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Abstract—The broadcasting nature of wireless signals may
result in the task offloading process of mobile edge computing
(MEC) suffering serious information leakage. As a novel technol-
ogy, physical layer security (PLS) combined with reconfigurable
intelligent surfaces (RIS) can enhance transmission quality and
security. This paper investigates the MEC service delay problem
in RIS-aided vehicular networks under malicious eavesdropping.
Due to the lack of an explicit formulation for the optimiza-
tion problem, we propose a deep deterministic policy gradient
(DDPG)-based communication scheme to optimize the secure
MEC service. It aims to minimize the maximum MEC service
time while reducing eavesdropping threats by jointly designing
the RIS phase shift matrix and computing resource allocation
in real-time. Simulation results demonstrate that 1) the DDPG-
based scheme can help the base station make reasonable actions
to realize secure MEC service in dynamic MEC vehicular net-
works; 2) deploying RIS can dramatically reduce eavesdropping
threats and improve the overall MEC service quality.

Index Terms—Deep Reinforcement Learning, Mobile Edge
Computing, Vehicular Networks, Reconfigurable Intelligent Sur-
faces, Security.

I. INTRODUCTION

E
MERGING vehicle-to-everything (V2X) communication

technology is expected to support numerous intelligent

transportation services, requiring strong computing capability

for data analysis [1]. To emancipate resource-limited vehicle

users from heavy computing services, mobile edge computing

(MEC) can take advantage of abundant computing resources

at the network edge. However, the task offloading rate can

be low due to the severe channel fading in congested urban

environments, which prolongs the offloading delay. Moreover,

due to the broadcast nature of wireless signals, wireless links

are prone to security threats such as eavesdropping. It is crucial

to promote service quality and data security in MEC vehicular

networks from a secure communication perspective [1].

Reconfigurable intelligent surfaces (RIS) are regarded as a

promising technique to enhance wireless transmission quality

and coverage [2]. Previous studies have demonstrated that

by exploiting the inherent randomness in wireless channels,

physical layer security (PLS) can be an effective alternative
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or complementary solution for safeguarding the security of

complicated wireless networks [3]. However, when the eaves-

droppers are closer to the base station (BS) than the legitimate

users or when the legitimate users and eavesdroppers have

correlated channels, many PLS technologies will seriously

deteriorate. For these severe challenges, RIS combined with

PLS brings hope for designing a robust transmission mech-

anism given its ability to flexibly reconstruct the channel

environment [4]. However, the techniques proposed therein

require modifications in order to work in complicated dynamic

communication scenarios such as MEC vehicular networks.

Inspired by advances in artificial intelligence (AI), various

Deep Learning (DL) or Deep Reinforcement Learning (DRL)

algorithms have been exploited to solve the optimization

challenge due to the randomness, dynamism, and mathematical

complexity in 6G networks [5]. Motivated by this, several

advanced works use AI algorithms to jointly optimize the

parameters in RIS-aided systems and realize secure communi-

cation. For example, the authors in [6] propose a DRL-based

secure transmission method to resist eavesdroppers by jointly

optimizing the beamforming and the RIS phase shifts.

Currently, researchers are focusing on the security threats in-

herent in MEC service applications and have developed meth-

ods for different communication scenarios [7]–[10]. In [7], the

authors propose a RIS-assisted secure MEC service framework

that aims to solve the max-min computation efficiency prob-

lem. In [8], the authors minimize the MEC energy consump-

tion in a RIS-assisted MEC system, where the full-duplex BS

emits artificial noise to resist eavesdroppers. The work of [9]

concentrates on optimizing the secure MEC delay for a target

vehicle, where the BS emits artificial noise (AN) to confuse the

eavesdroppers. These MEC networks are proposed for static

communication scenarios with fixed locations or ignore the

MEC computing time, and thus they cannot be applied to

dynamic MEC vehicular networks. While the authors of [10]

propose a DRL-based secure scheme for MEC service in a

dynamic Internet of Vehicles (IoV) setting, it does not explore

the potential benefits of RIS.

The above research shows the great potential of RIS and

the optimization capability of AI algorithms. In this paper, we

demonstrate the potential of RIS for realizing secure MEC

service in dynamic vehicular networks, a problem that has
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not yet been investigated. In particular, we propose a DRL-

based communication scheme to realize secure MEC service

in RIS-aided vehicular networks, where the BS designs RIS

properties and allocates the computing resources to optimize

the MEC service time while reducing the eavesdropping

threat. It is worth noting that in most MEC studies, the

BS does not begin allocating MEC resources until all tasks

have been offloaded [7]–[9]. Fortunately, our proposed DRL-

based scheme can help the BS to flexibly allocate computing

resources to users once they complete the offloading process,

which benefits the utilization of idle MEC resources.

II. SYSTEM MODEL

A. RIS-aided MEC Vehicular Network

Fig. 1. Illustration of the RIS-aided secure MEC vehicular network.

We consider a RIS-aided MEC vehicular network, illustrated

in Fig. 1, where a base station simultaneously establishes

multiple communication links with vehicular users in different

sub-bands to realize a high data-rate service [10]. In the MEC

scenario, through the vehicle-to-infrastructure (V2I) links, the

resource-constrained vehicles can offload their computational

tasks to the BS equipped with a MEC server. The BS flexibly

allocates the MEC resources for different task requests and

then feeds back the results to the users. In this paper, we

assume that the length of the feedback delay is negligible

relative to the time scale required to meet the computational

tasks [7]. Due to the limited resources at the BS, only a subset

of the vehicles that send a computing service request can

be serviced. The V2I links acquiring computing services are

denoted by M = {User1,User2, · · · ,UserM}. The vehicles

that are not served are considered to be potential eavesdroppers

and are denoted by the set E = {Eve1,Eve2, · · · ,EveE}.

B. RIS-aided Secure Communication Model

In our assumed model, all vehicles are equipped with one

omnidirectional antenna, while the BS has a K-antenna array.

We assume the reflection coefficient for the n-th element

of the RIS is given by θn = ejφn , where φn ∈ [0, 2π),
and we define the RIS reflection-coefficient matrix as Θ =
diag([θ1, θ2, · · · , θN]). Since there is no in-band interference,

the BS employs Maximum-Ratio Combining (MRC) for each

V2I link. The matrix of MRC beamformers is denoted by

F = [f1, · · · , fM ] ∈ C
K×M , where fm represents the beam-

forming vector with unit norm for the m-th V2I link.

1) Channel Model: In the MEC vehicular network, the

channels include hm,b ∈ C
K×1 for the m-th V2I link,

hm,i ∈ C
N×1 for the link between the m-th served vehicle

and the RIS, hm,e ∈ C for the m-th served vehicle to the e-th

potential eavesdropper, hi,e ∈ C
1×N for the RIS to the e-th

potential eavesdropper, and Hi,b ∈ C
K×N for the RIS to BS.

We assume the channel gain from the RIS to the BS follows

a Rician distribution and can be denoted by

Hi,b =
√

ρd
−αi,b

i,b

(√
κi,b

1 + κi,b

HLoS
i,b +

√
1

1 + κi,b

HNLoS
i,b

)
,

(1)

where κi,b is the Rician factor, ρ is the path loss at the

reference distance d0 = 1m, di,b is the distance between the

RIS and BS, and αi,b is the path loss exponent of the RIS-to-

BS link. The line-of-sight (LoS) component HLoS
i,b ∈ C

K×N

is rank one, and each element of the non-LoS (NLoS) com-

ponent HNLoS
i,b ∈ C

K×N follows an i.i.d. complex Gaussian

distribution with zero mean and unit variance. Likewise, the

channels hm,e, hm,b, hm,i, and hi,e follow a Rician distribution

similar to (1), except for hm,b and hm,e, where it is assumed

that κm,b = 0 and κm,e = 0 due to the congested urban

environment and the blocking effect between vehicles. We

assume that all channels follow block-based fading and that

the global CSI is known at the BS and remains invariant during

each time slot but changes from one slot to another [7], [11].

2) Signal Receiving Process: The received signal at the BS

from the m-th V2I link can be formulated as

ym = fHm

[√
Pm(Hi,bΘhm,i + hm,b)sm + nm

]
, (2)

where Pm is the transmit power of the m-th served vehicle

and sm represents a unit-energy signal sample associated with

the computing task. The noise vector nm is denoted by nm =
[n1, · · · , nK ]T , where nk ∼ N (0, σ2). The uplink signal-to-

interference-plus-noise ratio (SINR) of the m-th V2I link at

the BS is thus given by

ηm =
Pm|fHm(Hi,bΘhm,i + hm,b)|

2

σ2‖fHm‖2
. (3)

Similarly, the eavesdropped signal at vehicle e from the m-

th V2I link is expressed as

ye,m =
√

Pm(hi,eΘhm,i + hm,e)sm + ne, (4)

where ne ∼ N (0, σ2), and thus the SINR of the m-th V2I

link at eavesdropper e can be expressed as

ηe,m =
Pm|hi,eΘhm,i + hm,e|

2

σ2
. (5)

Accordingly, the capacity of the m-th V2I link and the

wiretapped capacity of eavesdropper e to the m-th V2I link

are Cm = log(1+ηm) and Ce,m = log(1+ηe,m), respectively.

C. Problem Formulation

The MEC server will flexibly allocate the computing re-

sources (e.g., CPU cycles) according to the size of the tasks

once users finish the offloading process. Specifically, each
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CPU cycle can process a certain number of data bits, and

we assume that the total computing capability is ζ bits/s.

To provide a stable service, the BS aims to minimize the

service time for the whole MEC process while ensuring task

offloading security for all users.

1) Secrecy Transmission Rate: We consider a worst-case

security threat scenario in which any unserved vehicle can

eavesdrop on any of the V2I links. To protect the task data

from being wiretapped, the transmitters encode the confidential

data (e.g., using the Wyner code [3]), and then two code

rates must be determined before transmission, namely, the

codeword rate Rb, and the target secrecy rate of the con-

fidential information RS . The redundancy for securing the

confidential information is thus given by max{0, Rb − RS}.

A secrecy outage occurs if the capacity of the eavesdropper

Ce is larger than Rb − RS . In practice, we approximate Rb

with the capacity Cb. The secrecy transmission rate of the m-

th V2I link can be defined as RS,m = [Cm−max Ce,m]+ for

e ∈ E , where [x]+ = max {0, x}.

2) Optimization of MEC Service Time: Intuitively, the op-

timization target is to minimize the service time by designing

the RIS reflection coefficient matrix Θ and the MEC resource

allocation (
∑M

m=1 ζm = ζ) for different computing tasks in

each slot. Specifically, the secure MEC service time for m-

th V2I link can be denoted by tSm, which contains the task

offloading time and computing time. Considering that the

entire MEC service period is determined by the maximum

service time of all V2I links, we transform the above goal

into the following min-max problem:

min
Θ,ζ

max
m∈M

{
tSm

}
, (6)

C1 :

M∑
m=1

ζm = ζ, ζm ∈ [0, ζ], (6a)

C2 : |θn| = 1, ∀n = 1, 2, ..., N, (6b)

where the constraint (6a) indicates the limit on the computing

resource allocated for different tasks, and (6b) constrains the

modulus of RIS reflection coefficients to be unity.

The joint design of the RIS reflection-coefficient matrix and

MEC resource allocation for the entire MEC service can be

modeled as a Markov Decision Process (MDP). It is composed

of multiple time slots (and their specific actions), and each

action impacts the future benefits. The optimization problem

is not only non-convex but a long-term decision process

with high dynamics and is intractable to formulate with an

explicit mathematical expression. Consequently, we employ a

DRL algorithm referred to as the Deep Deterministic Policy

Gradient (DDPG) [12].

III. DDPG-BASED APPROACH

In the DDPG-based algorithm, the environment consists of

the RIS-aided MEC vehicular network, and the BS is regarded

as an agent that interacts with the dynamic environment. In

the MDP, at each time slot t, the BS obtains the current state

St from the environment and selects the action at based on

the current policy πt. Each action includes the RIS phase shift

matrix and the MEC resource allocation. Once the BS executes

the action, it will lead to the new state St+1 in the next time

slot t + 1, and the reward rt for action at will be observed

from the changing environment.

A. MDP Formulation

Based on the optimization problem proposed above, the

state space, action space, and reward function in the MDP

are explained in detail below.

1) Action Space: Based on the current state St, the BS

agent takes action at corresponding to the RIS phase shift

matrix and MEC resource allocation. At each time slot t,

the action can be represented as at = {Θt, ζt}, where

ζt = {ζ1t , ζ
2
t , . . . , ζ

M
t } is the computing resource allocation.

2) State Space: At time slot t, the state Sm
t of the m-

th V2I link includes the global channel state information

Hm
t =

{
h
m,b
t ,h

m,i
t , h

m,e
t ,h

i,e
t ,H

i,b
t

}
, the secrecy rate R

S,m
t−1 ,

the amount of remaining offloading tasks Ko,m
t , the amount of

remaining computing tasks Kc,m
t , and the amount of occupied

MEC resources ζmt−1. We denote the state of the m-th V2I as

Sm
t =

{
Hm

t , R
S,m
t−1 ,K

o,m
t ,Kc,m

t , ζmt−1

}
. (7)

The overall state St of the environment can be expressed as:

St = {Sm
t ,m = 1, 2, . . . ,M}. (8)

3) Reward Design: At time slot t, the reward correspond-

ing to the current action at can be denoted by

rt = − max
m∈M

{texpm }+ μ1, (9)

where texpm = tm,1+ tm,2 indicates the estimated secure MEC

service time for the m-th V2I link at time slot t, tm,1 is the

current elapsed time, and tm,2 is the estimated residual time

based on the current action. To enhance the secrecy rate, we

set the penalty factor μ1 =
∑M

m=1 νm with νm ∈ {0, ν∗}. If

the current action can satisfy the secrecy rate requirement rsm
for the m-th link, νm equals 0, otherwise it will be a negative

value ν∗. Based on guidance from the reward function, the

DDPG-based algorithm will continuously learn action policies

in the direction of reducing the maximal secure MEC service

time within the given constraints. The total reward is defined

cumulatively with the discount rate γ:

Rt =

∞∑
k=0

γkrt+k+1, 0 ≤ γ ≤ 1. (10)

B. DDPG Architecture

DDPG is model-free and off-policy with an actor-critic

structure. The actor network is for action prediction, and

the critic network is for evaluating the future benefit of the

action for the current state. The actor and critic networks

both consist of two DNN networks: the training network and

the target network. The parameters of the actor training and

target networks are denoted by θ
a and θ

a′

, respectively, while
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Fig. 2. DDPG Framework.

the parameters of the critic training and target networks are

denoted by θ
c and θ

c′ , respectively.

At time slot t, the actor training network takes St as input

and outputs action at, the critic training network takes St and

at as input and outputs the state-action value Qπ (St, at | θ
c),

which can be expressed as

Qπ (St, at | θ
c) = Eπ [Rt | St, at, π] , (11)

where E[·] denotes the expectation function, π represents the

actor training network policy, and the reward Rt is defined

in (10). When sufficient transition tuples (St, at, rt, St+1) have

been accumulated in the replay buffer D, the optimizer updates

the actor and the critic training network by randomly sampling

mini-batches of size Nd from the replay buffer. The target Q

value Q′ of the k-th transition tuple yk is given by

yk = rk + γQ′
π′

(
Sk+1, π

′
(
Sk+1 | θa′

)
| θc′

)
, (12)

where π′ represents the actor target network policy.

The critic training network uses the MSE function to update

the network, which is given as

L (θc) =
1

Nd

Nd∑
j=1

(yk −Qπ (Sk, ak | θc))
2
, (13)

θ
c = θ

c − α∇θcL (θc) . (14)

The actor training network uses the deterministic policy gra-

dient function to update the network, as follows:

∇θaJ =
1

Nd

Nd∑
k=1

∇aQπ (Sk, ak | θc)∇θaπ (Sk | θa) , (15)

θ
a = θ

a − α′∇θπJ, (16)

where Nd is the mini-batch size and α (α′) is learn rate. The

updates to the actor and the critic target networks are

θ
c′ = τcθ

c + (1− τc)θ
c′

θ
a′

= τaθ
a + (1− τa)θ

a′

,
(17)

where τc, τa ∈ [0, 1] are soft update coefficients. The details

of the DDPG-based scheme are summarized in Algorithm 1.

Algorithm 1 DDPG-based Approach

1: Initialization: Randomly initialize the training actor network and the training critic

network with parameters θ
a and θ

c, the target actor network with parameter

θ
a′

=θa, and the target critic network with parameter θc′=θc. Empty the experience

replay buffer D with size DB .

2: for each episode i = 1, 2, ..., N do

3: Initialize a random noise set for action exploration.

4: Observe the initial state S1

5: for each time slot t do

6: Obtain the action at = {Θt, ζt} from the actor network for M V2I links.

7: Obtain the next state St+1 given action at, and calculate the reward rt.

Store transition tuple (St, at, rt, St+1) in the experience replay buffer D.

8: Obtain the Q value function Qπ (St, at | θc) from the critic network.

9: Sample a mini-batch of transition tuples from D with size Nd.

10: Update parameters of the critic network θ
c and actor network θ

a according

to (14) and (16), respectively.

11: Update the parameters of the target critic network θ
c′ and target actor

network θ
a′

according to (17).

12: end for

13: end for

IV. SIMULATIONS

In this section, we evaluate the system performance via

numerical simulations. We utilize SUMO to simulate dynamic

vehicle patterns for the congested urban environment [13]. For

the vehicular network, we set K = 32, N = 30, M = 6,

and E = 2. The origin of the three-dimensional coordinate

is set at the beginning of the first lane, and the BS and

RIS are located at (-10m, 150m, 25m) and (-15m, 170m,

15m), respectively. The path loss exponents of the Vehicle-

BS, Vehicle-Eavesdropper, Vehicle-RIS, and BS-RIS channels

are 3, 3, 2.2, and 2, respectively [11]. The path loss ρ is −20
dB, and the Rician factors for all channels are equal to 3 dB.

Additional parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS [14], [15]

Parameter Value

Vehicle transmit power Pm 20 dBm

Vehicle speed [36, 72] km/h

Carrier frequency 28 GHz

Bandwidth of each target vehicle W 10 MHz

Noise power σ2 −104 dBm

Max service time Tmax or number of steps Smax 5s or 50
Total computing resource ζ 200 Mb/s

A. Benchmark Schemes and Metrics

We provide a thorough performance analysis by comparing

our proposed DRL-based approach to the following benchmark

schemes:

* DDPG-NRIS: No RIS is present. The DDPG approach

is adapted to minimize the maximum MEC time by

dynamically allocating the MEC resources to users once

they complete the task offloading.

* Random-CVX. The RIS reflection coefficients are ran-

domly generated. The vehicular users first complete all

task offloading, and then the MEC server pursues the task

computing process. The MEC resource allocation is then

found by minimizing the maximum computation time,

which is a convex optimization.

To adequately evaluate the MEC service performance, we

use the following performance metrics: Average Maximum
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Fig. 3. MEC service under different levels of eavesdropping.
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Fig. 4. MEC service performance under different ranges of task size.

MEC Service Time and Average MEC Service Secrecy Out-

age Probability (SoP). In many situations, the BS will face

the challenge that the tasks cannot be completely offloaded

in an adequate amount of time. As a result, we set a service

time threshold Tmax or a maximum number of steps Smax

within which the MEC service must occur for all users. If

the maximum MEC service time is smaller than these values,

the MEC service episode is considered a success; otherwise,

it is labeled a failure. Consequently, we also adopt the MEC

Success Probability as a metric to evaluate the service quality.

B. Numerical Results

Fig. 3 illustrates the network performance under different

levels of eavesdropping capability, which is controlled by the

path-loss exponent αme. Compared with the two benchmarks,

the DDPG-based approach can reasonably design RIS and

achieve a significant reduction in the average maximum MEC

service time while enhancing the MEC success probability,

particularly for severe eavesdropping threats (e.g., αme = 2.5).

A higher MEC success probability means that the BS can

allow more vehicular users to obtain secure MEC service

within the specified service time threshold, which is vital for

the robustness of the network.

From Fig. 4, When the task size increases, the average

maximum MEC time rapidly increases, while the MEC success

probability decreases for all three methods. This is because

eavesdropping significantly limits the achievable secrecy rate

of the vehicular users, resulting in the inability of the tasks to

be quickly offloaded. Fortunately, the DDPG-based approach

allows more users to successfully obtain secure MEC services.

From the left sub-figure, we see that the average MEC service

time for our DDPG-based approach is significantly lower than

the benchmark methods, although the percentage decrease

in service time is lower for large task sizes. However, the

benefit of our DDPG-based algorithm is more clear from the

right-hand subfigure, where we see a dramatic increase in the

MEC success probability. This demonstrates that our proposed

approach is able to successfully learn effective strategies in

complicated and very dynamic communication scenarios.

V. CONCLUSION

In this paper, we have designed a DRL-based commu-

nication algorithm to realize secure MEC service in vehic-

ular networks. Our proposed approach aims to minimize

the maximum MEC service time while ensuring secure task

offloading. Simulation results demonstrate the feasibility and

robustness of the proposed DDPG-based approach and validate

the great potential of RIS for reducing eavesdropping threats

and improving the overall MEC service quality.
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