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Abstract—This paper presents a novel reconfigurable intel-
ligent surface (RIS)-based localization approach for mobile
user equipment (UE) in a millimeter-wave uplink cellular en-
vironment. The proposed approach develops a measurement
engine that employs a state-of-the-art carrier-aided code-phase-
based navigation receiver and incorporates a passive correlation-
based angle-locked loop (ALL) for TOA and AOA estimation.
An extended Kalman filter (EKF)-based RIS-aided navigation
framework is deployed, providing accurate 3D position and
velocity estimates for the mobile UEs utilizing the RIS-based
navigation observables, which are then leveraged to optimize the
RIS phase profile to maximize the signal-to-noise ratio (SNR) for
the various UEs. Finally, the paper demonstrates the accuracy
of the navigation solution through extensive Monte Carlo simu-
lations that encompass different scenarios involving pedestrians,
ground vehicles, and unmanned aerial vehicles (UAVs). These
simulations emphasize the utility of our proposed approach in
delivering sub-meter and meter-level positioning accuracies.

Index Terms—Intelligent Surfaces, Localization, Navigation

I. INTRODUCTION

The demand for accurate absolute positioning has driven the

exploration of ambient radio signals for navigation. Cellular

signals are considered a viable alternative/complementary

source to GNSS for navigation [1]–[4], serving both navi-

gation and wireless communication needs, especially in 5G

systems [5]. Understanding the radio environment is crucial

for signal-based navigation, as it involves extracting infor-

mation from the sensed signals. Signal attenuation poses

a significant challenge in radio environments, particularly

for 5G and beyond, as their high-frequency signals have

limited range and struggle to penetrate obstacles. While this

limitation reduces multipath interference, which is desirable

for navigation, it remains a challenge for communication

purposes, where multipath can enhance the reliability of non-

line-of-sight links. To address these propagation challenges,

reconfigurable intelligent surfaces (RISs) have emerged as a

promising technology. RISs are passive devices with elec-

tronically tunable reflection coefficients that enable favorable

control of the RF propagation environment [6]–[8].

Extensive research has been conducted on the benefits

of RISs for positioning and navigation. Various localization
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schemes have been proposed using time-of-arrival (TOA),

angle-of-arrival (AOA), angle-of-departure (AOD), or a com-

bination of these measurements in conjunction with RISs to

achieve accurate positioning [9]–[11]. Studies have shown that

RISs can replace active access points (APs) in indoor posi-

tioning, with TOA measurements being more advantageous for

position estimation [12]. In multi-user passive localization sce-

narios, dividing the RIS phase profile and selectively utilizing

time-varying components based on orthogonal sequences can

avoid interference and achieve sub-meter positioning accuracy

[9]. Another approach investigates utilizing wavefront curva-

ture in geometric near-field (NF) conditions, demonstrating the

potential of inferring the UE’s position solely from the RIS-

reflected multipath component in the absence of a direct path

[13]. For far-field (FF) scenarios, both line-of-sight (LOS) and

non-line-of-sight (NLOS) paths are required for localization.

Partially-connected receiving RISs (R-RISs) have been pro-

posed for efficient three-dimensional (3D) localization without

intervention from base stations or access points [10].

This paper focuses on RIS-based localization in a tracking

scenario, extending previous approaches that mainly consid-

ered stationary UEs. The contributions of this work are

• The design of a measurement engine that utilizes a state-

of-the-art carrier-aided code phase-based navigation re-

ceiver and incorporates a passive correlation-based angle-

locked loop (ALL) approach to estimate the TOA and

AOA, respectively.

• The deployment of an extended Kalman filter (EKF)-

based RIS-aided navigation framework that estimates the

3D position and velocity of a mobile UE using TOA and

AOA measurements, with a RIS whose phase profile is

optimized to maximize the UEs’ SNRs.

• Demonstration of the navigation solution accuracy in

Monte-Carlo simulations, where performance in different

scenarios involving pedestrians, ground vehicles, and

unmanned aerial vehicles (UAVs) is assessed.

II. METHODOLOGY

A. Localization Scenario

We consider a 3-D localization scenario with I single-

antenna UEs, U single-antenna BSs, and an N = Nx × Ny
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Fig. 1. Localization Scenario.

element rectangular RIS. The i-th UE and the u-th BS are lo-

cated at rr,i = [xr,i, yr,i, zr,i]
T

and rs,u = [xs,u, ys,u, zs,u]
T

,

respectively. The RIS is assumed to lie in the yz-plane with

a reference point 03, where the location of the n-th element

is denoted by rris,n = [0, yris,n, zris,n]
T

. The RIS elements are

regularly spaced with inter-element spacing d = λ/2 in both

dimensions. Figure 1 depicts the localization scenario.

B. Signal and Channel Model

A mm-wave uplink OFDM transmission is considered in

which the LOS signal is blocked and only the RIS reflected

signal (also known as the virtual LOS in the literature) is

received. The complex baseband signal received by the u-th

BS from the i-th UE can be expressed as

rui (t) =
√
Pα

(u)
i si(t− τ

(u)
i ) + w(t), (1)

where P is the transmit power, si(t) is the known OFDM

signal of the i-th UE, w(t) is zero-mean white Gaussian noise

with variance σ2
n, τ

(u)
i =

‖rr,i‖2+‖rs,u‖2

c is the reflected UE-

RIS-BS path delay, and c is the speed of light. The complex

channel gain α
(u)
i is modeled geometrically in the mm-wave

regime [14] as

α
(u)
i = e−j2πfcτ

(u)
i

λ2

16π2 ‖rr,i‖2 ‖rs,u‖2
hT

RIS,uΩhi,RIS, (2)

where fc is the carrier frequency, hRIS,u is the N × 1 RIS

to u-th BS response vector, hi,RIS is the i-th UE to RIS

response vector, and Ω is an N ×N diagonal matrix whose

diagonal elements correspond to the electronically controlled

RIS element responses that are optimized depending on the

current estimates of the UE locations. The response vector

hRIS,u is expressed as

[hRIS,u]n = e−jrT
ris,nk(φRIS,u,θRIS,u), n ∈ {0, 1, · · · , N − 1},

(3)

where φRIS,u and θRIS,u are the azimuth and elevation angles

corresponding to the angle of departure of the signal from the

RIS to the u-th BS, and k(φ, θ) is the wavevector given by

k(φ, θ) = −2π

λ

⎡
⎣
sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

⎤
⎦ . (4)

The response vector hi,RIS is similarly written as

[hi,RIS]n = e−jrT
ris,nk(φi,RIS,θi,RIS), n ∈ {0, 1, · · · , N − 1}.

(5)

The diagonal elements of the RIS phase profile matrix Ω are

defined by

w = diag(Ω) =
[
ejw0 , ejw1 , · · · , ejwN−1

]T
. (6)

C. Measurement Engine

Here we discuss the measurement engine which comprises

two parts: (i) TOA estimation and (ii) AOA estimation. To

estimate the TOA from the received OFDM signals, the

engine adopts a state-of-the-art carrier-aided code-phase-based

cellular navigation receiver [15]. The receiver deploys a phase-

locked loop (PLL) to track the carrier phase and a carrier-

aided delay-locked loop (DLL) to track the code phase. The

proposed system builds on top of this receiver design to

passively estimate the AOA using a correlation-based ALL.
1) AOA Estimation: Here we present a novel method for

estimating the azimuth and elevation angles between the UE

and the RIS using a passive AOA estimator. The proposed

approach leverages the correlation properties of the OFDM

uplink signals at the BS. It assumes that the BS has prior

knowledge of the channel coefficients hT
RIS,u and the RIS

phase profile Ω, which is feasible in an uplink scenario where

the BS and RIS positions are known. The proposed method

aims to estimate the UE’s position-dependent parameter, hi,RIS

in (2), which is a function of the UE-RIS azimuth and

elevation angles (φi,RIS, θi,RIS), as described in (5).

To achieve this, a UE-RIS AOA search is performed during

the system initialization, with a predefined resolution. Fig. 2

illustrates a sample output of this search, where the normalized

autocorrelation function (ACF) exhibits peaks at the true

AOA. The accuracy of the initial AOA estimate depends

on the chosen search resolution, which has implications for

the computational complexity. The proposed AOA estimator

overcomes the aforementioned challenges, and its design

is inspired by the design of the DLL, which employs a

discriminator with early and late correlation measurements

based on delayed and advanced replicas of the prompt code,

respectively [16]. The difference between the early and the late

correlators produces a so-called S-curve, whose zero crossings

are tracked by the DLL to estimate the current error, which

is then fed back to the local code generation block to correct

the previous estimate of the incoming code delay.

To design the AOA discriminator, we first conduct a Monte

Carlo AOA error analysis assuming a single BS, RIS, and

UE. The simulation settings can be found in Table I. The

AOA errors vs the normalized ACF from over 1000 iterations

are shown in Fig. 3. These errors are analyzed to design

a normalized early-minus-late (eml) angle discriminator by

obtaining the S-curves for both azimuth and elevation for

different eml angles denoted by aeml. The region of interest

for AOA estimation is defined to be ±5◦, which represents

the change among the AOAs between two consecutive mea-

surements. The linearity of each of the S-curves was assessed



Fig. 2. Sample output of the initial UE-RIS AOA search.

TABLE I
AOA DISCRIMINATOR MONTE-CARLO SETTINGS

Parameter Value Description

xrange [-2.5, 2.5] km Geometric range in x direction

yrange [-2.5, 2.5] km Geometric range in y direction

zrange [-50, 50] m
Geometric range in z direction,
relative heights of BS, RIS, UE

fc 28 GHz Carrier frequency

B 100 MHz OFDM Signal Bandwidth

tframe 10 ms Typical 4/5G frame duration

sc 15 kHz OFDM subcarrier spacing

N 64 Number of RIS elements

and a linear RMSE fit was computed. A value of aeml � 1◦

gave the most accurate open-loop estimates, and the resulting

azimuth and elevation eml discriminator performance can be

seen in Figures 4 and 5, respectively.

In addition to the angle discriminator, the ALL consists

of a loop filter gain K with a noise-equivalent bandwidth

Bn,ALL = K
4 ≡ 0.05 Hz. The block diagram of the overall

measurement engine is depicted in Fig. 6.

D. RIS Phase Profile Design

As with any signal-based localization approach, the estima-

tion error is inversely proportional to the received signal-to-

noise-ratio (SNR) [16]. The SNR of the i-th UE at the u-th

BS antenna is defined as

SNR
(u)
i � P

||α(u)
i ||2
σ2
n

. (7)

Azimuth Error Analysis Elevation Error Analysis

Fig. 3. AOA errors vs ACF.

Fig. 4. Azimuth early-late discriminator.

Fig. 5. Elevation early-late discriminator.

Assuming a single BS that is controlling the RIS phase profile,

and in the presence of multiple UEs, the optimization of the

RIS phase profile, Ω, is formulated to maximize the minimum

SNR among all UEs, which can be formulated as

maximize
Ω

min{SNR
(u)
i }i=I

i=1 (8)

subject to |wj | = 1, for j = 1, · · · , N. (9)

E. EKF

Separate EKFs are deployed to estimate the UEs’ 3D posi-

tions and velocities using the TOA and AOA measurements.
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Fig. 6. Overall localization approach.

The EKF state vector for the i-th UE is expressed as

xi �
[
rTr,i, ṙ

T
r,i

]T
. (10)

The UE’s motion is assumed to evolve according to a nearly

constant velocity dynamic with process noise vector w̃r =
[w̃x, w̃y, w̃z]

T
, whose elements are modeled as zero-mean

and mutually independent white noise processes with power

spectral densities q̃x, q̃y , and q̃z , respectively [15].

III. RESULTS

In this section, a Monte Carlo simulation is performed to

study the navigation performance of the proposed system for

three scenarios involving pedestrians, ground vehicles, and

UAVs. The simulation settings are the same as in Table I ex-

cept for different initial velocity ranges vinit, and UE dynamics

parameters [qx, qy, qz], according to the scenario of interest.

Table II summarizes the parameter ranges for the different

cases. The number of users is chosen to be 10; the initial

covariance matrix was set to P(0|0) � diag([10T
1×3,5

T
1×3]

T),
and the measurement noise covariance matrix was chosen to

be R � diag([1, 5, 5]T).
The Monte Carlo analysis was run for 500 trials each

with a random set of parameters selected according to the

ranges provided in Table II. The average empirical cumulative

distribution functions (CDFs) of the positioning errors for the

different scenarios over all iterations and users are depicted in

Figure 7. It can be seen that the best accuracy was achieved for

pedestrian dynamics, while the ground vehicle had comparable

but overall less accuracy. This is expected due to the higher

dynamic stress introduced by the ground vehicle’s dynamics

resulting in increased process and measurement noise.

IV. CONCLUSION

This paper introduced a novel approach to localization in

a millimeter-wave uplink cellular environment using a RIS,

specifically targeting mobile UEs. The proposed approach

develops a measurement engine utilizing a state-of-the-art

carrier-aided code phase-based 5G navigation receiver and

incorporates a passive correlation-based ALL for TOA and

TABLE II
DYNAMICS PARAMETERS FOR DIFFERENT PLATFORMS

Platform Parameter Value
vinit [0, 2.5] m/s

Pedestrian qx & qy [0, 1.44] m/s2

qz [0, 1] m/s2

vinit [0, 50] m/s

Ground Vehicle qx & qy [0, 5] m/s2

qz [0, 2] m/s2

vinit [0, 25] m/s

UAV qx & qy [0, 3] m/s2

qz [0, 4] m/s2

Fig. 7. Empirical CDF of positioning errors for different platforms.

AOA estimation, respectively. Additionally, we deployed an

EKF-based RIS-aided navigation framework to estimate the

3D position and velocity of the mobile UEs. The navigation

accuracy of the proposed system was assessed via Monte

Carlo simulations across varied scenarios, including pedestri-

ans, ground vehicles, and UAVs. The simulations underscored

the potential and efficacy of the proposed navigation system,

showcasing its ability to yield sub-meter-level to meter-level

positioning accuracies for different scenarios.
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