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MULTIPLICITY STRUCTURE OF THE ARC SPACE
OF A FAT POINT

RIDA AIT EL MANSSOUR AND GLEB POGUDIN

ABSTRACT. The equation " = 0 defines a fat point on a line. The algebra of regular
functions on the arc space of this scheme is the quotient of k[m,x’,x<2>,...] by all
differential consequences of ™ = 0. This infinite-dimensional algebra admits a natural
filtration by finite dimensional algebras corresponding to the truncations of arcs. We

show that the generating series for their dimensions equals ;=—. We also determine

the lexicographic initial ideal of the defining ideal of the arc space. These results are
motivated by nonreduced version of the geometric motivic Poincaré series, multiplicities
in differential algebra, and connections between arc spaces and the Rogers-Ramanujan
identities. We also prove a recent conjecture put forth by Afsharijoo in the latter
context.

1. INTRODUCTION

1.1. Statement of the main result. Let k& be a field of characteristic zero. Consider
an ideal I C k[x], where x = (z1,...,%,), defining an affine scheme X. We consider the
polynomial ring

kx]= kel | 1<i<n, j>0]

in infinitely many variables {xgj ) | 1 < i< n, j >0} This ring is equipped with a
k-linear derivation a — a’ defined on the generators by

(:L'(-j))/ = xl(j—H) for1<i<n, j=0.

()

Then we define the ideal 1(>) C k[x(°)] of the arc space of X by
1) = (fV | fel, j>0).

In this paper, we will focus on the case of a fat point Z,, := (™) C k[z] of multiplicity
m > 2. Although the zero set of L(fo) over k consists of a single point with all the

coordinates being zero, the dimension of the corresponding quotient algebra k[x(oo)] /L(noo)
(the “multiplicity” of the arc space) is infinite.

One can obtain a finer description of the multiplicity structure of k[z(>)] /L(noo) by
considering its filtration by finite-dimensional algebras induced by the truncation of arcs
Ha <O/ 2 = k0] (b0 N 75),
where (S0 := {z,2/,... 2}, and arranging the dimensions of these algebras into a
generating series

(1) Dz, (t) := i dimy, (k[z(S9]/Z()) - ¢
=0

1
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The main result of this paper is

(2) Dz, () =

T 1—mt

1.2. Motivations and related results. Our motivation for studying the series (1)
comes from three different areas: algebraic geometry, differential algebra, and combina-
torics.

e From the point of view of the algebraic geometry, I(>) defines the arc space £(X) [13]
of the scheme X. Geometrically, the points of the arc space correspond to the Taylor
coefficients of the k[t]-points of X. The arc space of a variety can be viewed as an
infinite-order generalization of the tangent bundle or the space of formal trajectories on
the variety. For properties and applications of arc spaces, we refer to [10, 13].

The reduced structure of an arc space is often described by means of the geometric
motivic Poincaré series [13, § 2.2]:

oo
(3) Py(t) = 3 Iml£(X))] - 1,
=0
where 7y denotes the projection of £(X) to the affine subspace with the coordinates
x(S0 (ie., the truncation at order ¢) and [Z] denotes the class of variety Z in the
Grothendieck ring [13, § 2.3]. A fundamental result about these series is the Denef-
Loeser theorem [12, Theorem 1.1] saying that Px(t) is a rational power series.

The arc spaces may also have a rich scheme (i.e.. nilpotent) structure (see [14, 16, 27])
reflecting the geometry of the original scheme [9, 35]. In the case of a fat point Z,, =
(x™) C k[z], we will have m;(L(X)) = A°, so the geometric motivic Poincaré series
equal to

[AY]

1t

where [A”] is the class of a point. Note that the series does not depend on the multiplicity

m of the point. One way to capture the scheme structure of £(X) could be to take the

components of the projections in (3) with their multiplicities. For example, for the case

L, one will get

Pt) =

i dimy (k[2(S9]/Z(0)) - [A] - ¢ = Dz, (¢)[A"].
/=0

Our result (2) implies that the series above is rational as in the Denef-Loeser the-
orem. Interestingly, the shape of the denominator is different from the one in [13,
Theorem 2.2.1]. The formula above is not the only way to take the multiplicties into
account, a related more popular approach is via Arc Hilbert-Poincaré series [29, §9] (see
also [11, 28]).

e Differential algebra studies, in particular, differential ideals in k[x(oo)], that is, ideals
closed under derivation. From this point of view, I(>) is the differential ideal generated
by I. Understanding the structure of the differential ideals L(noo) is a key component of
the low power theorem [25, 26] which provides a constructive way to detect singular solu-
tions of algebraic differential equations in one variable. Besides that, various combinato-
rial properties of I,(noo) have been studied in differential algebra, see [5, 6, 30, 31, 38, 39].
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While there is a rich dimension theory for solution sets of systems of algebraic differ-
ential equations [23, 24, 33], we are not aware of a notion of multiplicity of a solution of
such a system. In particular, the existing differential analogue of the Bézout theorem [8]
provides only a bound unlike the equality in classical Bézout theorem [20, Theorem 7.7,
Chapter 1]. Our result (2) suggests that one possibility is to define the multiplicity of
a solution as the growth rate of multiplicities of its truncations, and this definition will
be consistent with the usual algebraic multiplicity for the case of a fat point on a line.

e Connections between the multiplicity structure of the arc space of a fat point and
Rogers-Ramanujan partition identities from combinatorics were pointed out by Br-
uschek, Mourtada, and Schepers in [11] (for a recent survey, see [29, §9]). In particular,
they used Hilbert-Poincare series of similar nature to (1) (motivated by the singularity
theory [28, Section 4]) for obtaining new proofs of the Rogers-Ramanujan identities
and their generalizations. In this direction, new results have been obtained recently
in [1, 4, 7]. In [1], Afsharijoo used computational experiments to conjecture [1, Sec-

tion 5] the initial ideal of L(noo) with respect to the weighted lexicographic ordering (a
special case was already conjectured in [2, Section 1]). This conjecture would imply
a new set of partition identities [1, Conjecture 5.1]. Using combinatorial techniques,
some of them have been proved in [1], and the rest were established in [4] (see also [3]).

However, the original algebraic conjecture about L(noo) remained open. As a byproduct
of our proof of (2), we prove this conjecture (see Theorem 3.3) thus giving a new proof
of one of the main results of [4].

Understanding the structure of ideal L(noo) is known to be challenging: for example,
its Grobner basis with respect to the lexicographic ordering is not just inﬁni(t? but even
J)»
7
Ir(noo) posed by Ritt in 1950 [34, Appendix, Q.5] remained open for sixty years until [31]
(see also [6, 30]).

The statement (2) appeared in the Ph.D. thesis [32, Theorem 3.4.1] of the second
author but the proof given there was incorrect. We are grateful to Alexey Zobnin for
pointing out the error. The proof presented in this paper uses different ideas than the
erroneous proof in [32].

Update (20 February, 2024). We would like to thank Ilya Dumanski for pointing
out that the main dimension result (2) could also be deduced from a combination of
Propositions 2.1 and 2.3 from [15].

differentially infinite [2, 38], and the question about the nilpotency index of z;”’’s modulo

1.3. Overview of the proof. The key technical tool used in our proofs is a representa-

tion of the quotient algebra k[x(oo)]/L(ﬁo) as a subalgebra in certain differential exterior
algebra constructed in [31] (see Section 4.1). The injectivity of this representation builds

upon the knowledge of a Grobner basis for L(noo) with respect to degree reverse lexico-
graphic ordering [11, 25, 39]. We approach the equality (2) as a collection of inequalities

(4) m < dimy (k[2S9]/Z(°)) < m ™ for every £ 0, m > 1.

The starting point of our proof of the lower bound uses the insightful conjecture by

Afsharijoo [1, Section 5] suggesting how the standard monomials of qufo) with respect to
the lexicographic ordering look like. Using the exterior algebra representation, we prove
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that these monomials are indeed linearly independent modulo Ir(noo), and deduce the lower
bound from this (Section 4.3 and 4.4).

In order to prove the upper bound from (4), we represent the image of k[z(<)] /L(noo)
in the differential exterior algebra as a deformation of an algebra which splits as a di-
rect product of £ + 1 algebras of dimension m thus yielding the desired upper bound
(Section 4.2).

1.4. Structure of the paper. The rest of the paper is organized as follows. Section 2
contains definitions and notations used to state the main results. Section 3 contains the
main results of the paper. The proofs of the results are given in Section 4. Section 5
describes computational experiments in MACAULAY2 we performed to check whether
formulas similar to (2) hold for more general fat points in k£". We formulate some open
questions based on the results of these experiments.

2. PRELIMINARIES

Definitions 2.1-2.4 provide necessary background in differential algebra. For further
details, we refer to [21, Chapter 1] or [22, §I.1, 1.2].

Definition 2.1 (Differential rings and fields). A differential ring (R, ') is a commutative
ring with a derivation ”: R — R, that is, a map such that, for all a,b € R, (a+b) = o' +¥
and (ab) = d'b+ ab/. A differential field is a differential ring that is a field. For i > 0,
a® denotes the i-th order derivative of a € R.

Notation 2.2. Let x be an element of a differential ring and h € Z>y. We introduce

2P = (2, aPTY) and 20 = (2,0 2", ).
(8P is defined analogously. If x = (z1,...,2y,) is a tuple of elements of a differential
ring, then
x(<P) .= (3:§<h), . .,xffh)) and  x(*) .= (wﬁ“’), e ,557(100))-

Definition 2.3 (Differential polynomials). Let R be a differential ring. Consider a ring
of polynomials in infinitely many variables

R[z(®)] := Rz, 2’ 2" 2. ]

and extend the derivation from R to this ring by (x(j))’ := 201 The resulting differen-
tial ring is called the ring of differential polynomials in x over R. The ring of differential
polynomials in several variables is defined by iterating this construction.

Definition 2.4 (Differential ideals). Let S := R[l‘goo), e :1:,(100)} be a ring of differential
polynomials over a differential ring R. An ideal I C S is called a differential ideal if
a’ € I for every a € I.

One can verify that, for every fi,..., fs € 5, the ideal

D 1)
is a differential ideal. Moreover, this is the minimal differential ideal containing fi,..., fs,
and we will denote it by (fi,..., fs)().

Definition 2.5 (Fair monomials).
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e For a monomial m = x(?0) (M) ... z(he) € k[2()] we define the order and lowest
order as ordm := max h; and lordm := m}inZ h;, respectively.

<i< <i<
e A monomial m € k[z(*)] is called fair (resp., strongly fair) if
lordm > degm — 1 (resp., lordm > degm).
We denote the sets of all fair and strongly fair monomials by F and Fs, respec-
tively. By convention, 1 € F and 1 € F,. Note that F; C F.
e For every integers a,b > 0, we define
Fapi=F" FL,

where the product of sets of monomials is the set of pairwise products. In other
words, F, 5 is a set of all monomials representable as a product of a fair monomials
and b strongly fair monomials.

Remark 2.6. The notion of fair monomials was inspired from the conjectured construc-
tion of the initial ideal of (z?, (z™)(>°)) given in [1, conjecture 5.1]. We use the notion to
formulate concisely and prove the conjecture (see Theorem 3.3). A

Example 2.7. The monomials of order at most two in F and F; are:
FklS]={1, 2, o/, ('), /2", 2, ("), (&")*},
Fo k2P = {1,2/, 2", (")?}.
Using this, one can produce the monomials of order at most one in F; ;1 and Fa
Fia Nkl = {1,2,22/,2/, ()2, (2/)*},
Foo NE[xSY] = {1, 2,22 z2/, x(2))?, 2/, ()2, ()3, ()4} A

For example, (2')3 € Fi can be written as (z/)? - 2/, where (2/)? € F and 2’ € Fs.
Likewise, for the monomials of order at most two, we can write:

Fia Nk ={1,2,a' "z’ 22", ()2, a'a", ("), a(2")?, (2)?, (') 22",
x/(x//)27 (x//)S7 ($/)2(x//)2’ x/(x//)?)’ (x//)4, (x//)S}.
3. MAIN RESULTS

The algebra of regular functions on the arc space of a fat point " = 0 admits a
natural filtration by subalgebras induced by the truncation of arcs. Our first main result,
Theorem 3.1, gives a simple formula for the dimension of the subalgebra induced by the
truncation at order h. Corollary 3.2 gives the generating series for these dimensions (as

in (2)).

Theorem 3.1. Let m and h be positive integers and k be a differential field of zero
characteristic. Then

dimg (k[zS]/(k[zSM] A (2m™) 9))) = mhHL

Corollary 3.2. Let m be a positive integer and k be a differential field of zero charac-
teristic. Then
m

i (<0 my(0)y  4f — T
> dimy (a0 o)) o = 2
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where k[z(SO]/(x)(%) .= k[z(SO]/(k[z(SO] 0 (27)()).

Given a polynomial ideal and monomial ordering, the monomials which do not appear
as leading terms of the elements of the ideal are called standard monomials. Motivated by
applications to combinatorics, Afsharijoo used computations experiment to conjecture [1,
Section 5] a description of the standard monomials of (z)(>) with respect to the degree
lexicographic ordering. Our second main result, Theorem 3.3, gives such a description
and, combined with Lemma 4.10, establishes the conjecture.

Theorem 3.3. Let k be a differential field of zero characteristic. Consider a degree
lezicographic monomial ordering on k[z(°)] with the variables oredered as © < x' < z" <
.... Let m and i be positive integers with 1 < i < m. Then the set of standard monomials
of the ideal (2%, (™)) is F;_| ;m_i (see Definition 2.5). Note that, for i = m, we obtain
differential ideal (x™)(>°),
Corollary 3.4. Theorem 3.3 also holds for the following orderings:

e purely lexicorgraphic with the variables ordered as in Theorem 3.3;

e wieghted lexicographic: monomials are first compared by the sum of the orders

and then lexicographically as in Theorem 3.35.

Remark 3.5. The multiplicity of the scheme of polynomial arcs of degree less than h of
z = 0 (defined by (2™, z(")(>)) has been studied in [5]. It was shown [5, Theorem 2.5]
that this multiplicity (equal to dimy, k[z(>)]/(z™, £(")(*)) is a polynomial in m of degree
h which is the Erhart polynomial of some lattice polytope. Theorem 3.1 together with a
natural surjective morphism k[z(<P]/(z™)(%) — k[2(%)]/(z™, £("))(*) implies that this
polynomial is bounded by m”. A

4. PROOFS

4.1. Key technical tool: embedding into exterior algebra.

Notation 4.1. Let k be a field. Then, for € = (£, &1, ...,&,) we introduce a countable
collection of symbols {{Z-(J) |0 <i<mn, j>0}and by Au(€(>)) denote the exterior
algebra of a k-vector space spanned by these symbols. Ak(ﬁ(m)) is equipped with a
structure of a (noncommutative) differential algebra by

(fj(i))’ = fj(iﬂ) for every i > 0 and 0 < j < n.

The following proposition is a minor modification of [31, Lemma 1]. The proof we will
give is a simplification of the proof of [31, Lemma 1] which will be extended to a proof
of Lemma 4.4.

Proposition 4.2. Let m be a positive integer, and consider tuples m = (no, ..., Nm—2)
and & = (&0, ... ,&m—2). Let

A= M) @ A(€)),

which is equipped with a structure of differential algebra (as a tensor product of differential
algebras, using the Leibnitz rule, that is (a®b) :=d' @b+a®1V'). Consider a differential
homomorphism o: k[z(>)] — A defined by

m—2
p(x) =) n &
=0
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Then the kernel of @ is (x™)(>).
Example 4.3. Consider the case m = 3. Then we will have

p(z) =m0 @& +m @&
The image of 2’ will be then

p(a) = (p(2)) =np @& +m @& +m @& +m @& .
One can show, for example, that (z)* & (23)(°) by showing that ¢((z')*) # 0:

p((a”)h) = 24(n0 Ay Am Aiy) @ (G0 AEGA &L AEL) # 0.
Furthermore, a direct computation shows that ¢((z’)®) = 0. Combined with Proposi-
tion 4.2, this implies (2/)° € (23)(), A

Proof of Proposition 4.2. Consider (¢(x))™. This is a sum of tensor products of exterior
polynomials of degree m in m — 1 variables, so it must be zero. Since (¢(x))™ = 0 and
¢ is a differential homomrphism, we conclude that Ker o D (2™)(>),
Now we will prove the inverse inclusion. We define the weighted degree inverse lexico-

graphic ordering < on k[z(>)] (cf. [39, p. 524]): M < N if an only if

e tord M < tord N, where tord is defined as the sum of the orders, or

e tord M =tord N and deg M < deg N or

e tord M = tord N, deg M = deg N, and N is lexicographically lower than M,

where the variables are ordered = < 2/ < 2" < ....

For example, we will have x < 2’ < 2” < ... and z2” < (2/)2. Then, for every h > 0, the
leading monomial of (z)") with respect to < is (z(®)™~7(2(@*+D)" where ¢ and r are
the quotient and the reminder of the integer division of h by m, respectively. Let M be
the set of all monomials not divisible by any monomial of the form (@)™~ (z(e+D)r,
Then we can characterize M as follows:

M= {2 ) hy << hy, VO i < l—m+ 11 hipm_1 > hi + 1}

We will define a linear map v from M to the set of monomials in A with the following
properties:

(P1) For every P € M, ¢(P) # 0.

(P2) For every P € M, the monomial ¥(P) appears in the polynomial o(P) and, for

any Py € M such that Py < P, 1¥(P) does not appear in the polynomial ¢(Fy).

Informally speaking, (M) is the “leading monomial” in ¢(M). Once such a map 1 has
been defined, we can prove the proposition as follows. Let @ € Keryp \ (xm>(oo). By
replacing @ with the result of the reduction of @ by ™, (™)', ... with respect to <, we
can further assume that all the monomials in Q belong to M!. Let Qg be the largest of
them. By (P1) and (P2), ¢(Qo) will involve 1/(Qo) and ¢(Q — Qo) will not, so ¢(Q) # 0.
This contradicts the assumption that () € Ker . The proposition is proved.

Therefore, it remains to define 1 satisfying (P1) and (P2). We will start with the case
m = 2 to show the main idea while keeping the notation simple. We define ¢ by

(5) (o), pho) .= (n<o> ®5(ho>) A (nm ®5<h1—1>) Ao A (,,(@ ®£(he—f))’

Hnterestingly, although it is known that 2™, (z™)',... form a Grobner basis, we do not really need to
use this fact here since a reduction with respect to any set of polynomials is well-defined.
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where hg < hy < ... < hy. For proving (P1), we observe that, if hjy1 > h; + 1 for all
i, then hg < hy —1 < hg —2 < ... < hy — £, so there are no coinciding &’s in (5). The
construction for arbitrary m will consist of splitting the monomial into m — 1 interlacing
submonomials and applying (5) with (7;,&;) to i-th submonomial. More formally, if
ho < h1 <... < hy, we define

¢
(6) (@ al) =TT () @ el )
i=0
where a % b denotes the remainder of the division of a by b, and [a] denotes the integer
part of a. (P1) is proved by applying (P1) for m = 2 to each submonomial.
For proving (P2), consider Py € M with Py < P and ¢ (P) appearing in ¢(Fp). Since
1) preserves the total orders and doubles the degrees, we have tord Py = tord P and
deg Py = deg P. Let H := ord Py. Since Py < P, we have H > hy. Since the maximal
orders of  and & in ¢ (P) do not exceed [¢/(m — 1)] and hy — [¢/(m — 1)], respectively,
we have H < hy. Thus, H = hy. Applying the same argument recursively to P/ z(h) and
Pg/a:(hf), we conclude that P = P,.
We will prove that ¢(P) involves 9 (P) by induction on deg P. The case deg P = 0
is clear. Consider P with deg P > 0. Similarly to the preceding argument, one can

obtain ¥(P) (from ¢(P/z?)) only by taking né[é/gg i)] ® 5/% T[f/(lr; 20 (i.e., the last

term in (6)) from one of the occurrences of z(**) in P. Therefore, the coefficient in front
of ¥(P) in ¢(P) will be up to sign equal to deg_(n, times the coefficient in front of

Y(P/zM)) in p(P/x(M)). The latter is nonzero by the induction hypothesis. O

Lemma 4.4. In the notation of Proposition 4.2, let 1 < r < m. Then the preimage of
the ideal in A generated by 1,1 ®&r_1, ..., Nm—2QEm—_o under ¢ is equal to ((x™)() z").

Proof. We first prove that the image of " belongs to (,—1 ® §&—1,. .., Mm—2 @ &n—2).
This is because ¢(z") is the sum of monomials which are products of r different 7; ® &;’s.
Since there are m — 1 of them, every such monomial will involve at least one of the last
m—r of n; ®&’s.

Let us consider a polynomial g € k[z(>)]\ ((z™)(>), ") and prove that ¢(g) does not
belong to (-1 @ &1, .+, Mm—2 @ Em—2). We can assume that each monomial P of g
belongs to

M, ={M e M|deg, M <ror0<hp_1}.
We will use the map 1 defined in (6). In fact, ¥)(P) does not involve the zero-order

derivatives of &_1,...,&n_2 since h; — [i/(m — 1)] can only be zero for a monomial in M
only if ¢ < r — 2. Thus

¢(P) ¢ <77r—1 & 57’—17 <oy Im—2 X fm—2>-

Assume that Py is the largest summand that appears in g. Then ¢(Fy) involves ¢ (FPp)
but ¢(g — Pp) does not. Therefore, ¢(g) does not belong to (n,—1 @ &—1,...,Mm—2 @
5m72>~ ]

4.2. Upper bounds for the dimension. Throughout the section, we fix a differential
field k of zero characteristic.



MULTIPLICITY STRUCTURE OF THE ARC SPACE OF A FAT POINT 9

Proposition 4.5. Let m,h be positive integers. By Ay, we denote the subalgebra of
k[z(°)]/(z™)(®) generated by the images of z,2’,...,z"). Then

dim A, 5, < mh+t,

First we describe a general construction which will be a special case of the so-called
associated graded algebra. Let A = Ag @ A1 @& Az @ ... be a Z>p-graded algebra over
k equipped with a homogeneous derivation of weight one (that is, A, C A,y for every
i > 0). We introduce a map gr: A — A defined as follows. Consider a nonzero a € A and
let @ be the largest index such that a € A; ® A;41 @ .... Then we define gr(a) to be the
image of the projection of a onto A; along A;11 @ A;y2 @ .... In other words, we replace
each element with its lowest homogeneous component.

Note that gr is not a homomorphism, it is not even a linear map. However, it has two
important propreties we state as a lemma.

Lemma 4.6.
(1) Let ay,...,an € A and let p € k[x(*)] be a differential monomial. Then

p(gr(ay),...,gr(ay)) #0 = gr(p(ay,...,a,)) = plgr(ai),...,gr(a,)).

(2) If ai,...,a, € A are k-linearly dependent, then gr(ay),...,gr(ay,) also are k-
linearly dependent.

Proof. To prove the first part, one sees that p does not vanish on the lowest homogeneous
parts of a1, ..., an, so the homogeneity of the multiplication and derivation imply that

taking the lowest homogeneous part commutes with applying p for aq, ..., ay,.
To prove the second part, let ¢ be the lowest grading appearing among ay, ..., a,. Re-
stricting to the component of this weight, one gets a linear relation for gr(ay),...,gr(ay).
O

Lemma 4.7. Let A be a graded differential algebra as above. Consider elements ay, ..., a,
in A, and denote the algebras (not differential) generated by a, . .., ayn and gr(ay), ..., gr(a,)
by B and Bg,, respectively. Then dim Bg, < dim B.

Proof. By, is spanned by all the monomials in gr(a;),...,gr(a,). We choose a basis in
this spanning set, that is, we consider monomials py,...,pny € k[z1,...,2zy] such that

b1 (gr(al)’ s 7gr(an))7 s ,PN(gr(a1)7 cee gr(an))
form a basis of Bg,. The first part of Lemma 4.6 implies that
gr(pi(ay,...,an)) = pi(gr(a),...,gr(ay,)) for every 1 <i < N.

Then the second part of Lemma 4.6 implies that pi(a1,...,an),...,pn(a1,...,a,) are
linearly independent. Since they belong to B, we have dim B > N = dim By;,. g

Proof of Proposition 4.5. Let A and ¢ be the exterior algebra and the homomorphism
from Proposition 4.2. Proposition 4.2 implies that A,, ; is isomorphic to the subalgebra
of A generated by

— m—2 m—2
Zm@ﬁz, Z me&), > me&)" ... > mio&)™.
=0 =0 =0
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We define a grading on A by setting the weights of n(i) and f @ be equal to ¢ for every
12 0and 0 < j < m—1. A becomes a graded algebra, and the derlvatlon is homogeneous
of weight one.

We fix h > 0 and consider the following elements of A:

&j,z'::(1+8)iozj fori>0,0<j<m—1and o € {n,¢},

where 0 is the operator of differentiation. We introduce

Ui::Zﬁj,i@ng,i for0<i<h

and let Y, be the algebra generated by vy, ...,v,. For every 0 <@ < h, we have v]" = 0,
so Y}, is spanned by the products of the form
vgovfl . vzh, where 0 < dg, ...,dp, < m.

Therefore, dim Y}, < mMtL.

Claim. There is an invertible (h + 1) x (h + 1) matrix M over Q such that, for
ug, - .., up defined by

(7) (uO,...,uh)T = M(Uo,...,vh)T,
we have
m—2 '
gr(u;) = Z(nj ® §j)(l) for every 0 < i < h.
§=0
We will first demonstrate how the proposition follows from the claim and then prove
the claim. Since M is invertible, wo, ..., u, generate Y} as well. Since gr(ug),. .., gr(up)

generate A, ,, Lemma 4.7 implies that m"™! > dim Y}, > dim A, .
Therefore, it remains to prove the claim. For every 0 < ¢ < h, we can write

:(1®1+1®a)i(1®1+8®1)%0:(1®1+1®a+6®1+8®8)i00‘

We set u; := (100 +0®1+0® 0)vg for every 0 < i < h. Note that, since 1@ +0® 1
is just the original derivation on A, we have

(8) gr(u;) = (1®8+8®1 mz:nj@ﬁfj
§=0

By expanding the binomial (1®1+(1®90+90®1+9®J))", we can write v; = > (;)u]
j=0
Then we have

(9) (UOa"'vvh)T = M(u()v"-;uh)Ta
where M is the (h + 1) x (h + 1)-matrix with the (i, j)-th entry being (;) Since M is

lower-triangular with ones on the diagonal, it is invertible. We set M := M-, So we
have (ug, . ..,un)T := M(vg,...,vs)T which, together with (8) finishes the proof of the
claim. g

By combining the proof of Proposition 4.5 with Lemma 4.4, we can extend Proposi-
tion 4.5 as follows.
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Corollary 4.8. Let m, h,i be positive integers with 1 < i < m. By Ay, ) we denote
the subalgebra of k[z(°)]/(z?, (x)(*)) generated by the images of x, ', ..., M. Then

dim Ay iy < - mh.

Proof. The proof will be a refinement of the proof of Proposition 4.5, and we will use
the notation from there. Let 7 be the canonical homomorphism 7: A — A; i = A/(&-1 ®
Miels--s&m—2 @ Nm—2). Since the ideal (§;_1 @ ni—1,...,&m—2 @ Nm—2) is homogeneous
with respect to the grading on A, there is a natural grading on A;.

We have A, iy.n = 7(Ap,p). Since 7 is a homogeneous homomorphism, 7 (A, ;) is gen-
erated by m(gr(uo)), ..., m(gr(up)) from (7), so dim A, ;) = dim7( Ay, ) < dim7(Yy,).
We observe that m(v)? = 0, so 7(Y},) is spanned by the products of the form

7(vo) (v .. w(vp)%,
where 0 < dp <4 and 0 < dy,...,d, < m. Therefore, dim7(Y;,) < i-mh. O
4.3. Combinatorial properties of fair monomials.

Definition 4.9 (Non-overlapping monomials). We say that two monomials mj, mg €
k[x(oo)] do not overlap if ordmy < lord ms or ord ms < lord m;.

Lemma 4.10. Let m,i be integers with 0 < i@ < m. Let P € F,;—;. Then there exist
P,...,P,e Fand Piy1,..., Py, € Fs such that

P=P -...- P, and, foreveryl <i<m, ordPF; <lordP;y;.

Remark 4.11. Lemma 4.10 implies that the set F;_i ,—; from Theorem 3.3 coincides
with the set of standard monomials conjectured by Afsharijoo in [1, Section 5]. A

Proof. Suppose that P can be written as
P — (:L.(hl,O) PPN x(hl,él)) .o (x(hm,o) e x(h’m,ém))’

where each (a;(hivO) . -a:(hiv‘fi)) belongs to F or F, and h1g < hog < -+ < hyp0. We first
prove that we can make the product to be a product of non-overlapping monomials.
Let us sort the orders hig,h1,1,..., e, in the ascending order:

{(ri0,- om0 (r20, - m2,0)5 - -5 (Tmy0s - -+, Tt 3

Claim : For all0 < i< m, hjg < 71ip0.
In the whole list of h; ;’s, all the numbers to the right from h; g are > h;o. Therefore,
after sorting, h;o will either stay or move to the left. Thus, h;o < 750, so the claim is
proved.

Hence if 2(h1.0) ... £(".t:) was a fair (resp., strongly fair) monomial then 2(".0) . .. (i)
is a fair (resp., strongly fair) monomial.

Now we will move all the strongly fair monomials to the right in the decomposition of
P. We first prove that, for every () = @1Q2 such that Q1 € Fs, Q2 € F, and ord @ <
lord @2, there exist Q1 € Fs and Q2 € F such that Q = Q1Q2 and ord )1 < lord Q2. Let

Q) = z(h10) ... x(hl,zl)’ Qs = 2(h20) L (h2e,)
where 1 < hig and ¢y < hog. If o < hog then Q2 € F,, so we are done. Otherwise,

¢y +1 < hy implies that le(hw) is a fair monomial, and 3 — 1 < ho implies that
% € F,. Thus, we can take Q := Q1z(10) and Q, := —22
€T 5

2(P1,0)°
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Applying the described transformation while possible to the non-overlapping decom-
position of P, one can arrange that the last m — ¢ components are strongly fair. O

Proposition 4.12. For every positive integers m, h,i with 0 < i < m, the cardinality of
Fim—i N k[zSM] is equal to (i +1) - (m + 1)".

The proof of the proposition will use the following lemma.

Lemma 4.13. For every integers h and d, we have

h+1
{P| P e Fnk[zs" and degP:d}|:< ; )

If one replaces F with Fs, the cardinality will be (Z)
Proof. Let z(ho) () e F such that £ < ho < ... < hy. We define a map
(ho,...,hg) d (ho—f,h1 —5—1,...,}15).

The map assign to the orders of a monomial in F N k[z<"] a list of strictly increasing
non-negative integers not exceeding h. A direct computation shows that this map is a
bijection. Since the number of such sequences of length d is equal to the number of

subsets of [0, 1,...,h] of cardinality d, the number of monomials is (hji'l).
The case of F; is analogous with the only difference that the subset will bein [1,2, ..., A]
thus yielding (Z) O

Proof of Proposition 4.12. We will prove the proposition by induction on m. For the base
case, we have Fyo = {1}, so the statement is true.

Consider m > 0 and assume that for all smaller m the proposition is proved. We fix
0 < i < m. Consider a monomial P € fi,m,iﬂk‘[sv(gh)], let P;-...- P, be adecomposition
from Lemma 4.10 with deg P, being as large as possible. We denote tail P := P,, and
head P := P1 PN mel-

We will show that the map P — (head P, tail P) defines a bijection between F; ,—;
and

for i <m: {(Qo, Q1) € Fim—i—1 X Fs | ord Qo < degQ1},

(10) for i =m: {(Qo, Q1) € Fmn—10 X F | ord Qo < deg Q1 }.

We will prove the case i < m, the proof in the case ¢ = m is analogous. First we will
show that, for every P € F;,,—;, we have ord head P < degtail P. Assume the contrary,
and let £ := ord head P > degtail P. Then we will have

lord (2 tail P) > min(¢,lord tail P) = ¢ > deg(z'" tail P).

This implies that 2 tail P € F,. Thus, in the decomposition of Lemma 4.10 we could
have taken Py, to be z(9) tail P. This contradicts the maximality of deg tail P. In the other
direction, if Qo € Fj m—i—1 and @ € F, such that ord Qo < deg Q1, then QoQ1 € Fj m—i-
Moreover, since z(°"1Q0)Q; ¢ F, we have tail(QyQ1) = Q.
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We will now use the bijection (10) to count the elements in F; i N k[z(SM]. For
1< m:

h
| Fin—i 0 k[ SM]) =3 1 Fy i N RSN [{Q1 € Fonk[z'SM] | deg Q1 = ¢}
=0

h
h
(by Lemma 4.13) Z i+1) < > =(i+1)-(m+ 1"
=0

For ¢+ = m:

h+1
| Fin0 VRSV = 3| Fno10 NSO [{Q1 € Fonk[zSY] | deg Q1 = £}
=0
h+1
1
(by Lemma 4.13) = Zmz <h i > = (m+ 1)

=0 ¢

Thus, the proposition is proved. (|

4.4. Lower bounds for the dimension.

Notation 4.14. For a differential polynomial P € k[x(°)] and 1 < i < n, we define

e tord,, P to be the total order of P in z;, that is, the largest sum of the orders of
the derivatives of x; among the monomials of P;
° degm(oo) P to be the total degree of P with respect to the variables z;, z}, z”

e We fix a monomial ordering < on k[x(*)] defined as follows. To each differential
monomial M = ™). &) with (ho,i0) <iex (h1,01) Stex - - Stex (heyie),

i0 i1
we assign a tuple

(67 hfa hf—l? ey hOu ifa if—la ey iO))

and compare monomials by comparing the corresponding tuples lexicographically.

Definition 4.15 (Isobaric ideal). An ideal I C k[z(*)] is called isobaric if it can be
generated by isobaric polynomials, that is, polynomials with all the monomials having
the same total order.

Proposition 4.16. For ¢ = 1,2, the elements of F;_12—; are the standard monomials
modulo ((2%)(*), 2.

Proof. We use Proposition 4.2 to obtain the differential homomorphism ¢: k:[ac(oo)] — A
defined by ¢(z) = n ® £ (we will use 1 and & instead of 1y and &y for brevity). Let ¢ be
the composition of ¢ with the projection onto A/(n ® &). We will prove the proposition
for the elements in i o, the other case can be done in the same way by replacing ¢ with

P.
Let X = x(ho) ... x(hé), ho < h1 < ... < hy be an element of F1 9. We will show that a

summand
(11) B(X) := (nmo=0 A gm=C=D) n Aty @ (€O A @D AL AEAE)

appears in ¢(X) with nonzero coefficient. We will prove this by induction on ¢. The base
case £ = 0 is trivial, let £ > 0. Since n"0—9 may come only from one of the occurrences of
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(") in X, we must take n"0—0 @ ¢ from one of the z(")’s. Therefore, the coefficient
at B(X) in ¢(X) is deg,(ny) X times the coefficient at B(X/x()) in ¢(X/2(0)) which
is nonzero by the induction hypothesis.

Let Y := z(%0) __ 2(¢) be a monomial such that Y < X. We will prove by contradiction
that B(X) does not appear in ¢(Y). If it does, then deg(X) =deg(Y)=¢+1=/¢+1.
Moreover, there exists a permutation o of {0,1,...,¢} such that

si—o(i)=h;— (€ —1i) forevery 0 <i</.
The inequality sy < hy implies o(¢) = 0 and, thus, sy = hy. Therefore, sy_1 < hy_1, which
implies o(¢ — 1) = 1 and, thus, sy_1 = hy_1. Continuing this way, we show that:
VO < ) < / S; = hi

which is contradicting Y < X. Thus B(X) cannot appear in the ¢(Y).
Assume that X € Tn(22)(°). Then there exist monomials Py, ... Py such that P; < X
forall1 <j <N and

N
X =Y AP e (%)),
j=1

Hence ¢(X) — Zjvzl Ajp(Pj) = 0. Since P; < X for all 1 < j < N, B(X) cannot be

canceled in p(X) — Z;VZI Ajo(P;) which is a contradiction. Therefore X is a standard
monomial. 0

Lemma 4.17. Let I C k:[ygoo)], oI C k[y§°°)} be ideals, and by M; we denote the set of
the standard monomials modulo I; w.r.t degree lexicographic ordering for 1 < i <'s. Then
the standard monomials w.r.t the ordering < (see Notation 4.14) modulo (I1,...,Is) C

k[y§°o), . ,y§°°)} are

My My Mg :={mima---mgs|my € My,...,ms € M}.

Proof. For each I;, consider the reduced Grébner basis G; of I; w.r.t. the degree lexi-
cographic ordering. For each pair f,g € G := G1 UG2 U ... U Gy, their S-polynomial is
reduced to zero by G
e if f g belong to the same G;, due to the fact that G; is a Grébner basis;
e otherwise, by the first Buchberger criterion (since f and g have coprime leading
monomials). O

Proposition 4.18. Let I1 C k[ygoo)], oI C k[ygoo)] be homogeneous and isobaric ideals
(not necessarily differential). By M; we denote the set of standard monomials modulo I;
w.r.t the degree lexicographic ordering for 1 < i < s. We define a homomorphism (not
necessarily differential)

pr Kz = Ky )/, 1)
by o(z®)) .= y%k) +...4 ygk) and denote I := Ker(yp). Then the elements of
(12) M:={mi...mg|VI<i<s:m;eM; and V1< j<s: ordm; <lordmjii}

are standard monomials modulo I w.r.t. the ordering < (but maybe not all the standard
monomials).
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Proof. Consider a monomial P = z(h0)...z(h) ¢ M and fix a representation P =
mi(x),...,mg(x) asin (12). Assume that P is a leading monomial of I. Then there exist
monomials Py, ..., Py such that

N
P-Y M\PicKerp and VI<j<N:Pj<P.
j=1
Then p(P) — > Njp(P;) € (I1,...Is). We define m := mq(y1)ma(y2) . .. ms(ys)-
Claim. For every monomial m # m in gp(P) there exists 1 < j < s such that either
deg (<) m # deg (o) m or tordy, m # tord,, m.
Assume the contrary that there exists m such that, for every 1 <j <s,d; =
deg (oo)m = deg <oo)m and tord,, m = tord,, m. We write m = mi(y1)...ms(ys)

Let 1 ) < S be the largest 1ndex such that m; # m;. Since m; contains d; largest
derlvatlves in my(x)...mj(x) =mi(z)...m;j(z) and has the same total order as m;, we
conclude that m; = m;. Thus, the claim is proved.

We write the homogeneous and isobaric component of Zjvz 1 Ajo(P)) of the same degree
and total order in y; as m for every 1 < i < s as Zf‘il w; R;, where R; is a differential
monomial and u; € k for every 1 < ¢ < M. Then such a homogeneous and isobaric
component of p(P) — ZN Nip(Pj) is Q :==m — Zl 1 i R; due to the claim. Since, for
every 1 <i<s, I, is homogeneous and isobaric, @ € (Iy,..., ;).

Note that for every 1 <i < M, R; is a summand of p(P;) for some 1 < j < N. Thus,
it Pj = 2(30) 200 then the derivatives that appear in the monomial R; are of orders
50,...,5¢. Hence P; < P implies R; < m. Therefore m is the leading monomial of @
contradicting Lemma 4.17. O

Corollary 4.19. The elements of F;_1.m—; are standard monomials modulo (x*, (x™)(*)).

Proof. We will use Proposition 4.18. Consider the ideals
L= ()™, L= ()™ L= (i D)), Tt = (Y1, (Y1) ).

and define ¢ as in Proposition 4.18. Lemma 4.4 implies that o((z™)*) = ((y1 +

A Ym1)™)®) = 0 for every k > 1 and @(2%) = (y1 + ... + yi1)* = 0. Therefore,
((z™)(*) 2%} ¢ Ker(p). Proposition 4.16 implies that the standard monomials modulo
I; are the fair monomials for j < 4 and strongly fair monomials for ¢ < j. Therefore,
Proposition 4.18 implies that F;_1 ,,—; are standard monomials modulo (z*, (xm)(oo)). O

4.5. Putting everything together: proofs of the main results.

Proof of Theorem 3.1. Consider the images of Fy,_1,0 N k[z(SP)] in k[z(%)]/(z™)(>). By
Corollary 4.19, they are linearly independent modulo <$m>(°°). Then Proposition 4.12
implies that the dimension of k[z(SM)]/(z™)(%) is at least m/*+!. Together with Proposi-
tion 4.5, this implies

dim(k[zSM]/(z™) () = i1 O

Proof of Theorem 3.3. Fix h > 0. Consider F;_1,,—; N k[z(S"].  Combining Corol-
lary 4.19, Corollary 4.8, and Proposition 4.12, we show that the image of this set in
k[z(SP)]/((2™)(°) 2%} forms a basis. Thus, the image of the whole F;_1 ,,_; is a basis of
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E[z(%)]/((2™)(>), 2%). Therefore, by Corollary 4.19, F;_1 ,_; coincides with the set of
standard monomials modulo ((z™)(>), 7). O

Proof of Corollary 3.4. Since the ideal (2%, (z™)(>)) is generated by homogeneous and
isobaric (that is, weight-homogeneous) polynomials, its Grobner bases with respect to the
purely lexicographic, degree lexicographic, and weighted lexicographic orderings coincide.

0

5. COMPUTATIONAL EXPERIMENTS FOR MORE GENERAL FAT POINTS

In this section, we consider a more general case of a fat point in a n-dimensional space,
not just on a line. We used MACAULAY2 [19] and, in particular, package JETS [17, 18]
to explore possible analogues of our Theorem 3.1 for this more general case. A related
Sage implementation for computing the arc space of an affine scheme with respect to a
fat point can be found in [37, Section 9] and [36, Section 5.4].

Let x = (x1,...,2,), and consider a zero-dimensional ideal I C k[x]. We will be
interested in describing (in particular, in computing the dimension of the quotient ring)
1) N k[x(SM)] for a positive integer h. Since this ideal is the union of the following chain

ISY A kxS € 182 A kxS € 1683 0 g [x(SM) €

and k[x(SM] is Noetherian, one can compute 1(°) Nk[x(SP)] by computing I(<H) Nk [x(<h)]
for large enough H. But how to determine what H is “large enough”?

e For the case I = (2™) C k[x], the answer is given by our Theorem 3.1: if the
dimension k[z(SM]/(I1&H) 0 k[z(SM)]) is equal to m 1, then I(SH) 0 k[z(Sh)] =
I100) A e[ (Sh)],

e For the case of general I, we take H to be 1,2, ..., and we stop when we encounter
ISH) 0 gx(SP] = [SHHD 0 k[x(SP)]. We conjecture that in this case I(SH) N
k[x(SM] = 10°) N k[x(SM)] (see Question 5.1) but, strictly speaking, we know only
ISH) A g [x(SP)]) € 1(00) A [x(SP)].

5.1. Ideals I = (™). For ideals of the form (z™), the approach outlined above yields
a complete algorithm to compute 1 () n k:[:v(gh)] for any given h and m. We use it for
computing examples of Grobner bases for these ideals w.r.t. the lexicographic ordering.

Ideal Grobner basis

<1.2>(oo)ﬂk.[x(<2)] (x//)zl; x/(x//)2; (I/)QSC”,( ) 21‘1‘”+(I/)2 l‘:l? 72
() R[] | (@) 2@ @) @))% @) @) a4 22 )

3z’ (22 + (2')32"; 6x(a') 22" + (2')%; x(2")?; 222" + x(2)?; 222’ 23

5.2. General fat points. In this subsection, we consider a general zero-dimensional
I C k[x] with the zero set of I being the origin. We use the following algorithm following
the approach described in the beginning of the section to obtain an upper bound of the
dimensions of k[x(SM]/(1(>) 0 k[x(SM)).

(Step 1) Set H = 1.
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(Step 2) While the dimension of ISH) 0 k[x(SM] is not zero or I'SH) N k[x(SM)] #
TSHA) A E[x(SW)] set H = H + 1.

(Step 3) Return dim (k[x(SM]/(I(&H) A g[x(Sh)])),

We expect the resulting bound to be exact (see also Question 5.1), for example, it is exact

for the ideals I = (z™).

Our implementation of this algorithm in Macaulay?2 is available at https://mathrepo.
mis.mpg.de/MultiplicityStructureOfArcSpaces. Table 1 below shows some of the
results we obtained. One can see that the computed dimensions form geometric series
with the exponent being the multiplicity of the original ideal exactly as in Theorem 3.1.

Ideal h=0[h=1[h=2]h=3
(x%,y?, zy) 3 9 27 81
(22,9, v2,y2, 2% —xy) | 5 25 125 |-
(23,7, 2y) 5 25 | 125 |-

(x3, 92, zy) 4 16 64 256
(%, %, 2%y) 7 9 |- -

(x*, 4, 2%y?) 14 196 |- -

TABLE 1. (Bounds for) the dimensions of the truncations of the arc space

However, we have also found ideals for which the generating series of the dimensions
is definitely not equal to ;—, where m is the multiplicity of the ideal. We show some
examples of this type in Table 2.

Ideal h=0|h=1|h=2| Ideal h=0|h=1]|h=2
(23,9, zy) | 5 24 115 (x*, y*, 22y) | 10 94 -
(x93, zy) | 6 33 - (z*, gy, 22y?) | 12 140 |-
(x93, 2%y) | 8 62 - (x40, 22y3) | 18 320 |-

(x* yt zy) |7 42 -

TABLE 2. (Bounds for) the dimensions of the truncations of the arc space

Note that while Table 1 gives only indication that the generating series of the multi-
plicities for these ideals may be 1, Table 2 gives a proof that this is not the case for
all the fat points.

5.3. Open questions. Based on the results of the computational experiments, we for-
mulate several open questions.

Question 5.1. Let I C k[x] be a zero-dimensional ideal with V (I) being a single point.
Is it true that, for every integer h:

(IS A gxS] = [SHH) A gx(SV]) = (1680 0 g[x(SV] = 105%0) A g[x(S])?

Does this statement remain true if we drop the assumption |V (I)| =17


%20https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces
%20https://mathrepo.mis.mpg.de/MultiplicityStructureOfArcSpaces
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Question 5.2. Let I C k[x] be a zero-dimensional ideal with V (I) being a single point
of multiplicity m. Is it true that
i (<h)]/1(o0)
lim dim k[x'SY] /I

=17
h—o00 mh+1

Question 5.3. Let I C k[x] be a zero-dimensional ideal with V (I) being a single point
of multiplicity m. Under which conditions it is true that

S i (SPy/pl)y gh — ™ o
];)(dlmk[x 1)t =

More generally, what information about the corresponding scheme can be read off the
above generating series?
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