

16: Try-Window-Constraint (A, B, Z, ���);

17: else

18: Restore the job patterns of �� to be based on its original (�,�)-constraint and put it back to B;

19: end if

20: end for

From Algorithm 3, our approach determines task by task if the mandatory main/backup jobs of each task should

be determined based on the original (�,�)-constraint or based on the window-constraint (to be converted). When

Algorithm 3 is finished, it is possible to reach certain hybrid configuration in which the tasks in A are partitioned

based on the window-constraints, while the tasks in B are still partitioned based on their original (�,�)-constraints.

And the resulting configuration should be the one that could maximize the expecAed and B energy saving ����� for

the tasks in A.

Note that in Algorithm 3, with the �� value determined based on Lemma 5.2, when estimating the expected

energy saving for the tasks in A subject to the transient faults, we should incorporate the possible extra energy

consumption of running the backup job(s) for the mandatory main job(s) overlapped with the backup job(s) of

some other (already) failed mandatory job(s), if any, as well. Specifically,

����� =

︁

�� ∈A

{2����
����� ∈A (���� ,

(��+��)
2

��)

��
}

−
︁

�� ∈A

{[���� + ���� (����)��]
����� ∈A (���� ,

(��+��)
2

��)

(��+��)
2

} (26)

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 23

1
 0

Window 1

0
0
 1
0
 1

Window 2

...
 ...
1
 ...
 ...
 ...

Window X

Fig. 11. The worst case of job patterns under two consecutive windows.

where �� (����) = (1 − � (�� �)), representing the average job fault rate for task �� at the maximal processor speed

���� .

Note that in the above Equation (26), the first part of it represent the worst case total energy consumption (without

cancellation) within the hyper period before window transferring and the second part of it represent the worst case

total energy consumption within the hyper period after window transferring.

7.1 Dealing with tasks with (�� + ��) non-dividable by 2

It has not escaped from our attention that, for certain task �� , if (�� + ��) for it is not dividable by 2, the value

of
(��+��)

2
for the corresponding window will not be an integer and cannot be used as the window length. In

this case, we need to determine the window length in a more flexible way, i.e., the window length should be

determined as ⌊
(��+��)

2
⌋ and ⌈

(��+��)
2

⌉ alternatively. For example, for task �� with original (�,�)-constraint of (3, 6),

its corresponding window length under the window constraint should be ⌊
(3+6)
2

⌋ = 4 and ⌈
(3+6)
2

⌉ = 5 alternatively.

As a result, its job patterns under window-constraint should be “1110" and “11010" alternatively, which will be

“11101101011011010... ". It is easy to verify that this new job pattern can still satisfy the original (�,�)-constraint

of (3, 6). In the following, we will formulate that into a lemma.

LEMMA 7.2. For any task �� with original (�,�)-constraint of (�� , ��), if its job patterns are determined

under the separate windows using window-constraints of��/⌊
(��+��)

2
⌋ and��/⌈

(��+��)
2

⌉ alternatively, the original

(�,�)-constraint of �� will be satisfied.

PROOF. For brevity we only need to check the first two windows as the remaining windows will be a repeated

version of the first two.

Obviously, when (�� + ��) is dividable by 2, the result is trivially true from Lemma 5.1. So we only need to

consider the case when (�� + ��) is not dividable by 2. Under this case, with the job patterns determined above, the

worst case will be the case when all optional jobs from two consecutive windows are clustered together, as shown in

Figure 11. It is easy to see that the total number of optional jobs in Window 1 and Window 2 are (⌊
(��+��)

2
⌋ −��)

and (⌈
(��+��)

2
⌉ −��), respectively. So in the worst case the total number of optional jobs across the border of two

consecutive windows are

(⌊
(�� + ��)

2
⌋ −��) + (⌈

(�� + ��)

2
⌉ −��) = �� −�� (27)

Note that since all optional jobs in two consecutive windows are already clustered together, the remaining jobs

in the two consecutive windows are all mandatory jobs. As such, for any sliding window � of �� jobs, obviously

the worst case is that window � contains all the optional jobs across the border of two consecutive windows. As

mentioned above, the other jobs in window � can only be mandatory jobs. So the number of mandatary jobs in

window � is �� − (�� −��) =�� , which satisfies the original (�� , ��)-constraint.

Note that in the above case we assume all optional jobs are clustered together, which is the worst case among all

kinds of job patterns. For E-pattern, due to the even distribution of the mandatory/optional jobs, this case might not

ACM Trans. Embedd. Comput. Syst.

24 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

happen, which means the number of optional jobs in any sliding window � could be less than (�� −��). Therefor

the number of mandatory jobs in any sliding window of �� jobs will be at least�� . □

Algorithm 4 The online algorithm for (�,�)-constrained tasks

1: For the primary processor:

2: if ��� is not empty then

3: Let �� be the job with highest priority in ��� .
4: if �� ∈ A then

5: Execute �� based on regular EDF scheme;
6: else

7: Execute �� following the rationale in Algorithm 1;
8: end if

9: Let �
′

� be the job of task �
′

� in the other processor within the same time frame as �� ;

10: if �� is completed successfully then

11: if �
′

� is not the backup job of some other failed mandatory main job then

12: Cancel �� ’s corresponding job in the other processor and add the residue time budget to the slack queue S;
13: end if

14: else if �� (�) ≥ �� then

15: Reserve a recovery job �� for job �� and insert it into ��� ;
16: else

17: ��� ′ = the earliest arrival of upcoming mandatory job(s) in the other processor;

18: if �
′

� is optional and�� ≤ (min{���,�� } − ����) then

19: Insert �
′

� into the����;

20: end if

21: end if

22: else if���� is not empty then

23: Select �� in���� with the earliest deadline among jobs in����

24: Run �� non-preemptively;
25: if �� is completed successfully then

26: Cancel the backup job of the failed mandatory job corresponding to �� ;
27: end if

28: else if���� is not empty then

29: ��� = the earliest arrival of upcoming mandatory job(s);
30: Select �� in���� with the maximal window energy saving � (���) among jobs in���� with�� ≤ (min{���,�� } − ����);
31: if �� ≠ ∅ then

32: Run �� non-preemptively;
33: if �� is completed successfully then

34: Restart the �� -pattern of task �� from the next job position following �� ;
35: end if

36: end if

37: else

38: ���� = the current time;
39: if (��� − ����) > ��� then

40: Shut down the processor and set up its wake-up timer to be (��� − ����);
41: end if

42: end if

43: For the spare processor:

44: if ���
′

is not empty then

45: Repeat lines 3-21;

46: else if���
′

�
is not empty then

47: Repeat lines 23-27;
48: else

49: Repeat lines 38-41;
50: end if

7.2 The overall online algorithm

Based on the output from Algorithm 3 and the above information, our overall online algorithm for general

(�,�)-constrained tasks can be implemented in Algorithm 4.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 25

As shown in Algorithm 4, in the primary processor, three job ready queues, which corresponds to three priority

levels, are maintained: the mandatory job queue (MJQ), the optional job queue (����) for the tasks in A, and

the optional job queue (����) for the tasks in B. The jobs in the MJQ are in the highest priority level and the

jobs in the ���� are in the lowest priority level. Upon release, a job of task �� is inserted into the MJQ if it is a

mandatory job or a reserved recovery job, regardless whether �� belongs to A or B. On the other hand, an optional

job �� of task �� is inserted into the ���� if and only if �� ∈ A and ��’s corresponding job in the other processor

is a failed mandatory main job whose reclaimable slack time �� (�) is not long enough for reserving a recovery

job for it. Meanwhile, �� is inserted into the ���� if and only if �� ∈ B and �� is executable based on the output

from Algorithm 2 , i.e., ���������� (�� �) is true. Otherwise �� will be skipped. In this way we can avoid executing

excessive number of optional jobs in B. In the spare processor, things will be a little different as, to avoid executing

too many optional jobs (which could consume more energy than necessary), the optional jobs of the tasks in B

should not be executed there. As such, in the spare processor, only the mandatory backup job queue (represented as

���
′
) and the optional job queue (���

′

�) for the tasks in A will be maintained.

During runtime, for the tasks in A, their mandatory jobs will be executed based on regular EDF scheme and the

optional jobs will be invoked and executed only when necessary (lines 23-27). For the tasks in B, some optional

jobs will be selectively executed in the primary processor with dynamic pattern variation (lines 29-36). Note that if

an optional job cannot be completed timely, it is not energy beneficial and therefore should not be invoked at all.

As such, an optional job is regarded as eligible only if it could surely be finished before the earliest arrival time of

the upcoming mandatory jobs (line 30). If there are multiple eligible optional jobs from ���� , the window energy

saving � (���) for each eligible optional job will be calculated, where � (���) is defined as (��′� −���). The

one with the maximal window energy saving � (���) should be selected for execution. Moreover, once a selected

optional job is invoked, it should be executed non-preemptively to ensure that it could be finished timely.

Once an optional job in ���
′

� is completed successfully, the backup job of the failed mandatory main job

corresponding to the optional job will be canceled (lines 25-27). Once an optional job in ���
′

� is completed

successfully, the patterns of the future jobs should be varied by restarting the ��-pattern of the same task in both

the primary and the spare processors from the next job position. Note that if no optional jobs are available, the

mandatory jobs in B can still be executed following the rationale in Algorithm 1 based on the adaptive delay

policies in Section 8.1.1 (lines 7 and 46). The only issue is, in this case, since EDL scheme is not applicable for task

sets with dynamic pattern variation, the delayed release time of any mandatory job �� of task �� should be calculated

based on the following sufficient conditions:

LEMMA 7.3. [58] Given task set T with all of its mandatory jobs schedulable, if the release time of any

mandatory job �� is delayed to (�� + ��), no mandatory job will miss its deadline, where

�� = �� − �� (28)

and �� is the worst case response time of task ��’s mandatory jobs which could be computed offline with the

approach in [59].

LEMMA 7.4. Assuming at time � , let �� be the current mandatory job and J ′ be the set of the unfinished

mandatory jobs and/or the upcoming mandatory jobs with arrive times later than � . Also let ������ be the delay

bound (i.e., the earliest deadline for the mandatory jobs in J ′) for J ′. Then no mandatory job in J ′ will miss its

deadline if the execution of job �� is delayed to �� (��), where

�� (��) = min
�� ∈J�

(�∗� −
︁

�� ∈ℎ� (��)

� �), (29)

ACM Trans. Embedd. Comput. Syst.

26 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

(a)
 (b)

50

70

90

110

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM-SS
 EM-TMR
 PO_SS
 ADIJ-SS

50

70

90

110

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM-SS
 EM-TMR
 PO_SS
 ADIJ-SS

Fig. 12. The results in the presence of (a) No faults; (b) System faults.

where J� consists of the unfinished mandatory jobs from J ′ with arrival times earlier than ������ but later than � ,

ℎ� (� �) are the jobs with priorities higher than or equal to that of � � , and

�∗� = min
�

(��, �� + ��),∀�� ∈ J ′, �� ∉ J� ��� �� > �� . (30)

where �� is computed through Equation (28).

The main difference between Lemma 7.4 and Theorem 1 in [50] is that our sufficient condition in Lemma 7.4

can be used to compute the delayed release time for the current mandatory job not only when the processor is idle,

but also when the processor is busy at time � . Moreover, the effective deadline for a mandatory job is relaxed from

the earliest arrival time of the next lower priority mandatory job further by a time interval of �� which will allow

the current mandatory job to be delayed further. The proof of Lemma 7.4 can be done in a similar way to that of

Theorem 1 in [50] and is thus omitted.

Moreover, it is easy to see that at any time � , the execution of any mandatory job can be delayed by �� (�) units,

where �� (�) is the slack time from S with priorities higher than or equal to �� .

Based on the analysis in the above sufficient conditions, the delayed release time of a mandatory job �� in

Algorithm 4 could be re-calculated as �̂� = max{(�� + ��), �� (��), �� (�)} safely.

The online complexity of Algorithm 4 mainly comes from scheduling the mandatory and optional jobs. Since

at anytime there are at most � jobs in the MJQ or in the ���� (����), its complexity is � (���), which is linear

since �� is usually a small constant integer.

Moreover, to ensure that the (�,�)-constraint of the tasks be satisfied, we have the following theorem (proof

omitted):

THEOREM 7.5. Let task set T be scheduled with Algorithm 4. The (�,�)-deadlines for T can be ensured if T

is schedulable under �-pattern.

8 EVALUATION

In this section, we compare the energy performance of our approach with other previous approaches using

simulations. We conducted two groups of simulations, one for task sets with (1, 1)-constraint and one for task sets

with general (�,�)-constraint.

The processor model used in our simulations is based on the Free-scale PowerQUICC III integrated Communica-

tions Processor MPC8536E [60], similar to the one used in [61]. According to the data sheet in [60], the typical

power consumption of MPC8536E running under the maximal frequency is 4.7 Watt (with a core frequency of

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 27

1500 MHz and core voltage of 1.1 V). The idle power ����� is about 0.6 Watt. Since the transition overheads are

not mentioned in the data sheet, we assumed the shut-down/wake-up time overhead �� = 1 millisesond and energy

overhead �� = 0.6 mJule. Therefore the minimal shut-down interval ��� will be calculated as 1 millisesond.

8.1 Evaluation based on synthesized task sets

8.1.1 Simulation results for task sets with (1, 1)-constraint. Four different approaches were studied. The

first approach (�����) executed the jobs in the primary and the spare processors concurrently without energy

management. We used its results as the reference. The second approach (��-���) scheduled the task with the

Triple Modular Redundancy scheme from [46] but without applying DVFS. The third approach (����) scheduled

the tasks with the preference oriented scheme from [10] with task preference randomly determined and without

applying DVFS. The fourth approach (��� ���) is our approach proposed in Section 4 based on adaptive delay

policies on individual jobs in both the primary and the spare processors.

The periodic task sets in our experiments consist of five to twenty tasks with the periods randomly chosen in

the range of [5, 50]�� and the deadlines were assumed to be less than or equal to their periods. The worst case

execution time (WCET) of a task was assumed to be uniformly distributed and the total utilization, i.e.,
∑

�
��

��
was

divided into intervals of length 0.1 each of which contains at least 20 task sets schedulable or at least 5000 task sets

generated. We conducted two sets of tests.

In the first set, we check the energy performance when no fault occurred within the hyperperiod. The result is

shown in Figure 12(a).

From Figure 12(a), it is not surprising that the energy consumption of ��-��� is always the highest among all

approaches mainly because it adopted the Triple Modular Redundancy scheme to provide fault tolerance, i.e., to

employ and analyze the results of three separate executions of the same job to determine the correct one. Moreover,

one can immediately see that, by adopting the adaptive delay policies on each main/backup job individually,��� ���
can achieve much better energy efficiency than the other two previous approaches, i.e., ����� and ���� , in most

utilization intervals. The energy reduction by ��� ��� over ���� can be up to 11%. The main reason is that, in

this scenario, by executing the main/backup jobs in a more flexible way, ��� ��� can help reduce the overlapped

execution between the main jobs and their backup jobs more efficiently, therefore saving more energy.

In the second set, we assumed the system could be subject to permanent/transient faults. The permanent fault

could occur randomly at most once during the hyperperiod. The transient fault model is similar to that in [4] by

assuming Poisson distribution with an average fault rate of 10−6 per millisecond. The result is shown in Figure 12(b).

As seen, in this scenario, the energy consumption of ��-��� is still much higher than the other approaches for

the same reason as stated above. Meanwhile the energy reduction by our new approaches, i.e., ��� ��� , over ����
could be affected slightly by the possible permanent/transient faults, but can still achieve up to 9% energy saving,

thanks to the adaptive executions of the jobs under individual/flexible delay.

8.1.2 Simulation results for task sets with general (�,�)-constraint. In this part, we studied five approaches.

The first approach (������) statically determined the job patterns based on �-pattern. And the mandatory jobs in

the primary and the spare processors were executed concurrently without delay. We used its results as the reference.

The second approach (��-���) also determined the job patterns based on �-pattern and the mandatory jobs were

scheduled with the Triple Modular Redundancy scheme from [46] but no DVFS was applied. The third approach

(�������������) also determined the job patterns based on �-pattern first but selectively executed the optional jobs

using the approach in [48]. The fourth approach (������) is our proposed approach presented in the conference

version [62]. The fifth approach (������) is our new combined approach with the enhanced techniques proposed

in this journal version.

The periodic task sets are generated in the same way as in Section 8.1.1 but with �� and �� values for the

(�,�)-constraint randomly generated between 2 and 10 (�� > ��). Since when the total (�,�)-utilization, i.e.,

ACM Trans. Embedd. Comput. Syst.

28 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

(a)
 (b)

50

60

70

80

90

100

110

120

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

 (m,k)-Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

WCMK_EN

50

60

70

80

90

100

110

120

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

 (m,k)-Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

WCMK_EN

Fig. 13. The results in the presence of (a) No faults; (b) System faults.

∑

�
����

����
is larger than 0.8, it is hard for the task sets to be schedulable, we mainly checked the task sets with

(�,�)-utilization between 0.0 to 0.8.

Firstly, we inspect the energy consumption of the different approaches. We performed two sets of experiments.

In the first set, we assumed no fault occurred within the hyperperiod. The result is shown in Figure 13(a).

From Figure 13(a), it is not surprising that under the general (�,�)-constraint ��-��� still incurred much

higher energy consumption than all the other approaches based on standby-sparing because it adopted the triple

modular redundancy scheme in which one additional copy of the job was executed (to generate the dominant result),

incurring more energy consumption. Meanwhile, it is easy to see that������ and������ can achieve much

better energy performance than all the other approaches. The energy reduction by������ over������������� can

be up to 20%. The main reason is that, in this scenario, by partitioning the jobs based on window-constraints (that

could be converted to the original (�,�)-constraints) first,������ can help minimize the overlapped execution

between the mandatory and backup jobs in two processors more efficiently. Moreover, with the enhanced techniques

proposed in this journal version,������ can boost the energy saving further by about 3% thanks to the more

adaptive techniques proposed in this journal version.

In the second set, we assumed the system was subject to permanent and/or transient faults with the same fault

rate as in Section 8.1.1. The result is shown in Figure 13(b).

As seen, under this scenario, similar to the above results in Figure 13(a), the energy consumption of ��-��� is

still the highest among all approaches compared. Meanwhile, the energy saving achievable by our new approach,

i.e., ������ over ������������� is even better, i.e., up to 22%. Similar to the fault-free case, our enhanced

approach proposed in this journal version, i.e.,������ can boost the energy saving by additionally 3%. This

is mainly because the energy efficiency of ������������� is highly dependant on the successfully execution of

optional jobs and the dynamic pattern variation based on it. As such, when the system fault(s) occurred, the

dynamic pattern variation procedure in ������������� could be affected significantly. Different from that, in our

new approaches, i.e.,������ and������ , the execution of the optional jobs under dynamic pattern shifting

only partially contributed to the overall energy reduction. A more significant part of the energy saving comes from

our more flexible job partitioning strategy based on window-constraint (that could be transferred to the original

(�,�)-constraint) as well as the adaptive executions of the mandatory main/backup jobs based on flexible delay

when necessary.

Next, we inspected the reliability of the system by the different approaches. Here in order to reflect the system

reliability in a more straightforward way, we checked the probability of dynamic failure (denoted as PoDF) of the

different approaches. The PoDF is defined as the probability for the system to have any task in it with a window

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 29

(a)
 (b)

1.00E-11

1.00E-10

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

(m,k)-Utilizatoin

P
ro

b
a
b

il
it

y
 o

f
D

y
n

a
m

ic
 F

a
il
u

re

NEM_MKE
 EM_TMR

WCMK_SS
 WCMK_EN

MKSS-selective

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

(m,k)-Utilizatoin

P
ro

b
a
b

il
it

y
 o

f
T

o
le

ra
ti

n
g

U
n

d
e
te

c
te

d
 F

a
u

lt

NEM_MKE
 EM_TMR

WCMK_SS
 WCMK_EN

MKSS-selective

Fig. 14. The comparisons on (a) Probability of dynamic failure; (b) Capability of tolerating one undetected fault.

of �� consecutive jobs having less than�� jobs completed successfully. We assumed the system was subject to

permanent and/or transient faults with same fault rate as in Section 8.1.1. The result is shown in Figure 14(a).

As can be seen from Figure 14(a), in all utilization intervals, as expected, the PoDF of ��-��� is much

lower than all the other approaches adopting standby-sparing. However, its energy cost is also much higher, as

shown in Figure 13. Meanwhile, among all the approaches based on standby-sparing, the PoDFs of������ and

������ are always the lowest. The effect is especially obvious when the (�,�)-utilization is modest. This is

because under this scenario most tasks in������ and������ had chance to be partitioned into subset A via

branch-and-bound in Algorithm 3. As mentioned in Section 5.2, after window transferring, the tasks in subset A

contains a number of redundant mandatory jobs, which is very helpful in reducing the PoDF. As seen in Figure 14(a),

compared with ������ , the reduction in PoDF is roughly one order of magnitude when the (�,�)-utilization

is not very high. Meanwhile, it is interesting to see that the PoDF of ������������� is also relatively lower than

������ . This is mainly because it selectively executed a number of optional jobs, which is practically helpful in

reducing PoDF as well. However, the energy consumption of ������������� is also much higher than������ and

������ as shown in Figure 13. Moreover, since the reduction of PoDF in������ and������ mainly comes

from the pre-reserved redundant mandatory jobs of the tasks in subset A, it is predictable based on Lemma 5.3,

whereas the reduction of PoDF in ������������� mainly comes from the dynamically executed optional jobs, which

is not predictable.

In the following, by considering the possibility of undetected faults, we also inspect the probability of tolerating

at least one undetected fault in any window of �� consecutive jobs by the different approaches. The result is shown

in Figure 14(b).

As can be seen from Figure 14(b), it is not surprising that the probabilities for ������ and ��-��� to

tolerate undetected faults are zero because they adopted the original static E-patterns which defined a minimal

set of mandatory jobs that “just" satisfied the given (�,�)-constraints (therefore any undetected fault could cause

a dynamic failure). In contrast to them,������ and������ have much higher capability of tolerating at

least one undetected fault in any window inspected, especially when the (�,�)-utilization is modest, for the same

reason as stated above. Meanwhile, it is noted that the practical probability for ������������� to tolerate at least one

undetected fault in any window is also quite good (in some utilization intervals even slightly higher than those by

������ and������). However, similar to the above argument, its energy consumption is also much higher.

Moreover, since it is based on the execution of optional jobs, its performance under this scenario is not predictable

whereas the performances of������ and������ are predictable because the redundancy of the mandatory

jobs of the tasks in subset A could be estimated based on Lemma 5.3.

ACM Trans. Embedd. Comput. Syst.

30 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

(a)
 (b)

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

 (m,k)-Untilization

N
o

rm
a

li
z
e

d
 Q

o
S

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

 (m,k)-Untilization

N
o

rm
a

li
z
e

d
 Q

o
S

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

Fig. 15. Comparisons on the QoS for systems in the presence of (a) No faults; (b) System faults.

Finally, we inspected the QoS levels that the different approaches could provide when all approaches were

feasible. The QoS level was defined as the ratio of the number of effective jobs over the total number of jobs within

the hyperperiod. We also conducted two sets of tests.

In the first set, we checked the QoS when no fault occurred within the hyperperiod. The results were normalized

to that by ����� and shown in Figure 15(a). From Figure 15(a), we can see that our newly proposed approach,

i.e.,������ could achieve much better QoS levels than the existing approaches. Compared with ��-��� and

������������� , the maximal QoS improvement could be up to 28% and 16%, respectively. This is mainly due to the

redundant mandatory jobs executed under window transferring in������ .

In the second set, we assumed the system could be subject to permanent/transient faults with the same fault rate

as in the previous groups of tests. The result is shown in Figure 15(b).

From Figure 15(b), the QoS improvement subject to faults by our newly proposed approach, i.e.,������ over

the ��-��� is quite similar to that when no fault ever occurred, for the same reason as stated above. Meanwhile, it

is also interesting to see that under this scenario the QoS of ������������� could be quite close to that of������
in certain utilization intervals. However, as shown in Figure 13(b), its energy consumption in this case is also much

higher due to excessive number of jobs executed.

8.2 Evaluation based on real world benchmark

In this section, we tested our conclusions in a more practical environment.

8.2.1 Simulation results for task sets with (1, 1)-constraint. In this part we performed tests on two real world

applications, i.e., INS (Inertial Navigation System) [63] and CNC (Computerized Numerical Control) machine

controller [64]. The timing parameters such as the deadlines, periods, and execution times were adopted from the

practical applications directly [63, 64]. For the fault model we adopted the same model as used for the synthesized

task sets.

We performed two sets of experiments to inspect the energy consumption of the different approaches.

In the first set, we assumed no fault occurred within the hyperperiod. The result is shown in Figure 16(a).

From Figure 16(a), it is obvious that for both applications the energy consumption of ��-��� is still the highest

among all approaches, mainly due to the Triple Modular Redundancy scheme adopted in it. On the other hand,

by adopting the adaptive delay policies on each main/backup job individually, ��� ��� can achieve much better

energy efficiency than the other two previous approaches, i.e., ����� and ���� for both applications. The energy

reduction by ��� ��� over ���� can be around 9% for INS and 5% for CNC, respectively, thanks to the adaptive

executions of the jobs under individual/flexible delay.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 31

(a)
 (b)

50

70

90

110

130

INS
 CNC

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM-SS
 EM-TMR
 PO_SS
 ADIJ-SS

50

70

90

110

130

INS
 CNC

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

 C
o

n
s

u
m

p
ti

o
n

NEM-SS
 EM-TMR
 PO_SS
 ADIJ-SS

Fig. 16. The results based on real world benchmarks INS [63] and CNC [64] in the presence of (a) No faults; (b)

System faults.

(a)
 (b)

VCS

50

60

70

80

90

100

110

120

130

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

C
o

n
s

u
m

p
ti

o
n

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

WCMK_EN

VCS

50

60

70

80

90

100

110

120

130

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Utilization

N
o

rm
a

li
z
e

d
 E

n
e

rg
y

C
o

n
s

u
m

p
ti

o
n

NEM_MKE
 EM-TMR

MKSS^E_Selective
 WCMK_SS

WCMK_EN

Fig. 17. The results based on real world benchmark VCS [13] in the presence of (a) No faults; (b) System faults.

In the second set, we assumed the system could be subject to permanent and/or transient faults with the same

fault rate as in Section 8.1.1 in the main manuscript. The result is shown in Figure 16(b).

As seen, in this scenario, for both applications the energy consumption of ��-��� is still much higher than the

other approaches for the same reason as stated above. Meanwhile, the energy consumption of our newly proposed

approach, i.e., ��� ��� , is still much lower than the other two previous approaches, namely ����� and ���� , with

energy reduction of around 10% for INS and 4% for CNC, for the same reason as stated above.

8.2.2 Simulation results for task sets with general (�,�)-constraint. The test is based on another real

world benchmark: VCS (Vehicle Control System) [13]. The timing parameters such as the deadlines, periods,

and execution times were adopted from the practical application directly [13]. The �� and �� values for the

(�,�)-constraint were randomly generated between 2 and 10 (�� > ��). We also conducted two sets of tests.

In the first set, we checked the energy performance when no fault occurred within the hyperperiod. The result is

shown in Figure 17(a).

From Figure 17(a), it is easy to see that for VCS application, the energy consumption of ��-��� is much

higher than all the other approaches based on standby-sparing for the same reason as stated above. Meanwhile,

������ and������ can achieve much better energy performance than all the other approaches. The energy

reduction by������ and������ over ������������� can be up to 9% and 12%, respectively, which conforms

to our analysis on synthesized task sets as well.

ACM Trans. Embedd. Comput. Syst.

32 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

In the second set, we assumed the system could be subject to permanent and/or transient faults with same fault

rate as in Section 8.1.1. The result is shown in Figure 17(b).

As seen, under this scenario, the energy savings achievable by our newly proposed approaches, i.e.,������
and������ over the previous approach are even better. The energy reduction by������ and������ over

������������� can be up to 11% and 13%, respectively. This is mainly due to the fact that the energy efficiency

of ������������� is highly dependant on the successfully execution of optional jobs and the dynamic pattern

variation based on it. As such, when the system fault(s) occurred (to the optional jobs), the dynamic pattern

variation procedure in ������������� could be affected significantly. Different from that, in our new approaches,

i.e.,������ and������ , the execution of the optional jobs under dynamic pattern shifting only partially

contributed to the overall energy reduction. A more significant part of the energy saving in them came from our

more flexible mandatory job shifting strategy based on window-constraint (that could be transferred to the original

(�,�)-constraint) as well as the adaptive executions of the mandatory main/backup jobs based on flexible delay

when necessary.

Overall, the evaluation results based on both synthesized systems and real world applications have clearly

demonstrated the effectiveness of our approaches in saving energy while satisfying the (�,�)-constraints and

assuring fault tolerance through standby-sparing.

9 CONCLUSION

Fault-tolerance, energy consumption, and quality of service are becoming increasingly critical factors in the design

of pervasive computing systems. In this paper, we focuses on exploring methods that can simultaneously address

the above three important issues under the standby-sparing mechanism with the purpose of providing fault tolerance

subject to both permanent and transient faults. Due to its duplicate executions of the real-time jobs/tasks, the energy

consumption of a standby-sparing system could be quite high. To save energy under standby-sparing, we proposed

three novel scheduling schemes: the first one is for (1, 1)-constrained tasks, and the second one and the third one

are for general (�,�)-constrained tasks which require that among any � consecutive jobs of a task no more than

(� −�) out of them could miss their deadlines. Based on the second and the third approaches, a combined approach

is also proposed to maximize the overall energy reduction while respecting the schedulability of the task sets.

Through extensive evaluations and performance analysis, our results demonstrate that the proposed techniques

significantly outperform the existing ones in energy reduction while assuring (�,�)-constraints and fault tolerance

under standby-sparing.

ACKNOWLEDGMENTS

This work is partly supported by the U.S. NSF under grants ECCS 2302651, HRD 2135345, CNS/SaTC 2039583,

HRD 1828811, CMMI 2240407, the Swedish Research Council Grant No. 2023-04485, and by the Research

Institute For Tactical Autonomy, A University Affiliated Research Center (RITA-UARC) of the U.S. Department

of Defense at Howard University under Contract Number FA955023D0001 with the U.S. Air Force Office of

Scientific Research.

REFERENCES
[1] M. Johnson, D. Somasekhar, L.Y. Choiu, and K. Roy. 2002. Leakage Control With Efficient Use of Transistor Stacks in Single Threshold

CMOS. IEEE Trans. on VLSI 10, 1 (February 2002), 1–5.

[2] Le Yan, Jiong Luo, and Niraj K. Jha. 2003. Combined dynamic voltage scaling and adaptive body biasing for heterogeneous distributed

real-time embedded systems. ICCAD (2003).

[3] Xiliang Zhong and Cheng-Zhong Xu. 2008. System-wide energy minimization for real-time tasks: Lower bound and approximation. ACM

Trans. Embed. Comput. Syst. 7, Article 28 (May 2008), 24 pages. Issue 3.

[4] Dakai Zhu, R. Melhem, and D. Mosse. 2004. The effects of energy management on reliability in real-time embedded systems. In ICCAD.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 33

[5] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu. 2003. Ramp: A model for reliability aware microprocessor design. IBM Research Report,

RC23048 (2003).

[6] Dakai Zhu. 2011. Reliability-aware dynamic energy management in dependable embedded real-time systems. ACM Trans. Embed.

Comput. Syst. 10 (January 2011), 26:1–26:27. Issue 2.

[7] Yi wen Zhang, Hui zhen Zhang, and Cheng Wang. 2017. Reliability-aware low energy scheduling in real time systems with shared

resources. Microprocessors and Microsystems 52 (2017), 312 – 324.

[8] A. Ejlali, B. M. Al-Hashimi, and P. Eles. 2012. Low-Energy Standby-Sparing for Hard Real-Time Systems. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 31, 3 (March 2012), 329–342.

[9] M. A. Haque, H. Aydin, and D. Zhu. 2011. Energy-aware Standby-Sparing Technique for periodic real-time applications. In ICCD.

[10] Yifeng Guo, Hang Su, Dakai Zhu, and Hakan Aydin. 2015. Preference-oriented real-time scheduling and its application in fault-tolerant

systems. Journal of Systems Architecture 61 (01 2015).

[11] Houssine Chetto and Maryline Chetto. 1989. Some Results of the Earliest Deadline Scheduling Algorithm. IEEE Transction On Software

Engineering 15 (1989).

[12] D. Shin, J. Kim, and S. Lee. 2001. Intra-task voltage scheduling for low-energy hard real-time applications. IEEE Design and Test of

Computers 18, 2 (March-April 2001).

[13] J. Li, YeQiong Song, and F. Simonot-Lion. 2006. Providing Real-Time Applications With Graceful Degradation of QoS and Fault

Tolerance According to (m,k)-Firm Model. Industrial Informatics, IEEE Transactions on 2, 2 (May 2006), 112–119. DOI:http:

//dx.doi.org/10.1109/TII.2006.875511

[14] Linwei Niu and Gang Quan. 2006. Energy Minimization for Real-time Systems With (m,k)-Guarantee. IEEE Trans. on VLSI, Special

Section on Hardware/Software Codesign and System Synthesis (July 2006), 717–729.

[15] G. Bernat and A. Burns. 2001. Weakly hard real-time systems. IEEE Trans. on Comp. 50, 4 (April 2001), 308–321.

[16] M. Hamdaoui and P. Ramanathan. 1995. A dynamic priority assignment technique for streams with (m,k)-firm deadlines. IEEE

Transactions on Computes 44 (Dec 1995), 1443–1451.

[17] Richard West, Yuting Zhang, Karsten Schwan, and Christian Poellabauer. 2004. Dynamic Window-Constrained Scheduling of Real-Time

Streams in Media Servers. IEEE Trans. on Computers 53, 6 (June 2004), 744–759.

[18] P. Ramanathan. 1999. Overload management in real-time control applications using (m,k)-firm guarantee. IEEE Trans. on Paral. and Dist.

Sys. 10, 6 (Jun 1999), 549–559.

[19] G. Bernat and A. Burns. 1997. Combining (n,m)-hard deadlines and dual priority scheduling. In RTSS.

[20] Maryline Chetto. 2015. Graceful Overload Management in Firm Real-Time Systems. Journal of Information Technology and Software

Engineering 5, 3 (2015), 1–3.

[21] Oliver Gettings, Sophie Quinton, and Robert I. Davis. 2015. Mixed Criticality Systems with Weakly-hard Constraints. In Proceedings of

the 23rd International Conference on Real Time and Networks Systems (RTNS ’15). 237–246.

[22] G. v. d. Bruggen, K. Chen, W. Huang, and J. Chen. 2016. Systems with Dynamic Real-Time Guarantees in Uncertain and Faulty Execution

Environments. In 2016 IEEE Real-Time Systems Symposium (RTSS). 303–314.

[23] Youcheng Sun and Marco Di Natale. 2017. Weakly Hard Schedulability Analysis for Fixed Priority Scheduling of Periodic Real-Time

Tasks. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 171 (Sept. 2017), 19 pages. DOI:http://dx.doi.org/10.1145/3126497

[24] T. A. AlEnawy and H. Aydin. 2005. Energy-Constrained Scheduling for Weakly-Hard Real-Time Systems. RTSS (2005).

[25] H. Kooti, N. Dang, D. Mishra, and E. Bozorgzadeh. 2012. Energy Budget Management for Energy Harvesting Embedded Systems.

In 2012 IEEE International Conference on Embedded and Real-Time Computing Systems and Applications. 320–329. DOI:http:

//dx.doi.org/10.1109/RTCSA.2012.38

[26] Zheng Li, Shangping Ren, and Gang Quan. 2015. Energy Minimization for Reliability-guaranteed Real-time Applications Using DVFS

and Checkpointing Techniques. Journal of Systems Architecture 61, 2 (Feb. 2015), 71–81.

[27] Baoxian Zhao, Hakan Aydin, and Dakai Zhu. 2012. Energy Management Under General Task-Level Reliability Constraints. In Proceedings

of the 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium (RTAS ’12). Washington, DC, USA, 285–294.

[28] Dakai Zhu and H. Aydin. 2009. Reliability-Aware Energy Management for Periodic Real-Time Tasks. Computers, IEEE Transactions on

58, 10 (2009), 1382–1397.

[29] Mohsen Ansari, Sepideh Safari, Farimah Poursafaei, Mohammad Salehi, and Alireza Ejlali. 2018. AdDQ: Low-Energy Hardware

Replication for Real-Time Systems through Adaptive Dual Queue Scheduling. The CSI Journal on Computer Science and Engineering

(JCSE) 15 (04 2018), 31–38.

[30] Abhishek Roy, Hakan Aydin, and Dakai Zhu. 2017. Energy-efficient primary/backup scheduling techniques for heterogeneous multicore

systems. In 2017 Eighth International Green and Sustainable Computing Conference (IGSC). 1–8. DOI:http://dx.doi.org/10.1109/IGCC.

2017.8323569

[31] Yifeng Guo, Dakai Zhu, Hakan Aydin, Jian-Jun Han, and Laurence Yang. 2017. Exploit Primary/Backup Mechanism for Energy Efficiency

in Dependable Real-Time Systems. Journal of Systems Architecture 78 (06 2017).

ACM Trans. Embedd. Comput. Syst.

34 • Linwei Niu, Danda B. Rawat, Dakai Zhu, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng

[32] S. Safari, S. Hessabi, and G. Ershadi. 2020. LESS-MICS: A Low Energy Standby-Sparing Scheme for Mixed-Criticality Systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020), 1–1.

[33] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali. 2020. Peak-Power-Aware Energy Management for Periodic Real-Time

Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 4 (2020), 779–788.

[34] Mohsen Ansari, Mohammad Salehi, Sepideh Safari, Alireza Ejlali, and Muhammad Shafique. 2020. Peak-Power-Aware Primary-

Backup Technique for Efficient Fault-Tolerance in Multicore Embedded Systems. IEEE Access 8 (2020), 142843–142857. DOI:

http://dx.doi.org/10.1109/ACCESS.2020.3013721

[35] Mohammad A. Haque, Hakan Aydin, and Dakai Zhu. 2013. Energy management of standby-sparing systems for fixed-priority real-time

workloads. In 2013 International Green Computing Conference Proceedings. 1–10. DOI:http://dx.doi.org/10.1109/IGCC.2013.6604487

[36] Mohammad A. Haque, Hakan Aydin, and Dakai Zhu. 2015. Energy-aware standby-sparing for fixed-priority real-time task sets. Sustainable

Computing: Informatics and Systems 6 (2015), 81 – 93.

[37] Rehana Begam, Qin Xia, Dakai Zhu, and Hakan Aydin. 2016. Preference-oriented Fixed-priority Scheduling for Periodic Real-time Tasks.

J. Syst. Archit. 69, C (Sept. 2016), 1–14.

[38] Abhishek Roy, Hakan Aydin, and Dakai Zhu. 2021. Energy-aware primary/backup scheduling of periodic real-time tasks on heterogeneous

multicore systems. Sustainable Computing: Informatics and Systems 29 (2021), 100474.

[39] Junlong Zhou, Xiaobo Sharon Hu, Yue Ma, Jin Sun, Tongquan Wei, and Shiyan Hu. 2019. Improving Availability of Multicore Real-Time

Systems Suffering Both Permanent and Transient Faults. IEEE Trans. Comput. 68, 12 (2019), 1785–1801.

[40] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2014. Energy-aware Task Mapping and Scheduling for Reliable Embedded Computing

Systems. ACM Trans. Embed. Comput. Syst. 13, 2s, Article 72 (Jan. 2014), 27 pages.

[41] Sepideh Safari, Mohsen Ansari, Ghazal Ershadi, and Shaahin Hessabi. 2019. On the Scheduling of Energy-Aware Fault-Tolerant

Mixed-Criticality Multicore Systems with Service Guarantee Exploration. IEEE Transactions on Parallel and Distributed Systems 30, 10

(2019), 2338–2354.

[42] Abhishek Roy, Hakan Aydin, and Dakai Zhu. 2017. Energy-aware standby-sparing on heterogeneous multicore systems. In 2017 54th

ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.

[43] Mohsen Ansari, Sepideh Safari, Nezam Rohbani, Alireza Ejlali, and Bashir M. Al-Hashimi. 2023. Power-Efficient and Aging-Aware

Primary/Backup Technique for Heterogeneous Embedded Systems. IEEE Transactions on Sustainable Computing (2023), 1–12. DOI:

http://dx.doi.org/10.1109/TSUSC.2023.3282164

[44] Mohsen Ansari, Sepideh Safari, Sina Yari-Karin, Pourya Gohari-Nazari, Heba Khdr, Muhammad Shafique, Jörg Henkel, and Alireza Ejlali.

2022. Thermal-Aware Standby-Sparing Technique on Heterogeneous Real-Time Embedded Systems. IEEE Transactions on Emerging

Topics in Computing 10, 4 (2022), 1883–1897. DOI:http://dx.doi.org/10.1109/TETC.2021.3120084

[45] Sina Yari-Karin, Roozbeh Siyadatzadeh, Mohsen Ansari, and Alireza Ejlali. 2023. Passive Primary/Backup-Based Scheduling for

Simultaneous Power and Reliability Management on Heterogeneous Embedded Systems. IEEE Transactions on Sustainable Computing 8,

1 (2023), 82–93. DOI:http://dx.doi.org/10.1109/TSUSC.2022.3186656

[46] FatemehSadat Mireshghallah, Mohammad Bakhshalipour, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2019. Energy-Efficient

Permanent Fault Tolerance in Hard Real-Time Systems. IEEE Trans. Comput. 68, 10 (2019), 1539–1545.

[47] D. Zhu, R. Melhem, D. Mosse, and E. Elnozahy. 2004. Analysis of an energy efficient optimistic TMR scheme. In Proceedings. Tenth

International Conference on Parallel and Distributed Systems, 2004. ICPADS 2004. 559–568.

[48] Linwei Niu and Dakai Zhu. 2020. Reliable and Energy-Aware Fixed-Priority (m,k)-Deadlines Enforcement with Standby-Sparing. DATE

(2020).

[49] G. Koren and D. Shasha. 1995. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In RTSS.

[50] Linwei Niu and G. Quan. 2004. Reducing both dynamic and leakage energy consumption for hard real-time systems. CASES’04 (Sep

2004).

[51] Nam Kim, Todd Austin, D. Baauw, Trevor Mudge, Krisztián Flautner, Jie Hu, Mary Irwin, Mahmut Kandemir, and Vijaykrishnan

Narayanan. 2004. Leakage Current: Moore’s Law Meets Static Power. Computer 36 (01 2004), 68 – 75. DOI:http://dx.doi.org/10.1109/

MC.2003.1250885

[52] D. K. Pradhan (Ed.). 1986. Fault-tolerant Computing: Theory and Techniques; Vol. 2. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[53] Ying Zhang, K. Chakrabarty, and V. Swaminathan. 2003. Energy-aware fault tolerance in fixed-priority real-time embedded systems. In

Computer Aided Design, 2003. ICCAD-2003. International Conference on. 209–213.

[54] G. Quan and X.(Sharon) Hu. 2000. Enhanced Fixed-Priority Scheduling with (m,k)-Firm Guarantee. In RTSS. 79–88.

[55] Mohammad A. Haque, Hakan Aydin, and Dakai Zhu. 2017. On Reliability Management of Energy-Aware Real-Time Systems Through

Task Replication. IEEE Transactions on Parallel and Distributed Systems 28, 3 (2017), 813–825. DOI:http://dx.doi.org/10.1109/TPDS.

2016.2600595

[56] Israel Koren and C. Krishna. 2020. Fault-Tolerant Systems, 2nd Edition. Morgan Kaufmann.

[57] Linwei Niu and Jia Xu. 2015. Improving Schedulability and Energy Efficiency for Window-constrained Real-time Systems with Reliability

Requirement. Journal of Systems Architecture 61, 5 (May 2015), 210–226.

ACM Trans. Embedd. Comput. Syst.

Energy Management for Fault-Tolerant (m,k)-Constrained Real-Time Systems that Use Standby-Sparing • 35

[58] Linwei Niu and Dakai Zhu. 2017. Reliability-aware scheduling for reducing system-wide energy consumption for weakly hard real-time

systems. Journal of Systems Architecture 78 (2017), 30 – 54.

[59] J.A. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo. 1998. Deadline Scheduling for Real-Time Systems EDF and Related

Algorithms. Springer, Berlin, Germany.

[60] Freescale Semiconductor. 2015. MPC8536E PowerQUICC III Integrated Processor Hardware Specifications, Document Number:

MPC8536EEC Rev. 7, 07/2015. https://www.nxp.com/docs/en/data-sheet/MPC8536EEC.pdf (2015).

[61] Muhammad Ali Awan and Stefan M. Petters. 2014. Race-to-halt energy saving strategies. Journal of Systems Architecture 60, 10 (2014),

796 – 815.

[62] Linwei Niu. 2021. Fault-Tolerant Energy Management for Real-Time Systems with Weakly Hard QoS Assurance. IEEE International

Conference on Computer Communications (2021).

[63] A.Burns, K. Tindell, and A. Wellings. 1995. Effective analysis for engineering real-time fixed priority schedulers. IEEE Transactions on

Software Engineering 21 (May 1995), 920–934.

[64] N.Kim, M. Ryu, S. Hong, M. Saksena, C. Choi, and H. Shin. 1996. Visual assessment of a real-time system design: a case study on a CNC

controller. In RTSS.

ACM Trans. Embedd. Comput. Syst.

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 System models
	3.2 Energy Model
	3.3 Fault Model
	3.4 Problem Formulation

	4 Standby-sparing for (1,1)-constrained task sets
	5 Standby-sparing for general (m,k)-constrained task sets based on window-transferring
	5.1 Dealing with transient faults
	5.2 Reliability analysis
	5.3 Probability of tolerating undetected faults

	6 Standby-sparing for general (m,k)-constrained task sets based on dynamic pattern variation
	7 Combined standby-sparing approach for general (m,k)-constrained task sets
	7.1 Dealing with tasks with (mi+ki) non-dividable by 2
	7.2 The overall online algorithm

	8 Evaluation
	8.1 Evaluation based on synthesized task sets
	8.2 Evaluation based on real world benchmark

	9 Conclusion
	Acknowledgments
	References

