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Abstract—This paper presents a novel reconfigurable intel-
ligent surface (RIS)-based localization approach for mobile
user equipment (UE) in a millimeter-wave uplink cellular en-
vironment. The proposed approach develops a measurement
engine that employs a state-of-the-art carrier-aided code-phase-
based navigation receiver and incorporates a passive correlation-
based angle-locked loop (ALL) for TOA and AOA estimation.
An extended Kalman filter (EKF)-based RIS-aided navigation
framework is deployed, providing accurate 3D position and
velocity estimates for the mobile UEs utilizing the RIS-based
navigation observables, which are then leveraged to optimize the
RIS phase profile to maximize the signal-to-noise ratio (SNR) for
the various UEs. Finally, the paper demonstrates the accuracy
of the navigation solution through extensive Monte Carlo simu-
lations that encompass different scenarios involving pedestrians,
ground vehicles, and unmanned aerial vehicles (UAVs). These
simulations emphasize the utility of our proposed approach in
delivering sub-meter and meter-level positioning accuracies.

Index Terms—Intelligent Surfaces, Localization, Navigation

[. INTRODUCTION

The demand for accurate absolute positioning has driven the
exploration of ambient radio signals for navigation. Cellular
signals are considered a viable alternative/complementary
source to GNSS for navigation [1]-[4], serving both navi-
gation and wireless communication needs, especially in 5G
systems [5]. Understanding the radio environment is crucial
for signal-based navigation, as it involves extracting infor-
mation from the sensed signals. Signal attenuation poses
a significant challenge in radio environments, particularly
for 5G and beyond, as their high-frequency signals have
limited range and struggle to penetrate obstacles. While this
limitation reduces multipath interference, which is desirable
for navigation, it remains a challenge for communication
purposes, where multipath can enhance the reliability of non-
line-of-sight links. To address these propagation challenges,
reconfigurable intelligent surfaces (RISs) have emerged as a
promising technology. RISs are passive devices with elec-
tronically tunable reflection coefficients that enable favorable
control of the RF propagation environment [6]—[8].

Extensive research has been conducted on the benefits
of RISs for positioning and navigation. Various localization
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schemes have been proposed using time-of-arrival (TOA),
angle-of-arrival (AOA), angle-of-departure (AOD), or a com-
bination of these measurements in conjunction with RISs to
achieve accurate positioning [9]-[11]. Studies have shown that
RISs can replace active access points (APs) in indoor posi-
tioning, with TOA measurements being more advantageous for
position estimation [12]. In multi-user passive localization sce-
narios, dividing the RIS phase profile and selectively utilizing
time-varying components based on orthogonal sequences can
avoid interference and achieve sub-meter positioning accuracy
[9]. Another approach investigates utilizing wavefront curva-
ture in geometric near-field (NF) conditions, demonstrating the
potential of inferring the UE’s position solely from the RIS-
reflected multipath component in the absence of a direct path
[13]. For far-field (FF) scenarios, both line-of-sight (LOS) and
non-line-of-sight (NLOS) paths are required for localization.
Partially-connected receiving RISs (R-RISs) have been pro-
posed for efficient three-dimensional (3D) localization without
intervention from base stations or access points [10].

This paper focuses on RIS-based localization in a tracking
scenario, extending previous approaches that mainly consid-
ered stationary UEs. The contributions of this work are

o The design of a measurement engine that utilizes a state-
of-the-art carrier-aided code phase-based navigation re-
ceiver and incorporates a passive correlation-based angle-
locked loop (ALL) approach to estimate the TOA and
AOA, respectively.

o The deployment of an extended Kalman filter (EKF)-
based RIS-aided navigation framework that estimates the
3D position and velocity of a mobile UE using TOA and
AOA measurements, with a RIS whose phase profile is
optimized to maximize the UEs’ SNRs.

o Demonstration of the navigation solution accuracy in
Monte-Carlo simulations, where performance in different
scenarios involving pedestrians, ground vehicles, and
unmanned aerial vehicles (UAVs) is assessed.

II. METHODOLOGY
A. Localization Scenario

We consider a 3-D localization scenario with [ single-
antenna UEs, U single-antenna BSs, and an N = N, x N,
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Fig. 1. Localization Scenario.

element rectangular RIS. The ¢-th UE and the u-th BS are lo-
cated at Tri = [:L'r,ivyr,iy Z7’,i]T and Tsu = [xs,ua Ys,us Zs,u]T
respectively. The RIS is assumed to lie in the yz-plane with
a reference point 03, where the location of the n-th element
is denoted by 74 n, = [0, Yris.n, zris,n]T. The RIS elements are
regularly spaced with inter-element spacing d = A\/2 in both
dimensions. Figure 1 depicts the localization scenario.

il

B. Signal and Channel Model

A mm-wave uplink OFDM transmission is considered in
which the LOS signal is blocked and only the RIS reflected
signal (also known as the virtual LOS in the literature) is
received. The complex baseband signal received by the u-th
BS from the i-th UE can be expressed as

ri(t) = \/ﬁagu)si(t - T»(u)) + w(t), ()

3

where P is the transmit power, s;(¢) is the known OFDM
signal of the i-th UE, w(¢) is zero-mean white Gaussian noise
with variance o2, Ti(u) = w is the reflected UE-
RIS-BS path delay, and c is the speed of light. The complex
channel gain 041(-“) is modeled geometrically in the mm-wave

regime [14] as

2
—j2m for(™ A

o
! 1672 ||7°m'||2 ||rs,u||2

=e h]Ls,thi,ms, ()
where f. is the carrier frequency, hgys, is the N x 1 RIS
to u-th BS response vector, h;gris is the i-th UE to RIS
response vector, and 2 is an N x N diagonal matrix whose
diagonal elements correspond to the electronically controlled
RIS element responses that are optimized depending on the
current estimates of the UE locations. The response vector
hris,., 1s expressed as

_ e—jr;irs,nk(%[s,u79R[s,u)7 n e {0’ 1,---,N — 1}7

3)
where ¢ris,, and Oris ,, are the azimuth and elevation angles
corresponding to the angle of departure of the signal from the
RIS to the u-th BS, and k(¢, ) is the wavevector given by

[PRiS,u),,

o sin(0) cos(¢)
k(¢,0) = N sin () ?1;;(05) : “)

The response vector h; ris is similarly written as

, N —1}.

(&)
The diagonal elements of the RIS phase profile matrix €2 are
defined by

inl A B
[h'i7RIS].,L — e—J""ns,nk‘/(%,R[s,97,,1{15)) ne {0, 1,

w = diag(Q) = [/, ... N 1]T L (6)

C. Measurement Engine

Here we discuss the measurement engine which comprises
two parts: (i) TOA estimation and (ii) AOA estimation. To
estimate the TOA from the received OFDM signals, the
engine adopts a state-of-the-art carrier-aided code-phase-based
cellular navigation receiver [15]. The receiver deploys a phase-
locked loop (PLL) to track the carrier phase and a carrier-
aided delay-locked loop (DLL) to track the code phase. The
proposed system builds on top of this receiver design to
passively estimate the AOA using a correlation-based ALL.

1) AOA Estimation: Here we present a novel method for
estimating the azimuth and elevation angles between the UE
and the RIS using a passive AOA estimator. The proposed
approach leverages the correlation properties of the OFDM
uplink signals at the BS. It assumes that the BS has prior
knowledge of the channel coefficients hgls,u and the RIS
phase profile €2, which is feasible in an uplink scenario where
the BS and RIS positions are known. The proposed method
aims to estimate the UE’s position-dependent parameter, h; gris
in (2), which is a function of the UE-RIS azimuth and
elevation angles (¢; ris, 0; ris), as described in (5).

To achieve this, a UE-RIS AOA search is performed during
the system initialization, with a predefined resolution. Fig. 2
illustrates a sample output of this search, where the normalized
autocorrelation function (ACF) exhibits peaks at the true
AOA. The accuracy of the initial AOA estimate depends
on the chosen search resolution, which has implications for
the computational complexity. The proposed AOA estimator
overcomes the aforementioned challenges, and its design
is inspired by the design of the DLL, which employs a
discriminator with early and late correlation measurements
based on delayed and advanced replicas of the prompt code,
respectively [16]. The difference between the early and the late
correlators produces a so-called S-curve, whose zero crossings
are tracked by the DLL to estimate the current error, which
is then fed back to the local code generation block to correct
the previous estimate of the incoming code delay.

To design the AOA discriminator, we first conduct a Monte
Carlo AOA error analysis assuming a single BS, RIS, and
UE. The simulation settings can be found in Table I. The
AOA errors vs the normalized ACF from over 1000 iterations
are shown in Fig. 3. These errors are analyzed to design
a normalized early-minus-late (eml) angle discriminator by
obtaining the S-curves for both azimuth and elevation for
different eml angles denoted by aey,). The region of interest
for AOA estimation is defined to be £5°, which represents
the change among the AOAs between two consecutive mea-
surements. The linearity of each of the S-curves was assessed
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Fig. 2. Sample output of the initial UE-RIS AOA search.

TABLE I
AOA DISCRIMINATOR MONTE-CARLO SETTINGS
Parameter Value Description
Trange [-2.5, 2.5] km  Geometric range in x direction
Yrange [-2.5, 2.5] km  Geometric range in y direction
R L s
fe 28 GHz Carrier frequency
B 100 MHz OFDM Signal Bandwidth
trame 10 ms Typical 4/5G frame duration
sc 15 kHz OFDM subcarrier spacing
N 64 Number of RIS elements

and a linear RMSE fit was computed. A value of aey = 1°
gave the most accurate open-loop estimates, and the resulting
azimuth and elevation eml discriminator performance can be
seen in Figures 4 and 5, respectively.

In addition to the angle discriminator, the ALL consists
of a loop filter gain K with a noise-equivalent bandwidth
ByoavL = % = 0.05 Hz. The block diagram of the overall
measurement engine is depicted in Fig. 6.

D. RIS Phase Profile Design

As with any signal-based localization approach, the estima-
tion error is inversely proportional to the received signal-to-
noise-ratio (SNR) [16]. The SNR of the ¢-th UE at the u-th
BS antenna is defined as

o1

SNR{" 2 pITi 1L 7)
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Fig. 3. AOA errors vs ACF.
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Fig. 5. Elevation early-late discriminator.

Assuming a single BS that is controlling the RIS phase profile,
and in the presence of multiple UEs, the optimization of the
RIS phase profile, €2, is formulated to maximize the minimum
SNR among all UEs, which can be formulated as

maximize min{SNR{"}=! (8)
subject to  |w;| =1, for j=1,---,N. 9)
E. EKF

Separate EKFs are deployed to estimate the UEs’ 3D posi-
tions and velocities using the TOA and AOA measurements.
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Fig. 6. Overall localization approach.

The EKF state vector for the i-th UE is expressed as

z; £ [r];, ’“rTJT

(10)

The UE’s motion is assumed to evolve according to a nearly
constant velocity dynamic with process noise vector w, =
[ﬁ)x,zby,ﬁ)z]T, whose elements are modeled as zero-mean
and mutually independent white noise processes with power
spectral densities G, Gy, and §., respectively [15].

IIT. RESULTS

In this section, a Monte Carlo simulation is performed to
study the navigation performance of the proposed system for
three scenarios involving pedestrians, ground vehicles, and
UAVs. The simulation settings are the same as in Table I ex-
cept for different initial velocity ranges vinit, and UE dynamics
parameters (g, ¢y, -], according to the scenario of interest.
Table II summarizes the parameter ranges for the different
cases. The number of users is chosen to be 10; the initial
covariance matrix was set to P(0|0) £ diag([10], 5,57, 5]7),
and the measurement noise covariance matrix was chosen to
be R £ diag([1,5,5]7).

The Monte Carlo analysis was run for 500 trials each
with a random set of parameters selected according to the
ranges provided in Table II. The average empirical cumulative
distribution functions (CDFs) of the positioning errors for the
different scenarios over all iterations and users are depicted in
Figure 7. It can be seen that the best accuracy was achieved for
pedestrian dynamics, while the ground vehicle had comparable
but overall less accuracy. This is expected due to the higher
dynamic stress introduced by the ground vehicle’s dynamics
resulting in increased process and measurement noise.

IV. CONCLUSION

This paper introduced a novel approach to localization in
a millimeter-wave uplink cellular environment using a RIS,
specifically targeting mobile UEs. The proposed approach
develops a measurement engine utilizing a state-of-the-art
carrier-aided code phase-based 5G navigation receiver and
incorporates a passive correlation-based ALL for TOA and

TABLE 11
DYNAMICS PARAMETERS FOR DIFFERENT PLATFORMS
Platform Parameter Value
Vinit [0, 2.5] m/s
Pedestrian g & q, [0, 1.44] m/s?
q- [0, 1] m/s?
Vinit [0, 50] m/s
Ground Vehicle ¢, & g, [0, 51 m/s>
q- [0, 2] m/s*
Vinit [0, 25] m/s
UAV 7 & qy [0, 3] m/s?
q= [0, 4] m/s”

Pedestrian: 50"% = 0.32 m — 80"% = 1.04 m
Ground Vehicle: 507% = 0.9 m — 80"% = 3.29 m
UAV: 50"% = 0.53 m — 80""% = 1.89 m

1r : : —
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Fig. 7. Empirical CDF of positioning errors for different platforms.

AOA estimation, respectively. Additionally, we deployed an
EKF-based RIS-aided navigation framework to estimate the
3D position and velocity of the mobile UEs. The navigation
accuracy of the proposed system was assessed via Monte
Carlo simulations across varied scenarios, including pedestri-
ans, ground vehicles, and UAVs. The simulations underscored
the potential and efficacy of the proposed navigation system,
showcasing its ability to yield sub-meter-level to meter-level
positioning accuracies for different scenarios.
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