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Abstract—The broadcasting nature of wireless signals may
result in the task offloading process of mobile edge computing
(MEC) suffering serious information leakage. As a novel technol-
ogy, physical layer security (PLS) combined with reconfigurable
intelligent surfaces (RIS) can enhance transmission quality and
security. This paper investigates the MEC service delay problem
in RIS-aided vehicular networks under malicious eavesdropping.
Due to the lack of an explicit formulation for the optimiza-
tion problem, we propose a deep deterministic policy gradient
(DDPG)-based communication scheme to optimize the secure
MEC service. It aims to minimize the maximum MEC service
time while reducing eavesdropping threats by jointly designing
the RIS phase shift matrix and computing resource allocation
in real-time. Simulation results demonstrate that 1) the DDPG-
based scheme can help the base station make reasonable actions
to realize secure MEC service in dynamic MEC vehicular net-
works; 2) deploying RIS can dramatically reduce eavesdropping
threats and improve the overall MEC service quality.

Index Terms—Deep Reinforcement Learning, Mobile Edge
Computing, Vehicular Networks, Reconfigurable Intelligent Sur-
faces, Security.

I. INTRODUCTION

MERGING vehicle-to-everything (V2X) communication
technology is expected to support numerous intelligent
transportation services, requiring strong computing capability
for data analysis [1]. To emancipate resource-limited vehicle
users from heavy computing services, mobile edge computing
(MEC) can take advantage of abundant computing resources
at the network edge. However, the task offloading rate can
be low due to the severe channel fading in congested urban
environments, which prolongs the offloading delay. Moreover,
due to the broadcast nature of wireless signals, wireless links
are prone to security threats such as eavesdropping. It is crucial
to promote service quality and data security in MEC vehicular
networks from a secure communication perspective [1].
Reconfigurable intelligent surfaces (RIS) are regarded as a
promising technique to enhance wireless transmission quality
and coverage [2]. Previous studies have demonstrated that
by exploiting the inherent randomness in wireless channels,
physical layer security (PLS) can be an effective alternative
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or complementary solution for safeguarding the security of
complicated wireless networks [3]. However, when the eaves-
droppers are closer to the base station (BS) than the legitimate
users or when the legitimate users and eavesdroppers have
correlated channels, many PLS technologies will seriously
deteriorate. For these severe challenges, RIS combined with
PLS brings hope for designing a robust transmission mech-
anism given its ability to flexibly reconstruct the channel
environment [4]. However, the techniques proposed therein
require modifications in order to work in complicated dynamic
communication scenarios such as MEC vehicular networks.

Inspired by advances in artificial intelligence (Al), various
Deep Learning (DL) or Deep Reinforcement Learning (DRL)
algorithms have been exploited to solve the optimization
challenge due to the randomness, dynamism, and mathematical
complexity in 6G networks [5]. Motivated by this, several
advanced works use Al algorithms to jointly optimize the
parameters in RIS-aided systems and realize secure communi-
cation. For example, the authors in [6] propose a DRL-based
secure transmission method to resist eavesdroppers by jointly
optimizing the beamforming and the RIS phase shifts.

Currently, researchers are focusing on the security threats in-
herent in MEC service applications and have developed meth-
ods for different communication scenarios [7]-[10]. In [7], the
authors propose a RIS-assisted secure MEC service framework
that aims to solve the max-min computation efficiency prob-
lem. In [8], the authors minimize the MEC energy consump-
tion in a RIS-assisted MEC system, where the full-duplex BS
emits artificial noise to resist eavesdroppers. The work of [9]
concentrates on optimizing the secure MEC delay for a target
vehicle, where the BS emits artificial noise (AN) to confuse the
eavesdroppers. These MEC networks are proposed for static
communication scenarios with fixed locations or ignore the
MEC computing time, and thus they cannot be applied to
dynamic MEC vehicular networks. While the authors of [10]
propose a DRL-based secure scheme for MEC service in a
dynamic Internet of Vehicles (IoV) setting, it does not explore
the potential benefits of RIS.

The above research shows the great potential of RIS and
the optimization capability of Al algorithms. In this paper, we
demonstrate the potential of RIS for realizing secure MEC
service in dynamic vehicular networks, a problem that has
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not yet been investigated. In particular, we propose a DRL-
based communication scheme to realize secure MEC service
in RIS-aided vehicular networks, where the BS designs RIS
properties and allocates the computing resources to optimize
the MEC service time while reducing the eavesdropping
threat. It is worth noting that in most MEC studies, the
BS does not begin allocating MEC resources until all tasks
have been offloaded [7]-[9]. Fortunately, our proposed DRL-
based scheme can help the BS to flexibly allocate computing
resources to users once they complete the offloading process,
which benefits the utilization of idle MEC resources.

II. SYSTEM MODEL

A. RIS-aided MEC Vehicular Network

— @

/ \) /
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Fig. 1. Illustration of the RIS-aided secure MEC vehicular network.

We consider a RIS-aided MEC vehicular network, illustrated
in Fig. 1, where a base station simultaneously establishes
multiple communication links with vehicular users in different
sub-bands to realize a high data-rate service [10]. In the MEC
scenario, through the vehicle-to-infrastructure (V2I) links, the
resource-constrained vehicles can offload their computational
tasks to the BS equipped with a MEC server. The BS flexibly
allocates the MEC resources for different task requests and
then feeds back the results to the users. In this paper, we
assume that the length of the feedback delay is negligible
relative to the time scale required to meet the computational
tasks [7]. Due to the limited resources at the BS, only a subset
of the vehicles that send a computing service request can
be serviced. The V2I links acquiring computing services are
denoted by M = {Usery, Userg, - - - , Usery; }. The vehicles
that are not served are considered to be potential eavesdroppers
and are denoted by the set £ = {Eve;, Eveq, - ,Eveg}.

B. RIS-aided Secure Communication Model

In our assumed model, all vehicles are equipped with one
omnidirectional antenna, while the BS has a K-antenna array.
We assume the reflection coefficient for the n-th element
of the RIS is given by 6, = e/, where ¢, € [0,27),
and we define the RIS reflection-coefficient matrix as ®@ =
diag([f1, 02, - ,0n]). Since there is no in-band interference,
the BS employs Maximum-Ratio Combining (MRC) for each
V2I link. The matrix of MRC beamformers is denoted by
F = [f, - ,fiy] € CEXM where f,, represents the beam-
forming vector with unit norm for the m-th V2I link.

1) Channel Model: In the MEC vehicular network, the
channels include h,,;, € CE*! for the m-th V2I link,
h,; € CN>1 for the link between the m-th served vehicle
and the RIS, h,, . € C for the m-th served vehicle to the e-th
potential eavesdropper, h; . € C'*¥ for the RIS to the e-th
potential eavesdropper, and H; ;, € CX*¥ for the RIS to BS.
We assume the channel gain from the RIS to the BS follows
a Rician distribution and can be denoted by

oz“, Rib LoS NLOS
1+sz Zb 1+Kfzb

(1)
where k;p is the Rician factor, p is the path loss at the
reference distance dy = 1m, d; is the distance between the
RIS and BS, and «; 3, is the path loss exponent of the RIS-to-
BS link. The line-of-sight (LoS) component Hp® € CK*N
is rank one, and each element of the non-LoS (NLoS) com-
ponent HN LoS ¢ CKXN follows an i.i.d. complex Gaussian
d1str1but10n with zero mean and unit variance. Likewise, the
channels h,, ¢, hyy, 1, hyy, i, and h; . follow a Rician distribution
similar to (1), except for h,, ; and h,, ., where it is assumed
that k,,, = 0 and k,, . = 0 due to the congested urban
environment and the blocking effect between vehicles. We
assume that all channels follow block-based fading and that
the global CSI is known at the BS and remains invariant during
each time slot but changes from one slot to another [7], [11].

2) Signal Receiving Process: The received signal at the BS
from the m-th V2I link can be formulated as

Ym = f7Hn |:\/ Pm,(Hi,b@hm,i + hm,b)sm, + nm:| 5 (2)

where P, is the transmit power of the m-th served vehicle
and s,, represents a unit-energy signal sample associated with
the computing task. The noise vector n,, is denoted by n,,, =
[n1, - ,nk]T, where ny ~ N(0,02). The uplink signal-to-
interference-plus-noise ratio (SINR) of the m-th V2I link at
the BS is thus given by

Pt (H

H;, =

ipOhy i +hyy ) ?
02|t 2

Similarly, the eavesdropped signal at vehicle e from the m-
th V2I link is expressed as

Ye,m = V Pm(hi,eehm,i + hm,e)sm + Ne, 4

where n, ~ N(0,0%), and thus the SINR of the m-th V2I
link at eavesdropper e can be expressed as

P |hz e@h7nz+hm e|2
o2

TNlm = 3)

(&)

Accordingly, the capacity of the m-th V2I link and the
wiretapped capacity of eavesdropper e to the m-th V2I link
are C,,, = log(1+nm) and Ce ,, = log(1+7e m ), respectively.

Tle,m =

C. Problem Formulation

The MEC server will flexibly allocate the computing re-
sources (e.g., CPU cycles) according to the size of the tasks
once users finish the offloading process. Specifically, each
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CPU cycle can process a certain number of data bits, and
we assume that the total computing capability is ( bits/s.
To provide a stable service, the BS aims to minimize the
service time for the whole MEC process while ensuring task
offloading security for all users.

1) Secrecy Transmission Rate: We consider a worst-case
security threat scenario in which any unserved vehicle can
eavesdrop on any of the V2I links. To protect the task data
from being wiretapped, the transmitters encode the confidential
data (e.g., using the Wyner code [3]), and then two code
rates must be determined before transmission, namely, the
codeword rate Rj, and the target secrecy rate of the con-
fidential information Rg. The redundancy for securing the
confidential information is thus given by max{0, R, — Rg}.
A secrecy outage occurs if the capacity of the eavesdropper
C. is larger than R, — Rg. In practice, we approximate R,
with the capacity C},. The secrecy transmission rate of the m-
th V2I link can be defined as Rg ,, = [Cy, — max C ,,,| T for
e € &, where [z]" = max {0, z}.

2) Optimization of MEC Service Time: Intuitively, the op-
timization target is to minimize the service time by designing
the RIS reflection coefficient matrix ® and the MEC resource
allocation (an\le Cm = Q) for different computing tasks in
each slot. Specifically, the secure MEC service time for m-
th V2I link can be denoted by tfn, which contains the task
offloading time and computing time. Considering that the
entire MEC service period is determined by the maximum
service time of all V2I links, we transform the above goal
into the following min-max problem:

igin max {tn} ©

M
C1: Y Gm=20CGme0,¢], (6)
m=1

Cy: 10, =1,¥n=1,2,...,N, (6b)

where the constraint (6a) indicates the limit on the computing
resource allocated for different tasks, and (6b) constrains the
modulus of RIS reflection coefficients to be unity.

The joint design of the RIS reflection-coefficient matrix and
MEC resource allocation for the entire MEC service can be
modeled as a Markov Decision Process (MDP). It is composed
of multiple time slots (and their specific actions), and each
action impacts the future benefits. The optimization problem
is not only non-convex but a long-term decision process
with high dynamics and is intractable to formulate with an
explicit mathematical expression. Consequently, we employ a
DRL algorithm referred to as the Deep Deterministic Policy
Gradient (DDPG) [12].

III. DDPG-BASED APPROACH

In the DDPG-based algorithm, the environment consists of
the RIS-aided MEC vehicular network, and the BS is regarded
as an agent that interacts with the dynamic environment. In
the MDP, at each time slot ¢, the BS obtains the current state
Sy from the environment and selects the action a; based on

the current policy ;. Each action includes the RIS phase shift
matrix and the MEC resource allocation. Once the BS executes
the action, it will lead to the new state Sy;; in the next time
slot ¢t + 1, and the reward r; for action a; will be observed
from the changing environment.

A. MDP Formulation

Based on the optimization problem proposed above, the
state space, action space, and reward function in the MDP
are explained in detail below.

1) Action Space: Based on the current state S;, the BS
agent takes action a; corresponding to the RIS phase shift
matrix and MEC resource allocation. At each time slot ¢,
the action can be represented as a; = {©,(;}, where
CG=1{¢, ¢, ..., (M} is the computing resource allocation.

2) State Space: At time slot ¢, the state S} of the m-
th V2I link includes the global channel state information
H = {h? h™ A hibe HEP L the secrecy rate RYT,
the amount of remaining offloading tasks £Cy""", the amount of
remaining computing tasks K;""™", and the amount of occupied

MEC resources (;™;. We denote the state of the m-th V2I as
sp={mp RS G )

The overall state S; of the environment can be expressed as:
Sy ={S",m=1,2,...,M}. (8)

3) Reward Design: At time slot ¢, the reward correspond-
ing to the current action a; can be denoted by

=— e 9
T Tgle%{m }+/1'17 ()

where t57P = t,, 1 +1,, 2 indicates the estimated secure MEC
service time for the m-th V2I link at time slot ¢, t,, 1 is the
current elapsed time, and ¢,, > is the estimated residual time
based on the current action. To enhance the secrecy rate, we
set the penalty factor p; = Z%zl U With v, € {0, v}, If
the current action can satisfy the secrecy rate requirement 7,
for the m-th link, v,,, equals O, otherwise it will be a negative
value v*. Based on guidance from the reward function, the
DDPG-based algorithm will continuously learn action policies
in the direction of reducing the maximal secure MEC service
time within the given constraints. The total reward is defined
cumulatively with the discount rate +:

Ry = Z’Y}CTHIHLO <y<L
k=0

B. DDPG Architecture

DDPG is model-free and off-policy with an actor-critic
structure. The actor network is for action prediction, and
the critic network is for evaluating the future benefit of the
action for the current state. The actor and critic networks
both consist of two DNN networks: the training network and
the target network. The parameters of the actor training and
target networks are denoted by 8¢ and 0", respectively, while

(10)
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the parameters of the critic training and target networks are
denoted by 6¢ and 0, respectively.

At time slot ¢, the actor training network takes S; as input
and outputs action a,, the critic training network takes .S; and
a; as input and outputs the state-action value Q. (St, at | 6°),
which can be expressed as

Qw (St7at | 90) =

where E[-] denotes the expectation function, 7 represents the
actor training network policy, and the reward R, is defined
in (10). When sufficient transition tuples (S, at, r+, S¢11) have
been accumulated in the replay buffer D, the optimizer updates
the actor and the critic training network by randomly sampling
mini-batches of size N, from the replay buffer. The target Q
value @’ of the k-th transition tuple ¥, is given by

E [Rt | Staa/taﬂ-]a (1)

Yk =1k +7Q0 (Skﬂ,ﬁ/ (Sk+1 | 6¢ ) | ¢ ) ;o (12)
where 7’ represents the actor target network policy.

The critic training network uses the MSE function to update
the network, which is given as

1

L) =+ > Wk — Qn (Skoar | 69)%,  (13)
j=1

0° = 0° — aVg.L (6°). (14)

The actor training network uses the deterministic policy gra-
dient function to update the network, as follows:

Na

1
> VaQx (Sk,an | 0°) Ve (S | 0°), (15)

VQa J == Fd
k=1

0° = 0" — a/VonJ, (16)

where N, is the mini-batch size and o (') is learn rate. The
updates to the actor and the critic target networks are
0 =7.0°+ (1 - 7.)8°

; , (17)
0% =71,0"+ (1 —17,)0",

where 7., 7, € [0, 1] are soft update coefficients. The details
of the DDPG-based scheme are summarized in Algorithm 1.

Algorithm 1 DDPG-based Approach

1: Initialization: Randomly initialize the training actor network and the training critic
network with parameters 8¢ and 0°¢, the target actor network with parameter
07’ =0, and the target critic network with parameter 0°’ =0°. Empty the experience
replay buffer D with size Dp.

. for each episode i = 1,2, ..., N do

Initialize a random noise set for action exploration.

Observe the initial state Sy

for each time slot ¢ do

Obtain the action a; = {®y, (; } from the actor network for M V2I links.
Obtain the next state S;y1 given action a¢, and calculate the reward 7.
Store transition tuple (S¢, at, ¢, S¢+1) in the experience replay buffer D.
8: Obtain the Q value function Q (St, at | 6°) from the critic network.
9: Sample a mini-batch of transition tuples from D with size Ng.
10: Update parameters of the critic network @€ and actor network 8¢ according
to (14) and (16), respectively. ,

11: Update the  parameters of the target critic network ¢ and target actor
network 8% according to (17).

12: end for

13: end for

NN A e

IV. SIMULATIONS

In this section, we evaluate the system performance via
numerical simulations. We utilize SUMO to simulate dynamic
vehicle patterns for the congested urban environment [13]. For
the vehicular network, we set X = 32, N = 30, M = 6,
and £ = 2. The origin of the three-dimensional coordinate
is set at the beginning of the first lane, and the BS and
RIS are located at (-10m, 150m, 25m) and (-15m, 170m,
15m), respectively. The path loss exponents of the Vehicle-
BS, Vehicle-Eavesdropper, Vehicle-RIS, and BS-RIS channels
are 3, 3, 2.2, and 2, respectively [11]. The path loss p is —20
dB, and the Rician factors for all channels are equal to 3 dB.
Additional parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS [14], [15]
Parameter Value
Vehicle transmit power Py, 20 dBm
Vehicle speed [36, 72] km/h
Carrier frequency 28 GHz
Bandwidth of each target vehicle W 10 MHz

Noise power o2 —104 dBm
Max service time Tyqq or number of steps Spaz 5s or 50
Total computing resource ¢ 200 Mb/s

A. Benchmark Schemes and Metrics

We provide a thorough performance analysis by comparing
our proposed DRL-based approach to the following benchmark
schemes:

* DDPG-NRIS: No RIS is present. The DDPG approach
is adapted to minimize the maximum MEC time by
dynamically allocating the MEC resources to users once
they complete the task offloading.

* Random-CVX. The RIS reflection coefficients are ran-
domly generated. The vehicular users first complete all
task offloading, and then the MEC server pursues the task
computing process. The MEC resource allocation is then
found by minimizing the maximum computation time,
which is a convex optimization.

To adequately evaluate the MEC service performance, we

use the following performance metrics: Average Maximum
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Fig. 3. MEC service under different levels of eavesdropping.
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Fig. 4. MEC service performance under different ranges of task size.

MEC Service Time and Average MEC Service Secrecy Out-
age Probability (SoP). In many situations, the BS will face
the challenge that the tasks cannot be completely offloaded
in an adequate amount of time. As a result, we set a service
time threshold 7., or a maximum number of steps Siqq
within which the MEC service must occur for all users. If
the maximum MEC service time is smaller than these values,
the MEC service episode is considered a success; otherwise,
it is labeled a failure. Consequently, we also adopt the MEC
Success Probability as a metric to evaluate the service quality.

B. Numerical Results

Fig. 3 illustrates the network performance under different
levels of eavesdropping capability, which is controlled by the
path-loss exponent ;.. Compared with the two benchmarks,
the DDPG-based approach can reasonably design RIS and
achieve a significant reduction in the average maximum MEC
service time while enhancing the MEC success probability,
particularly for severe eavesdropping threats (e.g., aupe = 2.9).
A higher MEC success probability means that the BS can
allow more vehicular users to obtain secure MEC service
within the specified service time threshold, which is vital for
the robustness of the network.

From Fig. 4, When the task size increases, the average
maximum MEC time rapidly increases, while the MEC success

MEC success probability. This demonstrates that our proposed
approach is able to successfully learn effective strategies in
complicated and very dynamic communication scenarios.

V. CONCLUSION

In this paper, we have designed a DRL-based commu-
nication algorithm to realize secure MEC service in vehic-
ular networks. Our proposed approach aims to minimize
the maximum MEC service time while ensuring secure task
offloading. Simulation results demonstrate the feasibility and
robustness of the proposed DDPG-based approach and validate
the great potential of RIS for reducing eavesdropping threats
and improving the overall MEC service quality.
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