
111

Energy-Constrained Scheduling for Weakly Hard Real-Time
Systems Using Standby-Sparing

LINWEI NIU, Howard University, USA

DANDA B. RAWAT, Howard University, USA

JONATHAN MUSSELWHITE, Howard University, USA

ZONGHUA GU, Umeå University, Sweden

QINGXU DENG, Northeastern University, China

For real-time embedded systems, QoS (Quality of Service), fault tolerance, and energy budget constraint are

among the primary design concerns. In this research, we investigate the problem of energy constrained standby-

sparing for both periodic and aperiodic tasks in a weakly hard real-time environment. The standby-sparing

systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and

transient faults. For such kind of systems, we firstly propose several novel standby-sparing schemes for the

periodic tasks which can ensure the system feasibility under tighter energy budget constraint than the traditional

ones. Then based on them integrated approachs for both periodic and aperiodic tasks are proposed to minimize

the aperiodic response time whilst achieving better energy and QoS performance under the given energy budget

constraint. The evaluation results demonstrated that the proposed techniques significantly outperformed the

existing state of the art approaches in terms of feasibility and system performance while ensuring QoS and fault

tolerance under the given energy budget constraint.

CCS Concepts: • Computer systems organization → Real-time systems; Embedded systems; reliability;

Redundancy.

Additional Key Words and Phrases: energy constraint, standby-sparing, quality of service, fault tolerance,

real-time scheduling

ACM Reference Format:

Linwei Niu, Danda B. Rawat, Jonathan Musselwhite, Zonghua Gu, and Qingxu Deng. 20XX. Energy-Constrained

Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing. ACM Trans. Des. Autom. Electron.

Syst. , , Article 111 (20XX), 35 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

With the advance of IC technology, energy constraint has been an increasingly important factor for

the design of real-time embedded systems. In some real-time applications, the systems are driven

by power supplies with limited energy budget constraint, which has to remain operational during a

well-defined mission cycle. Examples include Heart Pacemakers [34] or other portable embedded

Authors’ addresses: Linwei Niu, linwei.niu@howard.edu, Howard University, the Department of Electrical Engineering

and Computer Science, Washington, DC, USA, 20059; Danda B. Rawat, Howard University, the Department of Electrical

Engineering and Computer Science, Washington, DC, USA, 20059, Danda.Rawat@howard.edu; Jonathan Musselwhite,

Howard University, 2400 Sixth Street NW, Washington, DC, USA, 20059, jonathan.musselwhite@bison.howard.edu; Zonghua

Gu, Umeå University, the Department of Applied Physics and Electronics, Umeå, , Sweden, 90187, zonghua.gu@umu.se;

Qingxu Deng, Northeastern University, the School of Computer Science and Engineering,, Shenyang, Liaoning, China,

110819, dengqx@mail.neu.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full

citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting

with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

© 20XX Association for Computing Machinery.

1084-4309/20XX/-ART111 $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:2 Linwei and Danda, et al.

devices whose power supply can only be charged to full capacity right before the beginning of certain

mission/operation cycle/period(s). For such kind of applications, efforts must be made by all means

to avoid exhausting the energy budget before the end of the mission cycle. On the other hand, fault

tolerance has also been a major concern for pervasive computing systems as system fault(s) could

occur anytime [44]. Generally, computing system faults can be classified into permanent faults and

transient faults [16]. Permanent faults could be caused by hardware failure or permanent damage in

processing unit(s) whereas transient faults are mainly due to transient factors such as electromagnetic

interference and/or cosmic ray radiations.

Recently a lot of researches (e.g. [37, 43]) have been conducted on dealing with energy consump-

tion for fault-tolerant real-time systems. Many of them have focused on dealing with transient faults.

A widely adopted strategy is based on time redundancy, i.e., to reserve recovery jobs whenever

possible, to tolerate transient faults through re-execution of the faulty jobs. For mission critical

applications such as nuclear plant control systems, permanent faults need to be dealt with by all

means to avoid system failure. Otherwise catastrophical consequences could occur. More recently,

solutions adopting hardware redundancy are proposed to address this issue. Among them the standby-

sparing technique has gained much attention [9, 11, 14, 36]. Generally, the standby-sparing makes

use of the redundancy of processing units in multicore/multiprocessor systems. More specifically,

a standby-sparing system consists of two processors, a primary one and a spare one, executing in

parallel. For each real-time job executed in the primary processor, there is a corresponding backup job

reserved for it in the spare processor [11]. As such, whenever a permanent fault occurs to the primary

or the spare processor, the other one can still continue without causing system failure. Moreover, it is

not hard to see that the backup tasks/jobs in the spare processor can also help tolerate transient faults

for their corresponding main tasks/jobs in the primary processor.

In a standby-sparing system, due to the deadline constraint, the execution of the main jobs in

the primary processor and their corresponding backup jobs in the spare processor might need to be

overlapped with each other in time. Thus the total energy consumption could be quite considerable.

Regarding that, some recent works (e.g. [9, 11, 14, 36]) have been reported to reduce energy by

letting the executions of the main jobs and their corresponding backup jobs be shifted away such that,

once the main jobs are completed successfully, their corresponding backup jobs could be canceled

early. For standby-sparing systems with mixed criticality, advanced energy management schemes

were proposed in [32]. When considering the chip thermal effect, peak-power-aware standby-sparing

techniques utilizing energy management schemes were presented in [3].

All of the above works are mainly focused on hard real-time systems, i.e., the systems which require

all real-time tasks/jobs meet their deadlines. However, in practical time-sensitive applications, such

as multimedia or time-critical communication systems, occasional deadline misses are acceptable so

long as the user perceived quality of service (QoS) can be ensured at certain levels. For such kind of

systems, the existing techniques solely based on hard real-time constraints are insufficient in dealing

with energy reduction under standby-sparing and more advanced techniques incorporating the QoS

systematically are desired. To this end, the QoS requirements need to be quantified in certain ways.

One popular existing approach is to use some statistic information such as the average deadline

miss rate as the QoS metric. Although such kind of metric can ensure the quality of service in a

probabilistic manner, it can still be problematic for some real-time applications. For example, for

certain real-time systems, when the deadline misses happened to some tasks, the information carried

by those tasks can be estimated in a reasonable accuracy using techniques such as interpolation.

However, even a very low overall miss rate tolerance cannot prevent a large number of deadline

misses from occurring consecutively in such a short period of time that the critical data could be lost.

The weakly hard QoS model is more appropriate to model such kind of systems. Under the weakly

hard QoS model, tasks have both firm deadlines (i.e., task(s) with deadline(s) missed generate(s) no

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:3

useful values) and a throughput requirement (i.e., sufficient task instances must finish before their

deadlines to provide acceptable QoS levels) [24]. Two well known weakly hard QoS models are

the (𝑚,𝑘)-model [13] and the window-constrained model [38]. The (𝑚,𝑘)-model requires that 𝑚

jobs out of any sliding window of 𝑘 consecutive jobs of the task meet their deadlines, whereas the

window-constrained model requires that𝑚 jobs out of each fixed and nonoverlapped window of 𝑘

consecutive jobs meet their deadlines. It is not hard to see that the window-constrained model is

weaker than the (𝑚,𝑘)-model as the latter one is more restrictive. To ensure the (𝑚,𝑘)-constraints,

Ramanathan et al. [28] adopted a partitioning strategy which divides the jobs into mandatory and

optional ones. The mandatory ones are the jobs that must meet their deadlines in order to satisfy the

(𝑚,𝑘)-constraints. In other words, so long as all the mandatory jobs can meet their deadlines, the

(𝑚,𝑘)-constraints can be satisfied.

With energy budget constraint in mind, in [40], Zhao et al. proposed an approach to maximize

the overall reliability of the systems under given time and energy constraints. Their approach only

considered the transient faults without recovery. When both permanent and transient faults are

taken into consideration in the context of standby-sparing, the energy-constrained issue is especially

critical as the energy consumption of the main/backup jobs often needs to be estimated for the worst

case because their actual energy consumption will usually remain unknown offline and cannot be

accurately predictable, which could make the estimation of the total energy consumption go beyond

the given energy budget constraint unnecessarily.

In many real-time applications such as multimedia and telecommunication systems, both periodic

tasks and aperiodic tasks are required in which periodic tasks are time driven with (𝑚,𝑘)-deadlines

while aperiodic tasks are event driven with soft deadlines [8]. For such kind of mixed task systems,

two design objectives need to be achieved: (i) the (𝑚,𝑘)-constraints of the periodic tasks must be

ensured at any time; (ii) the response time of the aperiodic tasks should be minimized. In this paper,

we will add a third objective to it, i.e., the given energy budget constraint in the mission cycle should

never be exceeded. Based on them, we study the problem of energy constrained standby-sparing for

both periodic and aperiodic tasks in a weakly hard real-time environment under the requirement of

tolerating both permanent and transient faults. To the best of our knowledge, this is the first work

to explore improving feasibility and performance of standby-sparing systems under given energy

budget constraint.

The rest of the paper is organized as follows. Section 2 presents the preliminaries. Section 3

presents our approaches for purely periodic tasks. Section 4 presents our approaches for mixed

systems containing both periodic and aperiodic tasks. In Section 5, we present our evaluation results.

In Section 6, we discuss the related work. In Section 7, we offer our conclusions.

2 PRELIMINARIES

2.1 System model

The real-time system𝑇 considered in this paper contains a number of periodic tasks, i.e., {𝜏1, 𝜏2, · · · , 𝜏𝑁 },

scheduled according to the earliest deadline first (EDF) scheduling scheme. Each periodic task con-

tains an infinite sequence of periodically arriving instances called jobs. Task 𝜏𝑖 is characterized using

five parameters, i.e., (𝐶𝑖 , 𝐷𝑖 , 𝑃𝑖 , 𝑚𝑖 , 𝑘𝑖). 𝐶𝑖 , 𝐷𝑖 (≤ 𝑃𝑖), and 𝑃𝑖 represent the worst case execution time

(WCET), deadline, and period for 𝜏𝑖 , respectively, all in milliseconds. A pair of integers, i.e., (𝑚𝑖 , 𝑘𝑖)

(0 < 𝑚𝑖 ≤ 𝑘𝑖), are used to denote the (𝑚,𝑘)-constraint for task 𝜏𝑖 which requires that, among any 𝑘𝑖
consecutive jobs, at least𝑚𝑖 jobs must be executed successfully. The 𝑗𝑡ℎ job of task 𝜏𝑖 is represented

with 𝐽𝑖 𝑗 and we use 𝑟𝑖 𝑗 , 𝑐𝑖 𝑗 (= 𝐶𝑖), and 𝑑𝑖 𝑗 to denote its release time, execution time, and absolute

deadline, respectively.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:4 Linwei and Danda, et al.

The system 𝑇 can also contain a number of aperiodic tasks, i.e., {𝜏𝑁+1, 𝜏𝑁+2, · · · , 𝜏𝑁+𝑀 }. Each

aperiodic task is characterized using two parameters, i.e., (𝐶𝑖 , 𝐷𝑖), which represent the worst case

execution time and the soft deadline for it.

We assume the task set is to be executed in a standby-sparing system with a limited energy

budget/supply of 𝐸𝐵 units during its mission cycle. Moreover, we assume this energy budget is a hard

constraint in a sense that it cannot be exceeded at any time during its mission cycle. Without loss of

generality, we let the mission cycle be the hyper period of the periodic tasks, i.e., 𝐻 = 𝐿𝐶𝑀 (𝑘𝑖𝑃𝑖)

and assume that the energy supply can only be charged to full capacity right before the beginning of

each mission cycle.

The standby-sparing system consists of two identical processors which are denoted as primary

processor and spare processor, respectively. For the purpose of tolerating permanent/transient faults,

each mandatory job of a task 𝜏𝑖 has two duplicate copies running in the primary and the spare

processors separately. Whenever a permanent fault is encountered in either processor, the other one

will take over the whole system (to continue as normal). For convenience, we call each task 𝜏𝑖 main

task and its corresponding copy running in the other processor backup task, denoted as 𝜏
′

𝑖 . The 𝑗𝑡ℎ

job of task 𝜏
′

𝑖 is denoted as 𝐽
′

𝑖 𝑗 Moreover, we call each mandatory job 𝐽𝑖 𝑗 of task 𝜏𝑖 main job and its

corresponding job running in the other processor (to compensate its failure, if happened) backup job,

denoted as 𝐽𝑖 𝑗 . Note that in this paper 𝐽𝑖 𝑗 ’s backup job, i.e., 𝐽𝑖 𝑗 might be different from 𝐽
′

𝑖 𝑗 , i.e., the

job of 𝜏
′

𝑖 in the same time frame as 𝐽𝑖 𝑗 because, as will be shown in later part of this paper, 𝐽𝑖 𝑗 and 𝐽𝑖 𝑗
can be shifted away from each other completely such that they might belong to different time frames.

2.2 Energy Model

The processor can be in one of the three states: busy, idle and sleeping states. When the processor is

busy executing a job, it consumes the busy power (denoted as 𝑃𝑏𝑢𝑠𝑦) which includes dynamic and

static components during its active operation. The dynamic power (𝑃𝑑𝑦𝑛) consists of the switching

power for charging and discharging the load capacitance, and the short circuit power due to the non-

zero rising and falling time of the input and output signals. The dynamic power can be represented [22]

as

𝑃𝑑𝑦𝑛 = 𝛼𝐶𝐿𝑉
2 𝑓 , (1)

where 𝛼 is the switching activity, 𝐶𝐿 is the load capacitance, 𝑉 is the supply voltage, and 𝑓 is the

system clock frequency. The static power (𝑃𝑠𝑡) can be expressed as

𝑃𝑠𝑡 = 𝐼𝑠𝑡𝑉 , (2)

where 𝐼𝑠𝑡 is mainly due to the leakage current which consists of both the subthreshold leakage

current and the reverse bias junction current in the CMOS circuit. The power consumption when the

processor is busy, i.e, 𝑃𝑏𝑢𝑠𝑦 , is thus

𝑃𝑏𝑢𝑠𝑦 = 𝑃𝑑𝑦𝑛 + 𝑃𝑠𝑡 , (3)

When the processor is idle, it consumes the idle power (denoted as 𝑃𝑖𝑑𝑙𝑒) whose major portion

comes from the static power. When the processor is in the sleeping state, it consumes the sleeping

power (denoted as 𝑃𝑠𝑙𝑒𝑒𝑝) which is assumed to be negligible. Note that although dynamic power can

be reduced effectively by dynamic voltage scaling (DVFS) techniques, the efficiency of DVFS in

reducing the overall energy is becoming seriously degraded with the dramatic increase in static power

(mainly due to leakage) with the shrinking of IC technology size. Dynamic power down (DPD), i.e.,

put the processor into its sleeping state, on the other hand, can greatly reduce the leakage energy

when the processor is not in use. With that in mind, in this paper we assume that, when the processors

is busy, it always consumes 𝑃𝑏𝑢𝑠𝑦 at the maximal supply voltage 𝑉𝑚𝑎𝑥 . Without loss of generality,

we normalize 𝑃𝑏𝑢𝑠𝑦 and the processor speed under 𝑉𝑚𝑎𝑥 (denoted as 𝑠𝑚𝑎𝑥) to 1 and assume that one

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:5

unit of energy will be consumed for a processor to execute a job for one time unit. When no job

is pending for execution, the processors can be put into sleeping state with DPD. Assume that the

energy overhead and the timing overhead of shutting-down/waking-up the processor are 𝐸𝑜 and 𝑡𝑜 ,

respectively. Then the processor can be shut down with positive energy gains only when the length of

the idle interval is larger than 𝑡𝑠𝑑 = max(𝐸𝑜
𝑃𝑖𝑑𝑙𝑒−𝑃𝑠𝑙𝑒𝑒𝑝

, 𝑡𝑜). We therefore call 𝑡𝑠𝑑 the minimal shut-down

interval.

2.3 Fault Model

Similar to the standby-sparing systems in [11, 14, 30], the system we considered can tolerate both

permanent and transient faults. With the redundancy of the processing units, our system can tolerate

at least one permanent fault in the primary or the spare processor. For transient faults which can occur

anytime during the task execution, we assume they can be detected at the end of a job’s execution

using sanity (or consistency) checks [26]. Assume that the energy and the timing overheads of sanity

(or consistency) checks are 𝐸𝑠𝑐 and 𝑡𝑠𝑐 , respectively. Moreover, following the fault model in [44],

we assume that the transient faults will present Poisson distribution [39] and the average transient

fault rate for systems running at the maximal speed 𝑠𝑚𝑎𝑥 (and the corresponding supply voltage)

is 𝜎 (𝑠𝑚𝑎𝑥). Based on it, the average job fault rate for task 𝜏𝑖 at the maximal processor speed 𝑠𝑚𝑎𝑥 ,

represented as 𝜆𝑖 (𝑠𝑚𝑎𝑥) can be calculated as:

𝜆𝑖 (𝑠𝑚𝑎𝑥) = (1 − 𝑒−𝜎 (𝑠𝑚𝑎𝑥)𝐶𝑖) (4)

Also for permanent faults, we follow the model adopted in [30] that if a permanent fault occurs on

any of the cores, the other core can still execute one copy of each task’s instances. However, when

a permanent fault occurs, the system loses its capability of tolerating any additional (transient or

permanent) faults until the faulty core is repaired or replaced [30].

3 ENERGY-CONSTRAINED STANDBY-SPARING FOR PURELY PERIODIC TASKS

3.1 Approach based on floating redundant job scheme

For the scheduling of periodic tasks in a weakly hard real-time system, one essential part is to

determine the mandatory jobs in them to be scheduled under standby-sparing. Two well-known

partitioning strategies are the evenly distributed pattern (or E-pattern) [28] and the deeply-red pattern

(or R-pattern) [17]. According to E-pattern, the pattern 𝜋𝑖 𝑗 for job 𝐽𝑖 𝑗 , i.e., the 𝑗𝑡ℎ job of a task 𝜏𝑖 , is

defined by (here ª1" represents the mandatory job and ª0" represents the optional job):

𝜋𝑖 𝑗 =

{

ł1” if 𝑗 = ⌊⌈
(𝑗−1)×𝑚𝑖

𝑘𝑖
⌉ × 𝑘𝑖

𝑚𝑖
⌋

ł0” otherwise 𝑗 = 1, 2, 3, · · ·
(5)

And according to R-pattern, the pattern 𝜋𝑖 𝑗 for job 𝐽𝑖 𝑗 is defined by:

𝜋𝑖 𝑗 =

{

ł1” if 1 ≤ 𝑗 𝑚𝑜𝑑 𝑘𝑖 ≤ 𝑚𝑖

ł0” otherwise 𝑗 = 1, 2, 3, · · ·
(6)

The mandatory/optional job partitioning according to equation (5) has the property that it spreads

out the mandatory jobs evenly in each task along the time. Moreover, it is shown in [23] that E-pattern

has better schedulability that R-pattern in general and is the optimal pattern when all task periods are

co-prime in particular.

Note that the job patterns defined with either E-pattern or R-pattern have the property that they

define a minimal set of mandatory jobs that ªjust" satisfies the given (𝑚,𝑘)-constraint in each sliding

window. Due to this property, in order to ensure the system reliability under standby-sparing, a

popular approach is to reserve a backup job in the same time frame of the backup task running in the

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:6 Linwei and Danda, et al.

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

4
 12
 24
16

24

7
 19

3
 13
8
 16
 19

T

1

8
 15

4
 5
 7
 20
15

0

T

2

T
’

2

0

3

4
 10

11

17

Fig. 1. The schedule for the mandatory main/bakcup jobs under the preference oriented scheme

in [11]: (a) in the primary processor; (b) in the spare processor.

other processor for each mandatory job of the main task. Consequently, the total energy consumption

will be two times of that consumed by one processor. Obviously, the energy consumption in such

kind of standby-sparing systems could be quite considerable. In order to reduce energy consumption,

in [14], Haque et. al proposed to run the main tasks/jobs in the primary processor according to the

earliest deadline as soon as possible (EDS) scheme while the backup tasks/jobs in the spare processor

according to the earliest deadline as late as possible (EDL) scheme [6] such that, once the main

tasks/jobs are completed successfully, their corresponding backup tasks/jobs could be (partially)

canceled. In [11], a more advanced technique named preference oriented scheme was adopted which,

in both the primary and the backup processors, lets some tasks be scheduled under EDS scheme

while the other tasks be scheduled under EDL scheme. In [25], an energy-aware approach based on

the execution of optional jobs was proposed for task sets partitioned under deeply-red pattern [17]

which is weaker than E-pattern in ensuring the schedulability of the task sets [23]. Although the

approaches in [11, 14, 25] are able to reduce the actual energy consumption of the standby-sparing

system to some extent, since none of them could predict the quantifiable amount of energy that can

be saved in advance, the total energy budget still has to be estimated using the summation of the

worst case energy consumption in both processors, i.e.

∑︁

𝑖

𝐻𝑚𝑖

𝑘𝑖𝑃𝑖
(𝐶𝑖 + 𝐸𝑠𝑐) + 𝑃𝑖𝑑𝑙𝑒𝐻 (1 −

∑︁

𝑖

𝑚𝑖 (𝐶𝑖 + 𝑡𝑠𝑐)

𝑘𝑖𝑃𝑖
) +

∑︁

𝑖

𝐻𝑚𝑖

𝑘𝑖𝑃𝑖
𝐶𝑖 + 𝑃𝑖𝑑𝑙𝑒𝐻 (1 −

∑︁

𝑖

𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
) (7)

where 𝐻 is the hyper period.

Otherwise if the given energy budget constraint 𝐸𝐵 during the hyper period is less than the energy

consumption estimated with Equation (7), the task set can not be guaranteed to be feasible in advance.

Regrading that, some more advanced technique needs to be explored in order to ensure the feasibility

of the task set under tighter energy budget constraint 𝐸𝐵 . This could be illustrated using the following

examples.

Consider a task set consisting of two tasks, i.e., 𝜏1 = (2.9, 4, 4, 4, 6), and 𝜏2 = (1.9, 8, 8, 2, 3), to be

executed in a standby-sparing system with given energy budget constraint 𝐸𝐵 = 28 units within its

hyper period 24 millisecond, assuming 𝑃𝑖𝑑𝑙𝑒 = 0.05, 𝐸𝑠𝑐 = 0.2, and 𝑡𝑠𝑐 = 0.1 millisecond.

If we assume no fault occurred during the hyper period, Figure 1 shows the schedule for the

mandatory jobs based on E-pattern for the original given (𝑚,𝑘)-constraints based on the preference

oriented scheme in [11] (the empty rectangles represent the canceled part of the jobs). Note that

although in the result schedule the total energy consumption could be reduced by 7 units, this amount

of energy reduction cannot be accurately estimated in advance, especially considering the possible

transient/permanent faults that could happen anytime during the job execution. Therefore, in order

to prepare for the worst case, we still need to assume the total energy consumption to be what is

calculated using Equation (7). Based on it, the estimated worst case energy consumption is 32.95

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:7

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

5
 13
 24
16

24

19
 21

3
 13
8
 19

T

1

8

5
 21
16

0

T

2

T
’

2

0

3

11

11

J
11
 J
12
 J
13

J’
11
 J’
12
 J’
13

Fig. 2. The schedule for the mandatory main/bakcup jobs under the floating redundant job scheme:

(a) in primary processor; (b) in spare processor.

units and has already exceeded the given energy budget constraint. As a result, the feasibility of the

task set cannot be ensured.

However, if we adopt a different way of scheduling the task set, it is still possible to ensure the

feasibility of the system. The main idea is: we firstly temporarily increase the𝑚𝑖 values of each task

𝜏𝑖 by 1 such that the (𝑚,𝑘)-constraints of tasks 𝜏1 and 𝜏2 become (5, 6) and (3, 3), respectively; after

that for each task we use one of its mandatory jobs under the new (𝑚,𝑘)-constraint as the ªtemporary

extra mandatory job" to help us reduce the energy budget required. The detailed schedule are shown

in Figure 2. As shown Figure 2(a), for task 𝜏1, since its new job pattern under the new temporary

(𝑚,𝑘)-constraint is ª111110" which contains an extra mandatory job in it, this extra mandatory job

does not need to have a backup job for it (because even if it had failed, the remaining ones can still

satisfy the original (𝑚,𝑘)-constraint). As shown Figure 2, in the beginning we designated the first

mandatory job of 𝜏1, i.e., 𝐽11 in the primary processor as the temporary extra mandatory job and

executed it without backup job at all (its backup job 𝐽
′

11
was canceled as soon as 𝐽11 was designated

as the temporary extra mandatory job). Once 𝐽11 was completed successfully at time 3, we switched

the temporary extra mandatory job to 𝐽
′

12
in the spare processor while canceling 𝐽12. After 𝐽

′

12
was

completed at time 8, we switched the temporary extra mandatory job to 𝐽13 in the primary processor

while canceling 𝐽
′

13
. . .. This procedure could be repeated until all mandatory jobs of 𝜏1 under its new

temporary (𝑚,𝑘)-constraint had been executed. The procedure for task 𝜏2 could also be conducted in

a similar way. From Figure 2 it is not hard to see that, if no fault occurred during the hyper period,

each task 𝜏𝑖 will have totally (𝑚𝑖 + 1) mandatory jobs executed in either the primary or the spare

processor within each window of 𝑘𝑖 jobs. Therefore the total busy energy consumption within the

hyper period will be 21.8 units. Even when we have the energy consumption during the idle period

included, the estimated total energy consumption of the system within the hyper period will be (21.8

+ 𝑃𝑖𝑑𝑙𝑒 × 27=) 23.15 units, which is less than 𝐸𝐵 and therefore feasible.

The above calculation is based on the assumption that no fault ever occurred. If during runtime

a permanent fault occurred to one processor, only the mandatory jobs in the other processor will

be executed to resume the system, which will not increase the total energy consumption computed

above. On the other hand, if during runtime some transient fault(s) occurred, some temporary extra

mandatory job might be failed due to it. In this case all the other mandatory jobs within the same

window of 𝑘𝑖 jobs become required ones whose backup jobs also need to be executed. Under this

scenario the estimation of the total energy consumption also needs to take the energy consumption

of those backup jobs into consideration based on probability. For example, in the above task set, if

we assume the probability of transient fault to be 10−5 per millisecond, then the expected energy

consumption of all backup jobs within one window of 𝑘𝑖 jobs for task 𝜏1 and task 𝜏2 will be 0.001682

and 0.0002166 units, respectively. After adding it to the above result, the total estimated energy

consumption of the system subject to fault(s) will be 23.1518986 units, which is still less than the

given energy budget constraint and therefore feasible.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:8 Linwei and Danda, et al.

Algorithm 1 The algorithm based on floating redundant job

1: Preparations: For each task 𝜏𝑖 ∈ 𝑇 , re-partition it based on its new temporary (𝑚,𝑘)-constraint of (𝑚𝑖 +1, 𝑘𝑖)

and determine its mandatory main/backup jobs in both primary and spare processors correspondingly. In

primary processor, mark 𝐽𝑖1, i.e., the first job of each task 𝜏𝑖 as its initial floating redundant job;

2:

3: For either the primary processor or the spare processor:

4:

5: Upon the execution of a mandatory job 𝐽𝑖 𝑗 at time 𝑡𝑐𝑢𝑟 :

6: if 𝐽𝑖 𝑗 is the floating redundant job then

7: Cancel 𝐽𝑖 𝑗 ’s corresponding job in the other processor and add its time budget to the slack queue 𝑆𝑇𝑄;

8: Execute 𝐽𝑖 𝑗 following the EDF scheme;

9: if any slack time 𝑆𝑇𝑄𝑖 (𝑡) with higher priority than 𝐽𝑖 𝑗 is available then

10: Reclaim the slack time to execute 𝐽𝑖 𝑗 as soon as possible;

11: end if

12: else if 𝐽𝑖 𝑗 is within the same window of 𝑘𝑖 jobs as the most recent failed floating redundant job then

13: if 𝐽𝑖 𝑗 is a mandatory main job then

14: repeat lines 8-11;

15: else

16: Revise 𝑟𝑖 𝑗 to max{(𝑟𝑖 𝑗 + 𝜑𝑖), (𝑡𝑐𝑢𝑟 + 𝑆𝑇𝑄𝑖 (𝑡𝑐𝑢𝑟))};

17: Execute 𝐽𝑖 𝑗 following the EDF scheme;

18: end if

19: else

20: mark 𝐽𝑖 𝑗 as the current floating redundant job;

21: end if

22:

23: Upon the completion of mandatory job 𝐽𝑖 𝑗 at current time 𝑡𝑐𝑢𝑟 :

24: if the execution of job 𝐽𝑖 𝑗 is successful then

25: if 𝐽𝑖 𝑗 is the floating redundant job then

26: Let 𝐽𝑎 be the next mandatory job after 𝐽𝑖 𝑗 in the other processor;

27: Mark 𝐽𝑎 as the floating redundant job;

28: Cancel 𝐽𝑎’s corresponding job in the other processor and add its time budget to the slack queue 𝑆;

29: else

30: Cancel 𝐽𝑖 𝑗 ’s corresponding job in the other processor and add its residue time budget to the slack

queue 𝑆;

31: end if

32: if 𝐽𝑖 𝑗 was the only job in the mandatory job queue at time 𝑡−𝑐𝑢𝑟 then

33: Let 𝑁𝑇𝐴 be the earliest arrival time of the next upcoming mandatory job in the same processor;

34: if (𝑁𝑇𝐴 − 𝑡𝑐𝑢𝑟) > 𝑡𝑠𝑑 then

35: Shut down the processor and set wake-up timer as (𝑁𝑇𝐴 − 𝑡𝑐𝑢𝑟);

36: end if

37: end if

38: end if=0

Note that in the above approach the mandatory main/backup jobs of each task under the new

temporary (𝑚,𝑘)-constraint was used as the temporary extra mandatory job alternatively. It appears

in effect as if the temporary extra mandatory job was ªfloating" through the mandatory main/backup

jobs one by one within each window of 𝑘𝑖 jobs and jumping back and forth between the primary

and the spare processors. Since this temporary extra mandatory job is not required for satisfying the

original (𝑚,𝑘)-constraint, for convenience, we call it floating redundant job. As shown, this floating

redundant job is very useful in helping us to reduce the estimation of the total energy consumption

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:9

and meeting the overall energy budget constraint. Correspondingly the above approach is also called

the floating redundant job scheme. The details of it are presented in Algorithm 1.

As shown in Algorithm 1, in the beginning, for each task 𝜏𝑖 ∈ 𝑇 , we firstly re-partition it with its

new temporary (𝑚,𝑘)-constraint of (𝑚𝑖 + 1, 𝑘𝑖) based on E-pattern and mark its first job (represented

as 𝐽𝑖1) as its initial floating redundant job (note that each task has a floating redundant job of its own).

During runtime, in both the primary and the spare processors, a mandatory job ready queue (MQ) is

maintained. Upon arrival, a job of task 𝜏𝑖 is inserted into the MQ if its job pattern is ª1". All jobs

in MQ will be executed following the EDF scheme. A slack time queue 𝑆𝑇𝑄 is also maintained for

each processor to keep track of the slack time(s) from (partially) canceled job(s) in it. Whenever the

current job 𝐽𝑖 𝑗 of task 𝜏𝑖 got chance to be executed, if it has been designated as the current floating

redundant job of 𝜏𝑖 , its corresponding job in the other processor should be canceled immediately

(because the floating redundant job does not need backup job) whose time budget should be inserted

into the slack time queue 𝑆𝑇𝑄 based on its deadline (line 28). Once the current floating redundant job

𝐽𝑖 𝑗 is completed successfully, it is counted as an effective job and the next mandatory main/backup

job after 𝐽𝑖 𝑗 in the other processor should be designated as the new floating redundant job (lines

26-27). Otherwise in order to maintain the original (𝑚,𝑘)-constraint under fault tolerance all jobs

following 𝐽𝑖 𝑗 in the same window of 𝑘𝑖 jobs should not be designated as floating redundant job and

therefore should be executed in parallel with their corresponding jobs in the other processor (lines

12-18). For jobs more than 𝑘𝑖 job patterns/positions after 𝐽𝑖 𝑗 , since they are not within the range of the

same window 𝐽𝑖 𝑗 belongs to, they will not be affected by the failure of 𝐽𝑖 𝑗 at all and can be designated

as the floating redundant job in turn again, similar to the case of the initial floating redundant job in

the beginning (line 20).

Note that in the case when the current floating redundant job 𝐽𝑖 𝑗 is found to have failed due

to transient fault, since all mandatory jobs following 𝐽𝑖 𝑗 in all windows containing 𝐽𝑖 𝑗 cannot

be designated as floating redundant job, totally 𝑚𝑖 mandatory jobs after 𝐽𝑖 𝑗 need to be executed

concurrently with their corresponding jobs in the other processor. In this scenario in order to reduce

the energy consumption further, the execution of the corresponding jobs in the other processor should

be procrastinated as late as possible such that the overlapped executions of the jobs in the primary

and the spare processors could be reduced (lines 16-17). Regarding that, the corresponding jobs in

the other processor could be procrastinated by a time interval 𝜑𝑖 calculated based on the following

theorem. For easy of presentation, we adopt the following notation, i.e., ⌈𝑥⌉+ to represent (1 + ⌊𝑥⌋)

throughout this paper.

THEOREM 3.1. Given periodic tasks 𝑇 = {𝜏1, 𝜏2, ..., 𝜏𝑁 } to be scheduled with Algorithm 1. Let all

tasks be ordered by increasing value of 𝐷𝑖 , all mandatory job deadlines can be guaranteed if any

mandatory job 𝐽𝑖 𝑗 of task 𝜏𝑖 is delayed by no more than 𝜑𝑖 time units (called the delay period of task

𝜏𝑖) if for any instant of time 𝑡:

∀𝑖 1 ≤ 𝑖 ≤ 𝑁 𝑡 ≥ 𝜑𝑖 +
∑︁

𝐷𝑞≤𝑡

⌈
𝑚𝑞 + 1

𝑘𝑞
⌈
𝑡 − 𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐) (8)

and

∀𝑗 < 𝑖 𝜑 𝑗 ≤ 𝜑𝑖 (9)

PROOF. Use contradiction. Assuming at certain time point 𝑡 ′, some mandatory job missed its

deadline. Then we can always find another time point 𝑡0 < 𝑡
′ such that during the time interval [𝑡0, 𝑡

′]

the processor is kept busy executing only mandatory jobs with arrival times or delayed starting times

no earlier than 𝑡0 and with deadlines less than or equal to 𝑡 ′. Since no job has arrival time or delayed

starting time earlier than time 0, 𝑡0 is well defined. We consider two cases:

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:10 Linwei and Danda, et al.

• 1) At time 𝑡0, there is no pending workload from mandatory jobs with delayed starting time and

with deadlines less than or equal to 𝑡 ′. Then according to [28], the total mandatory work demand

within the interval [𝑡0, 𝑡
′] is bounded by

∑

𝐷𝑞≤(𝑡 ′−𝑡0) ⌈
𝑚𝑞+1

𝑘𝑞
⌈
𝑡 ′−𝑡0−𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐). Since some

job missed the deadline at 𝑡 ′, we have
∑

𝐷𝑞≤(𝑡 ′−𝑡0) ⌈
𝑚𝑞+1

𝑘𝑞
⌈
𝑡 ′−𝑡0−𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐) > (𝑡 ′ − 𝑡0). On

the other hand, considering the first busy interval, let 𝑡 = (𝑡 ′ − 𝑡0), from Equation (8), we have
∑

𝐷𝑞≤(𝑡 ′−𝑡0) ⌈
𝑚𝑞+1

𝑘𝑞
⌈
𝑡 ′−𝑡0−𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐) ≤ (𝑡 ′ − 𝑡0). Contradiction!

• 2) At time 𝑡0, there is pending workload from mandatory jobs with delayed starting time and

with deadlines less than or equal to 𝑡 ′. In this case the processor is idle at 𝑡−
0

. Let 𝑡1 (< 𝑡0) be

the latest time before 𝑡 ′ when there are no pending mandatory jobs prior to 𝑡1 with deadlines

less than or equal to 𝑡 ′. The the mandatory work demand consumed in the interval [𝑡0, 𝑡
′] is

generated by the mandatory jobs arriving in the interval [𝑡1, 𝑡
′]. Obviously the mandatory work

demand within the interval [𝑡1, 𝑡
′] is bounded by

∑

𝐷𝑞≤(𝑡 ′−𝑡1) ⌈
𝑚𝑞+1

𝑘𝑞
⌈
𝑡 ′−𝑡1−𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐). Let

𝑘 be the maximal index among the tasks with deadlines no larger than (𝑡 ′ − 𝑡1). Since there is

deadline missing at 𝑡 ′, we have

∑︁

𝐷𝑞≤(𝑡 ′−𝑡1)

⌈
𝑚𝑞 + 1

𝑘𝑞
⌈
𝑡 ′ − 𝑡1 − 𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞 + 𝑡𝑠𝑐) > (𝑡 ′ − 𝑡0) (10)

Note that the idle interval [𝑡1, 𝑡0] can only caused by the delay of certain task arriving at 𝑡1,

say 𝜏𝑥 , whose delay time is bounded by 𝜑𝑥 . Since 𝜏𝑥 also contribute to the work demand

within [𝑡1, 𝑡
′], from Equation (9), 𝜑𝑥 ≤ 𝜑𝑘 . So the idle interval length (𝑡0 − 𝑡1) is bounded by

𝜑𝑘 . Together with the result from Equation (10) we have (𝑡 ′ − 𝑡1) = (𝑡0 − 𝑡1) + (𝑡 ′ − 𝑡0) ≤

𝜑𝑘+(𝑡
′−𝑡0) ≤ 𝜑𝑘+

∑

𝐷𝑞≤(𝑡 ′−𝑡1) ⌈
𝑚𝑞+1

𝑘𝑞
⌈
𝑡 ′−𝑡1−𝐷𝑞

𝑇𝑞
⌉+⌉ (𝐶𝑞+𝑡𝑠𝑐). In Equation (8), letting 𝑡 = (𝑡 ′−𝑡1),

contradiction reached!

□

The rationale of Equation (8) is to find the maximal time 𝜑𝑖 before any absolute deadline of

the mandatory jobs from 𝜏𝑖 to which the work-demand of the mandatory jobs from 𝜏𝑖 and other

mandatory job(s) with deadline(s) no later than it can be delayed such that no mandatory job deadline

will be missed. Based on it, 𝜑𝑖 can be computed as

𝜑𝑖 = min{𝑑𝑖 − (
∑︁

𝐷𝑞≤𝑑𝑖

(⌈
𝑚𝑞 + 1

𝑘𝑞
⌈
𝑑𝑖 − 𝐷𝑞

𝑇𝑞
⌉+⌉)(𝐶𝑞 + 𝑡𝑠𝑐))} (11)

for all 𝑑𝑖 ≤ 𝐿, where 𝐿 is the ending point of the first busy period when executing the mandatory jobs

only and 𝑑𝑖 is the absolute deadline of any mandatory job of task 𝜏𝑖 belonging to 𝐿. Note that, when

calculating 𝜑𝑖 , if 𝜑𝑖 < 𝜑 𝑗 for any task 𝜏 𝑗 with index less than 𝜏𝑖 , i.e., 𝑗 < 𝑖, the value of 𝜑 𝑗 should be

reset to be the same as 𝜑𝑖 due to condition (9) in Theorem 3.1.

Based on Algorithm 1, the estimation of the total energy consumption of a system consisting of

purely periodic tasks could be calculated as:

𝐸 =

∑︁

𝑖

𝐻 (𝑚𝑖 + 1)

𝑘𝑖𝑃𝑖
(𝐶𝑖 + 𝐸𝑠𝑐) +

∑︁

𝑖

𝐻 (𝑚𝑖 + 1)

𝑘𝑖𝑃𝑖
𝜆𝑖 (𝑠𝑚𝑎𝑥)𝑚𝑖𝐶𝑖

+ 2𝑃𝑖𝑑𝑙𝑒𝐻 (1 −
1

2

∑︁

𝑖

(𝑚𝑖 + 1) (𝐶𝑖 + 𝑡𝑠𝑐)

𝑘𝑖𝑃𝑖
) (12)

where 𝜆𝑖 (𝑠𝑚𝑎𝑥) is the average job fault rate for task 𝜏𝑖 at the maximal processor speed 𝑠𝑚𝑎𝑥 .

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:11

1
 0
0
0
 1
0
 1
...
 ...
1
 ...
 ...
 ...

Window 1
 Window 2

Window x

Window y

0
 1
0
 1
...
 ...

Window 3

Window z

Fig. 3. The job patterns under consecutive windows.

Note that the energy calculated above is indeed an upper bound of the energy consumption by

Algorithm 1 because during execution, if some idle intervals are longer than 𝑡𝑠𝑑 , those idle intervals

can be shutdown/wake-up dynamically to reduce actual energy consumption further (lines 32-37).

Moreover, during the runtime of Algorithm 1, at any time there are at most 𝑁 mandatory

main/backup jobs in its ready queue. So the online complexity of Algorithm 1 is 𝑂 (𝑁).

3.2 Approach based on window transferring scheme

Although the floating redundant job scheme in Section 3.1 is quite helpful in estimating the required

total energy consumption of the system and checking its feasibility under the given energy budget

constraint, it needs to increase the𝑚𝑖 value of each periodic task by 1 (to accommodate the extra

mandatory job used as the floating redundant job), which might affect the schedulability of the task

set. This could be illustrated using the following example.

Consider another task set consisting of two periodic tasks, i.e., 𝜏1 = (2.9, 4, 4, 2, 4), and 𝜏2 =

(3.9, 10, 10, 1, 3), to be executed in a standby-sparing system with given energy budget constraint

within its hyper period 240 to be 200 units, assuming same value of 𝑃𝑖𝑑𝑙𝑒 , 𝐸𝑠𝑐 , and 𝑡𝑠𝑐 as in the

previous example. In order to apply algorithm 1, the task set needs to firstly increase the (𝑚,𝑘)-

constraints of tasks 𝜏1 and 𝜏2 to be (3, 4) and (2, 3), respectively. However, it is easy to verify that the

task set will not be schedulable under such new temporary (𝑚,𝑘)-constraints. On the other hand, to

preserve the scheduability of the task set, if we apply the approach in [11] to execute the task set

under the original (𝑚,𝑘)-constraints, although the task set is schedulable, the estimated total energy

consumption based on Equation (7) will be 255.99 units, which has exceeded the given energy budget

constraint and therefore cannot ensure the feasibility of the task set.

However, if we follow a different way of scheduling the task set, it is still possible to ensure the

feasibility of the task set. Before that, we need to define a variation of the E-pattern as followed.

Based on it, the pattern 𝜋𝑖 𝑗 for job 𝐽𝑖 𝑗 , is defined as [27]:

𝜋𝑖 𝑗 =

{

ł1” if 𝑗 = ⌊⌈
(𝑗−1+𝑟𝑖)×𝑚𝑖

𝑘𝑖
⌉ × 𝑘𝑖

𝑚𝑖
⌋ + 1

ł0” otherwise 𝑗 = 1, 2, · · ·
(13)

Note that the above definition is actually a rotated version of the original E-pattern which can be

regarded as rotating the E-pattern defined in Equation (5) to the right by 𝑟𝑖 bits. For example, for a

given (𝑚,𝑘)-constraint of (3, 6), its original E-patten is ª101010". If we rotate it to the right by 𝑟𝑖 = 1

bit, the resulting patterns will be ª010101" which are the same as defined according to Equation (13).

For convenience, we call the pattern defined by (13) a rotation of the original E-pattern and represent

it as 𝐸𝑟𝑖 -pattern.

With the above definition, we have the following lemma.

LEMMA 3.2. For any task 𝜏𝑖 with (𝑚,𝑘)-constraint of (𝑚𝑖 , 𝑘𝑖), let 𝑦𝑖 =𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

if
𝑘𝑖+1
𝑚𝑖+1

is an integer

and𝑚𝑖 < 𝑘𝑖 ; or let 𝑦𝑖 = 𝑘𝑖 − 1 if
𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1. Let 𝑟𝑖 = ⌈
𝑦𝑖−𝑚𝑖

𝑚𝑖
⌉. Let the jobs of 𝜏𝑖 within each

separate window of 𝑦𝑖 jobs be partitioned with either E-pattern or 𝐸𝑟𝑖 -pattern based on the new

(𝑚,𝑘)-constraint of (𝑚𝑖 , 𝑦𝑖), its original (𝑚,𝑘)-constraint is satisfied.

PROOF. According to Lemma 3.2, there are two possibilities for the value of 𝑦𝑖 : if 𝑘𝑖+1
𝑚𝑖+1

is an

integer, then𝑦𝑖 =𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

; or if 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖−1,𝑦𝑖 = 𝑘𝑖−1. Under both possibilities𝑦𝑖 is an integer.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:12 Linwei and Danda, et al.

When we inspect any two consecutive separate windows of 𝑦𝑖 jobs in the resulting job patterns from

Lemma 3.2, obviously there are two cases in general, (i) the two windows are determined with

different type of patterns; or (ii) they are determined with same type of patterns.

For case (i), without lose of generality, let’s assume the case when the two consecutive windows of

𝑦𝑖 jobs, namely window 1 and window 2, are partitioned with E-pattern and 𝐸𝑟𝑖 -pattern, respectively,

as shown in Figure 3. Then in Window 1, according to [21], the maximal number of consecutive ª0"s

is equal to 𝑟𝑖 defined in Lemma 3.2, which happened at the rightmost side of Window 1. Meanwhile,

in window 2, since according to Definition (13) 𝐸𝑟𝑖 -pattern is achieved by rotating E-pattern to the

right by 𝑟𝑖 bits, then in the leftmost side of Window 2 there are exactly 𝑟𝑖 ª0"s. Considering any

sliding window of (𝑦𝑖 + 𝑟𝑖) jobs starting from the current position of Window x (obviously in the

beginning there are𝑚𝑖 ª1"s in it), each time when we move window x to the right by one position,

the number of ª1"s in it will not change because the patterns for the leftmost (𝑦𝑖 − 𝑟𝑖) jobs in Window

1 are the same as the rightmost (𝑦𝑖 − 𝑟𝑖) jobs in Window 2, according to the definition of 𝐸𝑟𝑖 -pattern.

As such, until Window x reached the position of Window y, the number of ª1"s in the sliding Window

x is always𝑚𝑖 .

For case (ii), let’s assume after Window 2, the next window, namely Window 3, has the same

patterns as Window 2, i.e., 𝐸𝑟𝑖 -pattern. Then obviously the patterns for the leftmost (𝑦𝑖 − 𝑟𝑖) jobs

in Window 3 are the same as the rightmost (𝑦𝑖 − 𝑟𝑖) jobs in Window 1. So if we continue to move

Window y to the right, until Window y reached the position of Window z, the number of ª1"s in

the sliding Window y will remain the same, i.e.,𝑚𝑖 . After that, if we continue move Window z to

the right, obviously the number of ª1"s in it will be no less than𝑚𝑖 , either. The case when both two

consecutive windows are partitioned based on E-pattern is similar.

Based on the above statements, the resulting pattern from Lemma 3.2 can always satisfy the

(𝑚,𝑘)-constraint of (𝑚𝑖 , (𝑦𝑖 + 𝑟𝑖)). Next we will show that (𝑦𝑖 + 𝑟𝑖) = 𝑘𝑖 . We also check it under the

two possibilities:

Possibility (i): 𝑘𝑖+1
𝑚𝑖+1

is an integer. Since in this case 𝑦𝑖 =𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

,
𝑦𝑖
𝑚𝑖

=
𝑘𝑖+1
𝑚𝑖+1

is an integer. So

𝑦𝑖 + 𝑟𝑖 = 𝑚𝑖
𝑘𝑖 + 1

𝑚𝑖 + 1
+ ⌈

𝑦𝑖 −𝑚𝑖

𝑚𝑖
⌉ =𝑚𝑖

𝑘𝑖 + 1

𝑚𝑖 + 1
+ ⌈

𝑦𝑖

𝑚𝑖
⌉ − 1

= 𝑚𝑖
𝑘𝑖 + 1

𝑚𝑖 + 1
+ ⌈

𝑘𝑖 + 1

𝑚𝑖 + 1
⌉ − 1 =𝑚𝑖

𝑘𝑖 + 1

𝑚𝑖 + 1
+
𝑘𝑖 + 1

𝑚𝑖 + 1
− 1

= (𝑚𝑖 + 1)
𝑘𝑖 + 1

𝑚𝑖 + 1
− 1 = 𝑘𝑖 (14)

Possibility (ii): 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1. Since in this case 𝑦𝑖 = 𝑘𝑖 − 1,

𝑘𝑖 − 1

2
≤ 𝑚𝑖 < 𝑘𝑖 − 1 ⇔ 1 <

𝑘𝑖 − 1

𝑚𝑖
≤ 2 ⇔ 1 <

𝑦𝑖

𝑚𝑖
≤ 2 (15)

As such, in this case

𝑟𝑖 = ⌈
𝑦𝑖 −𝑚𝑖

𝑚𝑖
⌉ = ⌈

𝑦𝑖

𝑚𝑖
⌉ − 1 = 2 − 1 = 1 (16)

So,

𝑦𝑖 + 𝑟𝑖 = (𝑘𝑖 − 1) + 1 = 𝑘𝑖 (17)

From the above, for both possibilities, (𝑦𝑖 + 𝑟𝑖) = 𝑘𝑖 . □

To help understand Lemma 3.2, consider a task 𝜏𝑖 with (𝑚,𝑘)-constraint of (3,7). According to

Lemma 3.2, 𝑦𝑖 = 6 and 𝑟𝑖 = 1. Then based on Equation (13), 𝐸1 =ª010101". From Lemma 3.2, one

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:13

possible pattern for task 𝜏𝑖 is ª101010010101010101· · · ". It is easy to verify that it can satisfy the

original (𝑚,𝑘)-constraint of (3,7).

Note that Lemma 3.2 effectively sets up a straightforward way of converting a window-constraint

of𝑚𝑖/𝑦𝑖
1 (within each separate window of 𝑦𝑖 jobs) to the original (𝑚,𝑘)-constraint of (𝑚𝑖 , 𝑘𝑖). It is

similar to, but tighter than, the result in [38] which can convert a window constraint of𝑚𝑖/
(𝑚𝑖+𝑘𝑖)

2
to

the original (𝑚,𝑘)-constraint of (𝑚𝑖 , 𝑘𝑖). For example, for the above task 𝜏𝑖 with (𝑚,𝑘)-constraint of

(3,7), in order to satisfy its original (𝑚,𝑘)-constraint, based on Lemma 3.2 it only needs to satisfy the

window-constraint of 3/6 in each separate window of 6 jobs whereas according to the approach in

[38], it needs to satisfy the window-constraint of (3,5) in each separate window of 5 jobs. Obviously

the former one is easier to be schedulable than the latter one. In the following, we will formulate this

result into a lemma as well.

Algorithm 2 The algorithm based on window transferring

1: Preparations: For each task 𝜏𝑖 ∈ 𝑇 , if 𝑘𝑖+1
𝑚𝑖+1

is an integer and𝑚𝑖 < 𝑘𝑖 or 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1, determine

𝑦𝑖 and 𝑟𝑖 according to Lemma 3.2. Re-partition 𝜏𝑖 and its backup task 𝜏
′

𝑖 with the new temporary QoS

constraint of𝑚𝑖/𝑦𝑖 based on E-pattern and 𝐸𝑟𝑖 -pattern, respectively. For any mandatory main job 𝐽𝑖 𝑗 , mark

job 𝐽
′

𝑖< 𝑗+𝑟𝑖>
in the other processor as its backup job (denoted as 𝐽𝑖 𝑗);

2:

3: For either the primary processor or the spare processor:

4:

5: Upon the execution of a mandatory job 𝐽𝑖 𝑗 at time 𝑡𝑐𝑢𝑟 :

6: Execute 𝐽𝑖 𝑗 following the EDF scheme;

7: if any slack time 𝑆𝑇𝑄𝑖 (𝑡) with earlier deadline than 𝐽𝑖 𝑗 is available then

8: if 𝐽𝑖 𝑗 is a mandatory main job then

9: Reclaim the slack time to execute 𝐽𝑖 𝑗 as soon as possible;

10: else

11: Use the slack time to procrastinate 𝐽𝑖 𝑗 as late as possible;

12: end if

13: end if

14:

15: Upon the completion of mandatory job 𝐽𝑖 𝑗 at current time 𝑡𝑐𝑢𝑟 :

16: if the execution of job 𝐽𝑖 𝑗 is successful then

17: Let 𝐽
′

𝑖 𝑗 be the job in the other processor within the same time frame as 𝐽𝑖 𝑗 ;

18: if 𝐽
′

𝑖 𝑗 is not a the backup job of a failed mandatory main job then

19: Cancel 𝐽𝑖 𝑗 ’s backup job 𝐽𝑖 𝑗 , i.e., 𝐽
′

𝑖 (𝑗+𝑟𝑖)
in the other processor entirely and add its time budget to the

slack queue 𝑆𝑇𝑄;

20: else

21: Cancel the remaining part of 𝐽
′

𝑖 𝑗 and add its residue time budget to the slack queue 𝑆𝑇𝑄;

22: end if

23: Repeat lines 32-37 in Algorithm 1

24: end if=0

LEMMA 3.3. For any task 𝜏𝑖 , if both the window constraints of𝑚𝑖/(𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

) and𝑚𝑖/
(𝑚𝑖+𝑘𝑖)

2
can

be used to define 𝜏𝑖 ’s job patterns successfully under E-pattern, the job patterns determined based on

the former one has better schedulability than the job patterns determined based on the latter one.

1Here we follow the notation used in [38] which used the notation ªx/y" to indicate the window-constraint requiring within

each separate window of 𝑦 jobs at least x jobs out of them must meet their deadlines.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:14 Linwei and Danda, et al.

(a)

(b)

Primary

Processor:

Spare

Processor:

10
 20
3
 12
 24
17

27
4
 7
 16

4

12
8
 19
20

J

11

15
0

0

T

1

T
’

2

T
’

1

T

2

7

23

failed

J
17

28
 31
 35
36
 39

J’
12

28
 31
 35
32

J’
18
 J’
19

Fig. 4. The schedule for the mandatory main/bakcup jobs based on window transferring scheme in

(a) primary processor; (b) spare processor.
PROOF. Since𝑚𝑖 value is the same, to prove𝑚𝑖/𝑚𝑖

𝑘𝑖+1
𝑚𝑖+1

has better schedulability than𝑚𝑖/
(𝑚𝑖+𝑘𝑖)

2
,

we only need to prove:

𝑚𝑖
𝑘𝑖 + 1

𝑚𝑖 + 1
≥

(𝑚𝑖 + 𝑘𝑖)

2
⇔ 2(𝑘𝑖 + 1)𝑚𝑖 ≥ (𝑚𝑖 + 𝑘𝑖) (𝑚𝑖 + 1)

⇔ 2𝑘𝑖𝑚𝑖 + 2𝑚𝑖 ≥ 𝑚
2
𝑖 +𝑚𝑖 +𝑚𝑖𝑘𝑖 + 𝑘𝑖

⇔ (1 −𝑚𝑖) (𝑚𝑖 − 𝑘𝑖) ≥ 0 (18)

Which is true because (𝑚𝑖 ≥ 1) and (𝑘𝑖 ≥ 𝑚𝑖). □

Based Lemma 3.2, our new approach of scheduling the task set with the given energy budget

constraint can be described as followed: for each task 𝜏𝑖 , if 𝑘𝑖+1
𝑚𝑖+1

is an integer and 𝑚𝑖 < 𝑘𝑖 or
𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1, we let 𝑦𝑖 and 𝑟𝑖 be determined according to Lemma 3.2. Then base on it we can

determine the mandatory main jobs of task 𝜏𝑖 in one processor with E-pattern and their backup jobs

in the other processor with 𝐸𝑟𝑖 -pattern, both based on the window constraint of𝑚𝑖/𝑦𝑖 first. Since

𝑟𝑖 ≥ 1 if𝑚𝑖 < 𝑘𝑖 or 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1, in any separate window of 𝑦𝑖 jobs, each mandatory main job

and its backup job in the other processor are not in the same time frame. In other words, they are

totally shifted way. As such, if any mandatory main job is completed successfully, its backup job can

be canceled entirely. Even if the mandatory main job were found to have failed upon completion, its

backup job can still be executed timely. In the worst case, if all mandatory main jobs in a separate

window of 𝑦𝑖 jobs have failed, their backup jobs in the other processor will all need to be executed.

In this scenario the resulting job pattern will be equivalent to case (𝑖) in the proof of Lemma 3.2.

Then according to Lemma 3.2, its original (𝑚,𝑘)-constraint will be satisfied.

Particularly, for tasks 𝜏1 and 𝜏2 in the above example task set, their corresponding window

constraints will be 2/3 and 1/2, respectively. Then based on them the mandatory main jobs of tasks 𝜏1
and 𝜏2 are determined under E-pattern and they can be scheduled in different processors, as shown in

Figure 4. Meanwhile, the backup jobs for 𝜏1 and 𝜏2 will be determined based on 𝐸𝑟𝑖 -pattern and can

be reserved in different processors as well. As such, since each mandatory main job and its backup

job are totally shifted away, once a mandatory main job (for example, 𝐽11) is completed successfully,

its backup job (i.e., 𝐽
′

12
) in the other processor could be canceled entirely. If any mandatory main job

of task 𝜏𝑖 had failed, its corresponding backup job in the other processor could still be invoked and

executed timely (for example, if the main job 𝐽17 in the primary processor had failed, its backup job

𝐽
′

18
could still be executed timely in the spare processor, as shown in Figure 4(b)). In this way, even

in the worst case that all mandatory main jobs in one window had failed, as stated above, its original

(𝑚,𝑘)-constraint can still be ensured. Following the same rationale, if we assume the transient fault

rate to be 10−5 per millisecond, then the expected energy consumption of all backup jobs within one

window of 𝑦𝑖 jobs for task 𝜏1 and task 𝜏2 will be 0.006728 and 0.0018252, respectively. With energy

during the processor idle time under 𝑃𝑖𝑑𝑙𝑒 = 0.05 included, the total energy consumption within

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:15

the hyper period will be 189.06855 units, which is below the given energy budget constraint and

therefore feasible.

From the above example we can see that there is great potential for meeting the given energy budget

constraint by determining the mandatory main jobs and their backup jobs based on E-pattern and

𝐸𝑟𝑖 -pattern, respectively (which can satisfy the original (𝑚,𝑘)-constraint according to Lemma 3.2).

Based on the above principles, our standby-sparing scheduling scheme based on window transferring

is presented in Algorithm 2.

As shown in Algorithm 2, in the beginning, for each task 𝜏𝑖 ∈ 𝑇 , if 𝑘𝑖+1
𝑚𝑖+1

is an integer and𝑚𝑖 < 𝑘𝑖

or 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1 (how to handle the case when these conditions are not met will be discussed in

next section), we firstly determine the values of 𝑦𝑖 and 𝑟𝑖 according to Lemma 3.2 and re-partition

task 𝜏𝑖 and its backup task 𝜏
′

𝑖 with E-pattern and 𝐸𝑟𝑖 -pattern (both based on its new temporary QoS

constraint of𝑚𝑖/𝑦𝑖), respectively. Note that task 𝜏𝑖 or its backup task 𝜏
′

𝑖 can be executed in either

the primary processor or the spare processor, without affecting their schedulablility. As such, for

any mandatory main job 𝐽𝑖 𝑗 , its backup job (denoted as 𝐽𝑖 𝑗) will be the job 𝐽
′

𝑖 (𝑗+𝑟𝑖)
of its backup task

𝜏
′

𝑖 (line 1). Similar to Algorithm 1, during runtime, in both the primary and the spare processors, a

mandatory job ready queue (MQ) and a slack time queue 𝑆𝑇𝑄 are maintained. Upon arrival, a job

of task 𝜏𝑖 is inserted into the MQ only when its job pattern is ª1". All jobs in MQ will be executed

according to the EDF scheme. When the current job 𝐽𝑖 𝑗 of task 𝜏𝑖 got chance to be executed, if 𝐽𝑖 𝑗
is a mandatory main job, it should be executed as soon as possible and the slack time in the 𝑆𝑇𝑄 ,

if available, should be reclaimed to facilitate its early completion (line 9); otherwise it should be

executed as late as possible (line 11).

Note that, when the current mandatory main job 𝐽𝑖 𝑗 is completed successfully, whether its backup

job in the other processor should be canceled or not needs to be handled carefully. Specifically, if job

𝐽𝑖 𝑗 is within the same time frame of the backup job of some other failed job, its backup job cannot

be canceled. For example, in Figure 4, assuming 𝐽17 in the primary processor had failed, then its

backup job 𝐽
′

18
in the spare processor needed to be executed. Meanwhile, in the primary processor,

the mandatory main job 𝐽18 was executed in the same time frame as 𝐽
′

18
. Suppose 𝐽18 was completed

successfully. In this case, if we had canceled its backup job 𝐽
′

19
in the spare processor, then in the

time interval [24,36] there would be only one valid job because 𝐽18 and 𝐽
′

18
were in the same time

frame and would effectively generate only one valid job. Consequently the window constraint of

2/3 will be violated in the time interval of [24,36] and the original (𝑚,𝑘)-constraint of (2, 4) will be

violated in the time interval of [20,36].

As mentioned, the main reason for the above problem is that, in Algorithm 2, due to the pattern

rotation, all mandatory main jobs and their backup jobs are shifted away into different time frames.

As a result it is possible that within the current time frame the execution of the current mandatory

main job could be overlapped with the backup job of some other failed mandatory main job (for

example, 𝐽18 and 𝐽
′

18
in Figure 4). When that happened, they effectively contributed only one valid

job to the window they belong to. As such, if the backup job of the current mandatory main job is

canceled, the number of valid jobs in the same window will decrease by 1 which could cause the

QoS constraint in it to be violated and subsequently cause the original (𝑚,𝑘)-constraint to be violated

as well. Therefore, in this case, even if the current mandatory main job is completed successfully, its

backup job can not be canceled, as implied in line 18 of Algorithm 2.

Similar to the upper bound of the energy calculated in Section 3.1, based on Algorithm 2, if for

each and every periodic task 𝜏𝑖 in the system, 𝑘𝑖+1
𝑚𝑖+1

is an integer and𝑚𝑖 < 𝑘𝑖 or 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1,

an upper bound of the total energy consumption of a system consisting of purely periodic tasks could

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:16 Linwei and Danda, et al.

Algorithm 3 Task set partitioning using Branch-and-Bound.

1: Input: task set 𝑇 consisting of purely periodic tasks with original (𝑚,𝑘)-constraints;

2: Output: task set 𝑇 = 𝑋∪ 𝑌 ∪ 𝑍 , where 𝑋 , 𝑌 and 𝑍 are the subsets to be scheduled with the schemes in

Section 3.2, Section 3.1, and the regular job procrastination scheme, respectively;

3: 𝑋 = ∅;

4: 𝑌 = ∅;

5: 𝑍 = all tasks in 𝑇 ;

6: Sort the tasks in 𝑍 according to non-increasing order of 𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
, 𝑖 = 1, .., 𝑛;

7: 𝑇 = 𝑋∪ 𝑌 ∪𝑍 ;

8: 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑢𝑛𝑑 =
∑

𝑖
𝐻𝑚𝑖

𝑘𝑖𝑃𝑖
(𝐶𝑖 + 𝐸𝑠𝑐) + 𝑃𝑖𝑑𝑙𝑒𝐻 (1 −

∑

𝑖
𝑚𝑖 (𝐶𝑖+𝑡𝑠𝑐)

𝑘𝑖𝑃𝑖
) +

∑

𝑖
𝐻𝑚𝑖

𝑘𝑖𝑃𝑖
𝐶𝑖 + 𝑃𝑖𝑑𝑙𝑒𝐻 (1 −

∑

𝑖
𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
);

9: //The estimated total energy consumption using standby-sparing for all mandatory main/bakcup jobs based

on the original (𝑚,𝑘)-constraints without energy management;

10: SS-Partition (𝑋 , 𝑌 , 𝑍 , 𝑇 , 𝐸𝑏𝑜𝑢𝑛𝑑);

11: output (𝑇);

12:

13: FUNCTION SS-Partition(𝑋 , 𝑌 , 𝑍 , 𝑇 , 𝐸𝑏𝑜𝑢𝑛𝑑)

14: for each task 𝜏𝑖 ∈ 𝑇 do

15: if
𝑘𝑖+1
𝑚𝑖+1

is an integer and𝑚𝑖 < 𝑘𝑖 or 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1 then

16: Determine 𝑦𝑖 according to Lemma 3.2;

17: Set 𝜏𝑖 ’s new temporary QoS constraint to be𝑚𝑖/𝑦𝑖 ;

18: 𝑋 = 𝑋∪ {𝜏𝑖 };

19: else

20: Set 𝜏𝑖 ’s new temporary QoS constraint to be (𝑚𝑖 + 1, 𝑘𝑖);

21: 𝑌 = 𝑌∪ {𝜏𝑖 };

22: end if

23: Remove 𝜏𝑖 from 𝑍 ;

24: if 𝑋∪ 𝑌 ∪ 𝑍 is schedulable then

25: Compute the energy consumption 𝐸𝑋 for all mandatory jobs in 𝑋 based on Equation (19);

26: Compute the energy consumption 𝐸𝑌 for all mandatory jobs in 𝑌 based on Equation (12);

27: Compute the energy consumption 𝐸𝑍 for all mandatory jobs in 𝑍 based on Equation (7);

28: 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑋 + 𝐸𝑌 + 𝐸𝑍 ;

29: if 𝐸𝑡𝑜𝑡𝑎𝑙 < 𝐸𝑏𝑜𝑢𝑛𝑑 then

30: 𝐸𝑏𝑜𝑢𝑛𝑑 = 𝐸𝑡𝑜𝑡𝑎𝑙 ;

31: 𝑇 = 𝑋∪𝑌 ∪ 𝑍 ;

32: end if

33: SS-Partition (𝑋 , 𝑌 , 𝑍 , 𝑇 , 𝐸𝑏𝑜𝑢𝑛𝑑);

34: else

35: Restore 𝜏𝑖 ’s QoS constraint to its original (𝑚𝑖 , 𝑘𝑖)-constraint and put it back to 𝑍 ;

36: end if

37: end for=0

be calculated as:
∑︁

𝑖

𝐻𝑚𝑖

𝑦𝑖𝑃𝑖
(𝐶𝑖 + 𝐸𝑠𝑐) +

∑︁

𝑖

𝐻𝑚𝑖

𝑦𝑖𝑝𝑖
𝜆𝑖 (𝑠𝑚𝑎𝑥)𝑚𝑖𝐶𝑖 + 2𝑃𝑖𝑑𝑙𝑒𝐻 (1 −

1

2

∑︁

𝑖

𝑚𝑖 (𝐶𝑖 + 𝑡𝑠𝑐)

𝑦𝑖𝑃𝑖
) (19)

where 𝑦𝑖 is determined according to Lemma 3.2.

Note that the worst case in Algorithm 2 happens when at certain point, all mandatory main jobs in

one separate window have failed consecutively and all their backup jobs in the other processor need

to be executed, which will be equivalent to one of the scenarios in Lemma 3.2. Then according to

Lemma 3.2, its original (𝑚,𝑘)-constraint can be ensured.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:17

Similar to Algorithm 1, the online complexity of Algorithm 2 is also 𝑂 (𝑁). Moreover, we have

the following theorem.

THEOREM 3.4. Given a system consisting of purely periodic tasks {𝜏1, 𝜏2, · · · , 𝜏𝑁 } to be scheduled

with Algorithm 2 in a standby-sparing system with total energy budget of 𝐸𝐵 within its hyper period,

the system is feasible if: (i) for each and every task 𝜏𝑖 in the system,
𝑘𝑖+1
𝑚𝑖+1

is an integer and𝑚𝑖 < 𝑘𝑖

or
𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1; (ii) the system is schedulable with the (𝑚,𝑘)-constraint of each task 𝜏𝑖
in it replaced by (𝑚𝑖 , 𝑦𝑖), where 𝑦𝑖 is determined according to Lemma 3.2; and (iii) the energy

consumption 𝐸 calculated based on Equation (19) does not exceed 𝐸𝐵 .

PROOF. If for any task 𝜏𝑖 in the system 𝑘𝑖+1
𝑚𝑖+1

is an integer and 𝑚𝑖 < 𝑘𝑖 , then 𝑘𝑖+1
𝑚𝑖+1

≥ 2. So

𝑟𝑖 = ⌈
𝑦𝑖
𝑚𝑖

⌉ − 1 =
𝑘𝑖+1
𝑚𝑖+1

− 1 is also an integer and 𝑟𝑖 ≥ 1. If 𝑘𝑖−1
2

≤ 𝑚𝑖 < 𝑘𝑖 − 1, from Lemma 3.2

𝑟𝑖 = 1. Thus in either case Algorithm 2 can be applied. The main issue is to ensure the original (𝑚,𝑘)-

constraint. The worst case in Algorithm 2 happens when at certain point, all mandatory main jobs in

one separate window have failed consecutively, then all their backup jobs in the other processor need

to be executed, which will be equivalent to case (i) in the proof of Lemma 3.2. Then according to

Lemma 3.2, its original (𝑚,𝑘)-constraint can be assured. □

3.3 Integrated approach based on combined schemes

Although the above window transferring scheme in Algorithm 2 could be more efficient than the

floating redundant job scheme in Section 3.2 in meeting the given energy budget constraint, the main

issue for it is that, for tasks which do not satisfy the conditions in line 1 of Algorithm 2, they will

not be able to be transferred in this way. On the other hand, the floating redundant job scheme in

Section 3.2 also has the issue that it might affect the schedulability of the task set because it needs to

have one more mandatory job reserved for each task. Regarding that, in order to still meet the energy

budget constraint while respecting the schedulability of the task set, the best way is to partition the

original task set into three parts and schedule them with the schemes in Section 3.2, Section 3.1,

and the regular job procrastination scheme similar to lines 13-18 in algorithm 1, respectively, in an

integrated approach. Correspondingly, the problem to be solved could be formulated as follows:

PROBLEM 1. Given task set consisting of purely periodic tasks {𝜏1, 𝜏2, · · · , 𝜏𝑁 }, partition the

original task set into three subsets, i.e., 𝑋 , 𝑌 , and 𝑍 to be scheduled with the window transferring

scheme in Algorithm 2, floating redundant job scheme in Algorithm 1, and the regular job procrasti-

nation scheme, respectively such that the estimated total energy consumption does not exceed the

given energy budget constraint 𝐸𝐵 while satisfying the (𝑚,𝑘)-constraints for all tasks under the fault

tolerant requirement.

To solve Problem 1, in this paper we proposed a heuristics based on ªbranch-and-bound", which is

presented in Algorithm 3.

From Algorithm 3, our approach determines task by task if each task 𝜏𝑖 ∈ 𝑇 should be scheduled

with the window transferring scheme in Section 3.2, the floating redundant job scheme in Section

3.1, or the regular job procrastination scheme. When Algorithm 3 is finished, it is possible to reach

certain combined configuration in which the tasks in subsets 𝑋 , 𝑌 , 𝑍 are partitioned based on

the QoS constraint of 𝑚𝑖/(𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

) or 𝑚𝑖/(𝑘𝑖 − 1), (𝑚𝑖 + 1, 𝑘𝑖), and (𝑚𝑖 , 𝑘𝑖) to be scheduled with

the window transferring scheme in Algorithm 2, floating redundant job scheme in Algorithm 1,

and the job procrastination scheme following lines 13-18 in Algorithm 1, respectively. And the

resulting configuration should be the one with the minimum estimated total energy consumption

𝐸𝑡𝑜𝑡𝑎𝑙 computed in line 28. Once the final 𝐸𝑡𝑜𝑡𝑎𝑙 is calculated, we will compare it with the given

energy constraint 𝐸𝐵 . If 𝐸𝑡𝑜𝑡𝑎𝑙 ≤ 𝐸𝐵 , the task set is guaranteed to be feasible. Otherwise the feasibility

of the task set cannot be guaranteed.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:18 Linwei and Danda, et al.

Note that after the original task set 𝑇 was divided into three subsets 𝑋 , 𝑌 , 𝑍 , the calculation of

the delay period of 𝜑𝑖 in Equation (11) for each task 𝜏𝑖 under the combined configuration should be

updated as followed.

𝜑𝑖 = min{𝑑𝑖 −

𝜏𝑥 ∈𝑋
∑︁

𝐷𝑥 ≤𝑑𝑖

(⌈
𝑚𝑥

𝑦𝑥
⌈
𝑑𝑖 − 𝐷𝑥

𝑇𝑥
⌉+⌉)(𝐶𝑥 + 𝑡𝑠𝑐)

−

𝜏𝑦 ∈𝑌
∑︁

𝐷𝑦≤𝑑𝑖

(⌈
(𝑚𝑦 + 1)

𝑘𝑦
⌈
𝑑𝑖 − 𝐷𝑦

𝑇𝑦
⌉+⌉)(𝐶𝑦 + 𝑡𝑠𝑐)

−

𝜏𝑧 ∈𝑍
∑︁

𝐷𝑧≤𝑑𝑖

(⌈
𝑚𝑧

𝑘𝑧
⌈
𝑑𝑖 − 𝐷𝑧

𝑇𝑧
⌉+⌉)(𝐶𝑧 + 𝑡𝑠𝑐)} (20)

3.4 Improving the QoS by executing optional jobs

It is not hard to see that for the tasks in either subset 𝑋 or subset 𝑌 , there are redundant jobs in them.

So their quality of service (QoS) will be better than the ones based on their corresponding original

(𝑚,𝑘)-patterns. For the tasks in subset 𝑍 which are partitioned based on the original (𝑚,𝑘)-patterns,

in order to improve their QoS, we can choose to execute some optional jobs when no mandatory job

is pending for execution. However, since the execution of the optional jobs could potentially cause

the overall energy consumption of the system to exceed the energy consumption estimated using

Equation (7), we cannot execute the optional jobs arbitrarily. Instead, when we are about to execute

(some of) the optional jobs, we should adopt the following criteria in choosing the eligible optional

jobs for execution.

It is not hard to see that, for any particular task 𝜏𝑖 in 𝑍 , in order to guarantee its overall energy

consumption within the hyper period will not exceed what is calculated using Equation (7), we must

ensure that, within each sliding window of 𝑘𝑖 jobs from task 𝜏𝑖 , there are no more than 2𝑚𝑖 jobs

executed in it in total. Then the problem is how to guarantee that? Obviously, it is not practical to

check all window of 𝑘𝑖 jobs in task 𝜏𝑖 during execution. In order to solve the problem, here we will

propose a more efficient approach which only needs to check a limited number of windows at runtime.

Specifically, at runtime, we only need to guarantee that, for all sliding windows of 𝑘𝑖 jobs containing

𝜏𝑖’s current job 𝐽𝑖 𝑗 , there are no more than 2𝑚𝑖 jobs (to be) executed in each of them. In this way,

the total energy consumption can always be bounded by the energy consumption calculated using

Equation (7) (in later part of this section we will formulate that into a theorem, i.e., Theorem 3.5 and

provide the formal proof for it as well). With that in mind, we can revise the algorithm for scheduling

the tasks in 𝑍 correspondingly. The details of it are presented in Algorithm 4.

As shown in Algorithm 4, whenever no mandatory job is pending for execution and some optional

job 𝐽𝑖 𝑗 of task 𝜏𝑖 ∈ 𝑍 becomes available, we will check all sliding windows containing it to see

if there are already 2𝑚𝑖 jobs executed in any of them. It is easy to see that, among such kind of

windows, the oldest one should be the window starting with job 𝐽𝑖 (𝑗−(𝑘𝑖−1)) and ending with job 𝐽𝑖 𝑗
while the latest one should be the window starting with job 𝐽𝑖 𝑗 and ending with job 𝐽𝑖 (𝑗+(𝑘𝑖−1)) . The

optional job 𝐽𝑖 𝑗 is eligible only when each and any of the sliding windows between the above oldest

and latest windows contains less than 2𝑚𝑖 jobs in it (Lines 17-20). Moreover, since the optional jobs

always have lower priorities than the mandatory ones and could be preempted by any of them, we

also need to check if the optional jobs could be completed by its deadline and the earliest arrival time

of the upcoming mandatory jobs, whichever smaller. Only the optional jobs that can satisfy the above

requirements should be chosen as eligible ones. If there are multiple optional jobs of the tasks in 𝑍

becoming available simultaneously, the ties could be broken based on first-come-first-serve or by

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:19

Algorithm 4 The enhanced scheduling algorithm for the tasks in 𝑍 with optional job execution

1: For either the primary processor or the spare processor:

2:

3: Upon the arrival of job 𝐽𝑖 𝑗 of task 𝜏𝑖 ∈ 𝑍 at current time 𝑡𝑐𝑢𝑟 :

4: if 𝐽𝑖 𝑗 is an optional job then

5: Executable = true;

6: for 𝑥 = (𝑗 − (𝑘𝑖 − 1)) to 𝑗 do

7: NJ = 0; // NJ is the total number of jobs executed or to be executed in the current sliding window

8: for 𝑦 = 0 to (𝑘𝑖 − 1) do

9: if 𝐽𝑖 (𝑥+𝑦) is an optional job then

10: if 𝐽𝑖 (𝑥+𝑦) has been executed then

11: NJ = NJ +1;

12: end if

13: else

14: NJ = NJ +2;

15: end if

16: end for

17: if (𝑁 𝐽 × (𝐸 (𝐶𝑖) + 𝐸𝑠𝑐) + 𝐸𝑐𝑤 (𝑘𝑖)) ≥ (2 ×𝑚𝑖 × (𝐸 (𝐶𝑖) + 𝐸𝑠𝑐)) then

18: // 𝐸 (𝐶𝑖) is the energy consumption of executing a job of task 𝜏𝑖 and 𝐸𝑐𝑤 (𝑘𝑖) is the energy overhead

of checking windows for the current optional job 𝐽𝑖 𝑗 . The value of 𝐸𝑐𝑤 (𝑘𝑖) can be achieved through

a stored look-up table based on the value of 𝑘𝑖 .

19: Executable = false;

20: Break;

21: end if

22: end for

23: Let 𝑁𝑇𝐴 be the earliest arrival time of the next upcoming mandatory job in the same processor;

24: if (Executable == true) then

25: if (min(𝑁𝑇𝐴,𝑑𝑖 𝑗) − 𝑡𝑐𝑢𝑟) > (𝐶𝑖 + 𝑡𝑠𝑐) then

26: Execute job 𝐽𝑖 (𝑥+𝑦) non-preemptively;

27: end if

28: else if (𝑁𝑇𝐴 − 𝑡𝑐𝑢𝑟) > 𝑡𝑠𝑑 then

29: Shut down the processor and set up the wake-up timer to be (𝑁𝑇𝐴 − 𝑡𝑐𝑢𝑟);

30: end if

31: else

32: // 𝐽𝑖 𝑗 is a mandatory job

33: if 𝐽𝑖 𝑗 is a mandatory main job then

34: Execute 𝐽𝑖 𝑗 following the EDF scheme;

35: if any slack time 𝑆𝑇𝑄𝑖 (𝑡) with higher priority than 𝐽𝑖 𝑗 is available then

36: Reclaim the slack time to execute 𝐽𝑖 𝑗 as soon as possible;

37: end if

38: else

39: Revise 𝑟𝑖 𝑗 to max{(𝑟𝑖 𝑗 + 𝜑𝑖), (𝑡𝑐𝑢𝑟 + 𝑆𝑇𝑄𝑖 (𝑡𝑐𝑢𝑟))};

40: Execute 𝐽𝑖 𝑗 following the EDF scheme;

41: end if

42: end if

43:

44: Upon the completion of job 𝐽𝑖 𝑗 of task 𝜏𝑖 ∈ 𝑍 :

45: if the execution of job 𝐽𝑖 𝑗 is successful then

46: if 𝐽𝑖 𝑗 is an optional job then

47: Shift the future job patterns of 𝜏𝑖 correspondingly;

48: else

49: Cancel 𝐽𝑖 𝑗 ’s corresponding job in the other processor and add its residue time budget to the slack

queue 𝑆;

50: end if

51: end if=0
ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:20 Linwei and Danda, et al.

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

10
 26
 46
35

51

15
 39

26
19
 46

T

1

30

5
 10
 15
 40
30

0

T

2

0

6

20

20

35

T
’

5

T

3

T

4

51
 60
 66
 71
 75
 80
 86
 91
 96
 100
 106
 114
 120

120

T

5

T
’

2

T
’

3
 T
’

4

55
 60
 66
 71
 75
 79
80
 86
 91
 96
 100
 106
 110
59

Fig. 5. (a) The schedule for the periodic main tasks 𝜏1 = (5, 20, 20, 3, 6), 𝜏2 = (5, 15, 15, 2, 4), 𝜏3 =

(6, 10, 10, 2, 6), 𝜏4 = (4, 15, 15, 1, 3) based on E-pattern only for the tasks in 𝑍 and the aperiodic backup

task 𝜏
′

5
in the primary processor; (b) The schedule for the periodic backup tasks 𝜏

′

1
, 𝜏

′

2
, 𝜏

′

3
, and 𝜏

′

4
based

on E-pattern only for the tasks in 𝑍 and the aperiodic main task 𝜏5 = (19, 120) in the spare processor.

randomly choosing one of them. Once chosen, the optional job should be executed non-preemptively

to guarantee that it could be completed timely (Line 25). If the execution of the optional job 𝐽𝑖 𝑗 is

successful, the future job patterns for its owner task 𝜏𝑖 should be adjusted by shifting its future job

patterns to the right correspondingly.

The online complexity of Algorithm 4 mainly comes from checking all the sliding windows

containing the current optional job 𝐽𝑖 𝑗 , which is at most𝑂 (𝑘2𝑖). Since 𝑘𝑖 is usually a small integer, the

complexity of Algorithm 4 is suitable for online use in general.

THEOREM 3.5. With Algorithm 4, the total energy consumption for the tasks in 𝑍 will not exceed

the energy calculated with Equation (7).

PROOF. Given any task 𝜏𝑖 in 𝑍 , for any arbitrary sliding window of 𝑘𝑖 jobs (represented as 𝑊̄𝑖) in

it, we consider two cases: (𝑖) There is no optional jobs executed in 𝑊̄𝑖 . Then based on the property of

the (𝑚,𝑘)-pattern, there are exactly𝑚𝑖 mandatory jobs executed in 𝑊̄𝑖 in one processor, thus totally

2𝑚𝑖 mandatory jobs (including both the mandatory main jobs and their backup ones) in the two

processors altogether; (𝑖𝑖) There are some optional jobs executed in 𝑊̄𝑖 . In this case, from lines 4-26

of Algorithm 4, whenever any of the optional jobs executed in 𝑊̄𝑖 became current, 𝑊̄𝑖 would have

been checked dynamically to ensure that there would be at most 2𝑚𝑖 jobs (to be) executed in it. Thus

in both cases, there could be no more than 2𝑚𝑖 jobs executed in 𝑊̄𝑖 . Based on the arbitrarity that 𝑊̄𝑖

was chosen, the conclusion of Theorem 3.5 follows. □

4 ENERGY-CONSTRAINED STANDBY-SPARING FOR BOTH PERIODIC AND

APERIODIC TASKS

The scheduling for mixed task systems containing both periodic and aperiodic tasks is more complex

as it must be able to ensure the (𝑚,𝑘)-deadlines for the periodic tasks while minimizing the average

response times for the aperiodic tasks with soft deadlines. The scheduling algorithm for a mixed

task set must also accomplish these goals without compromising the feasibility of the whole system

under the given energy budget constraint. In order to do so, we can adopt a hierarchical priority

assignment strategy, i.e., letting the mandatory jobs and optional jobs for the periodic tasks be always

executed in the upper priority band and lower priority band, respectively, while letting the aperiodic

tasks be executed in the middle priority band. In this way, the execution of the aperiodic tasks will

never interfere with that of the mandatory jobs of the periodic tasks. Therefore the (𝑚,𝑘)-deadlines

for the periodic tasks can be assured. Meanwhile, the execution of the optional jobs will not impact

the response time of the aperiodic tasks, either. Based on it, the scheduling schemes proposed

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:21

in Section 3 can still be applied to schedule the mandatory jobs and optional job of the periodic

tasks in the upper priority band and lower priority band, respectively. The only difference is, when

estimating the total energy consumption of the whole system, the energy calculation should include

the energy consumption of the aperiodic tasks as well. In particular, when partitioning the task set

using branch-and-bound, line 28 in Algorithm 3 should be updated as follows:

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑋 + 𝐸𝑌 + 𝐸𝑍 +

𝑁+𝑀
∑︁

𝑞=𝑁+1

{𝐶𝑞 (1 + 𝜆𝑞 (𝑠𝑚𝑎𝑥)) + 𝐸𝑠𝑐 } (21)

where 𝐶𝑞 represents the execution time of the aperiodic task 𝜏𝑞 .

Note that in the above equation, when calculating the energy consumption of the aperiodic tasks,

we only need to include one fault free copy of each aperiodic task 𝜏𝑞 because since the aperiodic tasks

do not require hard deadlines, we can always wait until the completion of its main job to determine

whether it is necessary or not to invoke its backup job in the other processor.

Then the problem is how to minimize the average response time of the aperiodic tasks? Note

that a general strategy to achieve this goal is to rearrange the periodic tasks in 𝑋 to let all mandatory

main jobs in it be executed in the primary processor while all backup jobs of them be executed in

the spare processor. Meanwhile, let the main job(s) of the aperiodic task(s) be executed in the spare

processor while their backup jobs be executed in the primary processor. In this way, since in the spare

processor the backup jobs of 𝑋 are most likely to be canceled, it will provide more chance for the

main job(s) of the aperiodic task(s) to be completed earlier there. Moreover, by considering different

types of pattern assignment in determining the mandatory jobs of the periodic tasks in the subset 𝑍 ,

additional reduction on the aperiodic response time could be achieved, which could be illustrated

using the following examples.

As known, for the previous combined scheme in Section 3.3 we adopt E-patterns in determining

the mandatory jobs of the periodic tasks in the subset 𝑍 because E-patterns tend to provide better

schedulability than R-patterns in general [23]. However, when the aperiodic tasks are incorporated,

this approach might not always be able to achieve the minimal aperiodic response time.

Consider a mixed task set consisting of four periodic tasks, i.e., 𝜏1 = (5, 20, 20, 3, 6), 𝜏2 =

(5, 15, 15, 2, 4), 𝜏3 = (6, 10, 10, 2, 6), 𝜏4 = (4, 15, 15, 1, 3), and an aperiodic task, i.e., 𝜏5 = (19, 120), to

be executed in a standby-sparing system with given energy budget constraint 𝐸𝐵 = 160 units within

its hyper period 120. Then based on the window transferring strategy in Section 3.2 the mandatory

main jobs of task 𝜏4 can be determined based on the window-constraint of 1/2 first (based on it the

original (𝑚,𝑘)-constraint of 𝜏4 can be satisfied according to Lemma 3.2). So 𝑋 = {𝜏4}. Note that

here 𝜏3 cannot adopt the same strategy because the value of𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

for it is not an integer and thus

cannot be used as a valid window length. But we can still increase its𝑚𝑖 value to be 3 with which the

resulting task set is still schedulable. Therefore we can adopt the floating redundant job scheme on it.

As such, 𝑌 ={𝜏3}.

The remaining two tasks cannot be applied with either the window transferring scheme (because

their values of𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

are not integers) or the floating redundant job scheme (because the resulting

task set is not schedulable). As a result, if we apply Algorithm 3 to determine their mandatory jobs,

both of them will need to be partitioned using E-patterns based on their original (𝑚,𝑘)-constraints.

Correspondingly, 𝑍 = {𝜏1, 𝜏2}.

Assume all tasks arrive at time 0. With the mandatory jobs of tasks 𝜏1 and 𝜏2 determined based on

E-pattern, under the same fault rate and idle power assumption as in the previous part, the estimated

total energy consumption will be 149.90062 units, which is below the given energy budget constraint.

As shown in Figure 5, in this case, without reclaiming the slack time from canceled periodic tasks the

response time of the aperiodic task 𝜏5 will be 59 (with slack reclaiming the response time will be 40).

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:22 Linwei and Danda, et al.

(a)

(b)

Primary

Processor:

Spare

Processor:

T
’

1

10
 26
 46
35

50

15
 39

26
19
 46

T

1

30

5
 15
 39
30

0

T

2

0

6

20

20

35

T
’

5

T

3

T

4

60
 66
 71
 75
 80
 86
 91
 96
 100
 106
 111
 120

120

T

5

T
’

2

T
’

3
 T
’

4

60
 66
 71
 76
 80
 86
 91
 96
 100
 106
110

J’

23

116

40

76

115

Fig. 6. (a) The schedule for the same periodic main tasks 𝜏1, 𝜏2, 𝜏3, 𝜏4 as in Figure 5(a) based on the

hybrid pattern for the tasks in 𝑍 and the aperiodic backup task 𝜏
′

5
in the primary processor; (b) The

schedule for the periodic backup tasks 𝜏
′

1
, 𝜏

′

2
, 𝜏

′

3
, and 𝜏

′

4
based on the hybrid pattern and the aperiodic

main task 𝜏5 = (19, 120) in the spare processor.

Algorithm 5 Modified task set partitioning using second round of Branch-and-Bound.

1: Input: task set 𝑇 = 𝑋∪𝑌∪𝑍 output from Algorithm 3;

2: Output: task set 𝑇 = 𝑋∪𝑌∪𝑍𝑅∪𝑍𝐸 , where 𝑍𝑅 and 𝑍𝐸 are the subsets to be partitioned based on R-pattern

and E-pattern, respectively;

3: 𝑍𝑅 = ∅;

4: 𝑍𝐸 = all tasks in 𝑍 ;

5: 𝑇 = 𝑋∪𝑌∪𝑍𝑅∪𝑍𝐸 ;

6: 𝑈𝑏𝑜𝑢𝑛𝑑 =
∑

𝜏𝑖 ∈𝑍𝑅

𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
;

7: Z-Partition (𝑍𝑅 , 𝑍𝐸 , 𝑇 ,𝑈𝑏𝑜𝑢𝑛𝑑);

8: output (𝑇);

9:

10: FUNCTION Z-Partition(𝑍𝑅 , 𝑍𝐸 , 𝑇 ,𝑈𝑏𝑜𝑢𝑛𝑑)

11: for each task 𝜏𝑖 ∈ 𝑍𝐸 do

12: 𝑍𝑅 = 𝑍𝑅∪{𝜏𝑖 };

13: Remove 𝜏𝑖 from 𝑍𝐸 ;

14: if 𝑋∪𝑌∪𝑍𝑅∪𝑍𝐸 is schedulable then

15: 𝑈𝑡𝑖𝑙 =
∑

𝜏𝑖 ∈𝑍𝑅

𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
;

16: if𝑈𝑡𝑖𝑙 > 𝑈𝑏𝑜𝑢𝑛𝑑 then

17: 𝑈𝑏𝑜𝑢𝑛𝑑 = 𝑈𝑡𝑖𝑙 ;

18: 𝑇 = 𝑋∪𝑌∪𝑍𝑅∪𝑍𝐸 ;

19: end if

20: Z-Partition (𝑍𝑅 , 𝑍𝐸 , 𝑇 ,𝑈𝑏𝑜𝑢𝑛𝑑);

21: else

22: put 𝜏𝑖 back to 𝑍𝐸 ;

23: end if

24: end for=0

However, if we adopt a different way of determining the mandatory jobs, i.e, letting 𝜏1 be partitioned

based on a modified R-pattern in which optional jobs happen first while letting 𝜏2 be partitioned

based on E-pattern, as shown in Figure 6, then the whole task set is still schedulable and, in this case,

even without slack reclaiming the response time of the aperiodic task 𝜏5 will be reduced to 39 (with

slack reclaiming the response time will be 30), which is much shorter than that in the above schedule

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:23

in Figure 5. Moreover, in this case the estimated total energy consumption is still 149.90062 units.

Therefore the task set is still feasible.

As can be seen, there is great potential in minimizing the response time of the aperiodic tasks by

adopting the (modified) R-pattern for the tasks in 𝑍 as the mandatory jobs in them can be ªpushed

back" at the maximal extent. However, since the schedulability of the R-pattern is not as good as

E-pattern, it is possible that not all tasks can have their mandatory jobs determined in this way.

For example, for the above task set, if the mandatory jobs of both 𝜏1 and 𝜏2 are determined based

on (modified) R-pattern, the resulting task set will not be schedulable. Regarding that, the most

reasonable way is to divide the sub task set 𝑍 further into two subsets 𝑍𝑅 and 𝑍𝐸 in which the tasks

in 𝑍𝑅 have their mandatory jobs determined based on R-pattern while the tasks in 𝑍𝐸 have their

mandatory jobs determined based on E-pattern. In order to do so, we can adopt a second round of

branch-and-bound method on the task set𝑇 output by Algorithm 3, which is sketched in Algorithm 5.

As shown in Algorithm 5, similar to Algorithm 3, our second round of branch-and-bound method

determines task by task if each task 𝜏𝑖 ∈ 𝑍 should be partitioned based on R-pattern or E-pattern.

When Algorithm 5 is finished, it is possible to reach certain hybrid configuration in which the tasks

in subset 𝑍𝑅 are partitioned based on R-pattern while the tasks in subset 𝑍𝐸 are partitioned based on

E-pattern. And the resulting configuration should be the one that can maximize the total utilization of

the tasks in subset 𝑍𝑅 while guaranteeing the schedulability of the whole task set 𝑇 . Moreover, since

for any task 𝜏𝑖 ∈ 𝑍 , partitioning it based on R-pattern or E-pattern will generate the same number of

mandatory jobs in it, the task set 𝑇 output by Algorithm 5 will have the same estimated total energy

consumption as the task set 𝑇 output by Algorithm 3. Therefore, the feasibility of the task set can

still be guaranteed under the given energy constraint 𝐸𝐵 .

Note that after the sub task set 𝑍 was further divided into two parts, i.e., 𝑍𝑅 and 𝑍𝐸 , the calculation

of the delay period of 𝜑𝑖 in Equation (20) for each periodic task 𝜏𝑖 under the new hybrid job pattern

should also be updated as follows.

𝜑𝑖 = min{𝑑𝑖 −

𝜏𝑥 ∈𝑋
∑︁

𝐷𝑥 ≤𝑑𝑖

(⌈
𝑚𝑥

𝑦𝑥
⌈
𝑑𝑖 − 𝐷𝑥

𝑇𝑥
⌉+⌉)(𝐶𝑥 + 𝑡𝑠𝑐)

−

𝜏𝑦 ∈𝑌
∑︁

𝐷𝑦≤𝑑𝑖

(⌈
(𝑚𝑦 + 1)

𝑘𝑦
⌈
𝑑𝑖 − 𝐷𝑦

𝑇𝑦
⌉+⌉)(𝐶𝑦 + 𝑡𝑠𝑐)

−

𝜏𝑢 ∈𝑍𝑅
∑︁

𝐷𝑢≤𝑑𝑖

𝑊 𝑅
𝑢 (0, 𝑑𝑖) −

𝜏𝑣 ∈𝑍𝐸
∑︁

𝐷𝑣≤𝑑𝑖

𝑊 𝐸
𝑣 (0, 𝑑𝑖)} (22)

Where

𝑊 𝑅
𝑢 (0, 𝑑𝑖) = (𝑚𝑢 ⌊

⌈𝑑𝑖−𝐷𝑢

𝑇𝑢
⌉+

𝑘𝑢
⌋

+ min{(⌈
𝑑𝑖 − 𝐷𝑢

𝑇𝑢
⌉+ −𝑚𝑢 ⌊

⌈𝑑𝑖−𝐷𝑢

𝑇𝑢
⌉+

𝑘𝑢
⌋),𝑚𝑢})(𝐶𝑢 + 𝑡𝑠𝑐)

is the mandatory work demand for task 𝜏𝑢 ∈ 𝑍𝑅 before 𝑑𝑖 and

𝑊 𝐸
𝑣 (0, 𝑑𝑖) = (⌈

𝑚𝑣

𝑘𝑣
⌈
𝑑𝑖 − 𝐷𝑣

𝑇𝑣
⌉+⌉)(𝐶𝑣 + 𝑡𝑠𝑐)

is the mandatory work demand for task 𝜏𝑣 ∈ 𝑍𝐸 before 𝑑𝑖 .

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:24 Linwei and Danda, et al.

Note that 𝜑𝑖 in Equation (22) can be used to delay any individual mandatory job of task 𝜏𝑖 . Since

our goal is to minimize the response time(s) of the aperiodic task(s) in the middle priority band, we

should try to delay the mandatory jobs of the periodic tasks in the upper priority band as late as

possible. With 𝜑𝑖 , we can develop two sufficient conditions to help identify the maximal delay for the

upcoming mandatory jobs in the upper priority band. The first one can be stated as followed (proof

omitted).

THEOREM 4.1. Assuming at time 𝑡 = 𝑡0, let 𝑀 be the upcoming mandatory jobs with arrival times

later than 𝑡0. Let 𝑟𝑖 be the arrival time for the next upcoming mandatory job of the periodic task 𝜏𝑖 . If

the execution of 𝑀 starts at

𝑇𝐿𝑆 (𝑀) = min(𝑟𝑖 + 𝜑𝑖), 𝑖 = 1, 2, · · · , 𝑁 (23)

no mandatory job in 𝑀 will miss its deadline.

The online complexity of computing 𝑇𝐿𝑆 (𝑀) in Theorem 4.1 is 𝑂 (𝑁) since 𝜑𝑖 can be computed

offline.

The second sufficient condition (similar to the one in [22]) can be stated as followed.

THEOREM 4.2. Assuming at time 𝑡 = 𝑡0, let 𝑀 be the set of upcoming mandatory jobs with arrival

times later than 𝑡0. Also let the delay bound (i.e., the earliest deadline for the mandatory jobs in 𝑀)

be 𝑇𝑏𝑑 for 𝑀 . Then no mandatory job in 𝑀 will miss its deadline if the execution of all mandatory

jobs in 𝑀 starts at 𝑇𝐿𝑆 (𝑀), where

𝑇𝐿𝑆 (𝑀) = min
𝐽𝑖 ∈ 𝐽𝑠

(𝑑∗𝑖 −
∑︁

𝐽𝑘 ∈ℎ𝑝 (𝐽𝑖)

(𝐶𝑘 + 𝑡𝑠𝑐)), (24)

where 𝐽𝑠 consists of the jobs from 𝑀 with arrival times earlier than 𝑇𝑏𝑑 but later than 𝑡0, ℎ𝑝 (𝐽𝑖) are

the jobs with equal or higher priorities than 𝐽𝑖 and

𝑑∗𝑖 = min
𝑝

(𝑑𝑖 , 𝑟𝑝 + 𝜑𝑝),∀𝐽𝑝 ∈ 𝑀, 𝐽𝑝 ∉ 𝐽𝑠 𝑎𝑛𝑑 𝑑𝑝 > 𝑑𝑖 . (25)

The main difference between Theorem 4.2 and the one in [22] is the way that the effective deadline

𝑑∗𝑖 is defined. From equation (25), 𝑑∗𝑖 is prolonged with the delay period 𝜑𝑝 of the mandatory jobs

with arrive times later than 𝑇𝑏𝑑 . This in turn will allow the mandatory jobs to be delayed further.

The time complexity of computing 𝑇𝐿𝑆 (𝑀) in Theorem 4.2 is 𝑂 (𝑁 ′𝑀 ′), where 𝑁 ′ is the total

number of mandatory jobs arriving within the interval from the arrival time of job 𝐽𝑖 to its deadline

and 𝑀 ′ is the number of jobs with arrivals before 𝑇𝑏𝑑 . Since 𝑁 ′ and 𝑀 ′ are usually very small for

periodic task sets, Theorem 4.2 provides a very efficient way to compute the delay for the upcoming

mandatory jobs of the periodic tasks as well.

Note that since both Theorem 4.1 and Theorem 4.2 are sufficient conditions, the larger one from

equation (23) and (24) should be used to delay the upcoming mandatory jobs for the periodic tasks to

facilitate early completion of the aperiodic task(s). For example, in Figure 6 (b), the execution of job

𝐽
′

23
can be delayed to time 𝑡 = 35, which will allow the response time of the aperiodic task 𝜏5 to be

further reduced to 33.

5 EVALUATION

In this section, we evaluate the performance of our approaches by comparing with the existing

approaches in literature. Specifically, the performance of six different approaches were studied:

• 𝑆𝑆𝑁𝐸𝑀 This is the naive approach in which the periodic tasks were partitioned with E-pattern,

and the mandatory jobs in the primary and the spare processors were executed concurrently

without delay.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:25

0

10

20

30

40

50

60

70

80

90

100

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

 Density of Mandatory Jobs

N
u

m
b

e
r

o
f

 F
e

a
s

ib
le

 T
a

s
k

 S
e

ts

SSNEM
 SSPO

MKSS_selective
 ECSS_FRJ

ECSS_WT
 ECSS_HYB

Fig. 7. Feasibility comparison of the different approaches.

• 𝑆𝑆𝑃𝑂 The periodic tasks were partitioned with E-pattern to satisfy the given (𝑚,𝑘)-constraints.

Then the mandatory jobs were scheduled with the preference oriented scheme in [11] but

without applying DVFS.

• 𝑀𝐾𝑆𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 The periodic tasks were scheduled with the approach from [25] but adapted to

EDF scheme. The periodic tasks were firstly partitioned with deeply-red pattern to satisfy the

given (𝑚,𝑘)-constraints. Then the selective approach in [25] was applied.

• 𝐸𝐶𝑆𝑆𝐹𝑅𝐽 The periodic tasks were partitioned with E-pattern to satisfy the given (𝑚,𝑘)-

constraints. Then the mandatory jobs were scheduled with the floating redundant job scheme

proposed in Section 3.1.

• 𝐸𝐶𝑆𝑆𝑊𝑇 The periodic tasks were partitioned with E-pattern to satisfy the given (𝑚,𝑘)-constraints.

Then the mandatory jobs were scheduled with the window transferring scheme proposed in

Section 3.2.

• 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 The periodic tasks were partitioned with the hybrid pattern proposed in Section 4 to

satisfy the given (𝑚,𝑘)-constraints. Then the mandatory jobs were scheduled with the modified

approach proposed in Section 4.

For all the approaches compared, the aperiodic tasks were executed in the middle priority band

with priority levels lower than the mandatory jobs but higher than the optional jobs from the periodic

tasks. For the processor model we adopted a widely used due-core processor model, i.e., the Samsung

Exynos 4210 processor model [1]. According to [1], the highest speed that the Exynos 4210 processor

core can operate is 1200MHz with power consumption of 1067.5 mWatt per core. We assumed

the processor idle power 𝑃𝑖𝑑𝑙𝑒 = 50 mWatt and minimal shut-down interval 𝑡𝑠𝑑 = 2 millisecond.

Meanwhile, the energy and time overheads for doing sanity (or consistency) checks, i.e., 𝐸𝑠𝑐 and 𝑡𝑠𝑐
were assumed to be 0.2 mJoule and 0.1 millisecond, respectively.

5.1 Evaluation based on synthesized task sets

The task set tested in our experiments contains five to ten periodic tasks whose periods were randomly

chosen in the range of [10, 50]𝑚𝑠. The deadlines of the periodic tasks were set to be less than or

equal to their periods. The𝑚𝑖 and 𝑘𝑖 for the (𝑚,𝑘)-constraints were also randomly generated such

that 𝑘𝑖 was uniformly distributed between 2 to 10, and 1 ≤ 𝑚𝑖 ≤ 𝑘𝑖 . The worst case execution time

(WCET) of a periodic task was uniformly distributed between 1 and its deadline. The task set can

also contain some aperiodic task(s) whose worst case execution times was/were randomly chosen in

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:26 Linwei and Danda, et al.

the range of [10, 50]𝑚𝑠. Each aperiodic task was assigned a soft deadline which is equal to the hyper

period of the periodic tasks.

Firstly, we inspected the feasibility of the different approaches under different density of mandatory

jobs of the periodic tasks. The density of mandatory jobs, defined as 1

𝑁

∑

𝑖
𝑚𝑖

𝑘𝑖
, was divided into

intervals of length 0.1 each of which contained at least 5000 task sets generated. Based on it we

checked the feasibility of the task sets when scheduled by the different approaches. We assumed

the maximal energy budget constraint is randomly picked from [1.5X, 2.5X], where X is the

energy consumption for executing the mandatory jobs of all periodic tasks under their original

(𝑚,𝑘)-constraints and all aperiodic tasks within the hyper period in one processor without energy

management. The numbers of feasible task sets were normalized to that by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 . The results are

shown in Figure 7. From Figure 7, it is not hard to see that, in all cases, 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 always has the

best feasibility. Moreover, for different density of mandatory jobs, the other approaches presented

different performance on feasibilities. As can be seen, when the density of mandatory jobs is very

small, i.e., close to 0.1, the total number of task sets feasible by the other approaches were all very

close to that by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 . However, with the increase of density of the mandatory jobs, the feasibility

of the different approaches became much different. For 𝐸𝐶𝑆𝑆𝐹𝑅𝐽 and 𝐸𝐶𝑆𝑆𝑊𝑇 , their feasibilities

were always decreasing because 𝐸𝐶𝑆𝑆𝐹𝑅𝐽 needed to increase the value of𝑚𝑖 by 1 while 𝐸𝐶𝑆𝑆𝑊𝑇

needed to reduce the window size from 𝑘𝑖 to 𝑦𝑖 =𝑚𝑖
𝑘𝑖+1
𝑚𝑖+1

, both can affect the schedulability of the

task sets. On the other hand, the feasibilities of 𝑆𝑆𝑁𝐸𝑀 , 𝑆𝑆𝑃𝑂 , and𝑀𝐾𝑆𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 decreased fast first

but then became close to 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 again when the density of mandatory jobs were relatively high,

for example, larger than 0.8. This is because, when the density of mandatory jobs is high, the hybrid

approach in 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 might not be able to partition plenty of tasks to be scheduled under Algorithm 1

or Algoirthm 2 due to schedulability constraint. Instead in this case most tasks can only be scheduled

under the regular job procrastination scheme whose estimated total energy consumption is the same

as 𝑆𝑆𝑃𝑂 . However, as shown in Figure 7, when the density of mandatory jobs is moderate, for

example, between 0.3 and 0.7, the feasibility of 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is much better than the other approaches,

with maximal improvement of nearly 55%, mainly due to its capability of combining the advantages

of the different schemes under the hybrid configuration. On the other hand, the feasibility of 𝑆𝑆𝑁𝐸𝑀

and 𝑆𝑆𝑃𝑂 overlapped with each other completely because both of them are based on E-pattern. So

their schedulabilities were the same (their estimated total energy consumptions were also equal to

each other, as discussed earlier). It is also noted that the feasibility of 𝑀𝐾𝑆𝑆𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 is lower than

that by 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 mainly because it is based on deeply-red pattern whose schedulability is

not as good as E-pattern [23].

Next, we inspected the average response time of the aperiodic tasks by the different approaches.

With system feasibility in mind, this time we mainly compared our proposed approach with the

most typical one in the previous approaches, i.e., 𝑆𝑆𝑃𝑂 which is the previous approach with the

best feasibility. Moreover, since according to the above results, the feasibilities of 𝐸𝐶𝑆𝑆𝐹𝑅𝐽 and

𝐸𝐶𝑆𝑆𝑊𝑇 are much worse than the other approaches when the density of the mandatory jobs were

relatively high, we did not include them in this part of test, either. Also considering the impact of

workloads on the performance, we checked the average response time of the aperiodic tasks by the

different approaches based on the utilization of the periodic tasks, i.e.,
∑

𝑖
𝑚𝑖𝐶𝑖

𝑘𝑖𝑃𝑖
which was divided

into intervals of length 0.1 and each interval contains at least 20 task sets feasible or at least 1000

task sets generated. We conducted two sets of tests.

In the first set, we checked the average response time of the aperiodic tasks when no fault occurred

during the hyper period. The results normalized to that by 𝑆𝑆𝑁𝐸𝑀 are shown in Figure 8(a).

From Figure 8(a), it is easy to see that even when all approaches were feasible, our newly proposed

approach, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 can reduce the average response time of the aperiodic tasks significantly

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:27

(b)
(a)

50

60

70

80

90

100

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 Untilization

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e

SSNEM
 SSPO
 ECSS_HYB

50

60

70

80

90

100

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e

SSNEM
 SSPO
 ECSS_HYB

Fig. 8. Average aperiodic response time for systems subject to (a) No faults; (b) System faults.

(b)
(a)

50

60

70

80

90

100

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 Untilization

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

SSNEM
 SSPO
 ECSS_HYB

50

60

70

80

90

100

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n

SSNEM
 SSPO
 ECSS_HYB

Fig. 9. Energy consumption for systems subject to (a) No faults; (b) System faults.

compared with the previous approaches, i.e., 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 . The maximal reduction by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵

over 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 can be up to 38% and 22%, respectively. The main reason is that, by adopting

the hybrid approach in Section 4 and running the main job of the aperiodic tasks in the spare processor,

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 can help minimize the interference from the mandatory backup jobs of the periodic tasks

(running in the higher priority band) on the aperiodic tasks (running in the middle priority band).

Moreover, by delaying the execution of the mandatory backup jobs as late as possible with the

sufficient conditions proposed in Section 4, the preemptions from the mandatory backup jobs of

the periodic tasks on the aperiodic tasks can be greatly reduced, which is also quite helpful to the

execution and early completion of the aperiodic tasks.

In the second set, we assumed the system could be subject to transient and/or permanent faults.

The transient fault model is similar to that in [44] by assuming Poisson distribution with an average

fault rate of 10−5 per millisecond. As for permanent fault, we assume it is distributed evenly along

the time and at most one permanent fault will occur during the hyperperiod of the corresponding task

set. The result is shown in Figure 8(b).

As could be seen, under this scenario, the average aperiodic response time achievable by our new

approach, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is still much less than the previous approaches. The maximal reduction by

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 over 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 can be up to 35% and 20%, respectively, for the same reasons as

stated above.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:28 Linwei and Danda, et al.

(b)
(a)

50

60

70

80

90

100

110

120

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 Q
o

S

L

e
v
e
ls

SSNEM
 SSPO
 ECSS_HYB

50

60

70

80

90

100

110

120

130

0.0 -

0.1

0.1 -

0.2

0.2 -

0.3

0.3 -

0.4

0.4 -

0.5

0.5 -

0.6

0.6 -

0.7

0.7 -

0.8

0.8 -

0.9

0.9 -

1.0

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 Q
o

S

L

e
v
e
ls

SSNEM
 SSPO
 ECSS_HYB

Fig. 10. QoS for systems subject to (a) No faults; (b) System faults.

Still next, we inspected the actual energy consumption of the different approaches. We also

conducted two sets of tests.

In the first set, we checked the energy performance when no fault occurred during the hyper period.

The results were normalized to that by 𝑆𝑆𝑁𝐸𝑀 and shown in Figure 9(a).

From Figure 9(a), it is easy to see that when all approaches were feasible, both the approaches

with energy management, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 and 𝑆𝑆𝑃𝑂 still consumed much less actual energy than the

approach without energy management, i.e., 𝑆𝑆𝑁𝐸𝑀 . Moreover, the actual energy consumption of

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is much lower than 𝑆𝑆𝑃𝑂 in most intervals. For example, when the system workload is

moderate, the actual energy consumed by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 can be around 18% less than that by 𝑆𝑆𝑃𝑂 . The

main reason is that, under this scenario, by adopting the hybrid approach in Section 3.3, 𝐸𝐶𝑆𝑆𝐻𝑌𝐵

can help minimize the overlapped execution between the mandatory jobs and their backup jobs of

the periodic tasks in two processors more efficiently. Moreover, for those tasks that cannot be applied

with the window transferring scheme or the floating redundant job scheme, letting them be applied

with the job procrastination scheme with delay intervals calculated in Equation (22) also helped save

energy consumption effectively.

In the second set, we assumed the system could be subject to permanent and/or transient faults

with the same fault rate as in the previous group of test. The result is shown in Figure 9(b).

As could be seen, under this scenario, the actual energy consumption by our new approach, i.e.,

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is still much less than the previous approaches. The actual energy reduction by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵

over 𝑆𝑆𝑃𝑂 can be up to 16%. This is also because of the capability of 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 in scheduling

the tasks with the hybrid configuration as mentioned above. Additionally, when fault(s) occurred,

procrastinating the backup jobs within the same window of the faulty job using the delay intervals

calculated in Equation (22) also contributed to part of the energy savings due to its capability of

shifting the executions of the mandatory main job(s) and their backup job(s) when necessary.

Finally, with the QoS in mind, we also inspected the QoS levels that the different approaches could

provide when all approaches were feasible. The QoS level was defined as the number of effective

jobs completed successfully within the hyperperiod. We also conducted two sets of tests.

In the first set, we checked the QoS when no fault occurred within the hyperperiod. The results

were normalized to that by 𝑆𝑆𝑁𝐸𝑀 and shown in Figure 10(a). From Figure 10(a), we can see that

our newly proposed approach, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 could provide much better QoS levels than the previous

approaches. Compared with 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 , the maximal QoS improvement could be nearly

30%. This is because, different from 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 which could only provide a minimum set of

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:29

(b)
(a)

Online Time Overhead for Checking Windows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Value of k_i

C
P

U
 T

im
e
 (

M
il
li
 S

e
c
o

n
d

s
)

Online Time Overhead for Algorithm 4 in checking the

sliding windows

Online Enegy Overhead for Checking Windows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Value of k_i

E
n

e
g

y
 C

o
n

s
u

m
p

ti
o

n
 (

m

J
o

u
le

)

 Online Energy Overhead for Algorithm 4 in checking the

sliding windows

Fig. 11. The online overhead of Algorithm 4 in checking the energy consumption of all sliding dynamic

windows containing the current optional job: (a) Time overhead; (b) Energy overhead.

jobs that ªjust" satisfied the (𝑚,𝑘)-constraints, 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 , by adopting hybrid configurations, could

not only have extra number of mandatory jobs scheduled under the floating redundant job scheme

and the window transferring scheme, but also dynamically scheduled some optional jobs for the tasks

in 𝑍 while keeping the total energy consumption bounded under the given energy budget constraint.

Therefore it could generally generate more valid jobs in its schedule, resulting in better QoS levels.

In the second set, we assumed the system could be subject to permanent and/or transient faults

with same fault rate as in the previous group of test. The result is shown in Figure 10(b).

From Figure 10(b), the QoS improvement subject to faults by our newly proposed approach, i.e.,

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 over the previous approaches is quite similar to that when no fault ever occurred, for the

same reasons as stated above.

Finally, we also investigated the online overhead of Algorithm 4 in checking all the sliding dynamic

windows containing the current optional job in terms of time and energy. In this part we varied the

value of 𝑘𝑖 from 2 to 20 and measured the accumulated CPU time for checking the sliding windows

in it. Figure 11(a) illustrates the accumulated CPU time for the corresponding values of 𝑘𝑖 . As shown

in Figure 11(a), when the value of 𝑘𝑖 is no larger than 20, the measured online time overhead is

very small. The average value of it is slightly higher than 0.1 millisecond. Meanwhile, since in our

approach there is no speed scaling on the processor, the online energy overhead also follows the same

trend. As seen in Figure 11(b), in most cases the value of it is less than 0.2 mJoule when 𝑘𝑖 is no

larger than 20. In Algorithm 4 , this energy overhead has been incorporated into the estimation of the

energy consumption for checking all the sliding dynamic windows containing the current optional

job.

5.2 Evaluation based on real world benchmark

In this section, we tested our conclusions in a more practical environment.

The test is based on an real world benchmark: VCS (Vehicle Control System) [18]. The timing

parameters such as the deadlines, periods, and execution times were adopted from the practical

application directly [18]. The timing parameters of the aperiodic tasks were generated in the same

way as in Section 5. The𝑚𝑖 and 𝑘𝑖 values for the (𝑚,𝑘)-constraint were randomly generated between

2 and 10 (𝑘𝑖 > 𝑚𝑖).

We firstly performed two sets of experiments to inspect the aperiodic response time of the different

approaches.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:30 Linwei and Danda, et al.

(b)
(a)

VCS

50

60

70

80

90

100

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 Untilization

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e
 R

e
s
p

o
n

s
e

T
im

e

SSNEM
 SSPO
 ECSS_HYB

VCS

50

60

70

80

90

100

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 A
v
e
ra

g
e
 R

e
s
p

o
n

s
e

T
im

e

SSNEM
 SSPO
 ECSS_HYB

Fig. 12. Comparisons on the average aperiodic response time for systems subject to (a) No faults; (b)

System faults.

(b)
(a)

VCS

50

60

70

80

90

100

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 Untilization

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

SSNEM
 SSPO
 ECSS_HYB

VCS

50

60

70

80

90

100

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

C
o

n
s
u

m
p

ti
o

n

SSNEM
 SSPO
 ECSS_HYB

Fig. 13. Comparisons on the actual energy consumption for systems subject to (a) No faults; (b)

System faults.

In the first set, we checked the average response time of the aperiodic tasks when no fault occurred

within the hyperperiod. The results, normalized to that by 𝑆𝑆𝑁𝐸𝑀 , are shown in Figure 12(a).

From Figure 12(a), it is easy to see that for VCS application, similar to the synthesized case, the

average aperiodic response time of 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is much less than all the other approaches for the same

reasons as stated in Section 5. The maximal reduction by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 over 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 can be

up to 27% and 15%, respectively.

In the second set, we assumed the system could be subject to permanent and/or transient faults

with same fault rate as in Section 5. The result is shown in Figure 12(b).

As could be seen, under this scenario, the average aperiodic response time achievable by our new

approach, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is still much less than the previous approaches. The maximal reduction by

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 over 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 can be up to 25% and 13%, respectively, for the same reasons as

stated above.

Next, we inspected the actual energy consumption of the different approaches. We also conducted

two sets of tests.

In the first set, we checked the energy performance of the approaches when no fault occurred

during the hyper period. The results, normalized to 𝑆𝑆𝑁𝐸𝑀 are shown in Figure 13(a).

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:31

(b)
(a)

VCS

50

60

70

80

90

100

110

120

130

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 Q
o

S

L

e
v
e
ls

SSNEM
 SSPO
 ECSS_HYB

VCS

50

60

70

80

90

100

110

120

130

0.0 - 0.1
 0.1 - 0.2
 0.2 - 0.3
 0.3 - 0.4
 0.4 - 0.5

 (m,k)-Untilization

N
o

rm
a
li
z
e
d

 Q
o

S

L

e
v
e
ls

SSNEM
 SSPO
 ECSS_HYB

Fig. 14. Comparisons on the QoS for systems subject to (a) No faults; (b) System faults.

From Figure 13(a), it is easy to see that, similar to the results for randomly generated tasks, both

the approaches with energy management, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 and 𝑆𝑆𝑃𝑂 still consumed much less actual

energy than the approach without energy management, i.e., 𝑆𝑆𝑁𝐸𝑀 . Moreover, the actual energy

consumption of 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is much lower than 𝑆𝑆𝑃𝑂 in most intervals for the same reasons as stated

in Section 5. When the system workload is not high, the actual energy consumed by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 can be

around 16% less than that by 𝑆𝑆𝑃𝑂 .

In the second set, we assumed the system could be subject to permanent and/or transient faults

with the same fault rate as in the previous group of test. The result is shown in Figure 13(b).

As could be seen, under this scenario, the actual energy consumption by our new approach, i.e.,

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 is still much less than the previous approaches. The actual energy reduction by 𝐸𝐶𝑆𝑆𝐻𝑌𝐵

over 𝑆𝑆𝑃𝑂 can be up to 15% for the same reasons as stated above.

Finally, with the QoS in mind, we also inspected the QoS levels that the different approaches could

provide when all approaches were feasible. We also conducted two sets of tests.

In the first set, we checked the QoS when no fault occurred within the hyperperiod. The results

were normalized to that by 𝑆𝑆𝑁𝐸𝑀 and shown in Figure 14(a). From Figure 14(a), we can see that

our newly proposed approach, i.e., 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 could provide much better QoS levels than the previous

approaches. Compared with 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 , the maximal QoS improvement could be around

28% mainly because 𝐸𝐶𝑆𝑆𝐻𝑌𝐵 adopted hybrid configurations which could generate more valid jobs

for the same reasons as stated for the synthesized task sets in Section 5.1.

In the second set, we assumed the system could be subject to permanent and/or transient faults

with same fault rate as in the previous group of test. The result is shown in Figure 14(b).

From Figure 14(b), the QoS improvement subject to faults by our newly proposed approach, i.e.,

𝐸𝐶𝑆𝑆𝐻𝑌𝐵 over the previous approaches is still quite significant for the same reasons as stated above.

Compared with 𝑆𝑆𝑁𝐸𝑀 and 𝑆𝑆𝑃𝑂 , the maximal QoS improvement could be around 27%.

Overall, the evaluation results based on both synthesized systems and real world application have

clearly demonstrated the effectiveness of our approaches in reducing average aperiodic response

time as well as saving energy and improving QoS levels while satisfying the (𝑚,𝑘)-constraints and

assuring fault tolerance through standby-sparing.

6 RELATED WORK

In last decades, plenty of work has been done in integrating QoS assurance into scheduling for real-

time systems. For mixed-criticality systems, Gettings et al. [10] and Bruggen et al. [35] proposed

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:32 Linwei and Danda, et al.

new approaches that can provide QoS-guarantee for low-criticality tasks. Moreover, for general

fixed-priority weakly-hard real-time systems, schedulability analysis based on the Mixed Integer

Linear Programming (MILP) formulation are provided in [33]. For mixed systems consisting of

both periodic and aperiodic tasks, Buttazzo et al. [5] studied minimizing aperiodic response times in

a firm real-time environment without considering energy consumption. With given energy budget

constraint in mind, Alenawy et al. [2] proposed an approach to reduce the number of (𝑚,𝑘)-violations

for weakly hard real-time systems.

Recently, with fault tolerance becoming an important concern for ubiquitous computing systems,

a lot of works ([19, 41, 44]) have been presented in combining fault tolerant scheduling and energy

management for real-time embedded systems. Many of them have utilized time redundancy, i.e.,

to re-execute recovery jobs, whenever possible, to compensate the faulty jobs. Most of them have

focused on dealing with transient faults only.

Besides transient faults, the system could be subject to permanent faults as well. More recently, to

provide better system dependability, there has been increasing interest in adopting standby-sparing

technique to deal with both permanent and transient faults simultaneously. With energy consumption

in mind, in [9, 14], online power management schemes applying DVFS in the primary processor and

DPM in the spare processor were studied. To better utilize the slack time in both processors, mixed

scheduling schemes which adopt the combination of DVFS and DPM schemes in both the primary and

spare processors were explored in [12]. For standby-sparing systems with mixed criticality, advanced

energy management schemes were proposed in [32]. The biggest contribution in it was to set up

a scheme to reduce energy through convex optimization in combination with power management

heuristics based on joint DVFS and DPM schemes in both the primary and the spare processors.

When considering the chip thermal effect, peak-power-aware standby-sparing techniques utilizing

energy management schemes were presented in [3]. For real-time systems based on fixed-priority

scheduling policies, standby-sparing schemes based on procrastination of the backup tasks were

studied in [15]. In [4], more advanced fixed-priority standby-sparing techniques based on preference

oriented scheduling schemes were explored. In[30], a scheme based on reverse preference-oriented

priority assignment is proposed which is shown to be able to approach the energy performance of a

theoretical lower bound when coupled with the dual-queue based delaying mechanism. For weakly

hard real-time systems, in [25], an energy-aware approach was proposed to combine the standby-

sparing technique and (𝑚,𝑘)-deadlines to achieve better energy efficiency for task sets partitioned

based on deeply-red pattern [17]. However, as shown in [23], the schedulability of deeply-red pattern

is weaker than that of the evenly distributed pattern used in this paper.

For multicore/multiprocessor systems, some works have also been conducted for real-time systems

with fault tolerance capability. In [42], a framework is proposed to maximize the system availability

by improving the mean time to failure (MTTF). In [7], Das et al. proposed an offline approach for

mapping tasks onto processor cores to minimize energy consumption for all processor fault-scenarios.

In [31], Safari et al. proposed a energy-aware solution for mixed-criticality multicore systems, which

exploited task-replication to improve the QoS of low-criticality tasks in overrun situation while

satisfying reliability requirements. The work in [12] described an implementation of standby-sparing

through sharing the spare processor among multiple primary processors in multicore platforms to

improve the overall energy efficiency using DVFS. In [29, 30], Roy et al. proposed standby-sparing

schemes for reducing energy consumption on heterogeneous multicore platforms by applying DVFS.

With thermal effect in mind, peak-power-aware reliability management scheme were presented in [3]

to meet power and thermal constraints on the chip through distributing power density on the whole

chip. In [20], a reactive triple modular redundancy (TMR) scheme was studied for tolerating both

transient and permanent faults. Although TMR can avoid the potential problem of undetected faults

in standby-sparing systems using sanity(or consistency) checking, since it needs to have at least

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:33

three copies of each real-time job scheduled among which at least two must be executed entirely (the

third copy could be (partially) canceled depending on the results of the previous two copies), its vast

energy consumption is a grave concern [20].

Also note that most of the above energy-aware approaches are focused on reducing the energy

as much as possible. However, for systems that are driven by power supplies with limited energy

budget constraint, the above best-effort approaches might not be able to ensure that the system

could remain operational during a well-defined mission cycle. For systems with given fixed energy

budget for its operation, Zhao et al. [40] proposed an approach to maximize the overall reliability

of the systems subject to transient faults only. To the best of our knowledge, scheduling for an

energy-constrained systems subject to both permanent and transient faults has not been studied yet.

In this work, we assume the system is operating in an energy-constrained environment in which the

energy consumption of the system must not exceed a given fixed budget. Based on it, we explore

maximizing the feasibility and system performance for mixed systems containing both periodic and

aperiodic tasks in a weakly hard real-time environment under fault tolerance requirement.

7 CONCLUSION

QoS, fault tolerance, and energy budget constraint are among the primary concerns for the design of

real-time embedded systems. In this paper, we firstly presented several novel standby-sparing schemes

for the periodic tasks which can ensure feasibility for the standby-sparing systems under tighter energy

budget constraint than the traditional ones. Then based on them we proposed integrated approaches

for both periodic and aperiodic tasks to minimize the aperiodic response time whilst achieving

better energy and QoS performance under the given energy budget constraint. Through extensive

evaluations, our results demonstrated that the proposed techniques significantly outperformed the

existing state of the art approaches in terms of feasibility and system performance for mixed systems

containing both periodic and aperiodic tasks in a weakly hard real-time environment while ensuring

fault tolerance under the given energy budget constraint.

ACKNOWLEDGMENTS

This work is partly supported by the U.S. NSF under grants HRD 2135345, ECCS 2302651,

CNS/SaTC 2039583, HRD 1828811, CMMI 2240407, the Kempe Foundation of Sweden, the

National Natural Science Foundation of China (No. 62072085), and by the DoD Center of Ex-

cellence in AI and Machine Learning (CoE-AIML) at Howard University under Contract Number

W911NF-20-2-0277 with the U.S. Army Research Laboratory.

REFERENCES

[1] 2013. Energy analysis and prediction for applications on smartphones. Journal of Systems Architecture 59, 10, Part D

(2013), 1375 ± 1382.

[2] T. A. AlEnawy and H. Aydin. 2005. Energy-Constrained Scheduling for Weakly-Hard Real-Time Systems. RTSS

(2005).

[3] M. Ansari, A. Yeganeh-Khaksar, S. Safari, and A. Ejlali. 2020. Peak-Power-Aware Energy Management for Periodic

Real-Time Applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 39, 4 (2020),

779±788.

[4] Rehana Begam, Qin Xia, Dakai Zhu, and Hakan Aydin. 2016. Preference-oriented Fixed-priority Scheduling for Periodic

Real-time Tasks. J. Syst. Archit. 69, C (Sept. 2016), 1±14.

[5] G. C. Buttazzo and M. Caccamo. 1999. Minimizing aperiodic response times in a firm real-time environment. IEEE

Transactions on Software Engineering 25, 1 (1999), 22±32.

[6] Houssine Chetto and Maryline Chetto. 1989. Some Results of the Earliest Deadline Scheduling Algorithm. IEEE

Transction On Software Engineering 15 (1989).

[7] Anup Das, Akash Kumar, and Bharadwaj Veeravalli. 2014. Energy-aware Task Mapping and Scheduling for Reliable

Embedded Computing Systems. ACM Trans. Embed. Comput. Syst. 13, 2s, Article 72 (Jan. 2014), 27 pages.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

111:34 Linwei and Danda, et al.

[8] Dongkun Shin and Jihong Kim. 2006. Dynamic voltage scaling of mixed task sets in priority-driven systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 3 (2006), 438±453.

[9] A. Ejlali, B. M. Al-Hashimi, and P. Eles. 2012. Low-Energy Standby-Sparing for Hard Real-Time Systems. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems 31, 3 (March 2012), 329±342.

[10] Oliver Gettings, Sophie Quinton, and Robert I. Davis. 2015. Mixed Criticality Systems with Weakly-hard Constraints.

In Proceedings of the 23rd International Conference on Real Time and Networks Systems (Lille, France) (RTNS ’15).

237±246.

[11] Yifeng Guo, Hang Su, Dakai Zhu, and Hakan Aydin. 2015. Preference-oriented real-time scheduling and its application

in fault-tolerant systems. Journal of Systems Architecture 61 (01 2015).

[12] Yifeng Guo, Dakai Zhu, Hakan Aydin, Jian-Jun Han, and Laurence Yang. 2017. Exploit Primary/Backup Mechanism for

Energy Efficiency in Dependable Real-Time Systems. Journal of Systems Architecture 78 (06 2017).

[13] M. Hamdaoui and P. Ramanathan. 1995. A dynamic priority assignment technique for streams with (m,k)-firm deadlines.

IEEE Transactions on Computes 44 (Dec 1995), 1443±1451.

[14] M. A. Haque, H. Aydin, and D. Zhu. 2011. Energy-aware Standby-Sparing Technique for periodic real-time applications.

In ICCD.

[15] Mohammad A. Haque, Hakan Aydin, and Dakai Zhu. 2015. Energy-aware standby-sparing for fixed-priority real-time

task sets. Sustainable Computing: Informatics and Systems 6 (2015), 81 ± 93.

[16] B. P. R. J. J. Srinivasan, A. S.V. and C.-K. Hu. 2003. Ramp: A model for reliability aware microprocessor design. IBM

Research Report, RC23048 (2003).

[17] G. Koren and D. Shasha. 1995. Skip-over: Algorithms and complexity for overloaded systems that allow skips. In RTSS.

[18] J. Li, YeQiong Song, and F. Simonot-Lion. 2006. Providing Real-Time Applications With Graceful Degradation of QoS

and Fault Tolerance According to (m,k)-Firm Model. Industrial Informatics, IEEE Transactions on 2, 2 (May 2006),

112±119. https://doi.org/10.1109/TII.2006.875511

[19] Zheng Li, Shangping Ren, and Gang Quan. 2015. Energy Minimization for Reliability-guaranteed Real-time Applications

Using DVFS and Checkpointing Techniques. Journal of Systems Architecture 61, 2 (Feb. 2015), 71±81.

[20] FatemehSadat Mireshghallah, Mohammad Bakhshalipour, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2019.

Energy-Efficient Permanent Fault Tolerance in Hard Real-Time Systems. IEEE Trans. Comput. 68, 10 (2019), 1539±

1545.

[21] Linwei Niu. 2011. Energy Efficient Scheduling for Real-Time Systems with QoS Guarantee. Journal of Real-Time

Systems 47, 2 (2011), 75±108.

[22] Linwei Niu and G. Quan. 2004. Reducing both dynamic and leakage energy consumption for hard real-time systems.

CASES’04 (Sep 2004).

[23] Linwei Niu and Gang Quan. 2006. Energy Minimization for Real-time Systems With (m,k)-Guarantee. IEEE Trans. on

VLSI, Special Section on Hardware/Software Codesign and System Synthesis (July 2006), 717±729.

[24] Linwei Niu and Gang Quan. 2015. Peripheral-conscious energy-efficient scheduling for weakly hard real¨Ctime systems.

International Journal of Embedded Systems 7, 1 (2015), 11±25.

[25] Linwei Niu and Dakai Zhu. 2020. Reliable and Energy-Aware Fixed-Priority (m,k)-Deadlines Enforcement with

Standby-Sparing. DATE (2020).

[26] D. K. Pradhan (Ed.). 1986. Fault-tolerant Computing: Theory and Techniques; Vol. 2. Prentice-Hall, Inc., Upper Saddle

River, NJ, USA.

[27] G. Quan and X.(Sharon) Hu. 2000. Enhanced Fixed-Priority Scheduling with (m,k)-Firm Guarantee. In RTSS. 79±88.

[28] P. Ramanathan. 1999. Overload management in real-time control applications using (m,k)-firm guarantee. IEEE Trans.

on Paral. and Dist. Sys. 10, 6 (Jun 1999), 549±559.

[29] Abhishek Roy, Hakan Aydin, and Dakai Zhu. 2017. Energy-aware standby-sparing on heterogeneous multicore systems.

In 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). 1±6.

[30] Abhishek Roy, Hakan Aydin, and Dakai Zhu. 2021. Energy-aware primary/backup scheduling of periodic real-time

tasks on heterogeneous multicore systems. Sustainable Computing: Informatics and Systems 29 (2021), 100474.

https://doi.org/10.1016/j.suscom.2020.100474

[31] Sepideh Safari, Mohsen Ansari, Ghazal Ershadi, and Shaahin Hessabi. 2019. On the Scheduling of Energy-Aware

Fault-Tolerant Mixed-Criticality Multicore Systems with Service Guarantee Exploration. IEEE Transactions on Parallel

and Distributed Systems 30, 10 (2019), 2338±2354.

[32] S. Safari, S. Hessabi, and G. Ershadi. 2020. LESS-MICS: A Low Energy Standby-Sparing Scheme for Mixed-Criticality

Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2020), 1±1.

[33] Youcheng Sun and Marco Di Natale. 2017. Weakly Hard Schedulability Analysis for Fixed Priority Scheduling of

Periodic Real-Time Tasks. ACM Trans. Embed. Comput. Syst. 16, 5s, Article 171 (Sept. 2017), 19 pages. https:

//doi.org/10.1145/3126497

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

Energy-Constrained Scheduling for Weakly Hard Real-Time Systems Using Standby-Sparing 111:35

[34] A. Taherin, M. Salehi, and A. Ejlali. 2018. Reliability-Aware Energy Management in Mixed-Criticality Systems. IEEE

Transactions on Sustainable Computing 3, 3 (July 2018), 195±208.

[35] G. v. d. Bruggen, K. Chen, W. Huang, and J. Chen. 2016. Systems with Dynamic Real-Time Guarantees in Uncertain

and Faulty Execution Environments. In 2016 IEEE Real-Time Systems Symposium (RTSS). 303±314.

[36] Yi wen Zhang. 2019. Energy-aware mixed partitioning scheduling in standby-sparing systems. Computer Standards and

Interfaces 61 (2019), 129 ± 136.

[37] Yi wen Zhang, Hui zhen Zhang, and Cheng Wang. 2017. Reliability-aware low energy scheduling in real time systems

with shared resources. Microprocessors and Microsystems 52 (2017), 312 ± 324.

[38] Richard West, Yuting Zhang, Karsten Schwan, and Christian Poellabauer. 2004. Dynamic Window-Constrained

Scheduling of Real-Time Streams in Media Servers. IEEE Trans. on Computers 53, 6 (June 2004), 744±759.

[39] Ying Zhang, K. Chakrabarty, and V. Swaminathan. 2003. Energy-aware fault tolerance in fixed-priority real-time

embedded systems. In Computer Aided Design, 2003. ICCAD-2003. International Conference on. 209±213.

[40] Baoxian Zhao, Hakan Aydin, and Dakai Zhu. 2010. On Maximizing Reliability of Real-Time Embedded Applications

under Hard Energy Constraint. IEEE Trans. Industrial Informatics (2010), 316±328.

[41] Baoxian Zhao, Hakan Aydin, and Dakai Zhu. 2012. Energy Management Under General Task-Level Reliability

Constraints. In Proceedings of the 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium

(RTAS ’12). Washington, DC, USA, 285±294.

[42] Junlong Zhou, Xiaobo Sharon Hu, Yue Ma, Jin Sun, Tongquan Wei, and Shiyan Hu. 2019. Improving Availability of

Multicore Real-Time Systems Suffering Both Permanent and Transient Faults. IEEE Trans. Comput. 68, 12 (2019),

1785±1801.

[43] Dakai Zhu. 2011. Reliability-aware dynamic energy management in dependable embedded real-time systems. ACM

Trans. Embed. Comput. Syst. 10 (January 2011), 26:1±26:27. Issue 2.

[44] Dakai Zhu, R. Melhem, and D. Mosse. 2004. The effects of energy management on reliability in real-time embedded

systems. In ICCAD.

ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System model
	2.2 Energy Model
	2.3 Fault Model

	3 Energy-constrained standby-sparing for purely periodic tasks
	3.1 Approach based on floating redundant job scheme
	3.2 Approach based on window transferring scheme
	3.3 Integrated approach based on combined schemes
	3.4 Improving the QoS by executing optional jobs

	4 Energy-constrained standby-sparing for both periodic and aperiodic tasks
	5 Evaluation
	5.1 Evaluation based on synthesized task sets
	5.2 Evaluation based on real world benchmark

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

