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Abstract. Dividing asks about inconsistency along indiscernible sequences.
In order to study the finer structure of simple theories without much dividing,
the authors recently introduced shearing, which essentially asks about incon-
sistency along generalized indiscernible sequences. Here we characterize the
shearing of the random graph. We then use shearing to distinguish between
the random graph and the theories Tn,k, the higher-order analogues of the
triangle-free random graph. It follows that shearing is distinct from dividing
in simple unstable theories, and distinguishes meaningfully between classes
of simple unstable rank one theories. The paper begins with an overview of
shearing, and includes open questions.

This paper is dedicated to Moshe Jarden, in honor of his many contributions to
field arithmetic.

One of the central points of contact between fields and model theory is the defi-
nition of forking/dividing, developed in the second author’s book [20], which signifi-
cantly abstracts the notions of algebraic independence in algebraically closed fields,
or linear independence in vector spaces. Informally, dividing asks about inconsis-
tency along indiscernible sequences. This definition has substantial explanatory
power within stable theories, but outside of stable theories, it appears that also
new ideas are needed. Thus, in order to study the finer structure of simple theories
without much dividing, the authors recently introduced shearing, which essentially
asks about inconsistency along generalized indiscernible sequences. The aim of this
paper is to further develop this very interesting definition.

The paper [11] proved a first separation theorem showing shearing is a priori use-
ful for detecting di↵erences in complexity in simple unstable theories. The proof
that this notion is strictly weaker than dividing, and that it can be found in the
random graph and indeed in any theory with the independence property, was de-
ferred to the present work. Below, we carry out the characterization of shearing in
the random graph announced there. We then show that shearing can distinguish
between the random graph and the theories Tn,k, the higher-order analogues of the
triangle-free random graph studied by Hrushovski. Perhaps this may open the door
for a more careful structural analysis of simple rank one theories (whose structure
is not visible to dividing) via shearing. Along the way we review what is known
and record many natural questions.
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1. Preliminaries

In this section we recall the central definition of shearing, Definition 1.8. The
reader may prefer to look ahead, or to read on for the motivated development.

The basic idea will be that whereas dividing corresponds to inconsistency along
an indiscernible sequence, shearing corresponds to inconsistency along a generalized
indiscernible sequence. One initial reason it might be hoped this would give some
power is that generalized indiscernible sequences arise from the skeletons of GEM-
models.1 So from consistency or inconsistency along such sequences in a given
GEM-model one might hope to produce larger GEM-models in which a given type
was realized, or stayed omitted. Going further, one might hope to show a di↵erence
in complexity between theories in this way, say, by showing that if T2 has recurrent
shearing for a certain kind of generalized indiscernible sequence and T1 does not,
then it would be possible to build a model of a theory interpreting both of them
whose reduct to T1 is quite saturated and whose reduct to T2 is (say) not even @1-
saturated. This was done in [11], using GEM-models, and working through those
proofs allowed us to arrive at the present definition of shearing. Once identified,
the definition makes sense in any context, not only that of GEM-models.

We shall use three ideas from the model theory of generalized Ehrenfeucht-
Mostowski models: that of an index model class K, that of a context c, and that of
a generalized indiscernible sequence for such a class, which we call K-indiscernible.
In various guises, these have long histories in model theory (a partial list might
include [1], [16], [20], [23], [17], [3], [10], [11]). To balance the demands of keeping
the paper short but also reasonably self-contained, we point the reader to where
these are clearly written down, and give here an English summary.

Index model class: See [11] Definitions 2.3, p. 4 and 2.9, p. 5. Briefly, K is a
class of linearly ordered models, closed under isomorphism but not necessarily an
elementary class, in a signature expanding {<}. We require that K is universal
(closed under submodels and increasing chains) and that for every I 2 K there is
some @0-saturated J 2 K extending it. (Since the class is not necessarily elementary,
“@0-saturated” always abbreviates “@0-universal and @0-homogeneous”.) Finally,
the class has to be Ramsey, in the usual sense of GEM-models (or equivalently, by
a theorem of Scow, in the sense of Nešetřil [14] and of Kechris-Pestov-Todorčević
[7]; see Scow [17] Theorem 4.31 and see [20] Chapter VII, [23] III. 1.5-1.15 pps.
327–332, [21]). Simple examples include: the class of linear orders, or the class of
linear orders partitioned by countably many unary predicates {Pn : n < !}, where
note that requiring the countably many predicates to partition the domain (every
element has a color; some colors may be empty) makes it not an elementary class.

Context : See [11] Definition 2.12. Briefly, a context c = (I,K) is a choice of
index model class K along with a choice of I 2 K which is not obviously trivial.
For example, taking K to be the class of linear orders and asking for universality
means K contains lots of finite linear orders, but it is not so useful to choose one of
them when asking about uniform inconsistency. The various conditions essentially
rule out analogues of this: I is closed under functions, if any; I is not generated by
any of its finite subsets; I is subject to certain mild technical conditions concerning

1Generalized Ehrenfeucht-Mostowski models – informally, like Ehrenfeucht-Mostowski models
except that we allow the index models to be reasonable expansions of linear orders, varying within
an index model class K; for a recent exposition, see the early sections of [10], [11], [21], [23].
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algebraicity which will be given explicitly later on, and entail that things which
only appear finitely many times in saturated extensions of I do so for a reason.

A countable context just means that, in addition, I is countably infinite.
K-indiscernible: See [11] Section 3, or below. In a usual indiscernible sequence

in a model M , indexed by a linear order (I,<), if the finite sequences t̄, s̄ from
I have the same order-type [i.e., the same quantifier-free type in the language of
order] then the corresponding tuples of elements they index have the same type in
M . In general, if I belongs to some K, then we may ask that if t̄, s̄ have the same
quantifier-free type in I then the corresponding tuples of elements they index have
the same type in M . In the full definition, one more level of generality is implicit:

Definition 1.1 (K-indiscernible sequence). Let c = (I,K). Suppose N |= T ,
A ✓ N , and f : !>I ! !>N . For each t̄ 2 Dom(f), write b̄t̄ for f(t̄). Say b = hb̄t̄ :
t̄ 2 !>Ii is a K-indiscernible sequence over A when: for all k < !, all t̄0, . . . , t̄k�1,
t̄00, . . . , t̄

0
k�1 from !>I, if tpqf(t̄

a
0 t̄

a
1 . . .a t̄k�1, ;, I) = tpqf(t̄

0
0

at̄01
a . . .a t̄0k�1, ;, I)

then lg(āt̄i) = lg(āt̄0i) for i < k, and

tp(āt̄0
a . . .a āt̄k�1

, A,N) = tp(āt̄00
a . . .a āt̄0k�1

, A,N).

Observe that in 1.1, requirements on coherence of these maps between arities are
conspicuously absent. For instance, f(t1t2) isn’t required to be the concatenation
of f(t1) with f(t2), and so some sequences can map to ;.
Remark 1.2. Here is a useful construction which fits the definition just given.
Choose a particular quantifier-free k-type r of some sequence t̄ of elements of I.
Choose some @0-saturated J 2 K with I ✓ J . Consider the set r(J) = {s̄ :
tpqf(s̄, ;, J) = tpqf(t̄, ;, I)}. Consider a map f taking each s̄ in r(J) to some
ās̄ in M , so that the types of any two such sequences in M are the same. Extend
f to !>J by sending anything outside r(J) to the empty set. Then the image of f
is a K-indiscernible sequence. A further special case of this is starting with a gen-
eralized indiscernible sequence hat : t 2 Ii indexed by some I 2 K, and looking at
tuples indexed by a fixed quantifier-free type. In the present paper, K-indiscernible
sequences of the forms just described, for some r to be specified in each case, will
generally su�ce.

Example 1.3. The following may help understanding, as will be explained.

The sequence h�̄M (āt̄) : t̄ 2 r(I)i is indiscernible in M when:

(a) I 2 K is an index model,
(b) M is a model in the signature ⌧ ,
(c) hāt : t 2 Ii is an indiscernible sequence in M ,
(d) āt̄ = hat` : ` < ni when t̄ 2 nI.
(e) �̄(x[n]) = h�`(x̄[n]) : ` < ki where �` is a function symbol in ⌧ , or a term.2

(f) �̄M (āt̄) = h�M
` (āt̄) : ` < ki

(g) r(x̄[n]) 2 {tpqf(t̄, ;, I) : t̄ 2 nI}.
(h) and r(I) = {t̄ 2 nI : t̄ realizes the quantifier-free type r in I }.

In more detail, the reader may wonder about how the Ramsey property may interact
with an arbitrary K-indiscernible sequence of the form hb̄t̄ : t̄ 2 r(I)i, since the
Ramsey property deals with sequences indexed by singletons. To explain this,
recall that the Ramsey property says the following.

2Notation: x̄[n] = hx` : ` < ni.
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Definition 1.4. We say the class K is Ramsey when: given any
a) J 2 K which is @0-saturated
b) model M , and
c) sequence b = hb̄t : t 2 Ji of finite sequences from M ,
with the length of b̄t determined by tpqf(t, ;, J),

there exists3 a template  which is proper for K such that:
i) ⌧(M) ✓ ⌧( ),
ii)  reflects b in the following sense:

for any s0, . . . , sn�1 from J ,
any ✓ = ✓(x0, . . . , xm�1) from L(⌧(M)),
and any ⌧(M)-terms �`(ȳ0, . . . , ȳn�1) for ` = 0, . . . ,m� 1,
if M |= ✓[�0(b̄t0 , . . . , b̄tn�1), . . . ,�m�1(b̄t0 , . . . , b̄tn�1)]

for every t0, . . . , tn�1 realizing tpqf(s0
a · · · asn�1, ;, J) in J ,

then GEM(J, ) |= ✓[�0(āt0 , . . . , ātn�1), . . . ,�m�1(āt0 , . . . , ātn�1)]
where hās : s 2 Ji denotes the skeleton of GEM(J, ).

In this paper, we will be interested in inconsistency along generalized indis-
cernible sequences: see Definition 1.8 below, and observe there in item (5) that the
inconsistency is always within a particular r(I). So let us verify the following.

Let b = hb̄t̄ : t̄ 2 r(J)i be a K-indiscernible sequence in the sense of Remark
1.2, where J 2 K is @0-saturated. In particular, this sequence may be the range of
a function whose domain is the finite sequences of elements of J , but which sends
any sequence not in r(J) to ;.

Suppose that for some ', the set of formulas {'(x̄, b̄t̄) : t̄ 2 r(J)} is contradictory.
Let M0 = GEM(J,�) be a generalized EM model with skeleton hās : s 2 Ji.
Observe that in M0, for any t̄ 2 r(J), the expression āt̄ makes sense, and because
this is an actual skeleton of an actual GEM model, writing t̄ = ht0, . . . , tk�1i,
necessarily āt̄ = āt0

a · · · aātk�1 .

Claim 1.5. In the context just given, there is a template  � � and N =
GEM(J, ) an extension of M0 with the same skeleton hās : s 2 Ji, and a fi-
nite sequence of `(ās)-ary functions F̄ = hF0, . . . , F`(b̄t̄)�1i in ⌧( ), so that in N ,

the set of formulas {'(x̄, F̄ (āt̄)) : t̄ 2 r(J)} is contradictory.

Remark 1.6. This claim does not assert that the inconsistency is witnessed by the
skeleton, just that it is witnessed in the GEM-model.

Proof. Let M be an elementary extension of M0 which contains b. Expand the
language to include the function symbols F̄ (the �’s of example 1.3 above). Interpret
them so that for each t̄ 2 r(J), F̄ (āt̄) = b̄t̄.

Since {'(x̄, b̄t̄) : t̄ 2 r(J)} is contradictory, there must be some finite set wit-
nessing it, say, {r̄0, . . . , r̄`�1} ✓ r(J) so that {'(x̄, b̄r̄0), . . . ,'(x̄, b̄r̄`�1)} is con-
tradictory. Since b is K-indiscernible, this depends only on the quantifier-free
type of r̄0 a · · ·a r̄`�1. Let ✓ be a formula so that ✓[b̄r̄0 , . . . , b̄r̄`�1 ] expresses that
{'(x̄, b̄r̄0), . . . ,'(x̄, b̄r̄`�1)} is contradictory.

Let N = GEM(J, ) be given by the Ramsey property. Then for any sequence
of tuples s̄0 a · · ·a s̄`�1 of the same quantifier-free type as r̄0 a · · ·a r̄`�1 in J ,
✓[F̄ (ās̄0), . . . , F̄ (ās̄`�1)] will hold in N , which proves the claim. ⇤

3recall that a template  is called proper for I if there exists a (generalized) Ehrenfeucht-
Mostowski model of the form M = GEM(I, ), i.e. these instructions are coherent and give rise
to a model over an I-indexed skeleton.
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In other words, even though the generalized indiscernible sequences we use may
really only focus on things indexed by tuples, in the cases where we apply the
Ramsey property or where we assume that instances of inconsistency arise inside a
GEM-model, the Ramsey property is only ever applied to skeleta or other sequences
indexed by singletons.

Notation 1.7. When I0 is a set and I0 ✓ J 2 K, writing J [I0] means J expanded
by constants for the elements of I0, and likewise for J [s̄] when s̄ ✓ J is a sequence.

We now arrive at our central definition.

Definition 1.8 (Shearing, [11] Definition 5.2). Suppose we are given a context c,
a theory T , M |= T , A ✓ M , and a formula '(x̄, c̄) of the language of T with
c̄ 2 !>M . We say that

the formula '(x̄, c̄) shears over A in M for (I0, I1, c)

when there exist a model N , a sequence b in N , enumerations s̄0 of I0 and t̄ of I1,
and an @0-saturated J ◆ I such that:

(1) I0 ✓ I1 are finite subsets of I
(2) M � N
(3) b = hb̄s̄ : s̄ 2 !>(J [I0])i is K-indiscernible in N over A
(4) c̄ = b̄t̄, and
(5) the set of formulas

{'(x̄, b̄t̄0) : t̄0 2 lg(t̄)(J), tpqf(t̄
0, s̄0, J) = tpqf(t̄, s̄0, I)}

is contradictory.

Let us look at this definition a little more closely. From the second paragraph
of the section, the reader may anticipate that it will be useful to be able to iterate
any inconsistency we may find. Perhaps we start by observing that in some larger
J ◆ I, the tuples satisfying the same quantifier-free type as our given t̄ can form
indices for a generalized indiscernible sequence along which some ' is inconsistent.
If we fix one of these instances, say s̄0, can this happen again over s̄0? That is,
can we find some t̄1 from I so that in some larger J ◆ I, the tuples satisfying the
quantifier-free type of t̄1 over s̄0 form indices for a generalized indiscernible sequence
along which our ' is again inconsistent? Does this stop after finitely many steps?
This motivates the definition of c-superstability, which was key to [11], and explains
the appearance of a finite “I0” in Definition 1.8.

Remark 1.9. Regarding Definition 1.8, we may refer to this concept in di↵erent
ways in the rest of the paper, such as “'(x̄; c̄) (I0, I1)-shears over B”; the formula-
tion in 1.8 inserts a verb between the ' and the (I0, I1) to make parsing easier.

We state here the local definition of “c-superstable” just for relational languages,
which su�ces for the present paper. Note that countability of the context c is used
in an essential way, as I is written as the union of an increasing chain of finite sets.

Definition 1.10 ([11] Definition 6.2, local version). Let c be a countable context
and � a set of formulas. We say (T,�) is unsuperstable for c when there are:

(a) an increasing sequence of nonempty finite sets hIn : n < !i with Im ✓ In ✓
I for m < n < ! and

S
n In = I, which are given along with a choice of

enumeration s̄n for each In where s̄n E s̄n+1 for each n
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(b) an increasing sequence of nonempty, possibly infinite, sets Bn ✓ Bn+1 ✓ CT

in the monster model for T , with B :=
S

n Bn

(c) and a partial type p over B,

such that for each n, for some formula '(x̄, c̄) from p � Bn+1 where '(x̄, ȳ) 2 �,
we have that

'(x̄, c̄) (In, In+1)-shears over Bn.

Definition 1.11. Continuing Definition 1.10, for a countable context c,

(1) we may write (T,') to mean (T, {'}).
(2) We say T is c-superstable if (T,�) is c-superstable where � is the set of

all formulas in the language.
(3) We say T is c-stable if (T,') is c-superstable for every ' in the language.

Discussion 1.12. These investigations into the fine structure of forking highlight
a longstanding terminological point, which hopefully should not cause confusion
if explicitly pointed out. Namely, in the classical case, both “superstable” and
“supersimple” are connected to “(T ) = @0.” In Definition 1.10, we would also
have been justified in using “supersimple”. It seems to us that stable is the right
one to use for various reasons, so hopefully this does not confuse the reader in a
sentence like “a theory is simple if there is some context c for which it is c-stable.”

For context and easy quotation, the next local summary theorem includes some
already known facts, and some new results proved below. We assume our theories
T are all complete.

Theorem 1.13 (Local shearing). For now all contexts are countable.

(1) Dividing implies shearing.
(2) Shearing does not imply dividing, i.e., it is strictly weaker than dividing

(i.e. for some relevant context c).
(3) If ' is a stable formula in the theory T , then (T,') is c-superstable for

every countable context c.
(4) If ' is an unstable formula in the theory T , then (T,') is c-unsuperstable

for some countable context c. (So the previous item is a characterization
of stable formulas.)

(5) In the previous item, we can take c to be a countable context from the class K
of linear orders, that is, (T,') is unstable if and only if it is c-unsuperstable
for a countable context chosen from the class of infinite linear orders.

(6) If (T,') is c-superstable for some countable context c, then ' is simple,
i.e. it does not have the tree property in the theory T . (So the natural focus
of shearing is in some sense within simplicity.)

(7) More precisely, in the previous item, the following are equivalent: (a) ' is
simple in T and4 loc(T,') = @0, and (b) there is some countable context
c for which (T,') is c-superstable.

Proof. (1) See [11] Claim 5.8.
(2) It was stated in [11] (see the end of §5) that this would be proved in the

present paper, which it is indeed: we shall show that there is nontrivial shearing
for the random graph and also for the theories Tn,k for n > k � 2, theories which
have dividing only for equality.

4Recall that loc(T,') = @0 means that every '-type does not fork over a finite set.



SHEARING IN SOME SIMPLE RANK ONE THEORIES 7

(3)-(4) See Conclusion 3.10 below.
(5) Conclusion 3.10 and Example 3.8 below. But this should be read with cau-

tion, see 1.14.
(6)-(7) See [11] Lemma 9.5 and Theorem 9.6. ⇤

Discussion 1.14. Caution: just because dividing implies shearing, one should not
jump to conclusions about linear orders. As noted in 3.10(5), the random graph is
c-unsuperstable for contexts coming from K the class of linear orders, see 3.8 below.
(This uses an indexing by pairs.) However the random graph is c-superstable for
some contexts coming from expansions of linear orders by predicates, see 3.9.

Discussion 1.15. In 3.10(7), we might want a characterization of “(T,') is sim-
ple” and wonder why the apparently extra assumption “loc(T,') = @0” appears.
The reason is that in 3.10, we are using countable contexts while making no as-
sumptions on cardinality of the theory, so there is an extra point about the length
of the shearing chain. That is, we may wish to define c(T ) for a context c and
a complete theory T to be the minimal  such that there are no A↵ ✓ CT for
↵ <  such that ↵ < � <  implies A↵ ✓ A� , and a type p 2 S(A,CT ) such that
p � A↵+1 c-shears over A↵, but then we need an analogous condition on the I’s as
in 1.10(a); and if the language is larger, we may get long chains not coming from
a single formula. So to fully capture simplicity, it would be natural to consider
larger contexts to deal with the analogue of arbitrarily large (T ). If the reader is
inspired by this remark, [11] §10 is a beginning.

2. Background

In later sections we will use shearing to distinguish between various theories
which have no dividing in the usual sense (other than that coming from equality).
In this expository section we review why this is so. For background on simple
theories, see the survey [2].

Definition 2.1. For each n � 2, let Tn,1 be the theory of the generic Kn+1-free
graph. For n > k � 2, let Tn,k be the theory of the generic (n + 1)-free (k + 1)-
hypergraph.

So, in this notation, T3,2 is the theory of the generic tetrahedron-free three-
hypergraph. For k � 2, i.e. for the case where the edge is really a hyperedge, these
theories are simple unstable with trivial forking, as shown by Hrushovski [4]. For
context, we begin by reviewing why the graph versions of these theories (the generic
triangle-free graph and its relatives) do have a lot of dividing.

Fact 2.2. Tn,1 is not simple.

Proof sketch. First consider the triangle-free random graph, in our notation T2,1.
Let '(x, y, z) = R(x, y)^R(x, z). Consider in any model of T2,1 an infinite sequence
of pairs a = hāi : i < !i where each āi = a0i a1i , and such that R(a0i , a

1
j ) for all i 6= j

but for all i, j ¬R(a0i , a
0
j ) and ¬R(a1i , a

1
j ). Informally, the sequence a is a bipartite

graph which is the complement of a matching. Then the sequence

{'(x, a0i , a1i ) : i < !}
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has the property that each formula is individually consistent, but the sequence is
2-inconsistent, since if i 6= j then any element satisfying {R(x, a0i ), R(x, a1j )} would
form a triangle. Moreover, it is easy to see that for any āi in a, we can construct
a sequence conjugate (i.e., isomorphic) to a which is indiscernible over āi, and
continuing in this way we may construct the tree property for ', showing that ' is
not simple.

It is easy to extend this idea to n > 2 using ' = R(x, y0) ^ · · · ^ R(x, yn�1),
replacing a by a sequence of n-tuples āi = a0i · · · a

n�1
i and specifying that R(asi , a

t
j)

holds there if and only if (s 6= t) ^ (i 6= j). ⇤
When we consider hypergraphs instead of graphs the situation is quite di↵erent.

Fact 2.3 (Hrushovski c. 2002, see [4]). For n > k � 2, Tn,k is simple unstable with
only trivial dividing.

Proof sketch. We sketch the proof for T = T3,2, the tetrahedron-free 3-hypergraph,
since this extends naturally to larger arities but at a notational cost. Suppose there
were some formula '(x, a0, . . . , a`�1), some m > 1, and some indiscernible sequence
a = hāi : i < !i such that ā0 = ha00, . . . , a`�1

0 i = ha0, . . . , a`�1i and

(1) {'(x, a0i , . . . , a`�1
i ) : i < !}

is m-inconsistent. Consider first the case where `(x̄) = 1. Let’s consider a as being
arranged so that each āi is a column, and each hasi : i < !i is a a row. We don’t
assume anything about how the edges hold on a, but there are some constraints,
e.g. because a is indiscernible and exists in a model of T , the edge R(x, y, z) cannot
hold on any three distinct elements in any row of a, otherwise (by indiscernibility)
the row would contain a tetrahedron. By quantifier elimination, and without loss
of generality ignoring the trivial forking coming from equality, we may assume ' is
a boolean combination of instances of R(x; y, z).

Now if (1) is inconsistent, there must be some tetrahedron which appears.
In particular, there must be elements b, c, d which occur in a with the follow-
ing three properties: first, the quantifier-free type of a implies R(b, c, d); second,
{'(x, a0i , . . . , a

`�1
i ) : i < !} ` {R(x, b, c), R(x, b, d), R(x, c, d)}; and third, because

each individual formula in (1) is consistent, b, c, d are not all in one column of a.
But (1) can only imply instances of formulas all of whose parameters occur in the
same column – look at the definition of (1) and notice that none of its formulas
include parameters from distinct columns. [This is the crucial di↵erence in having
an edge of higher arity than 2.] So this contradiction can never arise.

Observe that if `(x̄) > 1, any tetrahedron arising must necessarily involve an
edge on one of the xi’s and parameters b, c from two distinct columns (as each
individual instance of ' must remain consistent) and so a similar analysis applies.
Finally, observe that if a is indiscernible over some set A rather than just over
the empty set, the only new case is when `(x) = 1 and one of b, c, d in the above
argument may come from A, so we again reduce to the problem of asserting an
edge across two distinct columns.

This completes the (sketch of the) proof. ⇤

3. Analysis of the random graph

Convention 3.1. Reminder: all contexts are countable.
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The theory of the random graph, Trg, is central to the picture. In this section
we analyze it carefully and give a complete characterization of countable contexts
c for which Trg is c-superstable, Theorem 3.7. This result was announced in [11],
along with Definition 3.12 and the motivating example preceeding it; although it
isn’t strictly necessary, we repeat the example here for clarity.

The direct route to Theorem 3.7 is via Definition 3.3, Claim 3.5 and Claim 3.6.
There are two discussions and a claim which are mainly explanatory: Discussion
3.1, Discussion 3.2 and Claim 3.5.

3.1. A motivating example. Fix for awhile c = (I,K) = (Ic,Kc) some countable
context and we shall investigate how c-shearing may arise for Trg inside a GEM-
model and try to find a characteristic property of a countable context which explains
how such shearing occurs. Consider M = GEM(I,�), where � 2 ⌥[Trg] thus
(M,RM ) |= Trg, and let p 2 S(M � ⌧(Trg)) be a nonalgebraic type. Fix J such
that I ✓ J 2 K and J is @0-saturated. Let N = GEM(J,�). Since all the contexts
we will consider are well behaved (see [11] Convention 2.7, or take the following as
a provisional definition of good behavior) we have M � N , so we will identify the
sequence hāt : t 2 Ii which generates M with a subsequence of hāt : t 2 Ji.

By quantifier elimination, we may suppose p is equivalent to {R(x, b↵)i↵ ^ x 6=
b↵ : ↵ < } for some infinite , where each i↵ 2 {0, 1}. As M is generated by
{āt : t 2 I}, each b↵ may be written as �M

↵ (āt̄↵) for some ⌧(�)-term �↵ and some
finite sequence t̄↵ from I.5 This representation may not be unique; there is no
harm in choosing our enumeration to include all representations. So without loss
of generality, for some  = + |⌧(�)|,

(2) p(x) ⌘ {R(x,�M
↵ (āt̄↵))

i↵ ^ x 6= �M
↵ (āt̄↵) : ↵ < }

where for each ↵ <  and t̄ 2 I<! if �M (āt̄) = �M
↵ (āt̄↵), then

(3) for some � < , �� = � and t̄� = t̄.

This may increase the length of the enumeration, but will not change the size of
the type in ⌧(Trg). [From the point of view of M � ⌧(Trg), we may appear to list
some (say) R(x, b↵)i↵ ^ x 6= b↵ many times, because we have listed an instance for
each way of writing b↵ in M in terms of the skeleton. From the point of view of our
enumeration, which has access to ⌧(�), for each b↵ there are potentially |I|+ |⌧(�)|
such representations.]

Recalling our fixed @0-saturated J extending I and its associatedN = GEM(J,�),
we ask about potential c-shearing. Working in N , consider the set of formulas

q(x) = qI0(x) ={R(x,�N
↵ (āū))

i↵ ^ x 6= �M
↵ (āū) : ↵ < ,

tpqf(ū, I0, J) = tpqf(t̄↵, I0, I)}.

To show q(x) is consistent, it would su�ce to check that whenever

(4) R(x,�N
↵ (āv̄))

i↵ 2 q and R(x,�N
� (āw̄))

i� 2 q

we have that if �N
↵ (āv̄) = �N

� (āw̄) then i↵ = i� . Suppose this fails, i.e., for some
suitable ↵,�, v̄⇤, w̄⇤ which we fix for awhile, q contains the contradictory formulas

(5) R(x,�N
↵ (āv̄⇤)) and ¬R(x,�N

� (āw̄⇤)).

5Since we will soon take all possible representations, we don’t require t̄↵ to be strictly increasing
here; when we fix a quantifier-free type of t̄↵ later, the order type will become determined.
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In other words,

(6) �N
↵ (āv̄⇤) = �N

� (āw̄⇤) = b but i↵ 6= i� (here w.l.o.g. i↵ = 1, i� = 0).

Informally, what has happened is that in N , there is a “positive line”

Pos = {�N
↵ (āv̄) : tpqf(v̄, I0, J) = tpqf(t̄↵, I0, I)} ✓ Dom(N)

and a “negative line”

Neg = {�N
� (āw̄) : tpqf(w̄, I0, J) = tpqf(t̄� , I0, I)} ✓ Dom(N)

and the problem is that

(7) Pos\Neg 6= ;, witnessed by b = �N
↵ (āv̄⇤) = �N

� (āw̄⇤).

However, it is also important to notice that both “lines” have “points from I”, and
that these are not the point(s) of intersection:6

(8) �N
↵ (āt̄↵) 6= �N

� (āt̄� )

else our original p would be inconsistent. (So both Pos and Neg have size � 2.)
Definition 3.3 abstracts the key property of c behind this picture. Towards this,

observe that writing r↵ = tpqf(t̄↵, I0, I), we have that “�N
↵ (āv̄) = �N

↵ (āū)” is an
equivalence relation on r↵(J) (asserting that v̄, ū are equivalent), and similarly for
�N
� and r� . Note that the fact that t̄↵ and t̄� may have di↵erent types is not

important (as will be explained). The third formula, F , will give the analogue
of equation (6) “points of intersection.” After giving the definition, we will work
towards proving the characterization in Theorem 3.7.7

Remark 3.2. By an infinitary quantifier-free formula we will mean the disjunc-
tion, indexed by all quantifier-free types of tuples that satisfy the relation, of the
conjunction of the formulas in the indexing type.

Definition 3.3. The context c = (I,K) has property � when:

For every finite I0 ✓ I there is a finite I1 with I0 ✓ I1 ✓ I, letting
s̄, t̄ list I0, I1 respectively, such that for any @0-saturated J ◆
I there exist quantifier-free (possibly infinitary) formulas of ⌧(K)
called F (x̄1, x̄2; ȳ), E1(x̄1, x̄2; ȳ), E2(x̄1, x̄2; ȳ), such that `(x̄1) =
`(x̄2) = lg(t̄), lg(ȳ) = lg(s̄), and:
(i) for i = 1, 2 Ei(x̄1, x̄2; s̄) defines an equivalence relation on

Ys̄ = {t̄0 2 lg(t̄)J : tpqf(t̄
0, s̄, J) = tpqf(t̄, s̄, J)}.

(ii) F (x̄1, x̄2; s̄) defines a nonempty one-to-one partial function8

from Ys̄/E1(�,�; s̄) to Ys̄/E2(�,�; s̄), and
(iii) F has no fixed points, in other words for no t̄ 2 Ys̄ is it the

case that F (t̄, t̄; s̄).

6If p is a complete type in M , then we will have the stronger statement that “the restrictions of
Pos and Neg to I have no intersection,” i.e. {�N

↵ (āv̄) : tpqf(v̄, I0, I) = tpqf(t̄↵, I0, I)}\ {�N
� (āw̄) :

tpqf(w̄, I0, I) = tpqf(t̄� , I0, I)} = ;, but we do not need this here.
7In Definition 3.3, note that �, “the circle property” which abstracts the above analysis will be

the indicator of complexity (Trg is c-unsuperstable), whereas its negation ¬� will be the indicator
of non-complexity (Trg is c-superstable).

8i.e., F matches up certain E1-classes (or their formal representatives) with certain E2 classes.
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We now work towards a characterization, Theorem 3.7. Note that the intent is
�c means c is too expressive; it expresses that the theory of the random graph is
unsuperstable in some sense, whereas ¬�c means c is reasonable. For a high-level
view of this property, see §4.

3.2. Discussion. As a warm-up to Claim 3.5, let us verify that indeed this property
has captured c-shearing, by reversing the abstraction above. Suppose that c has
property �. Fix a finite subset I0 of Ic and  2 ⌥[Trg]. Let I1, s̄, t̄, E1, E2, F
witness property � for I0. Fix an @0-saturated J 2 Kc with I ✓ J , and we will find
a formula of ⌧(Trg) which (I0, I1)-shears for c as follows. Let N = GEM(J, ) have
skeleton hāt : t 2 Ji. Without loss of generality, ||N || � |J |. Let �1,�2 be two new
(`(āt) + `(ās̄))-place function symbols not already in ⌧( ). Let r = tpqf(t̄, I0, I).
Let Ys̄ = r(J) be the set of realizations of r in J .

Expand N to N+ by interpreting �1,�2 as follows.

• Formal description: We require the expansion to satisfy: for any t̄0, t̄00 2 Ys̄,
(a) for i = 1, 2,

N+ |= �i(āt̄0 , ās̄) = �i(āt̄00 , ās̄).

if and only if J |= Ei(t̄0, t̄00; s̄).
(b) N+ |= �1(āt̄0 , ās̄) = �2(āt̄00 , ās̄) if and only if J |= F (t̄0, t̄00; s̄).
Once we have done this, since J is @0-homogeneous, we can also ensure
that for any ū realizing the same quantifier-free type as s̄ in J that the
analogues of (a), (b) hold with ū in place of s̄, remembering to then replace
t̄ by some v̄ such that tpqf(v̄

aū, ;, J) = tpqf(t̄
as̄, ;, J).

• Informal description: Take any set of distinct elements of Dom(N) of size
|J |, thus � |Ys̄|, and interpret the functions to take values in this set ac-
cording to the following informal heuristic. Given t̄0 2 Ys̄, let us say “the
image of t̄0” to mean āt̄0

aās̄. Then: images of elements of Ys̄ are sent to
the same b 2 Dom(N+) by �1 if and only if they are in the same E1-class;
they are sent to the same b 2 Dom(N+) by �2 if and only if they are in
the same E2-class; and the values of �1 and �2 should coincide if and only
if the E1- and E2-classes of the respective elements were matched by F .
Ensure that the parallel conditions hold replacing s̄ by any other ū from J
with the same quantifier-free type.

Let �0 � � be given by applying the Ramsey property to N+, so in �0 (and any
template extending it) (a) and (b) will remain true, as will their analogues for
ū ⌘qf s̄.

Now in the model N 0 = GEM(I,�0), consider the formula

R(x,�1(āt̄)) ^ ¬R(x,�2(āt̄)).

Property (b) and the assumption 3.3(iii) that F has no fixed points ensure that in
N 0 |= �1(āt̄) 6= �2(āt̄), so this is a consistent formula. However, F is a partial func-
tion and is nonempty, where non-emptiness is witnessed say by N 0 |= F (w̄0, w̄00; s̄).
Since J is @0-homogeneous and w̄0 2 Ys̄, for any other t̄0 2 Ys̄ there is t̄00 2 Ys̄ such
that

tpqf(t̄
0 at̄00, s̄, J) = tpqf(w̄

0 aw̄00, s̄, J).

Since F is an invariant of the quantifier-free type, this means J |= F (t̄0, t̄00; s̄). In
short, the homogeneity of J tells us that if F is a partial one to one function it
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must be a bijection. It follows that

{R(x,�1(āt̄)) ^ ¬R(x,�2(āt̄)) : t̄ 2 Ys̄}
is inconsistent in the following strong sense: for every t̄⇤ 2 Ys̄, there is some t̄⇤⇤ 2 Ys̄

such that

{R(x,�1(āt̄⇤)) ^ ¬R(x,�2(āt̄⇤)), R(x,�1(āt̄⇤⇤)) ^ ¬R(x,�2(āt̄⇤⇤))}
is inconsistent. Finally, observe this clearly satisfies the definition of shearing, since
the range of the map f : Ys̄ ! 2N 0 given by

t̄0 7! h�1(āt̄0)iah�2(āt̄0)i
is a Kc-indiscernible sequence. This completes the discussion.

Claim 3.5 now repeats this move in the context of an inductive argument, which
gives the a priori stronger conclusion of c-unsuperstability; the minor but impor-
tant new points to notice in the proof of 3.5 are the conditions there labelled (c),
(e) which ensure that the images of the new Skolem functions at each inductive
step are disjoint from those at earlier stages and allow us to “continue along the
independence property” (in the random graph, disjointness is enough to ensure that
the union of the formulas built at each step is indeed a type).

Remark 3.4. Given a complete theory T and a formula '(x, y), let p(x) be a
partial '-type in some M |= T . Let �(x) be the infinite set of formulas expressing
that '(x, y) has the independence property. Observe that if p(x)[�(x) is consistent,
for any  there is N |= T , M � N containing a sequence hbi : i < i such that
' has the independence property over this sequence [i.e., for any two finite disjoint
�, ⌧ ✓ , {'(x, bi) : i 2 �} [ {¬'(x, bj) : j 2 ⌧} is consistent] and moreover
p(x) [ {'(x, bi) ^ ¬'(x, bj)} is consistent for any i 6= j.

Claim 3.5. Let c be a countable context and suppose c has property �. Then:

(1) Trg is c-unsuperstable; moreover,
(2) (T,') is c-unsuperstable, for any T , ' with the independence property.

Proof. Let hs` : ` < !i list Ic. Define In = {s` : ` < n}, so each In 2 [Ic]<@0 .
By induction on n, we shall define an increasing sequence �n 2 ⌥[Trg] (so n < m
implies �n  �m) and an increasing sequence pn of partial '-types such that
pn(x) [ �(x) is consistent for each n, where � is from 3.4. (In the case of the
random graph, take '(x, y) = R(x, y). The length of x need not be 1, but we will
drop overlines for simplicity.)

For n = 0, let M0 = GEM(I,�0) for some �0 2 ⌥[Trg], and let p0 = {x = x}.
For n + 1, suppose we have defined �n and Mn = GEM(I,�n). Let s̄n list

In,0 := In. Apply � with In,0 in place of I0. Let In,1, Fn, En,1, En,2 be as returned
by the definition of �, and let s̄n, t̄n list In,0 and In,1 respectively.

Next we define Nn. Let Jn ◆ In be @0-saturated. In the case of the random
graph, let Nn = GEM(Jn,�n). As � is nice, Mn � Nn and Nn � ⌧(Trg) |= Trg.
For an arbitrary theory, let Nn be an elementary extension of GEM(Jn,�n) such
that Nn \Mn contains a sequence hbi : i < |Jn|i as in 3.4 for ' and the partial type
pn. In this case it follows additionally that Mn � Nn and Nn � ⌧(T ) |= T .

Let rn = tpqf(t̄n, s̄n, Jn), so as usual rn(Jn) is the set of realizations of rn in Jn.
We may expandNn toN+

n by adding two new functions �n,1 and �n,2, interpreted
so that:
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(a) for i = 1, 2, whenever t̄0, t̄00 2 rn(Jn), N+
n |= �n,i(āt̄0 , ās̄n) = �n,i(āt̄00 , ās̄n) if

and only if Jn |= En,i(t̄0, t̄00; s̄n).
(b) N+

n |= �n,1(āt̄0 , ās̄n) = �n,2(āt̄00 , ās̄n) if and only if Jn |= Fn(t̄0, t̄00; s̄n).
(c) for m < n and i, ` = 1, 2, N+

n |= �n,i(āt̄n , ās̄n) 6= �m,`(āt̄m , ās̄m).
(d) For any ū realizing the same quantifier-free type as s̄n in J , the analogues

of (a), (b), (c) hold with ū in place of s̄n (remembering to then replace t̄n
by some v̄ such that tpqf(v̄

aū, ;, Jn) = tpqf(t̄n
as̄n, ;, Jn).

(e) �n(āt̄n , ās̄n) = bi for some i < , i.e. the functions choose elements from our
independent sequence. [For the random graph, essentially the whole model
is an independent sequence, so it su�ces to ask that �n(āt̄, ās̄n) /2 Mn.]

Let �n+1 2 ⌥[Trg] extending �n be given by applying the Ramsey property ([11]
Corollary 2.10) to N+

n , and then (a), (b), (c), (d) will remain true in any template
extending  n+1. Moreover,

pn+1 := pn [ {'(x,�n,1(āt̄n , ās̄n)) ^ ¬'(x,�n,2(āt̄n , ās̄n))}

is consistent, and remains consistent with � from 3.4.
Let �! =

S
n �n, so �! 2 ⌥[T ]. Consider any � �! and letN = GEM⌧(T )(Ic, ).

For each n, apply the non-fixed-point clause of 3.3(iii) to observe that

¬Fn(t̄n, t̄n; s̄n)

i.e. in the model N ,

�n,1(āt̄n , ās̄n) 6= �n,2(āt̄n , ās̄n).

Remembering (c) and (e) above, this ensures the following set of formulas is a type:

p(x) = {'(x,�n,1(āt̄n , ās̄n)) ^ ¬'(x,�n,2(āt̄n , ās̄n)) : n < !}.

So p is a partial type in N � Trg, and let us show that for every n it c-shears over
In. Why? First notice that t̄n ✓ I by construction. Second, notice that by the
positive part of condition 3.3(iii), for each n there exists ūn 2 rn(Jn) such that

N |= �n,1(āt̄n , ās̄n) = �n,2(āūn , ās̄n).

This means that

{'(x,�n,1(āt̄0n , ās̄n))^¬'(x,�n,2(āw̄0
n
, ās̄n)) :

tpqf(t̄
0
n

aw̄0
n, s̄n, Jn) = tpqf(t̄n

aw̄n, s̄n, Jn)}

will be inconsistent. (Note that this may not a priori give (In, In+1)-shearing for
all n as t̄n may not be in In+1, but this will hold by reindexing.)

Thus T is not c-superstable, as desired. ⇤

For the random graph, we also have a converse.

Claim 3.6. Let c be a countable context and suppose Trg is not c-superstable. Then
c has property �.

Proof. In this proof we appeal directly to the definition of c-shearing from Definition
1.8, and c-unsuperstability, Definition 1.10. Let some finite I0 ✓ I be given, and
we will show how to find the rest of the data so that � is satisfied. Recall from
Definition 1.10 that:

we say T is unsuperstable for c when there are:
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(a) an increasing sequence of nonempty finite sets hIn : n < !i
with Im ✓ In ✓ I for m < n < ! and

S
n In = I, which are

given along with a choice of enumeration s̄n for each In where
s̄n E s̄n+1 for each n

(b) an increasing sequence of nonempty, possibly infinite, sets
Bn ✓ Bn+1 ✓ CT in the monster model for T , with B :=S

n Bn

(c) and a partial type p over B, such that
p � Bn+1 (In, In+1)-shears over Bn.

Let In from Definition 1.10 be a finite subset of I containing I0. Let s̄ be an
enumeration of In, and let t̄ be an enumeration of In+1. Let N be the monster
model for Trg. Let p be the type given by 1.10 which (In, In+1)-shears. [We can
ignore the Bn+1, Bn from that definition.] In the remainder of the proof, we use
I0, I1 instead of In, In+1. Let '(x, b̄t̄) 2 p, b be the formula and K-indiscernible
sequence in N which witness this instance of shearing. Recall from Definition 1.8
that:

we say the formula '(x̄, c̄) shears over A in M for (I0, I1, c) when
there exist a model N , a sequence b in N , enumerations s̄ of I0
and t̄ of I1, and an @0-saturated J ◆ I such that:
(1) I0 ✓ I1 are finite subsets of I
(2) M � N
(3) b = hb̄t̄0 : t̄0 2 !>(J [I0])i is K-indiscernible in N over A
(4) c̄ = b̄t̄, and
(5) the set of formulas

{'(x̄, b̄t̄0) : t̄0 2 lg(t̄)(J), tpqf(t̄
0, s̄, J) = tpqf(t̄, s̄, I)}

is contradictory.

Note that by the conditions on p in 1.10, the formula '(x̄; ȳ, z̄, w̄) will be nonalge-
braic. By quantifier elimination, it will be expressible as a disjunction of statements
of the form: xi (some element of x̄) has an edge to some of the y’s, a non-edge to
some of the z’s (which are disjoint from the y’s), and is not equal to any of the
w’s. Since inconsistencies must come from asserting that some xi both connects
and does not connect to the same parameter, we can reduce to considering a single
disjunct of this form, and assuming lg(x̄) = 1.

Let J be @0-saturated such that I ✓ J 2 K. Let n = lg(b̄t̄). Fixing notation, let
b̄t̄ = hb̄t̄,i : i < ni. Since '(x, b̄t̄) is a consistent nonalgebraic formula in the random
graph, we can write n as the union of sets A, B, C (where A,B are disjoint) so
that without loss of generality9

'(x, b̄t̄) ⌘
^

i2A

R(x, b̄t̄,i) ^
^

j2B

¬R(x, b̄t̄,j) ^
^

k2C

x 6= b̄t̄,k.

Define Ys̄ = {t̄0 2 lg(t̄)J : tpqf(t̄
0, s̄, J) = tpqf(t̄, s̄, J)}. In order to define E1, E2,

observe that since the set of formulas

{'(x̄, b̄t̄0) : t̄0 2 lg(t̄)(J), tpqf(t̄
0, s̄, J) = tpqf(t̄, s̄, I)}

is contradictory, there must be some t̄↵, t̄� 2 Ys̄ and i↵ 2 A, j� 2 B such that

b̄t̄↵,i↵ = b̄t̄� ,j� .

9' is a disjunction of such formulas, so at least one is consistent.
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Let E1(x̄1, x̄2; s̄) be the following two-place relation on Ys̄:

E1(t̄1, t̄2; s̄) i↵ N |= b̄t̄1,i↵ = b̄t̄2,i↵ .

Let E2(x̄1, x̄2; s̄) be the following two-place relation on Ys̄:

E2(t̄1, t̄2; s̄) i↵ N |= b̄t̄1,j� = b̄t̄2,j� .

Then for ` = 1, 2, clearly:

• E` = E`(x̄1, x̄2; s̄) is an equivalence relation on Ys̄.
• The truth value of “E`(t̄1, t̄2; s̄)” is determined by tpqf(t̄

a
1 t̄2, s̄, J), for any

t̄1, t̄2 2 Ys̄, in other words, it is an invariant of the quantifier-free type (thus,
said to be definable by a possibly infinitary quantifier-free formula).

Finally, define F (x̄1, x̄2; s̄), a two place relation on Ys̄, by: F (t̄1, t̄2; s̄) if and only if

N |= b̄t̄1,i↵ = b̄t̄2,j� .

Then F (x̄1, x̄2; s̄) defines a nonempty one to one partial function from Ys̄/E1(�,�; s̄)
to Ys̄/E2(�,�; s̄).

It remains to check that F has no fixed points. Recall that for our original tuple
t̄, we know that

{b̄t̄,i : i 2 A} \ {b̄t̄,j : j 2 B} = ;
because '(x, b̄t̄) is a consistent ⌧(Trg)-formula in N . Thus, J |= ¬F (t̄, t̄; s̄). Since
F is definable by a possibly infinitary quantifier-free formula, this remains true for
all tuples from Ys̄. This completes the verification of �. ⇤
3.3. Discussion: obtaining � directly from the example in 3.1. For com-
pleteness, we work out the analysis of 3.1. Recall equations (5) and (6) there.
Recall that t̄↵, t̄� come from equation (2) for our given ↵, � (so v̄⇤ and w̄⇤ share
their respective quantifer-free types over s̄). As J is @0-homogeneous, there are v̄,
w̄ from J such that

tpqf(v̄⇤
aw̄, s̄, J) = tpqf(v̄

aw̄⇤, s̄, J) = tpqf(t̄↵
at̄� , s̄, I).

(It may be that v̄ = v̄⇤ or w̄ = w̄⇤, and if so, no problem.)
Let t̄ = s̄ at̄↵ at̄� . Without loss of generality, we may simultaneously replace v̄⇤

and w̄⇤ respectively by
s̄ av̄⇤ aw̄, s̄ av̄ aw̄⇤.

So for us,
Ys̄ = {t̄0 2 lg(t̄)J : tpqf(t̄

0, s̄, J) = tpqf(t̄, s̄, J)}
and this set includes v̄⇤ and w̄⇤. After possibly adding dummy variables to �↵, ��
we may assume their operation is unchanged. Let E1(x̄1, x̄2; s̄) be the following
two-place relation on Ys̄:

E1(t̄1, t̄2; s̄) i↵ N |= “�↵(āt̄1) = �↵(āt̄2)”.

Let E2(x̄1, x̄2; s̄) be the following two-place relation on Ys̄:

E2(t̄1, t̄2; s̄) i↵ N |= “��(āt̄1) = ��(āt̄2)”.

Then for ` = 1, 2, clearly:

• E` = E`(x̄1, x̄2; s̄) is an equivalence relation on Ys̄.
• The truth value of “E`(t̄1, t̄2; s̄)” is determined by tpqf(t̄

a
1 t̄2, s̄, J), for any

t̄1, t̄2 2 Ys̄, in other words, it is an invariant of the quantifier-free type (thus,
said to be definable by a possibly infinitary quantifier-free formula).
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Finally, define F (x̄,x̄2; s̄), a two place relation on Ys̄, by: F (t̄1, t̄2; s̄) if and only if

N |= �↵(āt̄1) = ��(āt̄2).

Then F naturally defines a subset Xs̄ of Ys̄ ⇥ Ys̄ i.e. if t̄1, t̄2 2 Ys̄ then the truth
value of F (t̄1, t̄2; s̄) is the same for any (t̄01, t̄

0
2) 2 (t̄1/E1(�,�, s̄))⇥(t̄2/E2(�,�, s̄)).

F is not empty because of equation (6), and respects the equivalence relations. (If
(t̄0`, t̄

00
` ) 2 F for ` = 1, 2 then t̄0E1t̄02 i↵ t̄001E2t̄002 . Together we get that F is a 1-to-1

partial function from Y/E1 into Y/E2, so by homogeneity of J it is a function with
full domain and range.)

It remains to show that F has no fixed points. Now, whether or not F (ū, ū; s̄)
is an invariant of the quantifier-free type tpqf(ū, s̄, J). We know that

N |= �↵(āt̄) 6= ��(āt̄)

by our definition of t̄, because the original type p was consistent. It follows that

¬F (t̄, t̄; s̄)

and that this is an invariant of tpqf(t̄, s̄, I). So it will remain be true for any tuple
from Ys̄. This proves F has no fixed points, which completes the verification of �
and the discussion.

Summarizing, we arrive at:

Theorem 3.7. Let c be a countable context. Trg is c-unsuperstable if and only if
c has property �.

Proof. Claim 3.5 and Claim 3.6. ⇤
We now give a positive and a negative example of �. First, we verify that Trg is

c-unsuperstable for contexts coming from linear orders. In the following example,
the context need not be countable.

Example 3.8. Let K be the class of infinite linear orders, Let I 2 K be @0-
saturated. Then c = (I,K) has �.

Proof. Let M |= Trg and let hat : t 2 Ii be any infinite indiscernible sequence.
Recall that if t̄ = t0t1 we let āt̄ denote at0

aat1 . Choose t⇤0, t
⇤
1 2 I with t⇤0 < t⇤1. Let

r = tpqf(t
⇤
0
at⇤1, ;, I). (In this example, s̄ = hi, t̄ = ht⇤0, t⇤1i are the corresponding

values from �.) Recall that r(I) is the set of realizations of r in I. Then

{āt̄ : t̄ 2 2I, t̄ 2 r(I)}
is a K-indiscernible sequence. Define E0, E1, E2 on r(I) as follows:

E1(t1t2, t
0
1t

0
2) ⌘ t1 = t01

Now
E2(t1t2, t

0
1t

0
2) ⌘ t2 = t02

E0(t1t2, t
0
1t

0
2) ⌘ t1 = t02.

We can also see the shearing directly: since āt̄ for t̄ 2 r(I) has length two, let
' = '(x; y, z) and then the set

{'(x, āt̄) : t̄ 2 r(I)}
is inconsistent since for every t1t2 2 r(I) and the homogeneity of I, there is t0 2 I
such that t0t1 2 r(I). ⇤
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There are also natural examples which do not have �. In the following example,
I also need not be countable.

Example 3.9. Let Kµ be the class of linear orders expanded by µ unary predicates
which partition the domain. Let I 2 Kµ and suppose that for each predicate P↵,
|P I

↵|  1. Let c = (I,Kµ). Then c does not have �.

Proof. See [10] Claim 5.10, where it is shown that for any such c and M =
GEM(I,�), if p is a type of M � ⌧(Trg) then there is  � � in which p is re-
alized. (It follows that Trg is c-superstable.) For the interested reader, the main
idea of that proof is quite close to that of Claim 5.5 below; just leave out the relations
R on J . ⇤

Conclusion 3.10. The following are equivalent:

(a) The formula ' is stable (with respect to the complete theory T ).
(b) (T,') is c-superstable for every countable context c.

Proof. For (a) implies (b): This is because stable formulas have definitions, thus a
fortiori weak definitions. We assemble some facts from [11] for a more detailed proof.
Suppose for a contradiction that (T,') were c-unsuperstable for some countable
context c = (I,K). Let M = GEM(I,�). Then [11] Corollary 6.16 would build
a larger template �⇤ so that for any  � �⇤, the model GEM(I, ) is not @1-
saturated for '-types. In particular, that construction builds a '-type p which
does not have a weak t̄⇤-definition for any finite t̄⇤ in I, and moreover cannot have
one in any GEM(I, ) for any  � �⇤, see [11] Remark 6.15 or Corollary 4.25.
However, by [11] Claim 4.15, in any GEM(I, ) any type in a stable formula has a
definition, thus a weak definition. Contradiction.

For (b) implies (a): Suppose first that ' is not simple (has the tree property).
Then it has long dividing chains, and since dividing implies shearing ([11], Claim
5.8 and Remark 5.9), ' is not c-superstable. If ' is simple unstable, ' has the
independence property, and we can apply Claim 3.5(b). ⇤

4. Interlude on “eq”

In this section, we observe that it isn’t an accident that our negative examples
of � have a certain form. There is a nice further explanation of this, and of �, once
we define the analogue of M eq in this context.

Definition 4.1. We say that the countable context c = (I,K) is essentially sepa-
rated when there is a finite I0 ✓ I such that s 6= t 2 I implies that tpqf(s, I0, I) 6=
tpqf(t, I0, I).

Convention 4.2. In this section, take c to be arbitrary but fixed, and write K, I
for Kc, Ic respectively.

The idea is that “¬�” is for all intents and purposes essentially separated (one
might say, is essentially essentially separated). In this section, we outline a proof
of this, which involves defining the analogue of M eq for contexts, defining for any
context c a so-called “eq-extension” and then pointing out that the property ¬�
for c is really saying that some such “ceq” is well behaved. Since the section is
primarily explanatory, we will be brief.
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Definition 4.3. We say the context d is an eq-extension of our context c when
there is Ē such that:

(1) Ē = hEi : i < i⇤i, '̄ = h'j : j < j⇤i
(2) Ei = Ei(x̄i, ȳi) is a possibly infinitary quantifier-free formula in the vocab-

ulary ⌧(K), with lg(x̄i) = lg(ȳi) =: ni, such that for every I 0 2 K it defines
an equivalence relation on tuples of I 0 of length ni.
We stipulate E0 =“x = y”. (Alternately, list the defining formulas 'i for
Ei separately.)

(3) For I 2 K, let I+ be the analogue of Ceq using the Ei’s for i < i⇤.
10

That is,
(a) the universe of I+ is I [ {t̄/EI

i : i < i⇤, t̄ 2 niI},
but we identify t/E0 with t for t 2 I.

and as a signature we have the following symbols, given with their interpre-
tations:
(a) P I+

= P I for P 2 ⌧(K) a predicate.

(b) P I+

⇤ = I.

(c) for F 2 ⌧(K) a function symbol, if any, F I+

= F , so its domain is
defined.

(d) F I+

i = {(t̄, t̄/EI
i ) : t̄ 2 niI}.

(e) P I+

'j
= {ht̄i0/Ei0 , . . . , t̄im(j)�1

/Eim(j)�1
i : m(j) < !, i` < i⇤, and I |=

'[t̄i0 , t̄i1 , . . . ]}.
(f) Kd = {I+ : I 2 Kc}, and Id = (Ic)+.
(g) Summarizing, letting ⌧ = ⌧(Kd) consist of the symbols just given, we

have defined d = (Id,Kd).

Definition 4.4. We say d = ceq when we use all possible Ei,'i up to equivalence.
(Since we have required these sequences to be countable, this of course puts some
restrictions on the contexts c for which ceq is presently defined. We will not at
present require such a canonical extension to exist, but it is reasonable to define it.)

Claim 4.5. For any countable context c, any d defined from it as in 4.3 is also
a context. Moreover, if � � |Ic| + |{tp(s̄, ;, I) : s̄ 2 !>I, I 2 Kc}| then also
� � |Id|+ |{tp(s̄, ;, I) : s̄ 2 !>I, I 2 Kd}|.

Definition 4.6. For I 2 Kc and finite s̄ 2 !>I:

(1) let dcl(s̄, I) = {t 2 I : we cannot find J 2 Kc, w̄ 2 lg s̄J and t1 6= t2 2 J
such that for ` = 1, 2, tpqf(w̄

aht`i, ;, J) = tpqf(s̄
ahti, ;, J).

(2) let acl(s̄, I) be defined similarly, replacing “t1 6= t2” by ht` : ` < !i.

Claim 4.7. For a countable context c the following are equivalent.

(a) c satisfies �.
(b) for some eq-extension d of c, for every finite s̄ from Id, there are r0 6= r1 2

Id realizing the same complete quantifier-free type over s̄.

Proof. . Informally, � speaks about particular equivalence relations being in an
anti-diagonal correspondence, and eq-extensions speak about all equivalence rela-
tions; so this is observing that we should be able to use existence of the first to get
elements which do not look alike to the second, and vice versa. The slightly longer

10Why not all possible Es? It seems better to build the restriction into the definition, as
otherwise for some values of i⇤, j⇤ we may lose countability.
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direction is (b) implies (a). Let d be the eq-extension of c given by hypothesis,
and notice that as underlying sets Ic = Id, though of course as models the second
is an expansion of the first. Fix some finite I0 ✓ Ic (so also ✓ Id). Let s̄ enumer-
ate I0, and we have to find I1, t̄, E1, E2 as promised. By hypothesis we can find
r0 6= r1 2 Id (so also in the set Ic) realizing the same complete quantifier-free type
over s̄. Let t̄1 and E1 be such that r1 = s̄at̄1/E1, and t̄1 ✓ Ic. Let t̄2 and E2 be
such that r2 = s̄at̄2/E2, and t̄2 ✓ Ic. Without loss of generality, t̄1 = t̄2, call it t̄,
and without loss of generality s̄at̄ has no repetitions. Let J 2 Kc be @0-saturated
extending Ic, so also its corresponding expansion J+ 2 Kd is @0-saturated extend-
ing Id. We define Ei(x̄1, x̄2, ȳ) where lg(x̄1) = lg(x̄2) = lg(t̄), lg(ȳ) = lg(s̄) by:
Ei(t̄01, t̄

0
2, s̄

0) i↵ [s̄0 at̄01 realizes tpqf(s̄
at̄, ;, Ic), and s̄0 at̄02 realizes tpqf(s̄

at̄, ;, Ic),
and if r, r0 are in Id and s̄0 at̄0 ar0, s̄0 at̄0 ar̄00 realize tpqf(s̄

at̄ ar`, ;, Ic)]. It
remains to define F , as follows. In J+ we let

F = {(ūav̄/E1, ū
av̄/E2) : ū

av̄ ✓ J+ realizes tpqf(s̄
at̄, ;, Id = I+c )}.

For (a) implies (b), let r` = t̄`/E`
s̄ for ` = 1, 2 as in the definition of �. Then

r1 = t̄/E1
s̄ , r2 = t̄/E2

s̄ , and Fs̄(r1) = r2, hence r1 6= r2. ⇤

5. Separating the random graph and Tn,k

We now show one can separate Trg and T3,2 using countable contexts. That is,
for each n > k � 2, we prove that there are countable contexts c for which Trg is
c-superstable but Tn,k is c-unsuperstable, Theorem 5.8.

Definition 5.1. Let Kn,k be the following index model class. In ⌧(Kn,k) we have
a binary relation <, unary predicates {Pq : q 2 Q}, and a (k + 1)-place relation R,
and on I 2 K:

• < is a linear order
• the Pq are disjoint unary predicates which partition I
• R is symmetric irreflexive (a hyperedge), and has no cliques of size n+ 1,

i.e. for any distinct i0, . . . , in from I it is not the case that RI holds on all
k + 1-element subsets of {i0, . . . , in}. [Note this is a universal statement.]

Claim 5.2. Kn,k is a Ramsey class and (satisfies our hypotheses).

Proof. The key point is being a Ramsey class. By a theorem of Scow, it su�ces to
check this for the class of finite substructures of members of K, see [18] Theorem
3.12, so we may cite the general Nešetřil-Rödl theorem for relational structures, see
[5] Theorem 3.21. ⇤

For the next few claims we shall use:

Definition 5.3. Given n > k � 2, let cn,k be the context (I,K) where K = Kn,k

and I has domain Q, <I is the usual linear order on Q, P I
q = {q}, and RI = ;.

Discussion 5.4. Clearly each cn,k is a countable context. Recall the intent of
n, k: the edge relation R has arity k+1, and the forbidden configuration is a ‘large
clique’ where large means size n+1. Note that since we make no demands on R in
5.1 other that having no large cliques, there is no problem choosing an I in which
are there no instances of R at all. However, the point will be that when we consider
@0-saturated J ◆ I, instances of R will appear.
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Claim 5.5. Trg is cn,k-superstable, for any n > k � 2.

Proof. Fix n, k for the course of the proof and let c = cn,k, I = Ic,K = Kc. It will
su�ce to show there is no instance of shearing for non-algebraic formulas '(x, ā)
in the monster model for the random graph.

Step 1: Analysis of the problem. Suppose for a contradiction that there were some:

• finite s̄, t̄ from I (without loss of generality t̄ is strictly increasing without
repetition, and s̄ is a subsequence of t̄)

• r = tpqf(t̄, s̄, I)
• J which is @0-saturated with I ✓ J 2 K,
• a K-indiscernible sequence {b̄t̄0 : t̄0 2 r(J)} in the monster model for Trg,
• and a formula '(x, ȳ) with `(ȳ) = `(b̄t̄),

such that

(9) '(x, b̄t̄) is consistent and non-algebraic

however

(10) {'(x, b̄t̄0) : t̄0 2 r(J)} is inconsistent.

As before, it su�ces to consider the case where `(x) = 1, and we may partition
m = `(b̄t̄) into sets A, B, C (with A, B disjoint, and by nonalgebraicity, C = m)
such that

'(x, b̄t̄) ⌘
^

i2A

R(x, b̄t̄,i) ^
^

j2B

¬R(x, b̄t̄,j) ^
^

k2C

x 6= b̄t̄,k.

As we have excluded dividing because of equality, the contradiction in (10) must
be because we have v̄, w̄ 2 r(J) and i, j such that i 2 A, j 2 B, and

(11) āv̄,i = āw̄,j .

Recall here that āv̄,i denotes the i-th element of the tuple āv̄.

Step 2: A property that we would like v̄, w̄, our witnesses to collision, to have. Let
ū enumerate, in increasing order, the set Range(v̄)\Range(w̄) of elements common
to both sequences. (By the second line of Step 1, this will include the elements
of s̄.) Here we will follow an idea from the proof of [10], Claim 5.10. By “an
interval of consecutive elements of ū” we shall mean a set of elements which are all
less than u0, or all greater than ulg(ū)�1, or all strictly between ui, ui+1 for some
0  i < lg(ū)� 1.

Now consider the following potential property of v̄, w̄:

(?) within each interval of consecutive elements of ū, all elements of
v̄ falling in this interval are strictly below all elements of w̄ falling
in the same interval.

In this step and the next, let us show that we may assume our v̄, w̄ (which were
chosen to witness the contradiction) also satisfy (?).

Suppose not, that is, suppose we chose our v̄, w̄ so that11

{(i, j) : vi, wj fall in the same interval of ū but wj  vi }
is minimized, but we were not able to choose this number to be zero. That is,
within at least one interval, say (ui, ui+1) of ū, we have elements vk, wj such that

11Informally, the sum over all intervals of ū of the number of elements of w̄ less than elements
of v̄ in each given interval.
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the following holds. (If one of the endpoints is +1 or �1, the same argument
applies substituting this notation throughout.)

ui < {v 2 v̄ : ui < v < vk} [ {w 2 w̄ : ui < w < wj}
< wj  vk <

{v 2 v̄ : vk < v < ui+1} [ {w 2 w̄ : wj < w < ui+1} < ui+1

where some or all of the sets in the first and third lines may be empty. Recalling
that J is @0-saturated, we will justify in the next step that we may choose w0

j , v
0
k

so that

• wj < v0k < w0
j < vk and

• writing w̄0 for the result of substituting w0
j for wj in w̄, and writing v̄0 for

the result of substituting v0k for vk in v̄, we have that

tpqf(v̄
aw̄, s̄, J) = tpqf(v̄

0 aw̄, s̄, J) = tpqf(v̄
aw̄0, s̄, J).

Why is this su�cient? Recalling that (11) is an invariant of tpqf(v̄
aw̄, s̄, J), we will

then have that

āv̄,i =āw̄,j

āv̄,i =āw̄0,j

āv̄0,i =āw̄,j

so by transitivity of equality, āv̄0,i = āw̄0,j . But now v̄0, w̄0 are witnesses to the
collision which have a strictly lower number of w � v crossings than v̄, w̄, whose
number of crossings we had assumed to be minimal. This contradiction shows that,
modulo the next step, we may indeed choose v̄, w̄ to have property (?).

Step 3: There is no nontrivial algebraicity in J . Suppose we are given a finite
set c0 < · · · < cp from J , and d 2 J such that cr < d < cr+1. Then we claim
the realizations of tpqf(d, c̄, J) are dense in the interval (cr, cr+1)J . Why? This
quantifier-free type is determined by the ordering <, the predicate which holds
of d, and a partition of [{c0, . . . , cp}]k into X [ Y so that the quantifer-free type
specifies {R(d, ⌧) : ⌧ 2 X} and {¬R(d, ⌧) : ⌧ 2 Y }. Since the type already has a
realization d, X cannot contain any (n+1)-cliques. So this collection of conditions
is consistent, and is realized densely in the interval (cr, cr+1)J by @0-saturation.

Step 4: Using property (?) to contradict inconsistency. At this point in the proof,
we have v̄, w̄, i, j witnessing the contradiction, where v̄, w̄ satisfy property (?) from
Step 2. We claim we can choose z̄ 2 r(J) such that

(12) tpqf(v̄
aw̄, s̄, J) = tpqf(v̄

az̄, s̄, J) = tpqf(z̄
aw̄, s̄, J).

Why? Within each interval of ū, all the elements of v are below all the elements of
w in the interval. Suppose the number of elements of w in the interval is nw. Let
va, wb be the maximal element of v in the interval and the minimal element of w
in the interval, respectively. (Since v̄, w̄ were assumed to be in strictly increasing
order, va�1, wb+1 are the next largest and next smallest, respectively; the elements
of w in the interval are, in order, wb < · · · < wb+nw�1.) By induction on ` < nw,
we apply the claim of Step 3 with c̄ an enumeration of Range(v̄)[Range(w̄)\wb+`,
and d = wb+`, to choose a realization w0

b+` which is < wb (and necessarily strictly
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above va). Informally, one by one, we copy the elements of w to the left. Note that
equation (12) implies a fortiori that tpqf(z̄, s̄, J) = tpqf(t̄, s̄, J), which we called r.

The result is z̄ with the desired property, and note that within each interval of
ū, all the elements of v̄ there are below all the elements of z̄ there which are in turn
below all the elements of w̄ there.

For the final contradiction, recall our original assumption (11) which was an
invariant of the quantifier-free type tpqf(v̄

aw̄, s̄, J). Thus

āv̄,i =āw̄,j

āz̄,i =āw̄,j

āv̄,i =āz̄,j

so by transitivity of equality, āz̄,i = āz̄,j . This must be an invariant of tpqf(z̄, s̄, J)
but since this equals tpqf(t̄, s̄, J), our original formula must have been inconsistent,
contradicting (9). This completes the proof. ⇤

For the converse collection of claims, showing cn,k-unsuperstability for the the-
ories Tn,k, we begin with a warm-up, deriving a single instance of shearing for the
case of n = 3, k = 2. We shall then upgrade this result to unsuperstability and to
general n, k. However, in this warm-up case the notation is a bit simpler, and all
the main ideas are represented.

Claim 5.6. The theory T3,2 contains nontrivial c3,2-shearing, coming from a for-
mula which is a conjunction of positive instances of the edge relation.

Proof. Write K = K3,2. We start with I = Ic3,2 2 K, which is countable, linearly
ordered, each element is named by a di↵erent predicate, and there are no instances
of R. Choose t0, t1, t2 2 I such that I |= P0(t0) ^ P1(t1) ^ P2(t2), so it follows
that t0, t1, t2 are distinct and (without loss of generality) t0 < t1 < t2. Because
these elements are from I, note that their quantifier-free type specifies there are no
instances of R. We will write t̄ = ht0, t1, t2i.

Consider some @0-saturated J 2 K with I ✓ J . Let M |= Tn,k be fairly sat-
urated. Choose a K-indiscernible sequence hat : t 2 Ji so that for any distinct
ti0 , ti1 , ti2 from J ,

M |= R(ati0 ,ti1 ,ti2 ) () J |= R(ti0 , ti1 , ti2).

(The point is that the forbidden configuration never occurs on J , so we can build
the map indexing the indiscernible sequence, say, by induction.) Now recalling t̄
from the first paragraph, consider in M the formula

'(x, āt̄) = R(x, at0 , at1) ^R(x, at0 , at2) ^R(x, at1 , at2).

By our choice of t̄ and our choice of the indiscernible sequence,M |= ¬R(at0 , at1 , at2)
(because the triple of indices come from I, which has no instances of R) so '(x, āt̄)
is a consistent formula of M . Since J is @0-saturated for K, we may find v0, v1, v2
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in J such that:12

tpqf(t0
at1 at2, ;, I) = tpqf(v0

av1 at2, ;, J)
= tpqf(v0

at1 av2, ;, J)
= tpqf(t0

av1 av2, ;, J)

and J |= R(v0, v1, v2). Then writing

t̄{1,2} =t0
av1 av2

t̄{0,2} =v0
at1 av2

t̄{0,1} =v0
av1 at2

we see that writing r = tpqf(t̄, ;, I) we have that

{'(x, āt̄0) : t̄0 2 r(J)}

is inconsistent, because the set of formulas

{'(x, āt̄{1,2}),'(x, āt̄{0,2}),'(x, āt̄{0,1})}

is already inconsistent, recalling that M |= R(av0 , av1 , av2) and

'(x, āt̄{1,2}) `R(x, av1 , av2)

'(x, āt̄{0,2}) `R(x, av0 , av2)

'(x, āt̄{0,1}) `R(x, av0 , av1).

This completes the warm-up. ⇤

Claim 5.7. For any n > k � 2, Tn,k is cn,k-unsuperstable.

Proof. Now we fix n > k � 2 and let us prove that Tn,k is cn,k-unsuperstable. For
this proof, I = Icn,k and K = Kcn,k . Recall the meaning of n, k: in Tn,k the edge
relation R has arity k + 1, and the forbidden configuration has arity n+ 1.

To satisfy Definition 1.10 in this case, which recall describes a sequence indexed
by m witnessing unsuperstability, it would su�ce to show that whenever we are
given a finite m < ! and sets Im, Bm, pm such that Im is a finite subset of I, Bm is
a subset of the monster model of Tn,k, and pm is a partial non-algebraic type over
Bm, we can find Im+1, Bm+1, pm+1 such that Im+1 is finite and Im ✓ Im+1 ✓ I,
Bm+1 ◆ Bm is a set of parameters in the monster model for Tn,k, and pm+1 is
a partial non-algebraic type over Bm+1 which extends pm, and such that pm+1

cn,k-divides over Bm.
Suppose then that Im, Bm, pm are given.
Choose distinct t0, . . . , tn�1 from I \ Im, so that 0  i < j < n implies ti < tj in

I. Since we are in I, the element ti is named by the predicate Pti , and since ti 6= tj
their corresponding predicates are necessarily distinct. Also, since we are in I, there
are necessarily no instances of R on {t0, . . . , tn�1} in I. Let t̄ = ht0, . . . , tn�1i. Let
r = tpqf(t̄, Im, I).

Fix J ◆ I such that J 2 K and J is @0-saturated. Choose a sequence haj : j 2 Ji
which is K-indiscernible and such that

(13) M |= R(aji0 , . . . , ajik ) () J |= R(ji0 , . . . , jik).

12recalling that tpqf in J is determined by ordering, the predicates Pq , and the instances of R.
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Now we will need some notation for two di↵erent but related things. First, recalling
t̄ from the previous paragraph, āt̄ is now well defined (it is the tuple haji : i < ni).
For u 2 [n]`, let t̄ � u denote the `-tuple of elements of J given by hti : i 2 ui, thus
we let

āt̄�u denote the `-tuple of elements of M given by hati : i 2 ui.
Informally, we select an appropriate `-tuple from the sequence of length n. (We
will mostly use ` = k or ` = k + 1.) Second, if v̄ = hv0, . . . , vn�1i is any sequence
from r(J), and u 2 [n]k, let

v̄u denote the n-tuple of elements of J given by ht0i : i < ni
where t0i = vi if i 2 u and t0i = ti if i /2 u .

Informally, this is v̄ where the ith element is replaced by ti if i /2 u.
The next step is to choose v̄ 2 r(J) (and v̄ will be fixed as this choice for the

rest of the proof) so that:13

(i) tpqf(t̄, Im, I) = tpqf(v̄u, Im, J) for all u 2 [n]k

and (ii) J |= R(v̄ � w) for all w 2 [n]k+1.

For example, it would su�ce to choose hvi : i < ni by induction
on i as follows. Remember we assumed that J |= t0 < · · · < tn,
with J |= Pti(ti). Choose vi to be any element of J satisfying the
following two conditions:
(a) J |= ti < vi < ti+1 and Pti(vi).
(b) partition [{t0, . . . , tn} [ {vj : j < i}]k into two sets:

Y = [{vj : j < i}]k, and X is the complement of Y (so
members of X contain at least one t`). Ask that ti satisfies:
⌧ [ {ti} 2 RJ for ⌧ 2 Y , and ⌧ [ {ti} /2 RJ for ⌧ 2 X.

At each step, this choice is possible because these conditions will
not produce an (n+1)-clique, and J is @0-saturated. Since quantifier-
free type in J is determined by the ordering <, the predicates P`,
and the edge relation R, this su�ces.

Now in M , consider the formula

'(x, āt̄) =
^

u2[n]k

R(x, āt̄�u).

Since there are no instances of R on t̄ in J , there are correspondingly no instances
of R on {ati : i < n} in M by equation (13), so this formula is consistent. However,
the set of formulas

{'(x, āt̄0) : t̄0 2 r(J)}
is inconsistent, because by condition (a) above, it includes the set of formulas

{'(x, āv̄u) : u 2 [n]k}
which is inconsistent as for each u 2 [n]k, '(x, āv̄u) ` R(x, āv̄�u), and also M |=
R(āv̄�w) for each w 2 [n]k+1 by condition (ii) and equation (13); together, these

13Notice that condition (ii) is legal as the forbidden configuration has size n + 1. Notice also
that u has size k, and the edge relation has arity k + 1. Each v̄u has ‘most,’ i.e. all but k, of
its elements from t̄; this will be more noticeable when n >> k. So a priori, substituting in a few
elements from v̄ into the sequence t̄ should not cause edges to appear.
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would give us an (n+ 1)-clique which is forbidden. This is our desired instance of
cn,k-shearing.

To finish, let Im+1 = Im [ {ti : i < n}. Let Bm+1 be an elementary submodel of
M which contains Bm[{at : t 2 J}. Let pm+1 = pm[{'(x, āt̄)}. (Note that in our
theory Tn,k, pm+1 is consistent simply because the parameters from {ati : i < n}
are disjoint to Bm.)

This completes the proof. ⇤

Theorem 5.8. For each n > k � 2, there is a countable context c such that Trg is
c-superstable but Tn,k is c-unsuperstable.

Proof. Use cn,k from Definition 5.3. By Claim 5.5, Trg is c-superstable. By Claim
5.7, Tn,k is cn,k-unsuperstable. ⇤

6. Some questions and future directions

Problem 6.1. Characterize the theories which have the same shearing as the ran-
dom graph, that is, the theories T which satisfy: for every countable context c, T
is c-unsuperstable if and only if c has property �.

Remark 6.2. By inspection, the theories Tm from [12] appear to have the same
shearing as the random graph. This suggests the class from Problem 6.1 is inter-
esting, spanning classes in Keisler’s order and the interpretability order.

Problem 6.3. Investigate the relation of shearing and dividing in “basic” non-
simple theories such as Tfeq, for example, investigate whether it is possible to char-
acterize there the shearing which does not come from dividing.

Problem 6.4. The equivalence of shearing and dividing in stable theories is ex-
plained by the phenomenon of “weak definitions,” see explanation and references in
the proof of 3.10 above. The existence of weak definitions is a property of (T,') and
of a context. Thus the methods of this paper open up the possibility of developing
a theory of the relative strength of weak definitions, as contexts vary, in simple
unstable theories.

Remark 6.5. The methods of this paper also represent an interesting interaction
between elementary classes (the theories T ) and a priori non-elementary classes
(the index model classes K).

Remark 6.6. Since, by the proofs above, shearing is strictly weaker than dividing,
it necessarily fails some of the axioms for independence relations in simple theories
[8]; it may be useful to sort out which hold and which do not.

Question 6.7. Is there an analogous axiomatic characterization of shearing?

Remark 6.8. The statement and proof of 3.10 implicitly raise the analogous ques-
tion for NIP theories, i.e., it may be worth while to explicitly sort out what can be
said about shearing for formulas without the independence property.
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