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Abstract. The introduction of Bioresorbable Stents (BRS) in angioplasty
(the clinical operation to reopen an occluded coronary with intravascular pro-

cedures), originally saluted as an important innovation, was a failure for many
associated adverse events. Yet, the clinical community advocates for BRS as

an unmet clinical need. The reason for the failures can be associated with
the special size of the bioresorbable scaffold: the absence of a metallic core
calls for an increased thickness, suspected of triggering abnormal flow patterns
and biological inflammations, leading to adverse events. Accurate mathemat-
ical modeling of the fluid-wall-strut interaction and the related elution of the
struts can provide a breakthrough for rigorous shape optimization. Here, we
model in 3D the elution process involving all three domains (fluid, wall, and
struts) coexisting together. Previous studies involved only two domains. Real

cases show that the stent, the lumen, and the wall are in contact with every
other subdomain. The multidomain case presents nontrivial challenges. We
propose a domain decomposition approach for the numerical solution using
an iterative-by-subdomain method. We prove the convergence of the iterative
method. We provide preliminary results in idealized yet realistic 3D geome-
tries. Results demonstrate that the iterative method is independent of the
mesh size.

1. Introduction. Angioplasty is a non-invasive percutaneous procedure to reopen
an occluded coronary by inserting a prosthesis called “stent”, deployed by balloon
inflation ([8, 18, 13] and Fig. 1). The most popular prostheses are the so-called
“Drug-eluting stents” (DES), where a metallic core is coated by a drug to prevent
possible infections [28]. While this is a consolidated technology, bioresorbable stents

(BRS) were introduced (see, e.g., [19, 12, 4, 18]) to avoid the significant drawback of
a metallic coil located lifelong in the patient. This was supposedly an ideal solution
for young patients affected by acute (as opposed to chronic) diseases. However, the
number of adverse events associated with BRS led to their withdrawal from the
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market. A common speculation is that the abnormal thickness required by the non-
metallic structure to stand the pressure during deployment may trigger anomalous
flow patterns downstream the struts; these patterns, in turn, may induce inflam-
mations with a consequent re-occlusion of the artery. This case study pinpoints the
importance of more accurate and massive numerical modeling behind the design
of prostheses in biomedicine. Either for a deeper understanding of the complex
dynamics (ranging from mechanics to biology related to the geometry of stented ar-
teries) or for a rigorous shape-optimization (rooted in mathematical methods), the
role of numerical modeling in this field is critical. On the other hand, the biomedi-
cal community still considers BRS an unmet clinical need [19, 12, 4]. Quoting [12]:
“Important lessons about strut thickness, vessel wall coverage and their influence
on thrombosis induced by shear forces and the timing of degradation must be better
understood before this technology can become mainstream. Before initiating large
trials in humans, we need to ensure that the technology is sound and that the trial
design is flawless and based on solid science.”

Figure 1. Reconstruction of a stented artery with a malapposed
stent. The picture shows the occurrence of a malapposed stent,
i.e., a strut that enters the lumen from the wall. In general, the
struts are in contact with both the wall and the lumen at the same
time [14].

Recent studies [14] demonstrated the tremendous complexity of the morphology
of stented arteries. At the bottom line, we have three different domains in this
problem: the lumen (L) of the coronary, the wall (W), and the struts of the stent
(S). They are in contact in various ways, ranging from struts completely embedded
in the wall to struts floating in the lumen as in the case of so-called “malapposed
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stents” (Fig. 1). Numerical modeling of the erosion of the struts is a key factor for
shape optimization and design; it must include the three domains in all the possible
conformations that may happen in patients.

Modeling of the elution of DES was considered in several papers with a different
complexity depending on the emphasis on the chemical elution process or on the
numerical efficiency. For instance, in [7], the authors consider a complex elution
model only for cases when the struts are all embedded in the wall, so the different
domains are pairwise in contact. Considering the general case where the three
domains are all in contact is not just a mere geometrical extension. The time scale
of the elution at the interface between the wall and the struts is generally slower,
as the wall has a small convective field (the motion of water in the wall is minimal);
on the contrary, the interface between the lumen and the strut features a much
stronger convective field (the blood velocity), consequently causing much faster
erosion. When we assume the compresence of all the interfaces, the simultaneous
presence of different scales may challenge the numerical solver.

In this paper, we focus specifically on a numerical method for a simplified elu-
tion model inspired by the works for generic blood solutes in [22, 23], where only
two domains (lumen and wall) were present, with only one interface. Assuming
that all the possible positions among the different sub-domains are possible, we
provide a multi-domain, multi-interface formulation of the problem (Sect. 2). We
analyze the well-posedness of the problem (Sect. 2.3). After presenting the nu-
merical approximation, with a classical finite difference discretization in time and
finite elements in space (Sect. 3), we present an iterative-by-subdomains solution
method. The numerical solution of the multidomain problem is the limit of an iter-
ative process where each physical subdomain is solved separately using the iterated
interface conditions as boundary conditions. A convergence proof for the iterative-
by-subdomains method is given (Sect. 4). We present several numerical results in
idealized geometries and for different values of the parameters of the problem. Nu-
merical results - quite unexpectedly - demonstrate the independence of the number
of iterations of the mesh size (Sect. 5). A rigorous analysis of this circumstance
is in order. As a matter of fact, while mesh-independence for two subdomains was
proved in [22, 23] resorting to Steklov-Poincaré operators, the extension to three
subdomains and three interfaces raises non-trivial challenges that will be addressed
in a forthcoming paper (see Sect. 6).

This work is a contribution toward the construction of a numerical solver to
enable an accurate modeling of the interaction between the struts and the fluid, as
well as a shape-optimization analysis to identify engineering solutions for the next
generation of BRS and stent in general.

1.1. The geometrical domain. We consider a geometry Ω ¢ R
d, (d = 2, 3) com-

posed by three sub-domains, the lumen Ωl, the wall Ωw, and the strut Ωs, belonging
to R

d and any two of which share a boundary interface (See Figure 2). The bound-
ary ∂Ω of Ω is divided into proximal sections ∂Ωin = Γl,in ∪ Γw,in, distal sections
∂Ωout = Γl,out ∪ Γw,out, and the external longitudinal boundary Γw,ext.

1. The domain Ωw is the outermost shell of Ω such that its outer surface Γw,ext

along the longitudinal axis of Ω equals the outer surface of Ω. Its closure
intersects intermittently both Ωl and Ωs at (d − 1)-manifolds Γlw and Γsw,
respectively. In other words, these intersections are such that Γlw = Ωw ∩Ωl,
Γls = Ωl ∩ Ωs and Γsw = Ωw ∩ Ωs. The solute on upstream portions of the
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Figure 2. Diagram of the geometry of interest. We focus on the
case where the three domains (lumen Ωl, wall Ωw, and struts Ωs)
are all in contact simultaneously, like in the zoomed square.

stent will enter through the incoming boundary Γw,in and exit through the
outgoing boundary Γw,out.

2. Ωl is the lumen of the artery, surrounded by the wall Ωw with the interface Γlw

and interfacing the stent at Γls. Blood and solute enter the lumen from Γl,in

and leave through Γl,out. In this domain, the blood velocity is responsible for
the convection of the drug dynamics.

3. The third subdomain Ωs is the strut of the stent. In general, the stent is a
continuous net-like structure that presents some portion embedded in the wall,
some in the lumen, and some parts interfacing with both the other domains
[5]. We will focus on this latter case, assuming that the three domains have
all non-empty interfaces (see Figure 2, in particular the zoomed part). In Ωs,
no fluid flows.

In general, the material of the stent can be metallic (bare metal stents) metallic
and polymeric (drug-eluting stents) or purely polymeric (bioresorbable stents). Bare
metal stents are obsolete, while the other two types feature erosion on a time scale
that is generally much larger than the one of the heart-beat. In this paper, we
focus on the heart-beat scale (order of seconds), so we assume that the geometry of
the strut is constant in time. For simplicity, we also do not include the mechanical
interaction between the wall and the blood.

We do not specifically focus on the case when the strut is surrounded only by
either the wall or the lumen, as these cases are locally already included in the
available literature [7]. In our setting we postulate

∂Ωs = Γls ∪ Γsw, meas(Γls) > 0, meas(Γsw) > 0.

We also do not consider the case when a portion of the boundary of the struts is
on the external boundary of the domain, as this case is technically simpler (the
Poincaré inequality applies to the strut domain). The case we consider is the one
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zoomed in Fig. 2, and it is the most complicated one from both the mathematical
and numerical point of view.

1.2. Functional spaces and notation. Using a standard notation, we denote
by L2(Ω) the space of square-summable functions in Ω, and Hk(Ω) the space with
square-summable derivatives up to the order k; H1

Γ(Ω) denotes the space of functions
in H1(Ω) vanishing on Γ ¢ ∂Ω. For the sake of notation, we will denote VD,j ≡
H1

Γj,in
(Ωj) for j = l, w (where D stands for Dirichlet, as we postulate Dirichlet

conditions at the inflow). The boldface notationVD,l is used for the vector functions
in [H1(Ωl)]

d vanishing on the portion of the boundary where Dirichlet conditions
are prescribed (in the case of blood: Γl,in ∪ Γls ∪ Γlw). Hereafter, we also denote
by Vs the space H1(Ωs). We also denote by (·, ·)i the L2(Ωi) scalar product for
i = l, s, w. The special notation Q is used for the space L2(Ωl). The notation ∥ ·∥1,i
will be used for the norm in the space H1(Ωi).

Then, L2(Hk) will be the shorthand notation for L2(0, T ;Hk(Ω)), functions
whose Hk(Ω) norm is a L2(0, T ) function of time. Similar definition for L∞(L2),
functions whose L2(Ω) norm is bounded in time.

If Σ denotes a manifold in Ω̄ such that Σ ∩ Γ ̸= ∅, the trace of functions in
H1

Γ(Ω) on Σ belongs to a subspace of H1/2(Σ) that we will denote by Λ. We will
use subscripts to indicate which portion of the interface the space refers to (e.g., Λls

refers to the traces on Γls). For the interfaces, the indexes will follow a lexicographic
order (ls, lw, sw).

For a generic positive bounded function ζij ∈ L∞(Γij), and two functions f, g ∈
Λij (i, j = l, s, w with i ̸= j), we denote

(f, g)ij ≡

∫

Γij

ζijfgdΓ, ∥f∥
2
ij ≡ (f, f)ij

Finally, we let γ : H1(Ω) → H1/2(Σ) be the surjective and continuous trace
operator [2]; on the other hand, the existence of a lifting map L : H1/2(Σ) → H1(Ω)
such that it is injective, linear, and continuous and that for all λ ∈ H1/2(Σ) we have
λ = γLλ can be proven [1].

2. Problem formulation.

2.1. Blood equations. We consider blood as a Newtonian fluid with constant
viscosity ν, described by the incompressible unsteady Navier-Stokes Equations [24].
For x ∈ Ωl and t > 0 we let u(t,x) ∈ R

d be the velocity of blood and P (t,x) its
pressure that solve the equations:











































ρ
∂u

∂t
+ ρ(u · ∇)u− ν∆u+∇P = f x ∈ Ωl, t > 0,

∇ · u = 0 x ∈ Ωl, t > 0,

u = b on Γl,in, t > 0,

u = 0 on Γlw ∪ Γls, t > 0,

Pn− ν∇u · n = Pextn on Γl,out t > 0,

u(0,x) = u0(x) with ∇ · u0 = 0, x ∈ Ωl.

(1)

Here f is a local source function, such as gravity, b is the inflow blood velocity
function, u0 is the initial blood velocity in Ωl at time t = 0, Pext (that we set to 0)
is the external pressure, and n is the outward normal unit vector to the boundaries
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of Ωl. We assume the initial conditions u0 to be compatible with the boundary
conditions at t = 0.

For the sake of simplicity, in the analysis, we assume the Dirichlet boundary
conditions to be homogeneous.

2.1.1. Weak formulation of the blood problem. Using standard arguments (see, e.g.,
[27, 10]), we obtain the weak formulation for the Navier-Stokes equations by mul-
tiplying the momentum equation by a test function v ∈ VD,l and the mass conser-
vation by a test function q ∈ Q. After standard applications of the Green formula,
we obtain the following problem.

Problem 1. Given u0 ∈ (L2(Ωl))
d with ∇ · u0 = 0 and f ∈ L2((L2(Ωl))

d), find
u ∈ L2(VD,l) ∩ L∞((L2(Ωl))

d) and P ∈ L2(L2(Ωl)) such that for all t > 0






(

∂u

∂t
,v

)

+ ν(∇u,∇v) + ((u · ∇)u,v)− (∇ · v, P ) = (f ,v) ∀v ∈ VD,l,

(∇ · u, q) = 0 ∀q ∈ Q,
(2)

with u(x, 0) = u0 for t = 0,x ∈ Ωl.

As well known, the well-posedness of this problem is still the subject of active
research. We refer to the abundant literature for a recap [15, 16, 17, 11, 27, 26, 10, 9].
In what follows, we will simply assume that the velocity and pressure fields exist,
are unique, and are regular enough for the following analysis.

2.2. Concentration equations. The solute is released by the stent into Ωw and
Ωl. To describe elution, we introduce the concentration fields Cl, Cw, Cs; we assume
that Cl is subject to an advection-diffusion process, where the convection is given
by u. In the wall, we assume that the drug concentration is subject to diffusion
only.

Consequently, for t > 0, the equations and the boundary conditions for the
concentrations Ci(t,x) (i = l, w, s) that we consider read as follows [22, 23].

∂Cl

∂t
− µl∆Cl + u · ∇Cl = sl in Ωl, t > 0,

Cl = Cl,in on Γl,in, µl
∂Cl

∂nl
= 0 on Γl,out,

(3)

∂Cw

∂t
− µw∆Cw = sw in Ωw, t > 0,

Cw = Cw,in on Γw,in, µw
∂Cw

∂nw
= 0 on Γw,out,

(4)

∂Cs

∂t
− µs∆Cs = ss in Ωs, t > 0, (5)

Here, for i = l, w, s, the si represent source (forcing) functions, µi are the positive
diffusivities in their respective domains, ni are the outward unit vectors. Further-
more, the following interface conditions hold as well [22]. Let ζls, ζlw, and ζsw be
three positive bounded functions defined on the interfaces denoted by their sub-
scripts.











µl
∂Cl

∂nl
+ ζlw(Cl − Cw) = 0,

µw
∂Cw

∂nw
+ µl

∂Cl

∂nl
= 0,

on Γlw; (6)
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









µs
∂Cs

∂ns
+ ζls(Cs − Cl) = 0,

µl
∂Cl

∂nl
+ µs

∂Cs

∂ns
= 0,

on Γls; (7)











µw
∂Cw

∂nw
+ ζsw(Cw − Cs) = 0,

µs
∂Cs

∂ns
+ µw

∂Cw

∂nw
= 0,

on Γsw. (8)

Notice that (6), (7), and (8) give respectively

µw
∂Cw

∂nw
+ ζlw(Cw − Cl) = 0, on Γlw, (9)

µl
∂Cl

∂nl
+ ζls(Cl − Cs) = 0, on Γls, (10)

µs
∂Cs

∂ns
+ ζsw(Cs − Cw) = 0, on Γsw, (11)

Finally, we prescribe the initial conditions

Cl(x, 0) = Cl0(x), x ∈ Ωl, Cw(x, 0) = Cw0(x), x ∈ Ωw,
Cs(x, 0) = Cs0(x), x ∈ Ωs.

2.2.1. Weak formulation of the concentration problem. With a standard procedure,
for vl ∈ L2(VD,l), vw ∈ L2(VD,w), vs ∈ L2(Vs) we introduce the bilinear forms







al(Cl, vl) ≡ µl

∫

Ωl
∇Cl · ∇vldω +

∫

Ωl
(u · ∇Cl)vldω

aw(Cw, vw) ≡ µw

∫

Ωw
∇Cw · ∇vwdω

as(Cs, vs) ≡ µs

∫

Ωs
∇Cs · ∇vsdω

(12)

Notice that the bilinear forms al, aw, and as are continuous and, if u · nl > 0 on
Γl,out, aw and al are coercive with coercivity constants αl, αw; also, aw and as are
symmetric, and as is weakly coercive, i.e. there exist two positive constants αs and
σs s.t. as(Cs, Cs) + σs

∫

Ωs
C2

sdω g αs∥Cs∥
2
Vs
.

With this notation, the concentration problem reads as follows.

Problem 2. Given the initial conditions

Cl(0,x) = C0
l (x) ∈ VD,l, Cw(0,x) = C0

w(x) ∈ VD,w, Cs(0,x) = C0
s (x) ∈ Vs

and given sj ∈ L2(L2(Ωj)) with j = l, s, w, and the positive functions ζlw ∈
L∞(Γlw), ζsw ∈ L∞(Γsw), and ζls ∈ L∞(Γls), find Cl ∈ L2(VD,l), Cw ∈ L2(VD,w),
and Cs ∈ L2(Vs) such that for all φl ∈ VD,l, φw ∈ VD,w, and φs ∈ Vs the following

system holds






























(

∂Cl

∂t
, φl

)

+ al(Cl, φl) + (Cl − Cw, φl)lw + (Cl − Cs, φs)ls = (sl, φl)l,
(

∂Cw

∂t
, φw

)

+ aw(Cw, φw) + (Cw − Cs, φw)sw + (Cw − Cl, φw)lw = (sw, φw)w,
(

∂Cs

∂t
, φs

)

+ as(Cs, φs) + (Cs − Cl, φs)ls + (Cs − Cw, φs)sw = (ss, φs)s,

2.3. Well-posedness analysis.

Theorem 2.1. For u ∈ L∞(L2(Ωl)) ∩ L2(VD,l) with u · nl > 0 on Γl,out, Problem

2 admits a unique solution that depends continuously on the data.
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Proof. Adding up the equations in Problem 2 and rearranging the terms

(Cl − Cw, φl)lw + (Cw − Cl, φw)lw = (Cl − Cw, φl − φw)lw

(Cw − Cs, φw)sw + (Cs − Cw, φs)sw = (Cw − Cs, φw − φs)sw

(Cs − Cl, φs)ls + (Cl − Cs, φl)ls = (Cs − Cl, φs − φl)ls

we obtain the expression
(

∂C

∂t
,Φ

)

+A(C,Φ) = (S,Φ), (13)

where

C = [Cl, Cw, Cl]
T , Φ = [φl, φw, φs]

T , S = [sl, sw, ss]
T ,

A(C,Φ) = al(Cl, φl) + aw(Cw, φw) + as(Cs, φs)+

(Cl − Cw, φl − φw)lw + (Cw − Cs, φw − φs)sw + (Cs − Cl, φs − φl)ls

(S,Φ) = (sl, φl)l + (sw, φw)w + (ss, φs)s .

Now, the bilinear form A(·, ·) is continuous and weakly coercive. Since the right-
hand side of (13) is a linear and continuous functional in VD,l × VD,w × Vs, we can
establish the well-posedness of Problem 2 through the Faedo-Galerkin method (see
e.g. [21]).

Remark 2.2. In our problem set, we are excluding that the struts Ωs have bound-
aries other than the interfaces with Ωl and Ωw so that as is weakly coercive since
the Poincaré inequality does not apply. Admitting that the strut may have an
external portion of the boundary, where homogeneous Dirichlet conditions apply,
actually simplifies our analysis since as is then coercive.

3. Numerical approximation.

3.1. Time semi-discretization. We consider the time discretization of Problem
2. We let the time interval [0, T ] be divided into N subintervals of uniform length
∆t > 0 such that tn = n∆t for n = 0, 1, ..., N. For simplicity, we consider the case of
a backward Euler discretization, the extension to more accurate time discretization
schemes (e.g. multisteps) being basically a technical improvement for which the
subsequent analysis applies.

Let us set χ =
1

∆t
and the following definitions:

âl(Cl, vl) = χ(Cl, vl)l + al(Cl, vl) ∀vl ∈ VD,l (14)

âw(Cw, vw) = χ(Cw, vw)w + aw(Cw, vw) ∀vw ∈ VD,w (15)

âs(Cs, vs) = χ(Cs, vs)s + as(Cs, vs) ∀vs ∈ Vs (16)

Observe that each of these forms is bilinear and coercive, with âw and âs being
additionally symmetric. We denote by α̂l, α̂s and α̂w the corresponding coercivity
constants.

Problem 3. Given C0
l , C

0
w, and C0

s for every n = 0, 1, ..., N − 1 find

Cn+1
l ∈ VD,l, Cn+1

w ∈ VD,w, Cn+1
s ∈ Vs
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such that for all φl ∈ VD,l, φw ∈ VD,w, and φs ∈ Vs, solve

âl(C
n+1
l , φl) + (Cn+1

l , φl)lw + (Cn+1
l , φl)ls

−(Cn+1
w , φl)lw − (Cn+1

s , φl)ls = (fn+1
l , φl)l

âw(C
n+1
w , φw) + (Cn+1

w , φw)sw + (Cn+1
w , φw)lw

−(Cn+1
s , φw)sw − (Cn+1

l , φw)lw = (fn+1
w , φw)w

âs(C
n+1
s , φs) + (Cn+1

s , φs)ls + (Cn+1
s , φs)sw

−(Cn+1
l , φs)ls − (Cn+1

w , φs)sw = (fn+1
s , φs)s,

(17)

where sn+1
l = sl(t

n+1), sn+1
w = sw(t

n+1), sn+1
s = ss(t

n+1) and fn+1
i ≡ sn+1

i + χCn
i

for i = i, s, w.

Proposition 3.1. At each time step, Problem 3 is well-posed.

Proof. This follows from the fact that each bilinear form âi is coercive. Summing
up the three equations, we have

Â(Cn+1,Φ) = (Fn+1,Φ), (18)

where (we omit the time index for easiness of notation)

Â(C,Φ) = âl(Cl, φl) + âw(Cw, φw) + âs(Cs, φs)+
(Cl − Cw, φl − φw)lw + (Cw − Cs, φw − φs)sw + (Cs − Cl, φs − φl)ls

and

F = [fl, fw, fs]
T , (F,Φ) = (fl, φl)l + (fw, φw)w + (fs, φs)s .

The Lax-Milgram lemma promptly applies to (18).

3.2. Space discretization. We complete the discretization of the problem in space
with the finite element method. To this aim, we introduce a conformal reticulation
of the domains Ωl,Ωw,Ωs, and the finite-dimensional subspaces Vh,l ¢ VD,l, Vh,w ¢
VD,w, Vh,s ¢ Vs of piecewise polynomial functions. The weak formulation of the
discrete problem reads:

Problem 4. Given C0
l,h ∈ Vh,l, C0

w,h ∈ Vh,w, and C0
s ∈ Vh,s for every n =

0, 1, ..., N − 1 find

Cn+1
l,h ∈Vh,l, Cn+1

w,h ∈ Vh,w, Cn+1
s,h ∈ Vh,s

such that for all φl,h ∈ Vh,l, φw,h ∈ Vh,w, and φs,h ∈ Vh,s, solve

âl(C
n+1
l,h , φl,h) + (Cn+1

l,h , φl,h)lw + (Cn+1
l,h , φl,h)ls

−(Cn+1
w,h , φl,h)lw − (Cn+1

s , φl,h)ls = (fn+1
l , φl,h)l

âw(C
n+1
w,h , φw,h) + (Cn+1

w,h , φw,h)sw + (Cn+1
w,h , φw,h)lw

−(Cn+1
s , φw,h)sw − (Cn+1

l,h , φw,h)lw = (fn+1
w , φw,h)w

âs(C
n+1
s,h , φs,h) + (Cn+1

s,h , φs,h)ls + (Cn+1
s,h , φs)sw

−(Cn+1
l,h , φs,h)ls − (Cn+1

w,h , φs,h)sw = (fn+1
s , φs,h)s.

(19)

With similar arguments to the ones used in the proof of Proposition 3.1, the
previous problem can be proved to be well-posed.
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4. Iterative-by-subdomain solution of the problem. To solve our problem
avoiding the computational burden induced by the different dynamics and coeffi-
cients in the different subdomains, we perform a method based on the iterative
solution of the following problems. As in the previous Sections, for the sake of read-
ability, we do not explicitly specify the boundary conditions on the input/output
sections. Also, for the sake of notation, the time index n+1 is understood, and the
index k refers to the iterations by subdomains.

Let’s assume that the initial guesses C
(0)
l , C

(0)
w and C

(0)
s are given (they may

coincide with the converged value at the previous time step).

1. Lumen problem: Solve

χC
(k+1)
l − µl∆C

(k+1)
l + u · ∇C

(k+1)
l = fl in Ωl

µl
∂C

(k+1)
l

∂nl
+ ζls(C

(k+1)
l − C

(k)
s ) = 0 on Γls

µl
∂C

(k+1)
l

∂nl
+ ζlw(C

(k+1)
l − C

(k)
w ) = 0 on Γlw

In weak terms: find C
(k+1)
l ∈ Vl s.t.

âl(C
(k+1)
l , φl) +

(

C
(k+1)
l − C(k)

s , φl

)

ls
+
(

C
(k+1)
l − C(k)

w , φl

)

lw
= (fl, φl)l (20)

for all φl ∈ Vl.
2. Wall problem: Solve

χC
(k+1)
w − µw∆C

(k+1)
w = fw in Ωw

µw
∂C

(k+1)
w

∂nw
+ ζlw(C

(k+1)
w − C

(k+1)
l ) = 0 on Γlw

µw
∂C

(k+1)
w

∂nw
+ ζsw(C

(k+1)
w − C

(k)
s ) = 0 on Γsw

In weak terms: find C
(k+1)
w ∈ Vw s.t.

âw(C
(k+1)
w , φw) +

(

C(k+1)
w − C

(k+1)
l , φw

)

lw
+
(

C(k+1)
w − C(k)

s , φw

)

sw
= (fw, φw)w

(21)
for all φw ∈ Vw.

3. Strut problem: Solve

χC
(k+1)
s − µs∆C

(k+1)
s = fs in Ωs

µs
∂C

(k+1)
s

∂ns
+ ζls(C

(k+1)
s − C

(k+1)
l ) = 0 on Γls

µs
∂C

(k+1)
s

∂nw
+ ζsw(C

(k+1)
s − C

(k+1)
w ) = 0 on Γsw

In weak terms: find C
(k+1)
s ∈ Vs s.t.

âs(C
(k+1)
s , φs) +

(

C(k+1)
s − C

(k+1)
l , φs

)

ls
+
(

C(k+1)
s − C(k+1)

w , φs

)

sw
= (fs, φs)s

(22)
for all φs ∈ Vs.

4. Relaxation: Set

C
(k+1)
i,rel = ωiC

(k+1)
i + (1− ωi)C

(k)
i , i = l, w, s
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where ωi are real numbers generally in the interval (0, 1]. The unrelaxed
version corresponds to the case ωi = 1.

Finally, for the sake of the notation, we reset

C
(k+1)
i = C

(k+1)
i,rel .

Remark 4.1. In the sequence of problems we solve (lumen-wall-strut), we start
from the lumen because we first solve the Navier-Stokes equations to compute the
convective field there. It seems reasonable to use this convective field immediately.
For the other problems in the sequence there is no specific reason to choose one or
the other. It is promptly written a scheme solving the sequence lumen-strut-wall
problems. From the convergence point of view, the two methods are equivalent.

4.1. Convergence of the iterative-by-subdomain method. For simplicity, we
consider the unrelaxed case ωi = 1 (for i = l, w, s).

Let us introduce the error functions

e
(k)
i ≡ C

(k)
i − Ci, i = l, w, s (23)

and consider the error equations we obtain when subtracting (20,21,22) to (17):


















âl(e
(k+1)
l , φl) +

(

e
(k+1)
l − e

(k)
s , φl

)

ls
+
(

e
(k+1)
l − e

(k)
w , φl

)

lw
= 0

âw(e
(k+1)
w , φw) +

(

e
(k+1)
w − e

(k+1)
l , φw

)

lw
+
(

e
(k+1)
w − e

(k)
s , φw

)

sw
= 0

âs(e
(k+1)
s , φs) +

(

e
(k+1)
s − e

(k+1)
l , φs

)

ls
+
(

e
(k+1)
s − e

(k+1)
w , φs

)

sw
= 0

(24)

Theorem 4.2 (Convergence of the iterative method). In the iterative method, the

error functions are such that

lim
k→+∞

(∥e
(k)
l ∥21,l + ∥e(k)w ∥21,w + ∥e(k)s ∥21,s) = 0.

Proof. By standard arguments (Cauchy-Schwarz and Young inequality), by taking

φi = e
(k+1)
i (for i = l, w, s) in (24), we obtain the inequalities























α̂l∥e
(k+1)
l ∥21,l +

1

2
∥e

(k+1)
l ∥2ls +

1

2
∥e

(k+1)
l ∥2lw f

1

2
∥e

(k)
s ∥2ls +

1

2
∥e

(k)
w ∥2lw

α̂w∥e
(k+1)
w ∥21,w +

1

2
∥e

(k+1)
w ∥2lw +

1

2
∥e

(k+1)
w ∥2sw f

1

2
∥e

(k)
s ∥2sw +

1

2
∥e

(k+1)
l ∥2lw

α̂s∥e
(k+1)
s ∥21,s +

1

2
∥e

(k+1)
s ∥2ls +

1

2
∥e

(k+1)
s ∥2sw f

1

2
∥e

(k+1)
l ∥2ls +

1

2
∥e

(k+1)
w ∥2sw

(25)
Summing up the three equations in (25), we obtain

α̂l∥e
(k+1)
l ∥21,l + α̂w∥e

(k+1)
w ∥21,w + α̂s∥e

(k+1)
s ∥21,s +

1

2
∥e

(k+1)
s ∥2ls+

1

2
∥e

(k+1)
s ∥2sw +

1

2
∥e

(k+1)
w ∥2lw f

1

2
∥e

(k)
s ∥2ls +

1

2
∥e

(k)
s ∥2sw +

1

2
∥e

(k)
w ∥2lw.

Summing for k = 0, . . . ,K − 1, we have

min
i=l,w,s

(α̂i)

K
∑

k=1

(∥e
(k+1)
l ∥21,l+∥e(k+1)

w ∥21,w+∥e(k+1)
s ∥21,s) f

1

2
(∥e(0)s ∥2ls+∥e(0)s ∥2sw+∥e(0)w ∥2lw).

Since the right-hand side is independent of K, we have that the sum of the series

min
i=l,w,s

(α̂i)

∞
∑

k=1

(∥e
(k+1)
l ∥21,w + ∥e(k+1)

w ∥21,w + ∥e(k+1)
s ∥21,s)
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is bounded, which implies the convergence.

Remark 4.3. A similar proof is extended to the scheme with the sequence lumen-
strut-wall.

4.2. The “parallel” variant. The previous iterative scheme uses the guess of the
solution Cl, Cw, Cs as soon as it is available. For this reason, we will call it the
“sequential” variant. A natural variant, oriented to parallel computation, reads as
follows.

Let us assume that C
(0)
l , C

(0)
w and C

(0)
s are given (they may coincide with the

converged value at the previous time step).

1. Lumen problem: Solve

χC
(k+1)
l − µl∆C

(k+1)
l + u · ∇C

(k+1)
l = fl in Ωl

µl
∂C

(k+1)
l

∂nl
+ ζls(C

(k+1)
l − C

(k)
s ) = 0 on Γls

µl
∂C

(k+1)
l

∂nl
+ ζlw(C

(k+1)
l − C

(k)
w ) = 0 on Γlw

In weak terms: find C
(k+1)
l ∈ Vl s.t.

âl(C
(k+1)
l , φl) +

(

C
(k+1)
l − C(k)

s , φl

)

ls
+
(

C
(k+1)
l − C(k)

w , φl

)

lw
= (fl, φl)l (26)

for all φl ∈ Vl.
2. Wall problem: Solve

χC
(k+1)
w − µw∆C

(k+1)
w = fw in Ωw

µw
∂C

(k+1)
w

∂nw
+ ζlw(C

(k+1)
w − C

(k)
l ) = 0 on Γlw

µw
∂C

(k+1)
w

∂nw
+ ζsw(C

(k+1)
w − C

(k)
s ) = 0 on Γsw

In weak terms: find C
(k+1)
w ∈ Vw s.t.

âw(C
(k+1)
w , φw) +

(

C(k+1)
w − C

(k)
l , φw

)

lw
+
(

C(k+1)
w − C(k)

s , φw

)

sw
= (fw, φw)w

(27)
for all φw ∈ Vw.

3. Strut problem: Solve

χC
(k+1)
s − µs∆C

(k+1)
s = fs in Ωs

µs
∂C

(k+1)
s

∂ns
+ ζls(C

(k+1)
s − C

(k)
l ) = 0 on Γls

µs
∂C

(k+1)
s

∂nw
+ ζsw(C

(k+1)
s − C

(k)
w ) = 0 on Γsw

In weak terms: find C
(k+1)
s ∈ Vs s.t.

âs(C
(k+1)
s , φs) +

(

C(k+1)
s − C

(k)
l , φs

)

ls
+
(

C(k+1)
s − C(k)

w , φs

)

sw
= (fs, φs)s (28)

for all φs ∈ Vs.
4. Relaxation: Set

C
(k+1)
i,rel = ωiC

(k+1)
i + (1− ωi)C

(k)
i , i = l, w, s
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where ωi are real numbers generally in the interval (0, 1]. Again, for easiness

of notation, we reset C
(k+1)
i = C

(k+1)
i,rel .

This approach is immediately parallelizable since the three problems (Lumen,
Wall, Strut) can be solved simultaneously. Using again the notation introduced in
(23), we have the following theorem.

Theorem 4.4 (Convergence of the parallel variant). The error functions of the

parallel variant are such that

lim
k→+∞

(∥e
(k)
l ∥21,l + ∥e(k)w ∥21,w + ∥e(k)s ∥21,s) = 0.

Proof. The proof is similar to the one for the sequential formulation. In this case,
we have























α̂l∥e
(k+1)
l ∥21,l +

1

2
∥e

(k+1)
l ∥2ls +

1

2
∥e

(k+1)
l ∥2lw f

1

2
∥e

(k)
s ∥2ls +

1

2
∥e

(k)
w ∥2lw

α̂w∥e
(k+1)
w ∥21,w +

1

2
∥e

(k+1)
w ∥2lw +

1

2
∥e

(k+1)
w ∥2sw f

1

2
∥e

(k)
s ∥2sw +

1

2
∥e

(k)
l ∥2lw

α̂s∥e
(k+1)
s ∥21,s +

1

2
∥e

(k+1)
s ∥2ls +

1

2
∥e

(k+1)
s ∥2sw f

1

2
∥e

(k)
l ∥2ls +

1

2
∥e

(k)
w ∥2sw

(29)

leading to

α̂l∥e
(k+1)
l ∥21,l + α̂w∥e

(k+1)
w ∥21,w + α̂s∥e

(k+1)
s ∥21,s +

1

2
∥e

(k+1)
s ∥2ls+

1

2
∥e

(k+1)
s ∥2sw +

1

2
∥e

(k+1)
w ∥2sw +

1

2
∥e

(k+1)
w ∥2lw +

1

2
∥e

(k+1)
l ∥2ls +

1

2
∥e

(k+1)
l ∥2lw

f
1

2
∥e

(k)
s ∥2ls +

1

2
∥e

(k)
s ∥2sw +

1

2
∥e

(k)
w ∥2sw +

1

2
∥e

(k)
w ∥2lw +

1

2
∥e

(k)
l ∥2ls +

1

2
∥e

(k)
l ∥2lw.

Summing up for k = 0, . . . ,K − 1, we have

min
i=l,w,s

(α̂i)
K
∑

k=1

(∥e
(k+1)
l ∥21,l + ∥e

(k+1)
w ∥21,w + ∥e

(k+1)
s ∥21,s)

f
1

2
(∥e

(0)
s ∥2ls + ∥e

(0)
s ∥2sw + ∥e

(0)
w ∥2sw + ∥e

(0)
w ∥2lw + ∥e

(0)
l ∥2lw + ∥e

(0)
l ∥2ls).

Since the right-hand side is independent ofK, we obtain the thesis forK → +∞.

5. Numerical results. We start considering a simplified geometrical setting like
the one in Fig. 3 (right). The struts form a sequence of rings centered on the
centerline of the pipe. We consider sequences of 1, 3, and 5 rings on both a straight
and a curved pipe. The pipe is 5 mm long, with an external radius of 1.2 mm
(external wall); the wall-lumen interface is located at the radius Rl = 1 mm. The
internal face of the struts (interfacing with the lumen) is at a distance of 0.9 mm
from the centerline, the external face (interfacing with the wall) is at 1.08 mm, and
the length of each ring is 0.2 mm.

We implemented our domain decomposition method within the NGSolve library
[25], through Python scripts. The meshes were generated with the companion mesh
generator NetGen.

We wrote a simple unsteady Navier-Stokes solver for the flow in the lumen. The
boundary conditions for the Navier-Stokes problem were set to be:

1. no-slip (i.e., homogeneous Dirichlet) at the interface of the lumen with either
the wall or the struts;

2. non-homogeneous Dirichlet at the inflow with a Poiseuille flow at the inflow
circular section;
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3. traction-free (i.e., homogeneous Neumann) at the outflow.

At this proof-of-concept stage, we tested different diffusivities. In particular,
when in Ωl the convection is dominating over the diffusion we stabilized the solver
with a strongly consistent method like SUPG [3]. In the following results, we set
the diffusivities to be µl = 5.0 × 10−5, µw = 5.0 × 10−5, µs = 1.0 × 10−9 mm2/s
respectively. The Robin constants ζlw and ζls, in general, are functions of the shear
stress ν(∇u+∇T

u) · n− n ·
(

ν(∇u+∇T
u) · n

)

n. For the sake of simplicity, we

assume here these coefficients to be constant: ζlw = 3.42× 10−3, ζls = 3.42× 10−3,
and ζsw = 3.5× 10−3 mm/s respectively.

In this first round of simulations, we set the initial conditions to be Cl,0 = 1,
Cw,0 = 0.5 and Cs,0 = 0, to mimic the evolution of blood solutes (similar to the
case considered in [22, 23] with only two subdomains, lumen and wall).

Figure 3. Left: Real-life stent. Right: Simplified stent with five rings.

We focus only on the sequential variant of the domain-decomposition method, as
this will be the subject of our subsequent analysis. The convergence of the parallel
variant was confirmed by numerical results too.

The results are reported in Fig. 4, 5, 6, 7, 8, 9.
The quantitative assessment is reported in Tab. 1. We report the number of

iterations and the CPU time. Similar results were obtained also in the case of
curved pipes.

2-Rings 3-Rings 5-Rings
# El # It Time [s] # El # It Time [s] # El # It Time [s]
2000 4 1.64 3418 4 2.86 4107 4 3.74
6073 4 4.90 6596 5 6.40 7527 5 6.84
25256 5 27.25 26333 5 30.23 27157 5 30.60
48584 4 45.31 52768 4 47.31 60216 4 56.19
128000 4 213.27 142272 4 252.13 175424 4 324.16

Table 1. Numerical results for different numbers of stent rings
and mesh elements.
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Figure 4. Left: Blood velocity with one-ring stent. Right: Solute
with one-ring stent

Figure 5. Left: Blood velocity with the three-ring stent. Right:
Solute with three-ring stent

Figure 6. Left: Blood velocity with the five-ring stent. Right:
Solute with five-ring stent

5.1. Sensitivity on the diffusivity. We performed additional simulations by
changing the diffusivity parameters in the lumen, wall, and stent to probe further
our domain decomposition method under different conditions. We first consider
the following cases: µw = 1.0 × 10−3, µl = 1.0 × 10−5, µs = 1.0 × 10−9 mm2/s
(negligible diffusivity in the stent, like for Bare Metallic Stents); µw = 1.0× 10−3,
µl = 1.0×10−5, µs = 1.0×10−7 mm2/s (low diffusive stent); and µw = 1.0×10−3,
µl = 1.0× 10−5, µs = 1.0× 10−1 mm2/s (high diffusive stent). SUPG stabilization
was introduced in the lumen problem to manage the convective-dominated nature
of the problem.

The results are reported in Figures 10 and 11. There is a noticeable difference in
the absorption from lumen to wall while only a small discrepancy can be observed
from their respective interactions with the stent. When it comes to low diffusivity
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Figure 7. Left: Blood velocity with one-ring curved stent. Right:
Solute with one-ring curved stent

Figure 8. Left: Blood velocity with one-ring curved thin stent.
Right: Solute with one-ring curved thin stent.

Figure 9. Left: Blood velocity with three-ring curved stent.
Right: Solute with three-ring curved thin stent.
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in the stent, the concentration shifts more around the stent; and for high diffusivity
in the stent, more variability in all regions around the struts can be appreciated.
When the struts had higher diffusivity, the maximum concentration decreases, and
vice versa. This is due the fact that the concentration is spread across more regions
instead of gathering in fewer areas.

Figure 10. Solute concentration in five-ring stent with different
diffusivity in the wall and the lumen after one iteration (top), and
after five iterations (bottom).

5.2. More involved and realistic stents design. We now present two cases
with more realistic geometries. The first consists of a stent that has been designed
like a net, as can be observed in Figure 12.

The lumen and artery wall diameters are 4 mm and 5 mm, respectively, and 8 mm
in length. The thickness of the stent is 0.2 mm, and the mesh as a whole contains
64812 elements. After implementing parameters µw = 1.0× 10−3, µl = 1.0× 10−5,
µs = 1.0× 10−9 in the multidomain simulations, the blood and solute behavior are
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Figure 11. Left: Solute concentration in five-ring stent with low
diffusivity in the struts. Right: Solute concentration in five-ring
stent with high diffusivity in the struts

Figure 12. Net-like stent

reflected in Figure 13. It can be readily seen that this particular geometry increases
the perturbation of the flow and acts as a local blockage for solutes.

The design of the stent incorporated in the second result is inspired by a real
Xience Prime stent see [6].

For our mesh, we kept the same size as in the previous instance with the exception
of the strut thickness, which is now 80 microns for realistic purposes. The mesh in
Figure 14 has 115899 elements

We highlight the results of the multidomain simulations in Figure 15.
This time the blood flow is slightly perturbed by the presence of the stent, due to

the decreased thickness of the stent, while a more oscillatory solute movement can be
captured in the endothelial layer (i.e. the interface Γlw). The domain decomposition
method converges and the results meet the expectation of the geometrical influence
of the stent on the blood velocity and transfer of solutes to the artery wall. Also in
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Figure 13. Left: Blood behavior under a net-like stent. Right:
Solute behavior in the presence of the same stent.

Figure 14. Mesh of stent designed upon a real device [6].

Figure 15. Left: Blood simulation of realistic stent. Right: Solute
behavior of realistic stent.

this case, the number of iterations of the domain-decomposition scheme turned out
to be independent of the mesh size.

5.3. Drug elution setup in DES/BRS. Setting Cw,0, Cl,0 to be zero with Cs,0 =
1 and a relatively higher diffusivity µs, we mimic the case of DES/BRS. In Figure
16, we can observe that, with these settings, drug elutes from the strut to the wall
and the lumen as expected.

5.4. Independence of the convergence rate of the mesh size. The numerical
results presented here not only confirm the convergence Theorem but demonstrate
that the convergence rate of the method is independent of the mesh size, so we can
say that it is “optimal.” This is a critical feature in view of realistic applications of
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Figure 16. Cross-sections of drug-eluting stents when Cs(t =
0) = 1, Cl(t = 0) = 0, Cw(t = 0) = 0: the drug is released
from the struts to the other domains.

the method, as it guarantees that the cost of cases requiring fine meshes will depend
mainly on the cost of each iteration. Optimality of a similar domain-decomposition
method with only two domains (lumen and wall) was proven in [22, 23] resorting
to Steklov-Poincaré (SP) operators [20]. This means that the original problem
was reformulated as an interface functional equation. Successively, the domain-
decomposition method was reinterpreted as a preconditioned Richardson scheme.
The preconditioner was identified as one of the SP operators with features that
- in view of available results for preconditioned Richardson method and the so-
called Finite Element Uniform Extension Theorem - allow a conclusion for the
optimality. The extension of this reinterpretation to this problem is not trivial at
all. As a matter of fact, we have three interfaces here, so the SP reinterpretation
leads to a system of functional equations, and the interpretation of the domain-
decomposition method as a preconditioned Richardson scheme is not immediate.
We will investigate this approach in a forthcoming paper to prove rigorously the
mesh-independence.

6. Conclusions. In this paper, we consider for the first time the elution in a
stented artery when all the subdomains are in contact, as it happens in real cases.
An accurate and efficient modeling of this problem is critical for the optimized
design of next-generation stents. The analysis of the multiphysics problem, even for
a simplified elution process, raises some challenges. While our numerical evidence
displays a substantial optimal behavior of our domain decomposition scheme with
respect to the mesh size, the actual rigorous proof of this is not trivial and will be
subject of additional investigations.

Beyond the theoretical work, in the next steps of the present research, we in-
tend to (i) apply our segregated method to real geometries reconstructed from the
literature [14]; (ii) improve the accuracy of the elution model, with a multiphase
model for the strut elution [7]; (iii) model the erosion over a larger time scale, so to
include the geometrical changes of the subdomains in time and, possibly, to predict
the erosion patterns on the struts.

This is the first step toward a mathematically-oriented design of bioresorbable
prostheses, that may avoid the failures of the previous scaffolds.
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