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For real-time embedded systems, QoS (Quality of Service), fault tolerance, and energy budget constraint are
among the primary design concerns. In this research, we investigate the problem of energy constrained standby-
sparing for both periodic and aperiodic tasks in a weakly hard real-time environment. The standby-sparing
systems adopt a primary processor and a spare processor to provide fault tolerance for both permanent and
transient faults. For such kind of systems, we firstly propose several novel standby-sparing schemes for the
periodic tasks which can ensure the system feasibility under tighter energy budget constraint than the traditional
ones. Then based on them integrated approachs for both periodic and aperiodic tasks are proposed to minimize
the aperiodic response time whilst achieving better energy and QoS performance under the given energy budget
constraint. The evaluation results demonstrated that the proposed techniques significantly outperformed the
existing state of the art approaches in terms of feasibility and system performance while ensuring QoS and fault
tolerance under the given energy budget constraint.
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1 INTRODUCTION

With the advance of IC technology, energy constraint has been an increasingly important factor for
the design of real-time embedded systems. In some real-time applications, the systems are driven
by power supplies with limited energy budget constraint, which has to remain operational during a
well-defined mission cycle. Examples include Heart Pacemakers [34] or other portable embedded
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devices whose power supply can only be charged to full capacity right before the beginning of certain
mission/operation cycle/period(s). For such kind of applications, efforts must be made by all means
to avoid exhausting the energy budget before the end of the mission cycle. On the other hand, fault
tolerance has also been a major concern for pervasive computing systems as system fault(s) could
occur anytime [44]. Generally, computing system faults can be classified into permanent faults and
transient faults [16]. Permanent faults could be caused by hardware failure or permanent damage in
processing unit(s) whereas transient faults are mainly due to transient factors such as electromagnetic
interference and/or cosmic ray radiations.

Recently a lot of researches (e.g. [37, 43]) have been conducted on dealing with energy consump-
tion for fault-tolerant real-time systems. Many of them have focused on dealing with transient faults.
A widely adopted strategy is based on time redundancy, i.e., to reserve recovery jobs whenever
possible, to tolerate transient faults through re-execution of the faulty jobs. For mission critical
applications such as nuclear plant control systems, permanent faults need to be dealt with by all
means to avoid system failure. Otherwise catastrophical consequences could occur. More recently,
solutions adopting hardware redundancy are proposed to address this issue. Among them the standby-
sparing technique has gained much attention [9, 11, 14, 36]. Generally, the standby-sparing makes
use of the redundancy of processing units in multicore/multiprocessor systems. More specifically,
a standby-sparing system consists of two processors, a primary one and a spare one, executing in
parallel. For each real-time job executed in the primary processor, there is a corresponding backup job
reserved for it in the spare processor [11]. As such, whenever a permanent fault occurs to the primary
or the spare processor, the other one can still continue without causing system failure. Moreover, it is
not hard to see that the backup tasks/jobs in the spare processor can also help tolerate transient faults
for their corresponding main tasks/jobs in the primary processor.

In a standby-sparing system, due to the deadline constraint, the execution of the main jobs in
the primary processor and their corresponding backup jobs in the spare processor might need to be
overlapped with each other in time. Thus the total energy consumption could be quite considerable.
Regarding that, some recent works (e.g. [9, 11, 14, 36]) have been reported to reduce energy by
letting the executions of the main jobs and their corresponding backup jobs be shifted away such that,
once the main jobs are completed successfully, their corresponding backup jobs could be canceled
early. For standby-sparing systems with mixed criticality, advanced energy management schemes
were proposed in [32]. When considering the chip thermal effect, peak-power-aware standby-sparing
techniques utilizing energy management schemes were presented in [3].

All of the above works are mainly focused on hard real-time systems, i.e., the systems which require
all real-time tasks/jobs meet their deadlines. However, in practical time-sensitive applications, such
as multimedia or time-critical communication systems, occasional deadline misses are acceptable so
long as the user perceived quality of service (QoS) can be ensured at certain levels. For such kind of
systems, the existing techniques solely based on hard real-time constraints are insufficient in dealing
with energy reduction under standby-sparing and more advanced techniques incorporating the QoS
systematically are desired. To this end, the QoS requirements need to be quantified in certain ways.
One popular existing approach is to use some statistic information such as the average deadline
miss rate as the QoS metric. Although such kind of metric can ensure the quality of service in a
probabilistic manner, it can still be problematic for some real-time applications. For example, for
certain real-time systems, when the deadline misses happened to some tasks, the information carried
by those tasks can be estimated in a reasonable accuracy using techniques such as interpolation.
However, even a very low overall miss rate tolerance cannot prevent a large number of deadline
misses from occurring consecutively in such a short period of time that the critical data could be lost.

The weakly hard QoS model is more appropriate to model such kind of systems. Under the weakly
hard QoS model, tasks have both firm deadlines (i.e., task(s) with deadline(s) missed generate(s) no
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useful values) and a throughput requirement (i.e., sufficient task instances must finish before their
deadlines to provide acceptable QoS levels) [24]. Two well known weakly hard QoS models are
the (m, k)-model [13] and the window-constrained model [38]. The (m, k)-model requires that m
jobs out of any sliding window of k consecutive jobs of the task meet their deadlines, whereas the
window-constrained model requires that m jobs out of each fixed and nonoverlapped window of k
consecutive jobs meet their deadlines. It is not hard to see that the window-constrained model is
weaker than the (m, k)-model as the latter one is more restrictive. To ensure the (m, k)-constraints,
Ramanathan et al. [28] adopted a partitioning strategy which divides the jobs into mandatory and
optional ones. The mandatory ones are the jobs that must meet their deadlines in order to satisfy the
(m, k)-constraints. In other words, so long as all the mandatory jobs can meet their deadlines, the
(m, k)-constraints can be satisfied.

With energy budget constraint in mind, in [40], Zhao et al. proposed an approach to maximize
the overall reliability of the systems under given time and energy constraints. Their approach only
considered the transient faults without recovery. When both permanent and transient faults are
taken into consideration in the context of standby-sparing, the energy-constrained issue is especially
critical as the energy consumption of the main/backup jobs often needs to be estimated for the worst
case because their actual energy consumption will usually remain unknown offline and cannot be
accurately predictable, which could make the estimation of the total energy consumption go beyond
the given energy budget constraint unnecessarily.

In many real-time applications such as multimedia and telecommunication systems, both periodic
tasks and aperiodic tasks are required in which periodic tasks are time driven with (m, k)-deadlines
while aperiodic tasks are event driven with soft deadlines [8]. For such kind of mixed task systems,
two design objectives need to be achieved: (i) the (m, k)-constraints of the periodic tasks must be
ensured at any time; (ii) the response time of the aperiodic tasks should be minimized. In this paper,
we will add a third objective to it, i.e., the given energy budget constraint in the mission cycle should
never be exceeded. Based on them, we study the problem of energy constrained standby-sparing for
both periodic and aperiodic tasks in a weakly hard real-time environment under the requirement of
tolerating both permanent and transient faults. To the best of our knowledge, this is the first work
to explore improving feasibility and performance of standby-sparing systems under given energy
budget constraint.

The rest of the paper is organized as follows. Section 2 presents the preliminaries. Section 3
presents our approaches for purely periodic tasks. Section 4 presents our approaches for mixed
systems containing both periodic and aperiodic tasks. In Section 5, we present our evaluation results.
In Section 6, we discuss the related work. In Section 7, we offer our conclusions.

2 PRELIMINARIES
2.1 System model

The real-time system T considered in this paper contains a number of periodic tasks, i.e., {71, 72, - - - , TN },
scheduled according to the earliest deadline first (EDF) scheduling scheme. Each periodic task con-
tains an infinite sequence of periodically arriving instances called jobs. Task z; is characterized using
five parameters, i.e., (C;, D;, P;, m;, k;). C;, D; (< P;), and P; represent the worst case execution time
(WCET), deadline, and period for 7;, respectively, all in milliseconds. A pair of integers, i.e., (m;, k;)
(0 < m; < k;), are used to denote the (m, k)-constraint for task 7; which requires that, among any k;
consecutive jobs, at least m; jobs must be executed successfully. The j*# job of task 7; is represented
with J;; and we use r;j, ¢;;(= C;), and d;; to denote its release time, execution time, and absolute
deadline, respectively.
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The system T can also contain a number of aperiodic tasks, i.e., {Tn+1, Tn+2, * * > TN+Mm |- Each
aperiodic task is characterized using two parameters, i.e., (C;, D;), which represent the worst case
execution time and the soft deadline for it.

We assume the task set is to be executed in a standby-sparing system with a limited energy
budget/supply of Ep units during its mission cycle. Moreover, we assume this energy budget is a hard
constraint in a sense that it cannot be exceeded at any time during its mission cycle. Without loss of
generality, we let the mission cycle be the hyper period of the periodic tasks, i.e., H = LCM(k;P;)
and assume that the energy supply can only be charged to full capacity right before the beginning of
each mission cycle.

The standby-sparing system consists of two identical processors which are denoted as primary
processor and spare processor, respectively. For the purpose of tolerating permanent/transient faults,
each mandatory job of a task 7; has two duplicate copies running in the primary and the spare
processors separately. Whenever a permanent fault is encountered in either processor, the other one
will take over the whole system (to continue as normal). For convenience, we call each task z; main
task and its corresponding copy running in the other processor backup task, denoted as rl The ji"
job of task r' is denoted as Jij ' Moreover, we call each mandatory job J; ;j of task 7; main job and its
correspondmg job running in the other processor (to compensate its failure, if happened) backup job,
denoted as ], j. Note that in this paper J;;’s backup job, i.e., ], 7 might be different from ]l i i.e., the

job of Tl- in the same time frame as J;; because, as will be shown in later part of this paper, J;; and Jii ]
can be shifted away from each other completely such that they might belong to different time frames.

2.2 Energy Model

The processor can be in one of the three states: busy, idle and sleeping states. When the processor is
busy executing a job, it consumes the busy power (denoted as Pp,s,) which includes dynamic and
static components during its active operation. The dynamic power (Pgy,) consists of the switching
power for charging and discharging the load capacitance, and the short circuit power due to the non-
zero rising and falling time of the input and output signals. The dynamic power can be represented [22]
as

Payn = aCLV?f, M
where « is the switching activity, Cy, is the load capacitance, V is the supply voltage, and f is the
system clock frequency. The static power (Ps;) can be expressed as

Py = IV, (2)

where I; is mainly due to the leakage current which consists of both the subthreshold leakage
current and the reverse bias junction current in the CMOS circuit. The power consumption when the
processor is busy, i.e, Ppusys is thus
Pbusy :den + Py, 3
When the processor is idle, it consumes the idle power (denoted as P;4;.) whose major portion
comes from the static power. When the processor is in the sleeping state, it consumes the sleeping
power (denoted as Pgje.p) which is assumed to be negligible. Note that although dynamic power can
be reduced effectively by dynamic voltage scaling (DVFS) techniques, the efficiency of DVFS in
reducing the overall energy is becoming seriously degraded with the dramatic increase in static power
(mainly due to leakage) with the shrinking of IC technology size. Dynamic power down (DPD), i.e.,
put the processor into its sleeping state, on the other hand, can greatly reduce the leakage energy
when the processor is not in use. With that in mind, in this paper we assume that, when the processors
is busy, it always consumes Pp,s, at the maximal supply voltage V4. Without loss of generality,
we normalize Py, and the processor speed under Vpax (denoted as spqx) to 1 and assume that one
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unit of energy will be consumed for a processor to execute a job for one time unit. When no job
is pending for execution, the processors can be put into sleeping state with DPD. Assume that the
energy overhead and the timing overhead of shutting-down/waking-up the processor are E, and t,,
respectively. Then the processor can be shut down with positive energy gains only when the length of
the idle interval is larger than t;3 = max( m, t,). We therefore call ty4 the minimal shut-down

Pslee
interval.

2.3 Fault Model

Similar to the standby-sparing systems in [11, 14, 30], the system we considered can tolerate both
permanent and transient faults. With the redundancy of the processing units, our system can tolerate
at least one permanent fault in the primary or the spare processor. For transient faults which can occur
anytime during the task execution, we assume they can be detected at the end of a job’s execution
using sanity (or consistency) checks [26]. Assume that the energy and the timing overheads of sanity
(or consistency) checks are Es. and t,., respectively. Moreover, following the fault model in [44],
we assume that the transient faults will present Poisson distribution [39] and the average transient
fault rate for systems running at the maximal speed s, (and the corresponding supply voltage)
is o (smax). Based on it, the average job fault rate for task 7; at the maximal processor speed Spqx,
represented as A;(s;uqx) can be calculated as:

Ai(smax) — (1 — e_o'(smax)ci) (4)

Also for permanent faults, we follow the model adopted in [30] that if a permanent fault occurs on
any of the cores, the other core can still execute one copy of each task’s instances. However, when
a permanent fault occurs, the system loses its capability of tolerating any additional (transient or
permanent) faults until the faulty core is repaired or replaced [30].

3 ENERGY-CONSTRAINED STANDBY-SPARING FOR PURELY PERIODIC TASKS
3.1 Approach based on floating redundant job scheme

For the scheduling of periodic tasks in a weakly hard real-time system, one essential part is to
determine the mandatory jobs in them to be scheduled under standby-sparing. Two well-known
partitioning strategies are the evenly distributed pattern (or E-pattern) [28] and the deeply-red pattern
(or R-pattern) [17]. According to E-pattern, the pattern z;; for job J;;, i.e., the jth job of a task 7;, is
defined by (here “1" represents the mandatory job and “0" represents the optional job):

PR . . j—1 i ki

o 1 1f_]=|_|——(1 k)xm-|><;J 5

Tij = «n» R i ! . 5)
0” otherwise j=123---

And according to R-pattern, the pattern 7;; for job J;; is defined by:

ﬂij_{ 17 if1 < jmod k; < m; ©)

“0” otherwise j=123,---

The mandatory/optional job partitioning according to equation (5) has the property that it spreads
out the mandatory jobs evenly in each task along the time. Moreover, it is shown in [23] that E-pattern
has better schedulability that R-pattern in general and is the optimal pattern when all task periods are
co-prime in particular.

Note that the job patterns defined with either E-pattern or R-pattern have the property that they
define a minimal set of mandatory jobs that “just” satisfies the given (m, k)-constraint in each sliding
window. Due to this property, in order to ensure the system reliability under standby-sparing, a
popular approach is to reserve a backup job in the same time frame of the backup task running in the
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Primary

Processor:
0 34 78 1112 1516 19 24

Spare

Processor:
0 345 78 10 13 151617 1920 24

(b)
Fig. 1. The schedule for the mandatory main/bakcup jobs under the preference oriented scheme
in [11]: (a) in the primary processor; (b) in the spare processor.

other processor for each mandatory job of the main task. Consequently, the total energy consumption
will be two times of that consumed by one processor. Obviously, the energy consumption in such
kind of standby-sparing systems could be quite considerable. In order to reduce energy consumption,
in [14], Haque et. al proposed to run the main tasks/jobs in the primary processor according to the
earliest deadline as soon as possible (EDS) scheme while the backup tasks/jobs in the spare processor
according to the earliest deadline as late as possible (EDL) scheme [6] such that, once the main
tasks/jobs are completed successfully, their corresponding backup tasks/jobs could be (partially)
canceled. In [11], a more advanced technique named preference oriented scheme was adopted which,
in both the primary and the backup processors, lets some tasks be scheduled under EDS scheme
while the other tasks be scheduled under EDL scheme. In [25], an energy-aware approach based on
the execution of optional jobs was proposed for task sets partitioned under deeply-red pattern [17]
which is weaker than E-pattern in ensuring the schedulability of the task sets [23]. Although the
approaches in [11, 14, 25] are able to reduce the actual energy consumption of the standby-sparing
system to some extent, since none of them could predict the quantifiable amount of energy that can
be saved in advance, the total energy budget still has to be estimated using the summation of the
worst case energy consumption in both processors, i.e.

Hm; ml(C +tsc) m;C;
k_P(C +Esc)+PzdleH(1 Z ) Z_C "'PzdleH(l - i ﬁ) (7)

1

where H is the hyper period.

Otherwise if the given energy budget constraint Eg during the hyper period is less than the energy
consumption estimated with Equation (7), the task set can not be guaranteed to be feasible in advance.
Regrading that, some more advanced technique needs to be explored in order to ensure the feasibility
of the task set under tighter energy budget constraint Eg. This could be illustrated using the following
examples.

Consider a task set consisting of two tasks, i.e., 71 = (2.9,4,4,4,6), and 7, = (1.9,8,8,2,3), to be
executed in a standby-sparing system with given energy budget constraint Eg = 28 units within its
hyper period 24 millisecond, assuming P;4. = 0.05, Es. = 0.2, and t5. = 0.1 millisecond.

If we assume no fault occurred during the hyper period, Figure 1 shows the schedule for the
mandatory jobs based on E-pattern for the original given (m, k)-constraints based on the preference
oriented scheme in [11] (the empty rectangles represent the canceled part of the jobs). Note that
although in the result schedule the total energy consumption could be reduced by 7 units, this amount
of energy reduction cannot be accurately estimated in advance, especially considering the possible
transient/permanent faults that could happen anytime during the job execution. Therefore, in order
to prepare for the worst case, we still need to assume the total energy consumption to be what is
calculated using Equation (7). Based on it, the estimated worst case energy consumption is 32.95
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T, T,
. Ju1 J12 Ji3
Primary
Processor:
0 3 5 8 11 13 16 19 21 24
(a)
T, T,
|11 J’12 J'13

Spare
Processor:
0

- | EE
3 5 8 11 13 16 19 21 24
(b)
Fig. 2. The schedule for the mandatory main/bakcup jobs under the floating redundant job scheme:

(a) in primary processor; (b) in spare processor.

units and has already exceeded the given energy budget constraint. As a result, the feasibility of the
task set cannot be ensured.

However, if we adopt a different way of scheduling the task set, it is still possible to ensure the
feasibility of the system. The main idea is: we firstly temporarily increase the m; values of each task
7; by 1 such that the (m, k)-constraints of tasks 7; and 7, become (5, 6) and (3, 3), respectively; after
that for each task we use one of its mandatory jobs under the new (m, k)-constraint as the “temporary
extra mandatory job" to help us reduce the energy budget required. The detailed schedule are shown
in Figure 2. As shown Figure 2(a), for task 7, since its new job pattern under the new temporary
(m, k)-constraint is “111110" which contains an extra mandatory job in it, this extra mandatory job
does not need to have a backup job for it (because even if it had failed, the remaining ones can still
satisfy the original (m, k)-constraint). As shown Figure 2, in the beginning we designated the first
mandatory job of 7y, i.e., Ji; in the primary processor as the temporary extra mandatory job and
executed it without backup job at all (its backup job ]1'1 was canceled as soon as J;; was designated
as the temporary extra mandatory job). Once J;; was completed successfully at time 3, we switched
the temporary extra mandatory job to ]{2 in the spare processor while canceling J;,. After ]1/2 was
completed at time 8, we switched the temporary extra mandatory job to J;3 in the primary processor
while canceling ]1'3 .. .. This procedure could be repeated until all mandatory jobs of 7; under its new
temporary (m, k)-constraint had been executed. The procedure for task 7, could also be conducted in
a similar way. From Figure 2 it is not hard to see that, if no fault occurred during the hyper period,
each task 7; will have totally (m; + 1) mandatory jobs executed in either the primary or the spare
processor within each window of k; jobs. Therefore the total busy energy consumption within the
hyper period will be 21.8 units. Even when we have the energy consumption during the idle period
included, the estimated total energy consumption of the system within the hyper period will be (21.8
+ Pigie X 27=) 23.15 units, which is less than Eg and therefore feasible.

The above calculation is based on the assumption that no fault ever occurred. If during runtime
a permanent fault occurred to one processor, only the mandatory jobs in the other processor will
be executed to resume the system, which will not increase the total energy consumption computed
above. On the other hand, if during runtime some transient fault(s) occurred, some temporary extra
mandatory job might be failed due to it. In this case all the other mandatory jobs within the same
window of k; jobs become required ones whose backup jobs also need to be executed. Under this
scenario the estimation of the total energy consumption also needs to take the energy consumption
of those backup jobs into consideration based on probability. For example, in the above task set, if
we assume the probability of transient fault to be 10~ per millisecond, then the expected energy
consumption of all backup jobs within one window of k; jobs for task 7; and task 7, will be 0.001682
and 0.0002166 units, respectively. After adding it to the above result, the total estimated energy
consumption of the system subject to fault(s) will be 23.1518986 units, which is still less than the
given energy budget constraint and therefore feasible.
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Algorithm 1 The algorithm based on floating redundant job

1:

WD NN NN DN NN = = = = = =
SCRXAFTIEORNTS0 XIS E DD

31:
32:
33:
34
35:
36:
37.
38:

-
TP RXIINLELN

Preparations: For each task 7; € T, re-partition it based on its new temporary (1, k)-constraint of (m;+1, k;)
and determine its mandatory main/backup jobs in both primary and spare processors correspondingly. In
primary processor, mark Jj1, i.e., the first job of each task z; as its initial floating redundant job;

For either the primary processor or the spare processor:

Upon the execution of a mandatory job J;; at time t.;,,:
if Jj; is the floating redundant job then
Cancel Jj;’s corresponding job in the other processor and add its time budget to the slack queue STQ;
Execute J;; following the EDF scheme;
if any slack time STQ;(t) with higher priority than J;; is available then
Reclaim the slack time to execute J;; as soon as possible;
end if

. else if J;; is within the same window of k; jobs as the most recent failed floating redundant job then

if J;; is a mandatory main job then
repeat lines 8-11;

else
Revise r;; to max{(r,-j + i), (teur + STQi(teur))}s
Execute J;; following the EDF scheme;

end if

. else

mark J;; as the current floating redundant job;

. end if

Upon the completion of mandatory job J;; at current time t.,,,:

. if the execution of job Jj; is successful then

if J;; is the floating redundant job then
Let J, be the next mandatory job after J;; in the other processor;
Mark J,; as the floating redundant job;
Cancel J,’s corresponding job in the other processor and add its time budget to the slack queue S;
else
Cancel J;;’s corresponding job in the other processor and add its residue time budget to the slack
queue S;
end if
if J;; was the only job in the mandatory job queue at time t,,, then
Let NTA be the earliest arrival time of the next upcoming mandatory job in the same processor;
if (NTA — tcyr) > tgg then
Shut down the processor and set wake-up timer as (NTA — tcyr);
end if
end if
end if=0

Note that in the above approach the mandatory main/backup jobs of each task under the new

temporary (m, k)-constraint was used as the temporary extra mandatory job alternatively. It appears
in effect as if the temporary extra mandatory job was “floating" through the mandatory main/backup
jobs one by one within each window of k; jobs and jumping back and forth between the primary
and the spare processors. Since this temporary extra mandatory job is not required for satisfying the
original (m, k)-constraint, for convenience, we call it floating redundant job. As shown, this floating
redundant job is very useful in helping us to reduce the estimation of the total energy consumption
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and meeting the overall energy budget constraint. Correspondingly the above approach is also called
the floating redundant job scheme. The details of it are presented in Algorithm 1.

As shown in Algorithm 1, in the beginning, for each task 7; € T, we firstly re-partition it with its
new temporary (m, k)-constraint of (m; + 1, k;) based on E-pattern and mark its first job (represented
as J;1) as its initial floating redundant job (note that each task has a floating redundant job of its own).
During runtime, in both the primary and the spare processors, a mandatory job ready queue (MQ) is
maintained. Upon arrival, a job of task z; is inserted into the MQ if its job pattern is “1". All jobs
in MQ will be executed following the EDF scheme. A slack time queue STQ is also maintained for
each processor to keep track of the slack time(s) from (partially) canceled job(s) in it. Whenever the
current job J;; of task 7; got chance to be executed, if it has been designated as the current floating
redundant job of 7, its corresponding job in the other processor should be canceled immediately
(because the floating redundant job does not need backup job) whose time budget should be inserted
into the slack time queue STQ based on its deadline (line 28). Once the current floating redundant job
Jij is completed successfully, it is counted as an effective job and the next mandatory main/backup
job after J;; in the other processor should be designated as the new floating redundant job (lines
26-27). Otherwise in order to maintain the original (m, k)-constraint under fault tolerance all jobs
following J;; in the same window of k; jobs should not be designated as floating redundant job and
therefore should be executed in parallel with their corresponding jobs in the other processor (lines
12-18). For jobs more than k; job patterns/positions after J;;, since they are not within the range of the
same window J;; belongs to, they will not be affected by the failure of J;; at all and can be designated
as the floating redundant job in turn again, similar to the case of the initial floating redundant job in
the beginning (line 20).

Note that in the case when the current floating redundant job J;; is found to have failed due
to transient fault, since all mandatory jobs following J;; in all windows containing J;; cannot
be designated as floating redundant job, totally m; mandatory jobs after J;; need to be executed
concurrently with their corresponding jobs in the other processor. In this scenario in order to reduce
the energy consumption further, the execution of the corresponding jobs in the other processor should
be procrastinated as late as possible such that the overlapped executions of the jobs in the primary
and the spare processors could be reduced (lines 16-17). Regarding that, the corresponding jobs in
the other processor could be procrastinated by a time interval ¢; calculated based on the following
theorem. For easy of presentation, we adopt the following notation, i.e., [x]* to represent (1 + [ x])
throughout this paper.

THEOREM 3.1. Given periodic tasks T = {11, T3, ..., TN } to be scheduled with Algorithm 1. Let all
tasks be ordered by increasing value of D;, all mandatory job deadlines can be guaranteed if any
mandatory job J;; of task t; is delayed by no more than ¢; time units (called the delay period of task
;) if for any instant of time t:

mg+1 t—D
Vil<isN t2gi+ ) [——T——1"1(Cy+ tso) ®)
q q
Dg<t
and
Vi<ig<e; )

PROOF. Use contradiction. Assuming at certain time point ¢, some mandatory job missed its
deadline. Then we can always find another time point t, < ¢’ such that during the time interval [z, ']
the processor is kept busy executing only mandatory jobs with arrival times or delayed starting times
no earlier than ¢, and with deadlines less than or equal to ¢’. Since no job has arrival time or delayed
starting time earlier than time O, ¢, is well defined. We consider two cases:
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e 1) At time to, there is no pending workload from mandatory jobs with delayed starting time and

with deadlines less than or equal to ¢’. Then according to [28], the total mandatory work demand

Mg+l fﬂ]ﬂ (Cq + tsc). Since some

’"q” [28D414(Cy + ) > (1 1. On
the other hand, considering the first busy 1nterval let t = (¢’ — ty), from Equation (8), we have
Sy rr- [T T522171(Cy #+ te) < (¢ = to). Contradiction!

2) At time to, there is pending workload from mandatory jobs with delayed starting time and
with deadlines less than or equal to . In this case the processor is idle at ¢, . Let ; (< ;) be
the latest time before " when there are no pending mandatory jobs prior to ¢; with deadlines
less than or equal to ¢’. The the mandatory work demand consumed in the interval [¢y,t'] is
generated by the mandatory jobs arriving in the interval [#;,¢']. Obviously the mandatory work
L[5 P ) (C + to)- Let
k be the maximal index among the tasks with deadhnes no larger than (t — t1). Since there is
deadline missing at ¢’, we have

within the interval [#o, '] is bounded by Y\p_ < (- ,) [~

job missed the deadline at t’, we have Xp_ < (1) [~

demand within the interval [#1,¢'] is bounded by >.p_<(1—s,) [~

mg+1 t'—t —

qu

Par1(Cy+ 1) > (¢ = 1) (10)

Dg<(t'—t;) kq

Note that the idle interval [t1, )] can only caused by the delay of certain task arriving at ¢,
say Ty, whose delay time is bounded by ¢y. Since 7, also contribute to the work demand
within [#;, #'], from Equation (9), ¢x < ¢k. So the idle interval length (¢, — #;) is bounded by
¢r- Together with the result from Equation (10) we have (¢’ — t;) = (ty — t1) + (' — ty) <

o+t —ty) < Pr+2p < (1 tl)[mqﬂ [MT’] (Cq+tsc). In Equation (8), letting t = (' —ty),
contradiction reached'
]

The rationale of Equation (8) is to find the maximal time ¢; before any absolute deadline of
the mandatory jobs from 7; to which the work-demand of the mandatory jobs from 7; and other
mandatory job(s) with deadline(s) no later than it can be delayed such that no mandatory job deadline
will be missed. Based on it, ¢; can be computed as
mq di —

S o P + ) an

pi = min{d; = ( Y (I

Dg=<d;

for all d; < L, where L is the ending point of the first busy period when executing the mandatory jobs
only and d; is the absolute deadline of any mandatory job of task 7; belonging to L. Note that, when
calculating ¢;, if ¢; < ¢; for any task 7; with index less than 7;, i.e., j < i, the value of ¢; should be
reset to be the same as ¢; due to condition (9) in Theorem 3.1.

Based on Algorithm 1, the estimation of the total energy consumption of a system consisting of
purely periodic tasks could be calculated as:

E = Z H(ml +1) (Ci + Esc) + Z H(ml * 1))~ (Smax)miC;

i

(mi + 1)(Ci + zLsc)
2P;q1eH(1 — = - 12
+ idle ( 2 Z kiPi ) ( )

where A;(smax) s the average job fault rate for task 7; at the maximal processor speed sp,qy-
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Fig. 3. The job patterns under consecutive windows.

Note that the energy calculated above is indeed an upper bound of the energy consumption by
Algorithm 1 because during execution, if some idle intervals are longer than t,4, those idle intervals
can be shutdown/wake-up dynamically to reduce actual energy consumption further (lines 32-37).

Moreover, during the runtime of Algorithm 1, at any time there are at most N mandatory
main/backup jobs in its ready queue. So the online complexity of Algorithm 1 is O(N).

3.2 Approach based on window transferring scheme

Although the floating redundant job scheme in Section 3.1 is quite helpful in estimating the required
total energy consumption of the system and checking its feasibility under the given energy budget
constraint, it needs to increase the m; value of each periodic task by 1 (to accommodate the extra
mandatory job used as the floating redundant job), which might affect the schedulability of the task
set. This could be illustrated using the following example.

Consider another task set consisting of two periodic tasks, i.e., 71 = (2.9,4,4,2,4), and 7, =
(3.9,10, 10, 1, 3), to be executed in a standby-sparing system with given energy budget constraint
within its hyper period 240 to be 200 units, assuming same value of Pjgj., Es¢, and ;. as in the
previous example. In order to apply algorithm 1, the task set needs to firstly increase the (m, k)-
constraints of tasks 7; and 7, to be (3,4) and (2, 3), respectively. However, it is easy to verify that the
task set will not be schedulable under such new temporary (m, k)-constraints. On the other hand, to
preserve the scheduability of the task set, if we apply the approach in [11] to execute the task set
under the original (m, k)-constraints, although the task set is schedulable, the estimated total energy
consumption based on Equation (7) will be 255.99 units, which has exceeded the given energy budget
constraint and therefore cannot ensure the feasibility of the task set.

However, if we follow a different way of scheduling the task set, it is still possible to ensure the
feasibility of the task set. Before that, we need to define a variation of the E-pattern as followed.
Based on it, the pattern 7;; for job J;;, is defined as [27]:

[ oifj= I_I'—(j71+,:,")xmi-| X ,]:,_J +1 13
Tij = «n : ! ' i ( )
0” otherwise j=12--

Note that the above definition is actually a rotated version of the original E-pattern which can be
regarded as rotating the E-pattern defined in Equation (5) to the right by r; bits. For example, for a
given (m, k)-constraint of (3, 6), its original E-patten is “101010". If we rotate it to the right by r; = 1
bit, the resulting patterns will be “010101" which are the same as defined according to Equation (13).
For convenience, we call the pattern defined by (13) a rotation of the original E-pattern and represent
it as E"-pattern.

With the above definition, we have the following lemma.

ki+l .p ki+1 . .
e if == is an integer

m;+1
and m; < k;; orlety; = k; — 1 lf% <mj<kij—1 Letr; = [y"%:_n"]. Let the jobs of t; within each
separate window of y; jobs be partitioned with either E-pattern or E"i-pattern based on the new
(m, k)-constraint of (m;, y;), its original (m, k )-constraint is satisfied.

LEMMA 3.2. For any task t; with (m, k)-constraint of (m;, k;), let y; = m;

ki+1

il 1S an

PROOF. According to Lemma 3.2, there are two possibilities for the value of y;: if

integer, then y; = mi%; orif % < m; < ki—1,y; = k;—1. Under both possibilities y; is an integer.
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When we inspect any two consecutive separate windows of y; jobs in the resulting job patterns from
Lemma 3.2, obviously there are two cases in general, (i) the two windows are determined with
different type of patterns; or (ii) they are determined with same type of patterns.

For case (i), without lose of generality, let’s assume the case when the two consecutive windows of
y; jobs, namely window 1 and window 2, are partitioned with E-pattern and E"-pattern, respectively,
as shown in Figure 3. Then in Window 1, according to [21], the maximal number of consecutive “0"s
is equal to r; defined in Lemma 3.2, which happened at the rightmost side of Window 1. Meanwhile,
in window 2, since according to Definition (13) E"-pattern is achieved by rotating E-pattern to the
right by r; bits, then in the leftmost side of Window 2 there are exactly r; “0"s. Considering any
sliding window of (y; + r;) jobs starting from the current position of Window x (obviously in the
beginning there are m; “1"s in it), each time when we move window x to the right by one position,
the number of “1"s in it will not change because the patterns for the leftmost (y; — ;) jobs in Window
1 are the same as the rightmost (y; — r;) jobs in Window 2, according to the definition of E"-pattern.
As such, until Window x reached the position of Window y, the number of “1"s in the sliding Window
x is always m;.

For case (ii), let’s assume after Window 2, the next window, namely Window 3, has the same
patterns as Window 2, i.e., E"-pattern. Then obviously the patterns for the leftmost (y; — r;) jobs
in Window 3 are the same as the rightmost (y; — r;) jobs in Window 1. So if we continue to move
Window y to the right, until Window y reached the position of Window z, the number of “1"s in
the sliding Window y will remain the same, i.e., m;. After that, if we continue move Window z to
the right, obviously the number of “1"s in it will be no less than m;, either. The case when both two
consecutive windows are partitioned based on E-pattern is similar.

Based on the above statements, the resulting pattern from Lemma 3.2 can always satisfy the
(m, k)-constraint of (m;, (y; + r;)). Next we will show that (y; + r;) = k;. We also check it under the
two possibilities:

Possibility (i): ,’fl’:ll is an integer. Since in this case y; = mi%, % = % is an integer. So
ki+1 i —m; ki+1 j
yirr o= omee AT oy BT Yy
m;+1 m; m;+1 m;
kl‘+l ki+1 ki+1 ki+1
= ml-—+|' '|—1=m,- + -
m; +1 m;+1 m;+1 m;+1
ki+1
= (m+l)——-1=k (14)
m;+1

Possibility (ii): % < m; < k; — 1. Since in this case y; = k; — 1,

ki— 1 ki— 1 :
d m<ki-leo1l<-= <2o1<¥ <9 (15)
2 m; m;

IA

As such, in this case

oy ISty LR R - (16)
m; m;
So,
yi+ri=(ki—-1)+1=k; a7
From the above, for both possibilities, (y; + r;) = k;. ]

To help understand Lemma 3.2, consider a task z; with (m, k)-constraint of (3,7). According to
Lemma 3.2, y; = 6 and r; = 1. Then based on Equation (13), E! =¢010101". From Lemma 3.2, one
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possible pattern for task 7; is “101010010101010101- - - ". Tt is easy to verify that it can satisfy the
original (m, k)-constraint of (3,7).

Note that Lemma 3.2 effectively sets up a straightforward way of converting a window-constraint
of m;/y; ! (within each separate window of y; jobs) to the original (m, k)-constraint of (m;, k;). It is
similar to, but tighter than, the result in [38] which can convert a window constraint of m;/ @ to
the original (m, k)-constraint of (m;, k;). For example, for the above task z; with (m, k)-constraint of
(3,7), in order to satisfy its original (m, k)-constraint, based on Lemma 3.2 it only needs to satisfy the
window-constraint of 3/6 in each separate window of 6 jobs whereas according to the approach in
[38], it needs to satisfy the window-constraint of (3,5) in each separate window of 5 jobs. Obviously
the former one is easier to be schedulable than the latter one. In the following, we will formulate this
result into a lemma as well.

Algorithm 2 The algorithm based on window transferring

ki+1
m;+1

y; and r; according to Lemma 3.2. Re-partition 7; and its backup task T; with the new temporary QoS
constraint of m; /y; based on E-pattern and E"-pattern, respectively. For any mandatory main job J;;, mark
job ]i/ <jtre> in the other processor as its backup job (denoted as Ji i)

1: Preparations: For each task 7; € T, if

. . 1 .
is an integer and m; < k; or k’T < mj; < k;j — 1, determine

2:
3. For either the primary processor or the spare processor:
4.
5: Upon the execution of a mandatory job J;; at time f,,:
6: Execute J;; following the EDF scheme;
7: if any slack time STQ;(t) with earlier deadline than J;; is available then
8:  if J;; is a mandatory main job then
9: Reclaim the slack time to execute J;; as soon as possible;
10:  else
11: Use the slack time to procrastinate J;; as late as possible;
12: end if
13: end if
14:
15: Upon the completion of mandatory job J;; at current time t¢;;,:
16: if the execution of job J;; is successful then
17: Let ]i’ ; be the job in the other processor within the same time frame as Jjj;
18: if ]1.' ; is not a the backup job of a failed mandatory main job then
19: Cancel J;;’s backup job Ji j»Le., l./(j ) in the other processor entirely and add its time budget to the
slack queue STQ;
20: else
21: Cancel the remaining part of ]i' : and add its residue time budget to the slack queue STQ;
22:  endif
23:  Repeat lines 32-37 in Algorithm 1
24: end if=0

LEMMA 3.3. For any task t;, if both the window constraints of m; [ (m; Z”:ll) and m,/w can
1

be used to define t;’s job patterns successfully under E-pattern, the job patterns determined based on
the former one has better schedulability than the job patterns determined based on the latter one.

Here we follow the notation used in [38] which used the notation “x/y" to indicate the window-constraint requiring within
each separate window of y jobs at least x jobs out of them must meet their deadlines.
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T, . T, .
failed
Primary Jy g Ju7
Processor: || ﬁ_,
0 34 7 10 12 15 17 20 24 28 31 35 36 39
(a)
T, T,
Spare J"12 J18 J"19
Processor: [ ] [ ] l___-_-—ﬁ_>
0 4 78 12 16 19 20 23 27 28 3132 35
(b)

Fig. 4. The schedule for the mandatory main/bakcup jobs based on window transferring scheme in

(a) IPrimary rocessor; {b) spare processor.
ROOF. Since m; value is the same, to prove m;/m;

we only need to prove:

ki+1 +1: itki
m;l has better schedulability than m;/ %,

‘kl‘+1 S (ml-+kl-)

(=4 Z(kl + 1)ml~ > (mi + kl-)(mi + 1)

"mi+1 " 2
& 2kim;+2m; > mi+m;+mik; +k;
o (1-my)(mi—ki) =0 (18)
Which is true because (m; > 1) and (k; > m;). m]

Based Lemma 3.2, our new approach of scheduling the task set with the given energy budget

constraint can be described as followed: for each task z;, if r]:;:ll is an integer and m; < k; or
1
ki—1

= <m; < k; — 1, we let y; and r; be determined according to Lemma 3.2. Then base on it we can
determine the mandatory main jobs of task 7; in one processor with E-pattern and their backup jobs
in the other processor with E"-pattern, both based on the window constraint of m; /y; first. Since
ri >1ifm; <k;or % < m; < k; — 1, in any separate window of y; jobs, each mandatory main job
and its backup job in the other processor are not in the same time frame. In other words, they are
totally shifted way. As such, if any mandatory main job is completed successfully, its backup job can
be canceled entirely. Even if the mandatory main job were found to have failed upon completion, its
backup job can still be executed timely. In the worst case, if all mandatory main jobs in a separate
window of y; jobs have failed, their backup jobs in the other processor will all need to be executed.
In this scenario the resulting job pattern will be equivalent to case (i) in the proof of Lemma 3.2.
Then according to Lemma 3.2, its original (m, k)-constraint will be satisfied.

Particularly, for tasks 7; and 7, in the above example task set, their corresponding window
constraints will be 2/3 and 1/2, respectively. Then based on them the mandatory main jobs of tasks 7;
and 7, are determined under E-pattern and they can be scheduled in different processors, as shown in
Figure 4. Meanwhile, the backup jobs for 7; and 7, will be determined based on E" -pattern and can
be reserved in different processors as well. As such, since each mandatory main job and its backup
job are totally shifted away, once a mandatory main job (for example, J;;) is completed successfully,
its backup job (i.e., ]1'2) in the other processor could be canceled entirely. If any mandatory main job
of task 7; had failed, its corresponding backup job in the other processor could still be invoked and
executed timely (for example, if the main job J;; in the primary processor had failed, its backup job
]1'8 could still be executed timely in the spare processor, as shown in Figure 4(b)). In this way, even
in the worst case that all mandatory main jobs in one window had failed, as stated above, its original
(m, k)-constraint can still be ensured. Following the same rationale, if we assume the transient fault
rate to be 10~ per millisecond, then the expected energy consumption of all backup jobs within one
window of y; jobs for task 7; and task 7, will be 0.006728 and 0.0018252, respectively. With energy
during the processor idle time under P;4, = 0.05 included, the total energy consumption within
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the hyper period will be 189.06855 units, which is below the given energy budget constraint and
therefore feasible.

From the above example we can see that there is great potential for meeting the given energy budget
constraint by determining the mandatory main jobs and their backup jobs based on E-pattern and
E"i-pattern, respectively (which can satisfy the original (m, k)-constraint according to Lemma 3.2).
Based on the above principles, our standby-sparing scheduling scheme based on window transferring
is presented in Algorithm 2.

As shown in Algorithm 2, in the beginning, for each task z; € T, if

or % < m; < k; — 1 (how to handle the case when these conditions are not met will be discussed in

next section), we firstly determine the values of y; and r; according to Lemma 3.2 and re-partition
task 7; and its backup task rlf with E-pattern and E"-pattern (both based on its new temporary QoS
constraint of m;/y;), respectively. Note that task z; or its backup task r; can be executed in either
the primary processor or the spare processor, without affecting their schedulablility. As such, for
any mandatory main job Jj;, its backup job (denoted as j, ) will be the job ]i/(j+r,~ ) of its backup task

ki+1
m;+1

is an integer and m; < k;

rlf (line 1). Similar to Algorithm 1, during runtime, in both the primary and the spare processors, a
mandatory job ready queue (MQ) and a slack time queue STQ are maintained. Upon arrival, a job
of task 7; is inserted into the MQ only when its job pattern is “1". All jobs in MQ will be executed
according to the EDF scheme. When the current job J;; of task 7; got chance to be executed, if J;;
is a mandatory main job, it should be executed as soon as possible and the slack time in the STQ,
if available, should be reclaimed to facilitate its early completion (line 9); otherwise it should be
executed as late as possible (line 11).

Note that, when the current mandatory main job J;; is completed successfully, whether its backup
job in the other processor should be canceled or not needs to be handled carefully. Specifically, if job
Jij is within the same time frame of the backup job of some other failed job, its backup job cannot
be canceled. For example, in Figure 4, assuming J;; in the primary processor had failed, then its
backup job ]1'8 in the spare processor needed to be executed. Meanwhile, in the primary processor,
the mandatory main job J;g was executed in the same time frame as ]{8. Suppose Jig was completed
successfully. In this case, if we had canceled its backup job ]1/9 in the spare processor, then in the
time interval [24,36] there would be only one valid job because J;s and ]{8 were in the same time
frame and would effectively generate only one valid job. Consequently the window constraint of
2/3 will be violated in the time interval of [24,36] and the original (m, k)-constraint of (2, 4) will be
violated in the time interval of [20,36].

As mentioned, the main reason for the above problem is that, in Algorithm 2, due to the pattern
rotation, all mandatory main jobs and their backup jobs are shifted away into different time frames.
As aresult it is possible that within the current time frame the execution of the current mandatory
main job could be overlapped with the backup job of some other failed mandatory main job (for
example, J;s and ]1/8 in Figure 4). When that happened, they effectively contributed only one valid
job to the window they belong to. As such, if the backup job of the current mandatory main job is
canceled, the number of valid jobs in the same window will decrease by 1 which could cause the
QoS constraint in it to be violated and subsequently cause the original (m, k)-constraint to be violated
as well. Therefore, in this case, even if the current mandatory main job is completed successfully, its
backup job can not be canceled, as implied in line 18 of Algorithm 2.

Similar to the upper bound of the energy calculated in Section 3.1, based on Algorithm 2, if for
each and every periodic task 7; in the system, :::11 is an integer and m; < k; or k’T_l <m;<k-1,
an upper bound of the total energy consumption of a system consisting of purely periodic tasks could
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Algorithm 3 Task set partitioning using Branch-and-Bound.

1: Input: task set T consisting of purely periodic tasks with original (m, k)-constraints;

2: Output: task set T =XU YU Z, where X, Y and Z are the subsets to be scheduled with the schemes in

Section 3.2, Section 3.1, and the regular job procrastination scheme, respectively;

3. X =0;

4: Y =0;

5: Z =alltasksin T;

6: Sort the tasks in Z according to non-increasing order of ’]'C'l’—gl’ i=1,.,n;
7. T=XUY Uz,

g

9

on the original (m, k)-constraints without energy management;
10: SS-Partition (X, Y, Z, T, Epound):
11: output (T);

13: FUNCTION SS-P~artition(X, Y, Z, T, Epound)
14: for each task 7; € T do

15: if r’fj:l is an integer and m; < k; or % < m; <k; —1then
16: Determine y; according to Lemma 3.2;

17: Set 7;’s new temporary QoS constraint to be m;/y;;

18: X = XU {r;};

19: else

20: Set 7;’s new temporary QoS constraint to be (m; + 1, k;);
21: Y =YU{r};

22: end if

23: Remove 7; from Z;
24: if XU Y U Z is schedulable then

25: Compute the energy consumption Ex for all mandatory jobs in X based on Equation (19);
26: Compute the energy consumption Ey for all mandatory jobs in Y based on Equation (12);
27: Compute the energy consumption Ez for all mandatory jobs in Z based on Equation (7);
28: Eiotal =Ex +Ey +Ez;

29: if Etotal < Ebound then

30: E~bound = Etotals

31: T=XUYUZ;

32: end if

33: SS-Partition (X, Y, Z, T, Epound):

34:  else

35: Restore 7;’s QoS constraint to its original (m;, k;)-constraint and put it back to Z;

36:  endif

37: end for=0

Hm; i(Citlse Hm; iCiy.
¢ Erotal = Epound = Xi T’;i(ci +Egc) + PigreH(1 - X %) +2 T’fn)ici +PigeH(1 - X5 %)’
: //The estimated total energy consumption using standby-sparing for all mandatory main/bakcup jobs based

be calculated as:

Hm; Hm; 1 m;(C; + tsc)
Z y_P:(Ci +Egc) + Z yi_f);Ai(smax)miCi + 2Pig1eH(1 — 2 Z #)

i 1

where y; is determined according to Lemma 3.2.

19)

Note that the worst case in Algorithm 2 happens when at certain point, all mandatory main jobs in
one separate window have failed consecutively and all their backup jobs in the other processor need
to be executed, which will be equivalent to one of the scenarios in Lemma 3.2. Then according to

Lemma 3.2, its original (m, k)-constraint can be ensured.
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Similar to Algorithm 1, the online complexity of Algorithm 2 is also O(N). Moreover, we have
the following theorem.

THEOREM 3.4. Given a system consisting of purely periodic tasks {11, 72, - - - , TN } to be scheduled
with Algorithm 2 in a standby-sparing system with total energy budget of Eg within its hyper period,

the system is feasible if: (i) for each and every task t; in the system, r]:;;ll is an integer and m; < k;
or % < m; < k; — 1; (ii) the system is schedulable with the (m, k)-constraint of each task t;

in it replaced by (m;,y;), where y; is determined according to Lemma 3.2; and (iii) the energy
consumption E calculated based on Equation (19) does not exceed Ep.

PROOF. If for any task 7; in the system r’fj:l is an integer and m; < k;, then % > 2. So
ri = f%} -1= % — 1is also an integer and r; > 1. If % < m; < k; — 1, from Lemma 3.2

r; = 1. Thus in either case Algorithm 2 can be applied. The main issue is to ensure the original (m, k)-
constraint. The worst case in Algorithm 2 happens when at certain point, all mandatory main jobs in
one separate window have failed consecutively, then all their backup jobs in the other processor need
to be executed, which will be equivalent to case (i) in the proof of Lemma 3.2. Then according to
Lemma 3.2, its original (m, k)-constraint can be assured. ]

3.3 Integrated approach based on combined schemes

Although the above window transferring scheme in Algorithm 2 could be more efficient than the
floating redundant job scheme in Section 3.2 in meeting the given energy budget constraint, the main
issue for it is that, for tasks which do not satisfy the conditions in line 1 of Algorithm 2, they will
not be able to be transferred in this way. On the other hand, the floating redundant job scheme in
Section 3.2 also has the issue that it might affect the schedulability of the task set because it needs to
have one more mandatory job reserved for each task. Regarding that, in order to still meet the energy
budget constraint while respecting the schedulability of the task set, the best way is to partition the
original task set into three parts and schedule them with the schemes in Section 3.2, Section 3.1,
and the regular job procrastination scheme similar to lines 13-18 in algorithm 1, respectively, in an
integrated approach. Correspondingly, the problem to be solved could be formulated as follows:

PROBLEM 1. Given task set consisting of purely periodic tasks {t1,1s,- - , TN}, partition the
original task set into three subsets, i.e., X, Y, and Z to be scheduled with the window transferring
scheme in Algorithm 2, floating redundant job scheme in Algorithm 1, and the regular job procrasti-
nation scheme, respectively such that the estimated total energy consumption does not exceed the
given energy budget constraint Eg while satisfying the (m, k)-constraints for all tasks under the fault
tolerant requirement.

To solve Problem 1, in this paper we proposed a heuristics based on “branch-and-bound", which is
presented in Algorithm 3.

From Algorithm 3, our approach determines task by task if each task 7; € T should be scheduled
with the window transferring scheme in Section 3.2, the floating redundant job scheme in Section
3.1, or the regular job procrastination scheme. When Algorithm 3 is finished, it is possible to reach
certain combined configuration in which the tasks in subsets X, Y, Z are partitioned based on
the QoS constraint of m;/(m; r’:li:l) or m;/(k;i — 1), (m; + 1,k;), and (m;, k;) to be scheduled with
the window transferring scheme in Algorithm 2, floating redundant job scheme in Algorithm 1,
and the job procrastination scheme following lines 13-18 in Algorithm 1, respectively. And the
resulting configuration should be the one with the minimum estimated total energy consumption
E;otq1 computed in line 28. Once the final E;;4; is calculated, we will compare it with the given
energy constraint Eg. If E;o,q; < Ep, the task set is guaranteed to be feasible. Otherwise the feasibility
of the task set cannot be guaranteed.
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Note that after the original task set T was divided into three subsets X, Y, Z, the calculation of
the delay period of ¢; in Equation (11) for each task z; under the combined configuration should be
updated as followed.
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3.4 Improving the QoS by executing optional jobs

It is not hard to see that for the tasks in either subset X or subset Y, there are redundant jobs in them.
So their quality of service (QoS) will be better than the ones based on their corresponding original
(m, k)-patterns. For the tasks in subset Z which are partitioned based on the original (m, k)-patterns,
in order to improve their QoS, we can choose to execute some optional jobs when no mandatory job
is pending for execution. However, since the execution of the optional jobs could potentially cause
the overall energy consumption of the system to exceed the energy consumption estimated using
Equation (7), we cannot execute the optional jobs arbitrarily. Instead, when we are about to execute
(some of) the optional jobs, we should adopt the following criteria in choosing the eligible optional
jobs for execution.

It is not hard to see that, for any particular task z; in Z, in order to guarantee its overall energy
consumption within the hyper period will not exceed what is calculated using Equation (7), we must
ensure that, within each sliding window of k; jobs from task z;, there are no more than 2m; jobs
executed in it in total. Then the problem is how to guarantee that? Obviously, it is not practical to
check all window of k; jobs in task 7; during execution. In order to solve the problem, here we will
propose a more efficient approach which only needs to check a limited number of windows at runtime.
Specifically, at runtime, we only need to guarantee that, for all sliding windows of k; jobs containing
7;’s current job J;;, there are no more than 2m; jobs (to be) executed in each of them. In this way,
the total energy consumption can always be bounded by the energy consumption calculated using
Equation (7) (in later part of this section we will formulate that into a theorem, i.e., Theorem 3.5 and
provide the formal proof for it as well). With that in mind, we can revise the algorithm for scheduling
the tasks in Z correspondingly. The details of it are presented in Algorithm 4.

As shown in Algorithm 4, whenever no mandatory job is pending for execution and some optional
job Ji; of task 7; € Z becomes available, we will check all sliding windows containing it to see
if there are already 2m; jobs executed in any of them. It is easy to see that, among such kind of
windows, the oldest one should be the window starting with job J;(j_(,-1)) and ending with job J;;
while the latest one should be the window starting with job J;; and ending with job J;(j+(k;~1)). The
optional job J;; is eligible only when each and any of the sliding windows between the above oldest
and latest windows contains less than 2m; jobs in it (Lines 17-20). Moreover, since the optional jobs
always have lower priorities than the mandatory ones and could be preempted by any of them, we
also need to check if the optional jobs could be completed by its deadline and the earliest arrival time
of the upcoming mandatory jobs, whichever smaller. Only the optional jobs that can satisfy the above
requirements should be chosen as eligible ones. If there are multiple optional jobs of the tasks in Z
becoming available simultaneously, the ties could be broken based on first-come-first-serve or by
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Algorithm 4 The enhanced scheduling algorithm for the tasks in Z with optional job execution

: For either the primary processor or the spare processor:

1

2:

3: Upon the arrival of job J;; of task 7; € Z at current time t¢;;,:

4: if J;; is an optional job then

5: Executable = true;

6 forx = (j— (ki — 1)) to j do

7 NJ = 0; // NJ is the total number of jobs executed or to be executed in the current sliding window
8 for y=0to (k; — 1) do

9: if J;(x+y) is an optional job then
10: if Ji(x+y) has been executed then
11: NJ =NJ +1;
12: end if
13: else
14: NJ =NJ +2;
15: end if
16: end for
17: if (NJ X (E(Cj) + Es¢) + Ecw(ki)) = (2 x m; X (E(Cj) + Esc)) then
18: /I E(C;) is the energy consumption of executing a job of task z; and Ec4,(k;) is the energy overhead

of checking windows for the current optional job J;;. The value of E¢,,(k;) can be achieved through
a stored look-up table based on the value of k;.

19: Executable = false;
20: Break;

21: end if

22: end for

23:  Let NTA be the earliest arrival time of the next upcoming mandatory job in the same processor;
24: if (Executable == true) then

25: if (min(NTA, d;j) — teur) > (Ci + tsc) then

26: Execute job Jj(x+y) non-preemptively;

27: end if

28: else if (NTA — tcyr) > tgq then

29: Shut down the processor and set up the wake-up timer to be (NTA — teyr);
30: end if

31: else

32: /I Jij is a mandatory job
33: if J;; is a mandatory main job then

34: Execute J;; following the EDF scheme;

35: if any slack time STQ;(t) with higher priority than J;; is available then
36: Reclaim the slack time to execute J;; as soon as possible;

37: end if

38: else

39: Revise r;j to max{(rij + ¢i), (teur + STQi(tcur))};

40: Execute J;; following the EDF scheme;

41: end if

42: end if

43:

44: Upon the completion of job J;; of task 7; € Z:
45: if the execution of job J;; is successful then
46:  if J;; is an optional job then

47: Shift the future job patterns of 7; correspondingly;

48:  else

49: Cancel J;;’s corresponding job in the other processor and add its residue time budget to the slack
queue S;

50: end if ACM Trans. Des. Autom. Electron. Syst., Vol. , No. , Article 111. Publication date: 20XX.

51: end if=0
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Fig. 5. (a) The schedule for the periodic main tasks 7; = (5,20,20,3,6), 72 = (5,15,15,2,4), 73 =
(6,10,10,2,6), 74 = (4,15, 15,1, 3) based on E-pattern only for the tasks in Z and the aperiodic backup
task z in the primary processor; (b) The schedule for the periodic backup tasks r,, ,, z,, and 7, based
on E-pattern only for the tasks in Z and the aperiodic main task =5 = (19, 120) in the spare processor.

randomly choosing one of them. Once chosen, the optional job should be executed non-preemptively
to guarantee that it could be completed timely (Line 25). If the execution of the optional job J;; is
successful, the future job patterns for its owner task z; should be adjusted by shifting its future job
patterns to the right correspondingly.

The online complexity of Algorithm 4 mainly comes from checking all the sliding windows
containing the current optional job J;;, which is at most O(k?). Since k; is usually a small integer, the
complexity of Algorithm 4 is suitable for online use in general.

THEOREM 3.5. With Algorithm 4, the total energy consumption for the tasks in Z will not exceed
the energy calculated with Equation (7).

PROOF. Given any task 7; in Z, for any arbitrary sliding window of k; jobs (represented as W;) in
it, we consider two cases: (i) There is no optional jobs executed in W;. Then based on the property of
the (m, k)-pattern, there are exactly m; mandatory jobs executed in W; in one processor, thus totally
2m; mandatory jobs (including both the mandatory main jobs and their backup ones) in the two
processors altogether; (ii) There are some optional jobs executed in W;. In this case, from lines 4-26
of Algorithm 4, whenever any of the optional jobs executed in W; became current, W; would have
been checked dynamically to ensure that there would be at most 2m; jobs (to be) executed in it. Thus
in both cases, there could be no more than 2m; jobs executed in W;. Based on the arbitrarity that W;
was chosen, the conclusion of Theorem 3.5 follows. O

4 ENERGY-CONSTRAINED STANDBY-SPARING FOR BOTH PERIODIC AND
APERIODIC TASKS

The scheduling for mixed task systems containing both periodic and aperiodic tasks is more complex
as it must be able to ensure the (m, k)-deadlines for the periodic tasks while minimizing the average
response times for the aperiodic tasks with soft deadlines. The scheduling algorithm for a mixed
task set must also accomplish these goals without compromising the feasibility of the whole system
under the given energy budget constraint. In order to do so, we can adopt a hierarchical priority
assignment strategy, i.e., letting the mandatory jobs and optional jobs for the periodic tasks be always
executed in the upper priority band and lower priority band, respectively, while letting the aperiodic
tasks be executed in the middle priority band. In this way, the execution of the aperiodic tasks will
never interfere with that of the mandatory jobs of the periodic tasks. Therefore the (m, k)-deadlines
for the periodic tasks can be assured. Meanwhile, the execution of the optional jobs will not impact
the response time of the aperiodic tasks, either. Based on it, the scheduling schemes proposed
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in Section 3 can still be applied to schedule the mandatory jobs and optional job of the periodic
tasks in the upper priority band and lower priority band, respectively. The only difference is, when
estimating the total energy consumption of the whole system, the energy calculation should include
the energy consumption of the aperiodic tasks as well. In particular, when partitioning the task set
using branch-and-bound, line 28 in Algorithm 3 should be updated as follows:

N+M
Erotal = Ex + By +Ez+ ) {Cq(1+ Ag(smax)) + Esc} 21)
g=N+1
where C, represents the execution time of the aperiodic task 7.

Note that in the above equation, when calculating the energy consumption of the aperiodic tasks,
we only need to include one fault free copy of each aperiodic task 7, because since the aperiodic tasks
do not require hard deadlines, we can always wait until the completion of its main job to determine
whether it is necessary or not to invoke its backup job in the other processor.

Then the problem is how to minimize the average response time of the aperiodic tasks? Note
that a general strategy to achieve this goal is to rearrange the periodic tasks in X to let all mandatory
main jobs in it be executed in the primary processor while all backup jobs of them be executed in
the spare processor. Meanwhile, let the main job(s) of the aperiodic task(s) be executed in the spare
processor while their backup jobs be executed in the primary processor. In this way, since in the spare
processor the backup jobs of X are most likely to be canceled, it will provide more chance for the
main job(s) of the aperiodic task(s) to be completed earlier there. Moreover, by considering different
types of pattern assignment in determining the mandatory jobs of the periodic tasks in the subset Z,
additional reduction on the aperiodic response time could be achieved, which could be illustrated
using the following examples.

As known, for the previous combined scheme in Section 3.3 we adopt E-patterns in determining
the mandatory jobs of the periodic tasks in the subset Z because E-patterns tend to provide better
schedulability than R-patterns in general [23]. However, when the aperiodic tasks are incorporated,
this approach might not always be able to achieve the minimal aperiodic response time.

Consider a mixed task set consisting of four periodic tasks, ie., 7 = (5,20,20,3,6), 7o =
(5,15,15,2,4), 73 = (6,10, 10, 2,6), 74 = (4, 15, 15,1, 3), and an aperiodic task, i.e., 75 = (19, 120), to
be executed in a standby-sparing system with given energy budget constraint Eg = 160 units within
its hyper period 120. Then based on the window transferring strategy in Section 3.2 the mandatory
main jobs of task 74 can be determined based on the window-constraint of 1/2 first (based on it the
original (m, k)-constraint of 7, can be satisfied according to Lemma 3.2). So X = {r,}. Note that
here 73 cannot adopt the same strategy because the value of m; :1’;11 for it is not an integer and thus
cannot be used as a valid window length. But we can still increase its m; value to be 3 with which the
resulting task set is still schedulable. Therefore we can adopt the floating redundant job scheme on it.
As such, Y ={73}.

The remaining two tasks cannot be applied with either the window transferring scheme (because
their values of m; fq"i:ll are not integers) or the floating redundant job scheme (because the resulting
task set is not schedulable). As a result, if we apply Algorithm 3 to determine their mandatory jobs,
both of them will need to be partitioned using E-patterns based on their original (m, k)-constraints.
Correspondingly, Z = {11, 72}

Assume all tasks arrive at time 0. With the mandatory jobs of tasks 7; and 7, determined based on
E-pattern, under the same fault rate and idle power assumption as in the previous part, the estimated
total energy consumption will be 149.90062 units, which is below the given energy budget constraint.
As shown in Figure 5, in this case, without reclaiming the slack time from canceled periodic tasks the
response time of the aperiodic task 75 will be 59 (with slack reclaiming the response time will be 40).
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Fig. 6. (a) The schedule for the same periodic main tasks 1, 72, 73, 74 as in Figure 5(a) based on the
hybrid pattern for the tasks in Z and the aperiodic backup task r; in the primary processor; (b) The
schedule for the periodic backup tasks 7;, 7, z;, and z, based on the hybrid pattern and the aperiodic
main task 75 = (19, 120) in the spare processor.

Algorithm 5 Modified task set partitioning using second round of Branch-and-Bound.

1: Input: task set T = Xuyuz output from Algorithm 3;

2: Output: task set T=x UYUZRUZE, where Zg and Zg are the subsets to be partitioned based on R-pattern
and E-pattern, respectively;

3. Zr=0;

4. Zp =all tasks in Z;

5: T = XUYUZRUZE;

6: Upound = Zr,»eZR r]rclll_gl’

7: Z-Partition (Zg, Zg, T, Upound):

8: output (T);

9

10: FUNCTION Z-Partition(Zg, Zz, T, Upound)
11: for each task 7; € Zg do
12: Zr = ZRU{1i};

13:  Remove 7; from Zg;

14:  if XUYUZRUZE is schedulable then
1s: Util = Sre 20 T

16: if Util > Upyyng then

17: Upound = Util;

18: T = XUYUZRUZE;

19: end if

20; Z-Partition (Zg, Zg, T, Upound);
21: else

22: put 7; back to Zg;

23: end if

24: end for=0

However, if we adopt a different way of determining the mandatory jobs, i.e, letting 71 be partitioned
based on a modified R-pattern in which optional jobs happen first while letting 7, be partitioned
based on E-pattern, as shown in Figure 6, then the whole task set is still schedulable and, in this case,
even without slack reclaiming the response time of the aperiodic task 75 will be reduced to 39 (with
slack reclaiming the response time will be 30), which is much shorter than that in the above schedule
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in Figure 5. Moreover, in this case the estimated total energy consumption is still 149.90062 units.
Therefore the task set is still feasible.

As can be seen, there is great potential in minimizing the response time of the aperiodic tasks by
adopting the (modified) R-pattern for the tasks in Z as the mandatory jobs in them can be “pushed
back" at the maximal extent. However, since the schedulability of the R-pattern is not as good as
E-pattern, it is possible that not all tasks can have their mandatory jobs determined in this way.
For example, for the above task set, if the mandatory jobs of both 7; and 7, are determined based
on (modified) R-pattern, the resulting task set will not be schedulable. Regarding that, the most
reasonable way is to divide the sub task set Z further into two subsets Zg and Zg in which the tasks
in Zg have their mandatory jobs determined based on R-pattern while the tasks in Zg have their
mandatory jobs determined based on E-pattern. In order to do so, we can adopt a second round of
branch-and-bound method on the task set T output by Algorithm 3, which is sketched in Algorithm 5.

As shown in Algorithm 5, similar to Algorithm 3, our second round of branch-and-bound method
determines task by task if each task 7; € Z should be partitioned based on R-pattern or E-pattern.
When Algorithm 5 is finished, it is possible to reach certain hybrid configuration in which the tasks
in subset Zy are partitioned based on R-pattern while the tasks in subset Zr are partitioned based on
E-pattern. And the resulting configuration should be the one that can maximize the total utilization of
the tasks in subset Zg while guaranteeing the schedulability of the whole task set T. Moreover, since
for any task 7; € Z, partitioning it based on R-pattern or E-pattern will generate the same number of
mandatory jobs in it, the task set T output by Algorithm 5 will have the same estimated total energy
consumption as the task set T output by Algorithm 3. Therefore, the feasibility of the task set can
still be guaranteed under the given energy constraint Ep.

Note that after the sub task set Z was further divided into two parts, i.e., Zg and Zg, the calculation
of the delay period of ¢; in Equation (20) for each periodic task z; under the new hybrid job pattern
should also be updated as follows.

Tx€X
pi = min{d; - Z(r—r Pxyey) eyt t0)
D, <d;
v (m +1) d -
- [— Dugiyicy + 1)
D;d ky T, v
T, €ZR T €EZE
- > wRod) - Y WE.d)} (22)
D, <d; D,<d;
Where
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u di—Dy 7+
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. di _Du u
min{ ([=——*1" = my| ——

is the mandatory work demand for task 7, € Zy before d; and

D, my})(Cy + tse)

Wy (o, d)—(F—F 1 D(Co + tsc)

is the mandatory work demand for task 7, € Zg before d; .
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Note that ¢; in Equation (22) can be used to delay any individual mandatory job of task z;. Since
our goal is to minimize the response time(s) of the aperiodic task(s) in the middle priority band, we
should try to delay the mandatory jobs of the periodic tasks in the upper priority band as late as
possible. With ¢;, we can develop two sufficient conditions to help identify the maximal delay for the
upcoming mandatory jobs in the upper priority band. The first one can be stated as followed (proof
omitted).

THEOREM 4.1. Assuming at time t = ty, let M be the upcoming mandatory jobs with arrival times
later than ty. Let r; be the arrival time for the next upcoming mandatory job of the periodic task ;. If
the execution of M starts at

Trs(M) =min(r; + ¢;), i=1,2,--- ,N (23)
no mandatory job in M will miss its deadline.

The online complexity of computing Ty s (M) in Theorem 4.1 is O(N) since ¢; can be computed
offline.
The second sufficient condition (similar to the one in [22]) can be stated as followed.

THEOREM 4.2. Assuming at time t = t,, let M be the set of upcoming mandatory jobs with arrival
times later than t,. Also let the delay bound (i.e., the earliest deadline for the mandatory jobs in M)
be Tpq for M. Then no mandatory job in M will miss its deadline if the execution of all mandatory
jobs in M starts at Tys(M), where

Tps(M) = min(d; - § (Ck + tse))s (24)
Ji€Js
Jie€hp(J;)

where J; consists of the jobs from M with arrival times earlier than Tyg but later than ty, hp(J;) are
the jobs with equal or higher priorities than J; and

di =min(d;,rp +¢p), V], €M, ], ¢ Js and dj, > d;. (25)
P

The main difference between Theorem 4.2 and the one in [22] is the way that the effective deadline
d} is defined. From equation (25), d} is prolonged with the delay period ¢, of the mandatory jobs
with arrive times later than Tp4. This in turn will allow the mandatory jobs to be delayed further.

The time complexity of computing Ty s(M) in Theorem 4.2 is O(N’M’), where N’ is the total
number of mandatory jobs arriving within the interval from the arrival time of job J; to its deadline
and M’ is the number of jobs with arrivals before Tp,. Since N’ and M’ are usually very small for
periodic task sets, Theorem 4.2 provides a very efficient way to compute the delay for the upcoming
mandatory jobs of the periodic tasks as well.

Note that since both Theorem 4.1 and Theorem 4.2 are sufficient conditions, the larger one from
equation (23) and (24) should be used to delay the upcoming mandatory jobs for the periodic tasks to
facilitate early completion of the aperiodic task(s). For example, in Figure 6 (b), the execution of job
]2'3 can be delayed to time ¢t = 35, which will allow the response time of the aperiodic task 75 to be
further reduced to 33.

5 EVALUATION

In this section, we evaluate the performance of our approaches by comparing with the existing
approaches in literature. Specifically, the performance of six different approaches were studied:

e SSNEM This is the naive approach in which the periodic tasks were partitioned with E-pattern,
and the mandatory jobs in the primary and the spare processors were executed concurrently
without delay.
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Fig. 7. Feasibility comparison of the different approaches.

e SSPO The periodic tasks were partitioned with E-pattern to satisfy the given (m, k)-constraints.
Then the mandatory jobs were scheduled with the preference oriented scheme in [11] but
without applying DVFS.

® MKSSseiective The periodic tasks were scheduled with the approach from [25] but adapted to
EDF scheme. The periodic tasks were firstly partitioned with deeply-red pattern to satisfy the
given (m, k)-constraints. Then the selective approach in [25] was applied.

e ECSSrry The periodic tasks were partitioned with E-pattern to satisfy the given (m, k)-
constraints. Then the mandatory jobs were scheduled with the floating redundant job scheme
proposed in Section 3.1.

e ECSSwy The periodic tasks were partitioned with E-pattern to satisfy the given (m, k)-constraints.
Then the mandatory jobs were scheduled with the window transferring scheme proposed in
Section 3.2.

e ECSSyyp The periodic tasks were partitioned with the hybrid pattern proposed in Section 4 to
satisfy the given (m, k)-constraints. Then the mandatory jobs were scheduled with the modified
approach proposed in Section 4.

For all the approaches compared, the aperiodic tasks were executed in the middle priority band
with priority levels lower than the mandatory jobs but higher than the optional jobs from the periodic
tasks. For the processor model we adopted a widely used due-core processor model, i.e., the Samsung
Exynos 4210 processor model [1]. According to [1], the highest speed that the Exynos 4210 processor
core can operate is 1200MHz with power consumption of 1067.5 mWatt per core. We assumed
the processor idle power P;g;. = 50 mWatt and minimal shut-down interval t;; = 2 millisecond.
Meanwhile, the energy and time overheads for doing sanity (or consistency) checks, i.e., Eg. and ts.
were assumed to be 0.2 mJoule and 0.1 millisecond, respectively.

5.1 Evaluation based on synthesized task sets

The task set tested in our experiments contains five to ten periodic tasks whose periods were randomly
chosen in the range of [10, 50]ms. The deadlines of the periodic tasks were set to be less than or
equal to their periods. The m; and k; for the (m, k)-constraints were also randomly generated such
that k; was uniformly distributed between 2 to 10, and 1 < m; < k;. The worst case execution time
(WCET) of a periodic task was uniformly distributed between 1 and its deadline. The task set can
also contain some aperiodic task(s) whose worst case execution times was/were randomly chosen in
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the range of [10, 50]ms. Each aperiodic task was assigned a soft deadline which is equal to the hyper
period of the periodic tasks.

Firstly, we inspected the feasibility of the different approaches under different density of mandatory
jobs of the periodic tasks. The density of mandatory jobs, defined as % > 'Z—l‘ was divided into
intervals of length 0.1 each of which contained at least 5000 task sets generated. Based on it we
checked the feasibility of the task sets when scheduled by the different approaches. We assumed
the maximal energy budget constraint is randomly picked from [1.5X, 2.5X], where X is the
energy consumption for executing the mandatory jobs of all periodic tasks under their original
(m, k)-constraints and all aperiodic tasks within the hyper period in one processor without energy
management. The numbers of feasible task sets were normalized to that by ECSSyyg. The results are
shown in Figure 7. From Figure 7, it is not hard to see that, in all cases, ECSSyyp always has the
best feasibility. Moreover, for different density of mandatory jobs, the other approaches presented
different performance on feasibilities. As can be seen, when the density of mandatory jobs is very
small, i.e., close to 0.1, the total number of task sets feasible by the other approaches were all very
close to that by ECSSyyp. However, with the increase of density of the mandatory jobs, the feasibility
of the different approaches became much different. For ECSSrr; and ECSSyyt, their feasibilities
were always decreasing because ECSSrry needed to increase the value of m; by 1 while ECSSy
needed to reduce the window size from k; to y; = m; r]:;:—11 both can affect the schedulability of the
task sets. On the other hand, the feasibilities of SSNEM ,ISSPO, and MKSSsejective decreased fast first
but then became close to ECSSyyp again when the density of mandatory jobs were relatively high,
for example, larger than 0.8. This is because, when the density of mandatory jobs is high, the hybrid
approach in ECSSyyg might not be able to partition plenty of tasks to be scheduled under Algorithm 1
or Algoirthm 2 due to schedulability constraint. Instead in this case most tasks can only be scheduled
under the regular job procrastination scheme whose estimated total energy consumption is the same
as SSPO. However, as shown in Figure 7, when the density of mandatory jobs is moderate, for
example, between 0.3 and 0.7, the feasibility of ECSSyyp is much better than the other approaches,
with maximal improvement of nearly 55%, mainly due to its capability of combining the advantages
of the different schemes under the hybrid configuration. On the other hand, the feasibility of SSNEM
and SSPO overlapped with each other completely because both of them are based on E-pattern. So
their schedulabilities were the same (their estimated total energy consumptions were also equal to
each other, as discussed earlier). It is also noted that the feasibility of MKSSsejecrive 1S lower than
that by SSNEM and SSPO mainly because it is based on deeply-red pattern whose schedulability is
not as good as E-pattern [23].

Next, we inspected the average response time of the aperiodic tasks by the different approaches.
With system feasibility in mind, this time we mainly compared our proposed approach with the
most typical one in the previous approaches, i.e., SSPO which is the previous approach with the
best feasibility. Moreover, since according to the above results, the feasibilities of ECSSrr; and
ECSSw are much worse than the other approaches when the density of the mandatory jobs were
relatively high, we did not include them in this part of test, either. Also considering the impact of
workloads on the performance, we checked the average response time of the aperiodic tasks by the
different approaches based on the utilization of the periodic tasks, i.e., 3}; 'Zl’—gl' which was divided
into intervals of length 0.1 and each interval contains at least 20 task sets feasible or at least 1000
task sets generated. We conducted two sets of tests.

In the first set, we checked the average response time of the aperiodic tasks when no fault occurred
during the hyper period. The results normalized to that by SSNEM are shown in Figure 8(a).

From Figure 8(a), it is easy to see that even when all approaches were feasible, our newly proposed
approach, i.e., ECSSyyp can reduce the average response time of the aperiodic tasks significantly
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Fig. 8. Average aperiodic response time for systems subject to (a) No faults; (b) System faults.
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Fig. 9. Energy consumption for systems subject to (a) No faults; (b) System faults.

compared with the previous approaches, i.e., SSNEM and SSPO. The maximal reduction by ECSSgyp
over SSNEM and SSPO can be up to 38% and 22%, respectively. The main reason is that, by adopting
the hybrid approach in Section 4 and running the main job of the aperiodic tasks in the spare processor,
ECSSpyp can help minimize the interference from the mandatory backup jobs of the periodic tasks
(running in the higher priority band) on the aperiodic tasks (running in the middle priority band).
Moreover, by delaying the execution of the mandatory backup jobs as late as possible with the
sufficient conditions proposed in Section 4, the preemptions from the mandatory backup jobs of
the periodic tasks on the aperiodic tasks can be greatly reduced, which is also quite helpful to the
execution and early completion of the aperiodic tasks.

In the second set, we assumed the system could be subject to transient and/or permanent faults.
The transient fault model is similar to that in [44] by assuming Poisson distribution with an average
fault rate of 107> per millisecond. As for permanent fault, we assume it is distributed evenly along
the time and at most one permanent fault will occur during the hyperperiod of the corresponding task
set. The result is shown in Figure 8(b).

As could be seen, under this scenario, the average aperiodic response time achievable by our new
approach, i.e., ECSSyyp is still much less than the previous approaches. The maximal reduction by
ECSSpyp over SSNEM and SSPO can be up to 35% and 20%, respectively, for the same reasons as
stated above.
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Fig. 10. QoS for systems subject to (a) No faults; (b) System faults.

Still next, we inspected the actual energy consumption of the different approaches. We also
conducted two sets of tests.

In the first set, we checked the energy performance when no fault occurred during the hyper period.
The results were normalized to that by SSNEM and shown in Figure 9(a).

From Figure 9(a), it is easy to see that when all approaches were feasible, both the approaches
with energy management, i.e., ECSSyyp and SSPO still consumed much less actual energy than the
approach without energy management, i.e., SSNEM. Moreover, the actual energy consumption of
ECSSpyp is much lower than SSPO in most intervals. For example, when the system workload is
moderate, the actual energy consumed by ECSSyyp can be around 18% less than that by SSPO. The
main reason is that, under this scenario, by adopting the hybrid approach in Section 3.3, ECSSyyp
can help minimize the overlapped execution between the mandatory jobs and their backup jobs of
the periodic tasks in two processors more efficiently. Moreover, for those tasks that cannot be applied
with the window transferring scheme or the floating redundant job scheme, letting them be applied
with the job procrastination scheme with delay intervals calculated in Equation (22) also helped save
energy consumption effectively.

In the second set, we assumed the system could be subject to permanent and/or transient faults
with the same fault rate as in the previous group of test. The result is shown in Figure 9(b).

As could be seen, under this scenario, the actual energy consumption by our new approach, i.e.,
ECSSpys is still much less than the previous approaches. The actual energy reduction by ECSSyyp
over SSPO can be up to 16%. This is also because of the capability of ECSSyyg in scheduling
the tasks with the hybrid configuration as mentioned above. Additionally, when fault(s) occurred,
procrastinating the backup jobs within the same window of the faulty job using the delay intervals
calculated in Equation (22) also contributed to part of the energy savings due to its capability of
shifting the executions of the mandatory main job(s) and their backup job(s) when necessary.

Finally, with the QoS in mind, we also inspected the QoS levels that the different approaches could
provide when all approaches were feasible. The QoS level was defined as the number of effective
jobs completed successfully within the hyperperiod. We also conducted two sets of tests.

In the first set, we checked the QoS when no fault occurred within the hyperperiod. The results
were normalized to that by SSNEM and shown in Figure 10(a). From Figure 10(a), we can see that
our newly proposed approach, i.e., ECSSyyp could provide much better QoS levels than the previous
approaches. Compared with SSNEM and SSPO, the maximal QoS improvement could be nearly
30%. This is because, different from SSNEM and SSPO which could only provide a minimum set of
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Fig. 11. The online overhead of Algorithm 4 in checking the energy consumption of all sliding dynamic
windows containing the current optional job: (a) Time overhead; (b) Energy overhead.

jobs that “just” satisfied the (m, k)-constraints, ECSSyyp, by adopting hybrid configurations, could
not only have extra number of mandatory jobs scheduled under the floating redundant job scheme
and the window transferring scheme, but also dynamically scheduled some optional jobs for the tasks
in Z while keeping the total energy consumption bounded under the given energy budget constraint.
Therefore it could generally generate more valid jobs in its schedule, resulting in better QoS levels.

In the second set, we assumed the system could be subject to permanent and/or transient faults
with same fault rate as in the previous group of test. The result is shown in Figure 10(b).

From Figure 10(b), the QoS improvement subject to faults by our newly proposed approach, i.e.,
ECSSyyp over the previous approaches is quite similar to that when no fault ever occurred, for the
same reasons as stated above.

Finally, we also investigated the online overhead of Algorithm 4 in checking all the sliding dynamic
windows containing the current optional job in terms of time and energy. In this part we varied the
value of k; from 2 to 20 and measured the accumulated CPU time for checking the sliding windows
in it. Figure 11(a) illustrates the accumulated CPU time for the corresponding values of k;. As shown
in Figure 11(a), when the value of k; is no larger than 20, the measured online time overhead is
very small. The average value of it is slightly higher than 0.1 millisecond. Meanwhile, since in our
approach there is no speed scaling on the processor, the online energy overhead also follows the same
trend. As seen in Figure 11(b), in most cases the value of it is less than 0.2 mJoule when k; is no
larger than 20. In Algorithm 4 , this energy overhead has been incorporated into the estimation of the
energy consumption for checking all the sliding dynamic windows containing the current optional
job.

5.2 Evaluation based on real world benchmark

In this section, we tested our conclusions in a more practical environment.

The test is based on an real world benchmark: VCS (Vehicle Control System) [18]. The timing
parameters such as the deadlines, periods, and execution times were adopted from the practical
application directly [18]. The timing parameters of the aperiodic tasks were generated in the same
way as in Section 5. The m; and k; values for the (m, k)-constraint were randomly generated between
2 and 10 (k; > m;).

We firstly performed two sets of experiments to inspect the aperiodic response time of the different
approaches.
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Fig. 12. Comparisons on the average aperiodic response time for systems subject to (a) No faults; (b)
System faults.
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Fig. 13. Comparisons on the actual energy consumption for systems subject to (a) No faults; (b)
System faults.

In the first set, we checked the average response time of the aperiodic tasks when no fault occurred
within the hyperperiod. The results, normalized to that by SSNEM, are shown in Figure 12(a).

From Figure 12(a), it is easy to see that for VCS application, similar to the synthesized case, the
average aperiodic response time of ECSSyyp is much less than all the other approaches for the same
reasons as stated in Section 5. The maximal reduction by ECSSyyp over SSNEM and SSPO can be
up to 27% and 15%, respectively.

In the second set, we assumed the system could be subject to permanent and/or transient faults
with same fault rate as in Section 5. The result is shown in Figure 12(b).

As could be seen, under this scenario, the average aperiodic response time achievable by our new
approach, i.e., ECSSyyp is still much less than the previous approaches. The maximal reduction by
ECSSyyp over SSNEM and SSPO can be up to 25% and 13%, respectively, for the same reasons as
stated above.

Next, we inspected the actual energy consumption of the different approaches. We also conducted
two sets of tests.

In the first set, we checked the energy performance of the approaches when no fault occurred
during the hyper period. The results, normalized to SSNEM are shown in Figure 13(a).
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Fig. 14. Comparisons on the QoS for systems subject to (a) No faults; (b) System faults.

From Figure 13(a), it is easy to see that, similar to the results for randomly generated tasks, both
the approaches with energy management, i.e., ECSSyyp and SSPO still consumed much less actual
energy than the approach without energy management, i.e., SSNEM. Moreover, the actual energy
consumption of ECSSyyp is much lower than SSPO in most intervals for the same reasons as stated
in Section 5. When the system workload is not high, the actual energy consumed by ECSSyyp can be
around 16% less than that by SSPO.

In the second set, we assumed the system could be subject to permanent and/or transient faults
with the same fault rate as in the previous group of test. The result is shown in Figure 13(b).

As could be seen, under this scenario, the actual energy consumption by our new approach, i.e.,
ECSSpysp is still much less than the previous approaches. The actual energy reduction by ECSSyyp
over SSPO can be up to 15% for the same reasons as stated above.

Finally, with the QoS in mind, we also inspected the QoS levels that the different approaches could
provide when all approaches were feasible. We also conducted two sets of tests.

In the first set, we checked the QoS when no fault occurred within the hyperperiod. The results
were normalized to that by SSNEM and shown in Figure 14(a). From Figure 14(a), we can see that
our newly proposed approach, i.e., ECSSyyp could provide much better QoS levels than the previous
approaches. Compared with SSNEM and SSPO, the maximal QoS improvement could be around
28% mainly because ECSSyyp adopted hybrid configurations which could generate more valid jobs
for the same reasons as stated for the synthesized task sets in Section 5.1.

In the second set, we assumed the system could be subject to permanent and/or transient faults
with same fault rate as in the previous group of test. The result is shown in Figure 14(b).

From Figure 14(b), the QoS improvement subject to faults by our newly proposed approach, i.e.,
ECSSyyp over the previous approaches is still quite significant for the same reasons as stated above.
Compared with SSNEM and SSPO, the maximal QoS improvement could be around 27%.

Overall, the evaluation results based on both synthesized systems and real world application have
clearly demonstrated the effectiveness of our approaches in reducing average aperiodic response
time as well as saving energy and improving QoS levels while satisfying the (m, k)-constraints and
assuring fault tolerance through standby-sparing.

6 RELATED WORK

In last decades, plenty of work has been done in integrating QoS assurance into scheduling for real-
time systems. For mixed-criticality systems, Gettings et al. [10] and Bruggen ez al. [35] proposed
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new approaches that can provide QoS-guarantee for low-criticality tasks. Moreover, for general
fixed-priority weakly-hard real-time systems, schedulability analysis based on the Mixed Integer
Linear Programming (MILP) formulation are provided in [33]. For mixed systems consisting of
both periodic and aperiodic tasks, Buttazzo et al. [5] studied minimizing aperiodic response times in
a firm real-time environment without considering energy consumption. With given energy budget
constraint in mind, Alenawy et al. [2] proposed an approach to reduce the number of (m, k)-violations
for weakly hard real-time systems.

Recently, with fault tolerance becoming an important concern for ubiquitous computing systems,
a lot of works ([19, 41, 44]) have been presented in combining fault tolerant scheduling and energy
management for real-time embedded systems. Many of them have utilized time redundancy, i.e.,
to re-execute recovery jobs, whenever possible, to compensate the faulty jobs. Most of them have
focused on dealing with transient faults only.

Besides transient faults, the system could be subject to permanent faults as well. More recently, to
provide better system dependability, there has been increasing interest in adopting standby-sparing
technique to deal with both permanent and transient faults simultaneously. With energy consumption
in mind, in [9, 14], online power management schemes applying DVFS in the primary processor and
DPM in the spare processor were studied. To better utilize the slack time in both processors, mixed
scheduling schemes which adopt the combination of DVFS and DPM schemes in both the primary and
spare processors were explored in [12]. For standby-sparing systems with mixed criticality, advanced
energy management schemes were proposed in [32]. The biggest contribution in it was to set up
a scheme to reduce energy through convex optimization in combination with power management
heuristics based on joint DVFS and DPM schemes in both the primary and the spare processors.
When considering the chip thermal effect, peak-power-aware standby-sparing techniques utilizing
energy management schemes were presented in [3]. For real-time systems based on fixed-priority
scheduling policies, standby-sparing schemes based on procrastination of the backup tasks were
studied in [15]. In [4], more advanced fixed-priority standby-sparing techniques based on preference
oriented scheduling schemes were explored. In[30], a scheme based on reverse preference-oriented
priority assignment is proposed which is shown to be able to approach the energy performance of a
theoretical lower bound when coupled with the dual-queue based delaying mechanism. For weakly
hard real-time systems, in [25], an energy-aware approach was proposed to combine the standby-
sparing technique and (m, k)-deadlines to achieve better energy efficiency for task sets partitioned
based on deeply-red pattern [17]. However, as shown in [23], the schedulability of deeply-red pattern
is weaker than that of the evenly distributed pattern used in this paper.

For multicore/multiprocessor systems, some works have also been conducted for real-time systems
with fault tolerance capability. In [42], a framework is proposed to maximize the system availability
by improving the mean time to failure (MTTF). In [7], Das et al. proposed an offline approach for
mapping tasks onto processor cores to minimize energy consumption for all processor fault-scenarios.
In [31], Safari et al. proposed a energy-aware solution for mixed-criticality multicore systems, which
exploited task-replication to improve the QoS of low-criticality tasks in overrun situation while
satisfying reliability requirements. The work in [12] described an implementation of standby-sparing
through sharing the spare processor among multiple primary processors in multicore platforms to
improve the overall energy efficiency using DVFES. In [29, 30], Roy e? al. proposed standby-sparing
schemes for reducing energy consumption on heterogeneous multicore platforms by applying DVFS.
With thermal effect in mind, peak-power-aware reliability management scheme were presented in [3]
to meet power and thermal constraints on the chip through distributing power density on the whole
chip. In [20], a reactive triple modular redundancy (TMR) scheme was studied for tolerating both
transient and permanent faults. Although TMR can avoid the potential problem of undetected faults
in standby-sparing systems using sanity(or consistency) checking, since it needs to have at least
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three copies of each real-time job scheduled among which at least two must be executed entirely (the
third copy could be (partially) canceled depending on the results of the previous two copies), its vast
energy consumption is a grave concern [20].

Also note that most of the above energy-aware approaches are focused on reducing the energy
as much as possible. However, for systems that are driven by power supplies with limited energy
budget constraint, the above best-effort approaches might not be able to ensure that the system
could remain operational during a well-defined mission cycle. For systems with given fixed energy
budget for its operation, Zhao et al. [40] proposed an approach to maximize the overall reliability
of the systems subject to transient faults only. To the best of our knowledge, scheduling for an
energy-constrained systems subject to both permanent and transient faults has not been studied yet.
In this work, we assume the system is operating in an energy-constrained environment in which the
energy consumption of the system must not exceed a given fixed budget. Based on it, we explore
maximizing the feasibility and system performance for mixed systems containing both periodic and
aperiodic tasks in a weakly hard real-time environment under fault tolerance requirement.

7 CONCLUSION

QoS, fault tolerance, and energy budget constraint are among the primary concerns for the design of
real-time embedded systems. In this paper, we firstly presented several novel standby-sparing schemes
for the periodic tasks which can ensure feasibility for the standby-sparing systems under tighter energy
budget constraint than the traditional ones. Then based on them we proposed integrated approaches
for both periodic and aperiodic tasks to minimize the aperiodic response time whilst achieving
better energy and QoS performance under the given energy budget constraint. Through extensive
evaluations, our results demonstrated that the proposed techniques significantly outperformed the
existing state of the art approaches in terms of feasibility and system performance for mixed systems
containing both periodic and aperiodic tasks in a weakly hard real-time environment while ensuring
fault tolerance under the given energy budget constraint.
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