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Abstract—Integrated sensing and communication (ISAC) is
expected to be offered as a fundamental service in the upcoming
sixth-generation (6G) communications standard. However, due to
the exposure of information-bearing signals to the sensing targets,
ISAC poses unique security challenges. In recent years, intelligent
reflecting surfaces (IRSs) have emerged as a novel hardware
technology capable of enhancing the physical layer security of
wireless communication systems. Therefore, in this paper, we
consider the problem of transmit and reflective beamforming
design in a secure IRS-enabled ISAC system to maximize the
beampattern gain at the target. The formulated non-convex
optimization problem is challenging to solve due to the intricate
coupling between the design variables. Moreover, alternating
optimization (AO) based methods are inefficient in finding a
solution in such scenarios, and convergence to a stationary
point is not theoretically guaranteed. Therefore, we propose
a novel successive convex approximation (SCA)-based second-
order cone programming (SOCP) scheme in which all of the
design variables are updated simultaneously in each iteration.
The proposed SCA-based method significantly outperforms a
penalty-based benchmark scheme previously proposed in this
context. Moreover, we also present a detailed complexity analysis
of the proposed scheme, and show that despite having slightly
higher per-iteration complexity than the benchmark approach the
average problem-solving time of the proposed method is notably
lower than that of the benchmark scheme.

Index Terms—Intelligent reflecting surface (IRS), integrated
sensing and communication (ISAC), physical layer security,
successive convex approximation (SCA), second-order cone pro-
gramming (SOCP).

I. INTRODUCTION

The sixth-generation (6G) wireless standard is being de-
veloped not only to improve the quality of user experience
compared to that offered by the fifth-generation networks,
but also to support a range of new wireless communication
services, such as autonomous vehicles, drone monitoring, hu-
man activity recognition, environmental monitoring, enhanced
localization and tracking, and many more. Supporting such
new services will require the integration of communication,
sensing and localization capabilities as fundamental services
in a single network architecture rather than as auxiliary func-
tionalities [1]. Integrated sensing and communication (ISAC)
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has recently emerged as a potential enabler in this direction,
combining the communication and sensing capabilities in a
single hardware platform using a common waveform [2], [3].
Preliminary results have confirmed that ISAC can improve
the spectral efficiency of a network by virtue of exploiting
a common hardware, signal processing and spectral frame-
work, thereby offering a low-cost solution to the spectrum
scarcity problem. Furthermore, by exploiting the possibility of
communication-centric and sensing-centric designs, it can also
enjoy significant coordination gains compared to conventional
networks. However, due to the broadcast nature of wireless
channels and the inclusion of information-bearing signaling in
the sensing waveform, susceptibility to eavesdropping targets
poses unique security challenges in ISAC.

Intelligent reflecting surfaces (IRSs) have recently emerged
as a groundbreaking hardware technology to robustify wire-
less communication systems against eavesdroppers via pas-
sive beamforming [4]. The benefits of IRS in a secure
communication-only multiple-input multiple-output (MIMO)
system have been well established in the literature [5], [6].
Hence, it is worth exploring the advantages of IRSs in an ISAC
system in terms of physical layer security [7]. However, it is
interesting to note that in contrast to the somewhat rich litera-
ture on IRS-aided ISAC systems [8]-[12], there is a dearth of
literature on secure IRS-aided ISAC system design [13], [14].
As one of the few examples, the authors in [13] considered
an active IRS-aided multiuser multiple-input single-output
(MU-MISO) ISAC system, where the aim was to obtain an
optimal beamforming design that maximizes the achievable
secrecy rate of the communication users while guaranteeing a
minimum radar signal-to-interference-plus-noise ratio (SINR).
In [14], the authors considered the problem of beampattern
optimization for an eavesdropping target in an IRS-enabled
MU-MISO secure ISAC system, subject to SINR constraints at
the communication users and information leakage constraints
at the target. Two different scenarios were considered in [14];
in the first scenario, full channel state information (CSI) and
the target location were assumed to be known at the base
station (BS), while imperfect CSI and uncertain target location
were assumed in the second scenario. In this paper, we will
focus on the first scenario only, where the CSI and target
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Target

Communication users

Fig. 1. System model for IRS-enabled secure ISAC system.

location are known at the BS. The more practical setting
in which these quantities are imprecisely known will be
considered in future work. To optimize the transmit and IRS
beamforming in the first scenario, the authors in [14] proposed
a penalty-based alternating optimization (AQO) algorithm to
obtain a semi-closed-form solution using Lagrange duality and
a majorization-minimization (MM) algorithm.

Even though the use of AO in [14] makes the optimization
problem much easier to solve, it may not produce a high-
quality solution because of the complicated interdependence
between the design variables [15]. Moreover, as we will show
in Section IV, the use of a penalty-based method requires
a large number of iterations to achieve convergence and
therefore has a very high problem-solving time. Note also that
a feasible solution is not guaranteed if the algorithm terminates
prematurely. To tackle these issues, in this paper we propose
a successive convex approximation (SCA) based beampattern
optimization scheme which results in a high-performance
solution and also requires a much shorter convergence time.
The main contributions of the paper are listed as follows:

o We propose a provably convergent SCA-based algorithm
to maximize the beampattern gain at the eavesdropping
target in the secure ISAC system, subject to the SINR
requirements at the communication users and information
leakage constraints at the target. In contrast to the AO-
based scheme of [14] where all design variables are
updated in an alternating fashion, we derive a second-
order cone program (SOCP) where all of the optimization
variables are updated simultaneously in each iteration.

e We present a complexity analysis of the proposed scheme
which demonstrates that the per-iteration complexity
grows as O(N*5), while that of the benchmark solution
is given by O(NS) [14, Sec. III-C], where N is the
number of reflecting elements in the IRS. Although
the per-iteration complexity of the proposed approach
is slightly higher than that of the benchmark scheme,
we show that it requires significantly fewer iterations to
converge, resulting in a much shorter problem-solving
time.

o We present extensive numerical results to confirm that the
proposed SCA-based SOCP approach results in a high-
performance solution, and significantly outperforms the

penalty-based AO algorithm in [14].

Notation: Bold uppercase and lowercase letters are used
to denote matrices and vectors, respectively. By CM*V | we
denote the vector space of all M x N complex-valued matrices.
By X', X", |IX], R{X} and 3{X}, we respectively denote
the transpose, conjugate transpose, Frobenius norm, real and
imaginary components of a matrix X. |z| denotes the absolute
value of a complex number x, and diag(xz) denotes the
diagonal matrix whose main diagonal comprises the elements
of x. O(+) denotes the Bachmann-Landau notation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the ISAC system shown in Fig. 1 consisting of
a multi-antenna dual-function base station (BS), one IRS,
K single-antenna communication users (denoted by Uy, k €
K £ {1,2,...,K}), and one single-antenna eavesdropping
target.! Let L and N denote the number of antennas at the
BS and the number of elements in the IRS, respectively. We
assume that the BS transmits a linear superposition of radar
and information signals for the purpose of joint sensing and
communication. The signal vector transmitted from the BS is

given by
s = Zkelc XpWk + Zleﬁ Xjwy, (1)

where wy, is the communication signal intended for Uy and
w; is the (™ radar signal with [ € £ £ {1,2,...,L}.
Moreover, x;, € CX*1 and %; € CE*! are the beamforming
vectors corresponding to wy, and w;, respectively. It is assumed
that E{wk} =0, E{\wk|2 =1Vk € K, E{ﬁll} =0,
E{|@|*} =11€ L, and E{wpwf'} =0Vk € K,l € L, ie.,
the communication and radar signals are mutually independent
and uncorrelated. Denoting the BS-IRS, BS-U;, and IRS-Uy
links by G € CV*L hp, € C™¥L, and hg, € C™*V,
respectively, the signal received at Uy is given by

Y = hys + 2z, (2)
where h;, £ hp, + hg®G, © £ diag(d), 6 =
[01,02,...,0N]T, 0, = exp(j2mp,) with ¢, € [0,2n7)
denoting the phase shift induced by the n'" IRS element, and
21, denotes the zero-mean complex additive white Gaussian
noise (AWGN) at U, with variance a,% .

Defining X £  [xy,Xo,...,Xg,%X1,%o,...X1] €
CEX(K+L) " and %, as the m™ column of X, the signal-
to-interference-plus-noise ratio (SINR) at Uj to decode the
intended message is given by

LE (3)
Th + Doer (k) rXel?
where M £ {1,2,... . K, K +1,..., K + L}. Similarly, by
denoting the IRS-target channel by gg € C'*V and assuming

that the BS-target (direct) link is blocked due to obstacles, the
signal received at the target is given by

Ve =

yr = 8S + 2r, 4

! Although we consider a single eavesdropping target in this paper, it is
straightforward to use the proposed algorithm for a system with multiple
eavesdropping targets.
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where g £ gr®G € C'*F, gy is the steering vector from
the IRS in the direction of the target, and 2zt is the zero-mean
complex AWGN at the target with variance o#. Therefore, the
SINR at the target to wiretap the signal intended for Uy is
given by

|lgx|®

Y = —5- (5)
oF + s\ (ky 18%e[?

We assume that all of the channels and the target location are
perfectly known to the BS. The beampattern gain toward the
target is then given by (c.f. [14])

9(X,0) =E{lgs|’} = > |g&nl|” 6)
meM
Therefore, the problem of maximizing the beampattern gain

toward the target is given by

maxirgize 9(X,0), (7a)
subject to v > I'y Vk € IC, (7b)
A < Ty Yk € K, (70)
IX|| < VP (7d)
0. =1VneN2£{1,2,... N}, (7e)

where (7b) ensures that the SINR at Uy, is greater than or equal
to the predefined threshold I'y, (7c) enforces the constraint
that the maximum leakage of the information intended for Uy
at the eavesdropping target is below the tolerance level Iy
and P is the transmit power budget at the BS. Note that in a
system with heterogeneous secrecy requirements, considering
information leakage constraints results in a more flexible
resource allocation compared to that offered via imposing
constraints on the achievable secrecy rate [16]. It is easy to
note that due to coupling between the design variables X
and 0 in (7a)—(7c) and the non-convex constraints in (7e),
the problem in (7) is non-convex and challenging to solve.

Hua et al. [14] proposed a penalty-based dual-loop AO
algorithm to obtain a solution to (7). More specifically, in
the inner loop, auxiliary variables were updated by solv-
ing a quadratically-constrained quadratic program (QCQP),
the beamformers (i.e., X) were updated using a bisection
search, and the IRS reflection coefficients (6) were updated
via MM; the outer loop was used to update the penalty
parameter only. Although the use of auxiliary variables and the
penalty method in [14] resulted in a reformulated optimization
problem where the design variables were decoupled in the
constraints, obtaining a high quality solution is not guaranteed
via AO. Additionally, although the per-iteration complexity of
the penalty-based solution in [14] was O(N?), because of
the use of bisection search and the dual-loop structure, the
number of iterations required for convergence is large. This
in turn results in a high problem-solving time because if the
iterations are terminated prematurely (i.e., before the penalty
terms becomes nearly zero), the obtained solution may not be
feasible.

III. PROPOSED SOLUTION

In this section, we apply a series of convex approxima-
tions to tackle the non-convexity of (7) and to obtain a
high-performance solution. In this regard, for two arbitrary
complex-valued vectors u and v, we recall the following
(in)equalities (c.f. [17, eqn. (6)])

[al® > 2R{v"u} —||v|?, (8a)
1

R{uv} = 1(Hu+VHQ— lu—vl[?), (8b)
1

S{ulv} = Z(Hu —v|? = Jlu+jv[]?). (8¢)

Next, we note that the term in (7a) is neither convex nor
concave. Since we want to maximize the function in (7a), we
obtain a corresponding concave lower bound as follows:

g(X,B)Z Z |g)~(m|2

meM
@) . ;
> > [2R{al) g%} — lal))?]
meM
() 1 (D H | = 2 (i H = 2 ()2
20X Gl + %l — 0" %2}~ o) ]
meM
© i i “ Lo
> 3[R (a6 + %]} - SIIBY
meM
1 i i i
— 5l = %12 — lal P
2N fon(Z, 0%, 00)), ©)
memM

where 5(57? and 0 denote the value of X,, and @ in the it
iteration of the SCA process, respectively. Moreover, (a) and
(c) follow from (8a), and (b) follows from (8b). Additionally
in (9), o' 2 g(i)f{%), pl) 2 aDgilH 4 %9 and gl &
gr®G. Note that fm(fcm,e;i%),@(i)) is jointly concave
with respect to (w.r.t.) X,,, and 6.

Next, we turn our attention to the non-convex constraints
in (7b). Using (3), for any £ € K, we can equivalently
represent (7b) as follows:

1
o =0+ Y (ehe+oh), (0w
k e M\{k}
ore > | R{hpx,}| V€ € M\ {k}, (10b)
ore > |S{hpx}| V€ e M\ {k}. (10¢)

It is easy to see that if (7b) is feasible, then so is (10) and
vice versa. Note that the right-hand side (RHS) of (10a) is
convex, and we only need to obtain a concave lower bound
on the left-hand side (LHS) of (10a). Following a similar line
of argument to (9), this can be done as follows:

1 2 1 i i Lo
po i = o [R(A) [ef bl + i} — 5P

ifk (Xk7 9§X/(j)a O(l))a

1 i i)12
5“81(“)}1;' XkHQ ’C’(‘C)| } : I'x
(11)

where ¢!’ 2 h(x(" and d{" £ (In(IH 4 x(),

5994

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on June 26,2024 at 21:51:51 UTC from IEEE Xplore. Restrictions apply.



2023 IEEE Global Communications Conference: Communication & Information Systems Security

Using the fact that w > |v| iff u > v or u > | — v|, and
following (8b), ox¢ in (10b) can be equivalently written as

i€||2)7
ore > —R{hpXe} = Z(th = %¢[|* — [ +%¢[?). (12b)
Since the negative quadratic term in the RHS of (12a) results

in its non-convexity, we use the inequality in (8a) to convex-
ify (12a) as follows:

ore > R{yx,} = f( b + %)% - ||hY - (12a)

ke > - [nhk + %) - 2R{ (0 — 2 (! — %)}

R — 212 2 e (R0, 0;%07,09). (13)
Following a similar argument, (12b) yields

Oke > ~ [nhk — %)% = 2R{ (0" + x{"") (f + %)}

+ Hhk 5(? || ] = /,Lkg(Xe,H;X;),H(n)). (14)
Analogously, (10c) yields the following inequalities:

1 N > >
> = [HhH - jx@||2 - 28?{ (h(z) ij,”H)(hH +ng)}
+ D 5% 12] 2 o (%, 057,09, (15)

[Hh + %)) = 2R{ (Y + jxM) (bl — %)}

+ R — = )2] £ Oy (R0, 0;%07,09). (16)
We now focus on the non-convex constraint in (7¢), which
for any k € K, can be written as

Pre >

Pre =

w<Th=ot+ > lgkl*> i\gxk\? (17)
LeM\{k}

Note that we need a concave lower bound on the LHS of (17),

and a convex upper bound on the RHS. Similar to (9), the

former can be obtained by linearizing the quadratic term in

the LHS as follows:

a%-&- Z

Le M\{k}

gxi* > ot + > fe(%e,0;%)",00).
e M\ {k}

(18)
On the other hand, a convex upper bound on |gx;|2/I" is given
by (72 + 72)/I, where 75, > |R{gx)}| and 7, > |S{gxz}|.
Therefore, using (17), (18) and the preceding arguments, for a
given k € K, the constraint in (7c) can be equivalently written
as

Bt S o5 6:50,00) > L (2 72), (19
e M\{k} L'y

7 > | R{gxx}|, (19b)

T > ‘%{gxk}‘ (19¢)

Again, it can be noted that if (7c) is feasible, then so is (19)
and vice versa. Moreover, following a similar set of arguments
to those in (12)—(16), lower bounds on 7, and 7 in (19b)
and (19(:) respectively, are given by

xM) (8"~ %) }

T > [||g + x5)2 = 2R{ (@ —

Algorithm 1:
Solve (21).

Proposed SCA-based Method to

Input: X, 8 ¢ >0
11+ 0;
2 repeat
3 Solve (21) and denote the solution as X*, 8™;
4 Update: X(+1)  X*, 90+ g%,
5 11+ 1;
6 until convergence;
Output: X*, 6*

X(i) 112] £ s (x, 6; Xl(ci)’ 9(1'))’
2R{ (g +x."") (" + 1)}

+ [lg@" — (20a)

1
g > Z[HgH —xpl]* -

+||g“>H ZII]—nk(xk,ex,Q 0"), (20
U [ng — gkl = 2R{ (g — jx™) (8" + ixe) }
+ gD+ ix D12 2 X (i, 0;x17,00), (200)
T > [ng + il — 20{ (8 + jx("M) (8" — jxi) }
+||g“ — 1P 2 e (xn, 85x,09). (20d)

Next, since the constraint in (7d) is already convex, we are
left only with the non-convexity of (7e). To tackle this, we first
relax the equality constraint in (7e) by a (convex) inequality
constraint. In order to ensure that the inequality constraint
is satisfied with equality (i.e., the constraint is binding at
convergence), we add a regularization term in the objective
and handle the resulting non-convex objective by the first-
order approximation of the regularization term around 0.
Therefore, an equivalent reformulation of the problem in (7)
can be given by

+<[23?{0(”’ "oy — 1071, @lay
subject to —fk(xk,a xk ,0( )
>o07+ Y (0ke+ re) VEEK, (21b)
teM\{k}

(13) - (16) Vk € K, € M\ {k},  (2lc)

(19a), (20) Vk € K,

(7d),

16,] < 1VneN, 21d)
where p £ [p11,012,....pxL]". © = [P11, P12, .- PrL]"
T = [, 7K, T 2 [F1,7,...,7k], and ( > 0

is the regularization parameter. It is straightforward to show
that all of the constraints in (21) can be represented by
quadratic cones, and therefore (21) is an SOCP problem
which can be solved efficiently using off-the-shelf solvers,
e.g., MOSEK [18]. The proposed SCA-based SOCP method
is outlined in Algorithm 1.
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Remark 1. One needs to find feasible starting points X(?)
and 8 to run Algorithm 1, which is not straightforward.
Therefore, below we describe a practical way to obtain a set
of initial points. Consider the following optimization problem:

minimize Z (81 + O%), (22a)

X,0,6,0 kek
. 12 (D g(D)
subject to 0 + T fk(Xk,eaxk .0 )
k

2 2 —2
2o+ Z%M\{A@M + Pre) Yk €K,

(22b)
bt Y. fo(%e0:%,0)
Le M\{k}
> flk(r,f +77) Vk €K, (22¢)
(7d), (7e), (20), (21c¢),
8 > 0,0, >0 VEk € K. (224d)

Note that the problem in (22) is always feasible for sufficiently
large & and 8. We solve the problem in (22) by following a
similar procedure to that of Algorithm 1, with random X and
0 as initial points. The minimization in (22) forces d;, and 6y,
to approach 0. At convergence, if 6, = 0, = 0 Vk € K, the
problem in (21) is obviously feasible. Thus we can choose
the final values of X and 6 in (22) as initial points for Algo-
rithm 1. However, if the objective >_, _x-(6) + &) is not zero
at convergence, then we simply declare that the considered
problem is infeasible and will not run Algorithm 1?

The convergence of the proposed SCA-based method in Al-
gorithm 1 can be readily proved following the set of argu-
ments in [17, Sec. III-A].

A. Complexity Analysis

It is straightforward to show that the total number of
(real-valued) optimization variables in (21) is 2(L2 + K2 +
2KL+ N ) + 1, and the total number of (second-order) conic
constraints is 4K? 44K L+ 2K + N +2. Therefore, following
the arguments in [19, Sec. 6.6.2], the overall per-iteration
complexity of the proposed SOCP-based method is given by

O[(4K? + 4K L+ N)*° (2K + 4K L + 2L* + 2N)
(4K° +8K*L + 4K°L? + 48K°L + 60K>L* + 24K L*

52K L% +4L% + (2K? + 4K L +2L% + 2N)%)].  (23)
However, in a practical setup, the number of elements in the
IRS is expected to be much larger than the number of BS
antennas and the number of users, i.e., N > max{L, K}.
Hence, the complexity of the proposed SCA-based method can
be well-approximated by O (N?-%). On the other hand, the per-
iteration computational complexity of [14, Algorithm 1] can

2We note that the considered problem may be feasible even though
> kek (Op +0k) > 0. The reason is that the SCA-based method applied to
solve (22) can only guarantee a stationary solution. In general, checking (7) is
feasible or not is an NP hard problem since the feasible set is non-convex. For
practical purposes, if the SCA-based method cannot find a feasible solution,
we can simply say that the problem is infeasible and ignore this realization.

be approximated by O(N?3) (see [14, Sec. III-C]). Although
the order of complexity of the proposed SCA-based method is
slightly higher than that of the penalty-based benchmark, we
will show in the simulation section that the proposed method
requires fewer iterations, resulting in a significantly reduced
problem-solving time.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, we present a detailed performance compari-
son between the proposed SCA-based method and the penalty-
based benchmark approach of [14, Algorithm 1]. The location
of the nodes and the channel model assumed here are the
same as those in [14]. The simulations are performed on a
high-performance computing cluster with a Intel Xeon Gold
6152 processor, using Python v3.9.7 and MOSEK Fusion API
for Python Rel.-10.0.40 [18]. In Figs. 3 and 4, the results
are obtained by averaging over 100 independent channel
realizations.

In Fig. 2, we show the convergence behavior of both the
proposed and penalty-based benchmark methods. For the given
set of channels, the proposed SCA-based method converges
in less than 30 iterations, whereas the penalty-based bench-
mark requires around 270 iterations. Nevertheless, even with
significantly fewer iterations, the proposed method results in
nearly a 30% higher beampattern gain as compared to that
offered by the penalty-based benchmark. More interestingly,
each iteration of the proposed SCA-based method returns a set
of feasible points and therefore the iterations of the proposed
method can be terminated even before convergence has been
attained, if this is required. On the other hand, the penalty-
based benchmark returns a feasible solution only in the final
outer-loop iteration, and therefore the algorithm cannot be
stopped earlier to achieve a feasible solution. Therefore, the
benchmark is not suitable in rapidly changing environments
with very small coherence times where at least a suboptimal
solution is required within a certain fraction of the channel’s
coherence time.

The impact of the number of IRS elements on the average
beampattern gain for the two algorithms- is shown in Fig. 3.
An increase in the number of IRS elements increases the
degrees-of-freedom at the IRS, allowing the IRS to perform
highly focused beamforming. This in turn results in increasing
beampattern gain with increasing N. On the other hand, since
a fixed amount of transmit power is required to achieve the
SINR constraints at the communication users, a higher transmit
power budget results in a higher surplus power at the BS,
which is then used to attain a larger beampattern gain toward
the target. Therefore, increasing the value of P increases
the average beampattern gain, which is also clearly evident
from the figure. The performance gap between the SCA-based
and penalty-based methods increases with an increase in the
number of IRS elements. As the value of N increases, the
impact of coupling between X and 0 becomes more intricate.
Therefore, the solution obtained via the AO-based approach
of [14] returns a highly suboptimal beampattern gain. On the
other hand, as clearly observed in the figure, the simultaneous
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Fig. 2. Convergence results for L = 4, K = 3,
N =100, P = 40 dBm, I'y, = 10 dB Vk € K
and I'y, = 0 dB Vk € K.

update of all variables in the proposed algorithm outperforms
the penalty-based benchmark.

In Fig. 4, we plot the average problem-solving time versus
the number of IRS elements for different numbers of commu-
nication users K. As the value of N and/or K increases, the
size of the optimization problem to be solved also increases
for both methods. This in turn increases the average problem
solving time for both approaches. Although the per-iteration
complexity of the proposed SCA-based method is slightly
higher than that of the penalty-based benchmark, the proposed
approach requires a much smaller time to find the solution due
to its convergence in fewer iterations.

V. CONCLUSION

In this paper, we have considered the problem of optimal
transmit and reflective beamforming design in a secure IRS-
enabled ISAC system. More specifically, we aim to maximize
the beampattern gain toward the eavesdropping target subject
to the SINR constraints at the communication users and
information leakage constraints at the target. In contrast to
the conventional AO-based approach, we proposed a novel
SCA-based optimization in which all variables are updated
simultaneously. The superiority of the proposed method was
clearly established with the help of numerical experiments
in terms of both achieving a high-performance solution and
low problem-solving time compared to that of the penalty-
based benchmark. Moreover, the performance gap between the
proposed SCA-based approach and penalty-based benchmark
was shown to be increasing with the number of IRS elements
or the transmit power budget.
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