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Abstract

Dynamical models described by ordinary differential equations (ODEs) are a
fundamental tool in the sciences and engineering. Exact reduction aims at pro-
ducing a lower-dimensional model in which each macro-variable can be directly
related to the original variables, and it is thus a natural step towards the model’s
formal analysis and mechanistic understanding. We present an algorithm which,
given a polynomial ODE model, computes a longest possible chain of exact lin-
ear reductions of the model such that each reduction refines the previous one,
thus giving a user control of the level of detail preserved by the reduction. This
significantly generalizes over the existing approaches which compute only the
reduction of the lowest dimension subject to an approach-specific constraint.
The algorithm reduces finding exact linear reductions to a question about rep-
resentations of finite-dimensional algebras. We provide an implementation of
the algorithm, demonstrate its performance on a set of benchmarks, and illus-
trate the applicability via case studies. Our implementation is freely available
at https://github.com/x3042/ExactODEReduction.jl.

Keywords: ordinary differential equations, exact reduction, lumping,
dimensionality reduction, matrix algebras
2000 MSC: 34C20, 34-04, 16G10

1. Introduction

Ordinary Differential Equations (ODEs) provide a powerful and expressive
language for describing systems evolving in real-time and, thus, are widely used
both in the sciences and engineering. This motivates development of formal
methods to analyse the structure of models defined using ODEs. One important
problem which has been studied actively in the past decade from this angle is
model reduction [1, 2, 3, 4, 5].
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In general, model reduction refers to a variety of techniques aiming at replac-
ing the model of interest with a lower-dimensional one which allows to analyze
the dynamics of the original model. Traditionally, approximate methods such
as, e.g., balanced truncation [6] have been employed. Exact model reduction is a
complementary approach in which one lowers the dimension of the model with-
out introducing approximation errors. Because of their exactness such reduc-
tions are typically connected to the system structure and are, thus, of particular
interest in the context of performing formal analysis or deriving mechanistic in-
sights. Classical examples of exact model reductions include reductions using
conservation laws or reductions based on symmetries [7, 8, 9]. In principle, ex-
act transformations can be useful to reduce different measures of complexity of
a model besides model dimension. For example, exact transformations may be
used to convert a model to a linear one [10]. Such transformations are beyond
the scope of the present paper.

Algorithms for finding exact dimension reductions may be applicable directly
to the ODE systems as, for example, the one proposed in the present paper, or
to a domain-specific description of a model (which can be then translated to
an ODE system). Rule-based modeling [11, 12] is a prominent example of such
concise domain-specific descriptions for which powerful reduction algorithms
have been devised [1, 8, 13] and implemented [14]. Compared to the ODE-
based algorithms considered in this paper, algorithms that rely on a rule-based
representation can deal with very large models but are applicable only to a
class of ODE systems and search only for a class of reductions (via so-called
fragments [1], see also Remark 1).

In this paper, we will focus on an important class of exact reductions of ODE
models, exact linear lumpings, which correspond to finding a self-contained sys-
tem of differential equations for a set of macro-variables such that each macro-
variable is a linear combination of the original variables. The case when the
macro-variables are sought as sums of the original variables has received sig-
nificant attention, see e.g. [1, 15, 2, 4]. In particular, ERODE software has been
developed [3] which efficiently finds the optimal subdivision of the variables
into macro-variables. CLUE package [5, 16] was a step towards relaxing these
restrictions on the macro-variables. Compared to the earlier approaches, the
macro-variables found by CLUE may involve arbitrary coefficients (not just ze-
roes and ones as before) and also allow the same variable to appear in several
macro-variables at once. Consequently, the dimension of the reduced model in
CLUE could be significantly lower [5, Table 1]. However, the input of the al-
gorithm consisted not only of a model but also of linear functions in the state
variables to be preserved (the observables). Such a set of observables may or may
not be available, and guessing it correctly is crucial for finding low-dimensional
reductions. In this paper, we aim at taking the best from both worlds: requiring
only a model as input (as ERODE) and allowing the macro-variables to be any
linear combinations of the original variables (as CLUE).

The main result of the paper is an algorithm for finding arbitrary exact linear
reductions when given only a polynomial ODE model with rational coefficients.
Note that the question of finding such an arbitrary linear lumping of the lowest
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possible dimension may not be the most meaningful one since any linear first
integral yields a reduction of dimension one with constant dynamics. Instead,
our algorithm builds a hierarchy of reductions, more precisely it finds a longest
possible chain of lumpings in which each reduction refines the next one (for de-
tails, see Section 2) so that a user can choose the desired level of details to be
preserved by reduction by moving along the hierarchy and may find reductions
which would likely be missed by ERODE and CLUE (e.g., see Example 3 and sec-
tion 5.2). Such generality comes with a price: our software is typically slower
than CLUE and ERODE.

Our algorithm is based on combining the connection of the linear lumping
problem to the problem of finding a common invariant subspace of a set of
matrices [17, 5] with the structure theory of finite-dimensional algebras. We use
the general framework of existing algorithms over finite [18] and algebraically
closed [19, 20] fields and achieve desired efficiency by

• sparsity-aware algorithm for finding a basis of an algebra (Section 3.2);

• exploiting the structure of the input to compute mostly with rational
numbers and postponing passing to algebraic number fields as much as
possible;

• using sparse linear algebra and modular computation to deal with large
matrices and expression swell, respectively.

We implemented our algorithm, and the implementation is publicly avail-
able at https://github.com/x3042/ExactODEReduction.jl. We evaluate its
performance on a set of benchmarks from the BioModels database [21], a large
collection of models from life sciences, and demonstrate the produced reduction
for two case studies.

The rest of the paper is organized as follows. In Section 2, we give a precise
definition of exact linear reduction, and formulate explicitly the algorithmic
problem we solve in the paper. Section 3 contains a detailed description of the
algorithm and its justification. We describe our implementation and report its
performance in Section 4. Section 5 contains the case studies describing the
reductions produced by our software.

2. Problem statement

In the paper, the transpose of a matrix M is denoted by MT . For a vector
x = (x1, . . . , xn) of indeterminates, by C[x] (resp., R[x], Q[x]) we will denote
the set of polynomials in x with complex (resp., real, rational) coefficients.

Definition 1 (Lumping). Consider an ODE system

x′ = f(x), (1)

in the variables x = (x1, . . . , xn) with polynomial right-hand side, that is, f =
(f1, . . . , fn) and f1, . . . , fn ∈ C[x]. We say that a linear transformation y = xL
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with y = (y1, . . . , ym), L ∈ Cn×m, and rankL = m is a lumping of (1) if there
exists g = (g1, . . . , gm) with g1, . . . , gm ∈ C[y] such that

y′ = g(y)

for every solution x of (1). The number m will be called the dimension of the
lumping, and the entries of y will be referred to as macro-variables.

Note that a lumping is uniquely defined by matrix L only, and the corre-
sponding g can be computed, see Remark 3 for details.

Throughout this section, we will work with the following running exam-
ple [22, Example 1]. The ODE model will be derived using the laws of mass-
action kinetics [23, Ch. 7] from a chemical reaction network with a chemical
species X and four more species AUU , AUX , AXU , and AXX which represent a
molecule A having two identical binding sites such that each site may be either
unbound (denoted by U) or bound to X (denoted by X). These species satisfy
the following reactions

X +AU∗ AX∗ X +A∗U A∗X

k1

k2

k1

k2

(2)

where ∗ ∈ {X,U}, and the reaction rate constants of binding and dissociation
are k1 and k2, respectively. If we denote the concentration of any species S by
[S], the corresponding ODE system under the law of mass-action kinetics [23,
Ch. 7] will be:





[X ]′ = k2([AXU ] + [AUX ] + 2[AXX ])− k1[X ]([AXU ] + [AUX ] + 2[AUU ]),

[AUU ]′ = k2([AXU ] + [AUX ])− 2k1[X ][AUU ],

[AUX ]′ = k2([AXX ]− [AUX ]) + k1[X ]([AUU ]− [AUX ]),

[AXU ]′ = k2([AXX ]− [AXU ]) + k1[X ]([AUU ]− [AXU ]),

[AXX ]′ = k1[X ]([AXU ] + [AUX ])− 2k2[AXX ].
(3)

Example 1 (Conservation laws as lumpings). We show that the matrix
L = (0 1 1 1 1)T yields a lumping of (3). We have

y =
(
[X ] [AUU ] [AUX ] [AXU ] [AXX ]

)
·L = [AUU ]+[AUX ]+[AXU ]+[AXX ].

Using (3) one can check that y′ = 0, so we can take g(y) = 0. Indeed, y is
the total concentration of A and must be constant. Furthermore, any linear
conservation law yields a lumping of dimension one.

Example 2 (More informative lumping). Another lumping for the same
system (3) is given by the matrix

L =






1 0 0
0 2 0
0 1 1
0 1 1
0 0 2






=⇒






y1 = [X ],

y2 = 2[AUU ] + [AUX ] + [AXU ],

y3 = [AUX ] + [AXU ] + 2[AXX ].
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The macro-variables will satisfy a self-contained system

y′1 = k2y3 − k1y1y2, y′2 = k2y3 − k1y1y2, y′3 = −k2y3 + k1y1y2.

The rationale behind this reduction is that y2 and y3 are concentrations of
unbound and bound sites, respectively.

The above examples demonstrate that one system can have several lumpings
(in fact, (3) has more), so a natural question is how to find useful lumpings. The
state-of-the-art software tools CLUE [5] and ERODE [3] approach this question by
finding the lumping of the smallest dimension satisfying certain constraints:

• preserving some quantities of interest unlumped (for CLUE [5]);

• or coming from a partition of the state variables (for ERODE [3]).

Both constraints may be too restrictive: not all interesting lumpings come from
a partition of the state variables (for instance, Examples 1 and 2; see also [5,
Table 1]), and it may be complicated to guess in advance meaningful quantities
to preserve.

Example 3 (Example difficult for CLUE and ERODE, see also Section 5.2).
Consider another chemical reaction network [24, Eq. (19.20)] (originally due to
Daniel Knight):

E∗E

E + S ES E + P

E∗ + S

k1

k2

k3

k4 k5

k6

k5

where we took the rate constants of ES → E∗ + S and E → E∗ to be equal.
As in the case of (2), we transform the reactions into an ODE system using

the law of mass-action kinetics:





[E]′ = (k2 + k3)[ES] + k6[E∗]− k1[E][S]− k4[E][P ]− [E],

[S]′ = (k2 + k5)[ES]− k1[E][S],

[P ]′ = k3[ES]− k4[E][P ],

[ES]′ = k1[E][S] + k4[E][P ]− (k2 + k3 + k5)[ES],

[E∗]′ = k5[E] + k5[ES]− k6[E∗]

One meaningful linear reduction is y = [E] + [ES]− k6

k5
[E∗] with the equation

y′ = −(k5 + k6)y. The macro-variable y can be understood as a potential
between the amount of E (typically enzyme), both in the free form E and as
a part of the complex ES, and E∗ (typically inactivated enzyme). There is a
bidirectional flow between these two amounts, so any k5 units of [E] + [ES]
will be in an equilibrium with k6 units of [E∗], and, thus, the dynamics of the
difference y depends only on itself.
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This reduction does not come from a subdivision of the species, so it cannot
be found by ERODE. Furthermore, finding it using CLUE would require knowing
this macro-variable in advance. Since the current state of the software does not
allow symbolic parameters to appear in the coefficients of the macro-variables
(see Remark 6), we have found this reduction by taking numerical values of k5
and k6.

An alternative approach would be to find all the lumpings and let the user
choose which ones to use. The problem is that there may be easily an infinite
number of lumpings, for example, similarly to Example 1, one can show that
the matrix

L =
(
α 1 1 + α 1 + α 1 + 2α

)T

yields a lumping of (3) for every number α. Furthermore, as we will explain
later, the lumpings are in a bijection with the invariant subspaces of certain
matrices coming from the Jacobian of f(x) and (at least for arbitrary matrices)
the invariant subspaces can form an arbitrary algebraic variety [25].

The approach we take in this paper is to find a sequence of reductions refining
each other with the guarantee that this sequence is of maximal possible length.

Definition 2 (Chain of lumpings). For an ODE system of the form x′ =
f(x), a sequence of linear transformations

y1 = xL1, y2 = xL2, . . . , y! = xL!,

where L1 ∈ Cn×m1 , . . . , L! ∈ Cn×m! , is called a chain of lumpings if

1. 0 < m1 < . . . < m! < n;

2. yi = xLi is a lumping of (1) for every 1 ! i ! ";

3. for every 1 < i ! ", there exists a matrix Ai such that Li−1 = LiAi.

The latter means that the reductions given by L1, . . . , L! refine each other. Such
a chain (L1, . . . , L!) will be called maximal if it is not contained as a subsequence
in any longer chain.

We will show (see Corollary 2) that all maximal chains are of the same
length, so they are also the longest possible chains. Given a maximal chain of
lumpings, a user can “zoom in/out” by going left/right along the chain depending
on the desired tradeoff between the size of the reduced model and the amount
of information retained. Thus, we can now formally state the main problem
studied in this paper.

Main problem 1.

Given a system x′ = f(x) with f being a vector of polynomials over Q;

Compute a maximal chain of lumpings for the system.
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





























[X]′ = k2([AXU ] + [AUX ] + 2[AXX ]) − k1[X]([AXU ] + [AUX ] + 2[AUU ]),

[AUU ]
′ = k2([AXU ] + [AUX ])− 2k1[X][AUU ],

[AUX ]′ = k2([AXX ]− [AUX ]) + k1[X]([AUU ]− [AUX ]),

[AXU ]
′ = k2([AXX ]− [AXU ]) + k1[X]([AUU ]− [AXU ]),

[AXX ]′ = k1[X]([AXU ] + [AUX ])− 2k2[AXX ].



















y′

4,1 = k2(y4,3 + 2y4,4)− k1y4,1(y4,3 + 2y4,2),

y′

4,2 = k2y4,3 − 2k1y4,1y4,2,

y′

4,3 = 2k2(y4,4 − y4,3)− k1y4,1(y4,3 − 2y4,2),

y′

4,4 = k1y4,1y4,3 − 2k2y4,4











y′

3,1 = k2y3,3 − k1y3,1y3,2,

y′

3,2 = k2y3,3 − k1y3,1y3,2,

y′

3,3 = −k2y3,3 + k1y3,1y3,2.

{

y′

2,1 = 0,

y′

2,2 = 0.

{

y′

1,1 = 0.

{
y4,1 = [X ], y4,2 = [AUU ],

y4,3 = [AUX ] + [AXU ], y4,4 = [AXX ]











y3,1 = y4,1,

y3,2 = y4,3 + 2y4,2,

y3,3 = y4,3 + 2y4,4

{

y2,1 = y3,2 + y3,3,

y2,2 = y3,1 + y3,3

y1,1 = y2,1

Figure 1: Maximal chain of lumpings for (3) and the corresponding reductions

Example 4 (Maximal chain of lumpings for (3)). Figure 1 shows a chain
of lumpings and the corresponding reductions for our example system (3). The
blocks contain the reduced systems and the arrows are labeled with the trans-
formations between the consecutive reductions (matrices Ai in the terms of Def-
inition 2). This chain of reductions includes our preceding Examples 1 and 2 as
y1 and y3, respectively.

In this example the original dimension n = 5 and the dimensions of the
reductions are m1 = 1, m2 = 2 ,m3 = 3, m4 = 4, so this chain is clearly
maximal.

Remark 1 (Connection to symmetries of a rule-based representation).
The model in (2) fits naturally into the framework of rule-based modeling [11,
12]. The model is given by the rules that stipulate the species dynamics, and
the rules themselves are essentially chemical reactions parametrized by different
values of ∗ ∈ {X,U}. Note that these rules are symmetric with respect to the
two binding sites of the molecule A. Thanks to this symmetry, one can find a
reduction already at the level of the rules by grouping the species according to
the total number of bound sites as follows:

y1 = [X ], y2 = [AUU ], y3 = [AUX ] + [AXU ], y4 = [AXX ].

Note that this is the first reduction in the chain presented on Figure 1. There
exist algorithms that exploit such rule-based symmetries [13], and this particular
reduction can be found using KaDE software tool [14]1. The next reduction

1We thank an anonymous referee for raising our awareness of this fact.
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in the chain, however, is not discovered by KaDE, although it still admits an
interpretation in terms of the structure of the underlying reaction network [22,
Example 1 and Section 3.1]. We see an opportunity for synergy here: our
structure-agnostic tool may find new types of reductions, and some of these
types can be then incorporated in a scalable rule-based approach.

Remark 2 (Connection to quiver-equivariant ODEs). One can view a chain
of lumpings in the framework of quiver-equivariant dynamical systems [26] with
the corresponding quiver being a chain with the maps defined by Ai’s on the
arrows. For this point of view, a natural generalization of the main problem
stated above would be to find a maximal (in some sense) quiver Q such that
the original ODE can be represented as Q-equivariant.

3. Algorithm

For finding a maximal chain of lumpings, we first use theory developed in [5]
to reduce the problem to a problem about common invariant subspaces of a set
of matrices (Section 3.1) and then solve the new problem using the structure
theory of finite-dimensional algebras (Sections 3.3 to 3.5). The overall algorithm
is summarized in Section 3.6.

3.1. Reduction to the search for common invariant subspaces

Let x′ = f(x) be an ODE system in variables x = (x1, . . . , xn) and f being
a row vector of polynomials f1, . . . , fn ∈ C[x]. Let J(x) be the Jacobian matrix
of f with respect to x. We denote the monomials in x appearing in J(x) by
m1(x), . . . ,mN (x). Then J(x) can be written uniquely as

J(x) =
(
∇f1 . . . ∇fn

)
=

N∑

i=1

Ji ·mi(x), where ∇g :=
(

∂g
∂x1

. . . ∂g
∂xn

)T

(4)
and J1, . . . , JN are constant matrices.

Example 5. Consider the system

x′
1 = x1 − 2x2

2, x′
2 = −x2 + x2

2.

In this case the decomposition (4) will be

J(x1, x2) =

(
1 0

−4x2 −1 + 2x2

)
=

(
1 0
0 −1

)
+

(
0 0
−4 2

)
x2.

Lemma 1. Using the notation above, the linear transformation y = xL, where
L ∈ Cn×m, is a lumping of x′ = f(x) if and only if the column space of L is
invariant with respect to J1, . . . , JN .

8



Proof. For the case L ∈ Rn×m, the statement follows from [5, Lemmas S.I.1 and
S.II.1]. The proof of [5, Lemmas S.I.1] remains correct after replacing R with
C, and the proof of [5, Lemmas S.II.1] will be correct for the case of C if the
real inner products are replaced with the complex ones.

Remark 3. A natural question is, given L satisfying the conditions of Lemma 1,
how can we find g from Definition 1? One approach is the following: we set
y := xL and choose a subset x̃ of x to complete y to a basis of the linear span
of x. Then the derivatives y′, which are equal to fL, can be written in terms
of y and x̃ via a linear change of coordinates. Lemma 1 guarantees that these
polynomials will not, in fact, depend on x̃ and, thus, will be exactly g. An
optimized version of this construction was used already in CLUE [5], and is
used in our implementation as well.

Corollary 1. A sequence of linear transformations y1 = xL1, . . . , y! = xL! is
a chain of lumpings if and only if the column spaces V1, V2, . . . , V! of L1, . . . , L!

satisfy

• Vi is invariant with respect to J1, . . . , JN for every 1 ! i ! ";

• {0} ! V1 ! . . . ! V! ! Cn.

Furthermore, the chain of lumpings is maximal if and only if the chain V1, . . . , V!

is not a subsequence of a chain of subspaces satisfying the two properties above.

In order to search for such chains of invariant subspaces, we will use theory
of finite dimensional matrix algebras.

Definition 3 (Matrix algebra). Let k be a field (e.g., k = Q,R,C). A sub-
space A ⊆ kn×n of matrices is called an algebra if it is closed under multiplica-
tion and contains the identity matrix.

For a finite set A1, . . . , Am ∈ kn×n, we denote the smallest algebra containing
A1, . . . , Am by 〈A1, . . . , Am〉. This algebra is equal to the span of all possible
products of these matrices.

For an ODE system x′ = f(x) with x = (x1, . . . , xn) and f1, f2, . . . , fn ∈
C[x], we consider the coefficients J1, . . . , JN of the Jacobian matrix of f(x)
written as a polynomial in x as in (4). We will call the algebra 〈In, J1, . . . , JN 〉
(where In is the identity n × n-matrix) the Jacobian algebra of the system
x′ = f(x).

Example 6.

• Let Tn be the set of all upper-triangular matrices in kn×n. Since the
product of two upper-triangular matrices is upper-triangular again, Tn

is an algebra.

• Consider the system from Example 5. Its Jacobian algebra is
〈(

1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 0
−4 2

)〉
= {MT | M ∈ T2}.
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Since a subspace V ⊂ Cn is invariant with respect to J1, . . . , JN if and only
if it is invariant with respect to 〈In, J1, . . . , JN 〉, that is, invariant w.r.t. any el-
ement of the algebra, we will further focus on finding invariant subspaces of this
Jacobian algebra. An immediate benefit is that we can use the Jordan-Hölder
theorem [27, Theorem 1.5.1] to clarify our notion of the maximal chain of lump-
ings (Definition 2): the definition only requires that a maximal chain cannot be
further refined, and this, in general, does not preclude the existence of longer
chains. The following direct consequence of [27, Theorem 1.5.1] guarantees that
a maximal chain indeed has the maximal possible length.

Corollary 2. For a given ODE system x′ = f(x), all maximal chains of lump-
ings have the same length.

3.2. Generating the algebra

For performing explicit computations with the Jacobian algebra 〈In, J1, . . . , JN 〉
(Definition 3), we will compute its basis. Algorithm 1 gives a simplified version of
our approach, which is essentially [5, Algorithm 2] applied to matrices instead of
vectors. Similarly to [5], we employ modular computation (cf. [5, Algorithm 3])
to avoid the intermediate expression swell and use sparse linear algebra.

Building upon this straightforward adaptation of the approach from [5], we
significantly improve the performance by taking further advantage of the spar-
sity of the input and output. In the models from literature, the nonlinear part of
the model is typically sparse and, as a result, most of J1, . . . , JN are extremely
sparse; furthermore, the basis of the Jacobian algebra also can be often chosen
to be very sparse. Hence, many of the matrices C from (Step 2)(b)i will be
sparse as well. However, some of the matrices computed at the intermediate
steps may be still quite dense slowing down the whole algorithm. We deal with
the issue by temporarily deferring (Step 2)(b)ii for relatively dense matrices C
and then, once the outer loop exits signaling that P is empty, we add each of
the deferred matrices to P and restart the iteration. This way we ensure that
we have generated enough sparse matrices in the algebra so that the reductions
of the dense matrices will be more sparse now. Thanks to this optimization,
Algorithm 1 is not a bottleneck in our computation which it was when we used
the approach from [5] directly.
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Algorithm 1 Finding a basis of matrix algebra (basic version)

Input a set of square matrices A1, . . . , A! ∈ kn×n;

Output a basis S of the smallest linear subspace A ⊆ kn×n containing all
possible products of A1, . . . , A!;

(Step 1) Set S to be any basis of the linear span of A1, . . . , A! and let P := S.

(Step 2) While P ,= ∅ do

(a) Take B to be an element of P and remove it from P .

(b) For every A in {A1, . . . , A!} do

i. Compute C := AB and reduce C w.r.t. S via Gaussian re-
duction.

ii. If C ,= 0, set S := S ∪ {C} and P := P ∪ {C}.

(Step 3) Return S.

3.3. Search for invariant subspaces: algebraic preliminaries

For this section, we fix a ground field k of characteristic zero. The cases
we are mostly interested in are rational numbers Q, algebraic numbers Q, and
complex numbers C.

Definition 4 (Radical of an algebra). Let A ⊆ kn×n be an algebra.

• A subspace I ⊆ A is called an ideal (resp., left ideal) if AB,BA ∈ I
(resp., AB ∈ I) for every A ∈ A and B ∈ I.

• An ideal (resp., left ideal) I ⊆ A is nilpotent if there exists N such that
the product of any N elements of I is zero.

• The set of all elements A ∈ A such that the left ideal A ·A is nilpotent
is called the radical of A. It is a nilpotent ideal of A by [27, Theo-
rems 3.1.6, 3.1.10].

Example 7. Let Tn be the set of all upper-triangular matrices in kn×n. Con-
sider a subset Un ⊂ Tn of strictly upper-triangular matrices. One can easily
verify that Un is an ideal and the product of any n elements of Un is zero.
Since, for every A ∈ Un, we have Tn ·A ⊆ Un, we deduce that Un is the radical
of Tn.

Dixon’s theorem [28, Theorem 11] implies that the radical of an algebra A ⊆
kn×n can be computed by finding the kernel of a square matrix of order dimA !

n2. The relevance of the notion of radical to our problem is demonstrated by
the following lemma.
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Lemma 2. Let A ⊆ kn×n be an algebra, and let R ⊂ A be its radical. If
R ,= {0}, then the intersection

⋂

R∈R
KerR is nonzero and is invariant w.r.t. A.

Proof. Since R is a nilpotent ideal, there exists the smallest integer N such that
the product of any N elements of R is zero. Then, there exists 0 ,= M ∈ kn×n

which is a product of N − 1 elements of R. Hence, we have RM = 0 for every
R ∈ R, so V :=

⋂

R∈R
KerR ⊇ ImM is nontrivial.

Consider v ∈ V , A ∈ A, and R ∈ R. Since RA ∈ R, we have RAv = 0, so
Av ∈ KerR. Thus, V is invariant w.r.t. A.

Example 8. Consider the system from Example 5. In Example 6, it was shown
that the Jacobian algebra of this system is the set of lower triangular matrices.

Similarly to Example 7 we find that the radical of this algebra is

(
0 0
λ 0

)
. The

common kernel of the radical is spanned by the second basis vector yielding the
reduction y′ = −y + y2 (with y = x2).

Definition 5 (Semisimple algebra). An algebraA ⊆ kn×n is called semisim-
ple if its radical is zero.

We will use the following characterization of semisimple algebras.

Theorem 3 (Wedderburn-Artin, [27, Theorems 2.4.3 and 2.6.2]). Let A ⊆ kn×n

be a semisimple algebra. Then there exist

1. algebras A1 ⊆ kn1×n1 , . . . ,A! ⊆ kn!×n! such that Ai does not have a
nontrivial proper invariant subspace in kni for every 1 ! i ! ",

2. integers m1, . . . ,m! such that n1m1 + . . .+ n!m! = n,

3. a basis in kn

such that, in this basis, we have

A =





Diag(A1, . . . , A1︸ ︷︷ ︸

m1 times

, . . . , A!, . . . , A!︸ ︷︷ ︸
m! times

) | A1 ∈ A1, . . . , A! ∈ A!





, (5)

where Diag(B1, . . . , BN ) denotes the block-diagonal matrix with blocks B1, . . . , BN .

Example 9. Consider the set of all matrices of the form





a b 0 0
−b a 0 0
0 0 c 0
0 0 0 c



 , where a, b, c ∈ Q.

This is a semisimple algebra in the form (5) with " = 2, m1 = 1, and m2 = 2.

12



In the case " = 1 and m1 = 1 in the decomposition (5) from Theorem 3,
there are no invariant subspaces in kn but there still may be invariant subspaces
in k

n
if k ,= k, where k is the algebraic closure of field k. These subspaces can

be found using the center of the algebra.

Definition 6 (Center/Centralizer). Let A ⊆ kn×n be an algebra.

• The center of A is the set of all M ∈ A such that MA = AM for every
A ∈ A.

• The centralizer of A is the set of all M ∈ kn×n such that MA = AM
for every A ∈ A.

Since, for every fixed A, AM = MA is a system of linear equations in the
entries, the center and centralizer can be computed by solving a system of linear
equations.

Lemma 4. Let A ⊆ kn×n be a subalgebra. Let C be the centralizer of A. For
every C ∈ C, every eigenspace of C is an invariant subspace of A in k

n
.

Proof. Let V be an eigenspace of C corresponding to the eigenvalue λ. Let
A ∈ A. Then, for v ∈ V , we have C(Av) = (CA)v = (AC)v = λAv, so Av
belongs to V as well.

Lemma 5. Let A ⊆ Qn×n be a semisimple algebra. Let M ∈ A be a matrix
such that the characteristic polynomial of M is of the form p(t)d, where p(t) is
Q-irreducible. Let Z and C be the center and centralizer of A, respectively. Then
the equality dim C = d2 dimZ is equivalent to the fact that, in the Wedderburn-
Artin decomposition (5) of A, we have " = 1 and m1 = d.

Proof. We consider the Wedderburn-Artin decomposition (5) of A. For every
1 ! i ! ", we denote the center of Ai by Zi. Then dimZ = dimZ1+. . .+dimZ!.
The number of irreducible factors of a characteristic polynomial of any element
of A will be at least m1 + . . .+m!, so d " m1 + . . .+m!. A direct computation
using the Schur’s lemma [27, Theorem 2.1.1] implies that the centralizer C of A
is isomorphic to Matm1

(Z1) × . . . ×Matm!
(Z!), where Matmi

(Zi) denotes the
space of mi×mi-block matrices with each block being an element of Zi (cf. [27,
Theorem 2.6.4]). Therefore

dim C = m2
1 dimZ1 +m2

2 dimZ2 + . . .+m2
! dimZ!.

Bounding the right-hand side, we can write

dim C ! (m1 + . . .+m!)
2(dimZ1 + . . .+ dimZ!) ! d2 dimZ

Both inequalities will be equalities if and only if " = 1 and d = m1, and this
proves the lemma.
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Algorithm 2 Finding a nontrivial invariant subspace of an algebra

Input a basis B1, . . . , BN ∈ Qn×n of an algebra A ⊆ Qn×n;

Output One of the following:

• NO if there is no subspace in Q
n

invariant w.r.t. A;

• nontrivial proper subspace in Qn invariant w.r.t. A;

• a maximal chain of subspaces in Q
n

invariant w.r.t. A.

Considering corner cases:

(Step 1) If N = n2, return NO.

(Step 2) For an arbitrary nonzero vector v, consider the space V spanned by
B1v, . . . , BNv. If dimV < n, return V .

Examining the radical:

(Step 3) Find a basis of the radical R of A (Definition 4) using Dixon’s theo-
rem [28, Theorem 11].

(Step 4) If dimR > 0 compute the common kernel of the basis elements of R
and return it (see Lemma 2).

Semisimple case:

(Step 5) Set D := 1.

(Step 6) Compute M :=
∑N

i=1 aiBi, where a1, . . . , aN are sampled indepen-
dently and uniformly at random from {1, 2, . . . , D}.

(Step 7) If the characteristic polynomial of M has at least two distinct Q-
irreducible factors (say, p1(t) and p2(t)):

(a) Check the invariance of Ker p1(M) w.r.t. B1, . . . , BN .

(b) If it is invariant, return Ker p1(M). Otherwise, set D := 2D
and go to (Step 6).

(Step 8) Write the characteristic polynomial of M as p(t)d, where p(t) is Q-
irreducible.

(Step 9) Compute the center Z and centralizer C of A (Definition 6).

(Step 10) If dim C < d2 dimZ, set D := 2D and go to (Step 6).

(Step 11) Let C1, . . . , Cs be a basis of C. Set C :=
∑s

i=1 biCi, where
b1, . . . , bs are sampled independently and uniformly at random from
{1, 2, . . . , D}.

(Step 12) Compute q(t), the minimal polynomial of C. If q is Q-reducible or
deg q < ddimZ, set D := 2D and go to (Step 6).

(Step 13) Let V1, . . . , V!

(where " = d dimZ) be the eigenspaces of C.

(Step 14) Return V1 ⊂ V1 ⊕ V2 ⊂ . . . ⊂ V1 ⊕ V2 ⊕ . . .⊕ V!−1.
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3.4. Search for invariant subspaces: how to find one

In this subsection, we present Algorithm 2 for finding an invariant subspace
if there is any. The rest of the subsection is devoted to justifying its correctness
and termination, see Proposition 2.

Proposition 1. Let A ⊆ Qn×n be a semisimple algebra such that there are no
nontrivial proper A-invariant subspaces in Qn. Let M1, . . . ,MN be a basis of A
as a vector space. Then the polynomial

det(x1M1 + . . .+ xNMN ) ∈ Q[x1, . . . , xN ]

is of the form P d, where P is irreducible over Q.

Remark 4 (On the importance of being a basis). While the statement of
Proposition 1 may sound quite natural, the situation is in fact quite subtle: if
one replaces linear basis with a set of generators of A in the statement of the
proposition, it will not longer be true [29, Theorem 1.2 and Subsection 2.1].

Proof of Proposition 1. By performing a change of coordinates over Q, we will
assume that M1 is the identity matrix.

Let A be the complexification of A. By the Wedderburn-Artin theorem [27,
Corollary 2.4.4], there exist n1, . . . , n! such that N = n2

1 + . . .+ n2
! and

A ∼= Matn1
(C)× . . .×Matn!

(C). (6)

Then the complexification Cn of the original representation Qn of A can be
decomposed [27, Theorem 2.6.2] as

Cn = k1V1 ⊕ k2V2 ⊕ . . .⊕ k!V!, (7)

where Vi
∼= Cni is the unique irreducible representation of Matni

(C). We denote
the base change corresponding to (7) by C ∈ Cn×n. Then CMC−1, where
M := x1M1 + . . . + xNMN , is block diagonal with the dimensions of blocks
as in (7). Since M1, . . . ,MN span the whole A, the distinct nonzero entries of
CMC−1 are C-linearly independent linear forms in x1, . . . , xN . By denoting
these forms by y1, . . . , yN we obtain an invertible matrix B ∈ CN×N such that
y := Bx, and, reordering y1, . . . , yN if necessary, one has

CMC−1 = diag(Y1, . . . , Y1︸ ︷︷ ︸
k1times

, . . . , Y!, . . . , Y!︸ ︷︷ ︸
k!times

),

where Yi is a matrix with entries yn1+...+n2
i−1+1, . . . , yn2

1+...+n2
i

for 1 ! i ! ".
Then we have

det(M) = det(CMC−1) = det(Y1)
k1 . . . det(Y!)

k! .

Furthermore, since M1 is the identity, det(M)|x1=x1+t as a polynomial in t is the
characteristic polynomial of −M . Let Q(x) := detY1 . . . detY! ∈ Q[x]. Then
Q|x1=x1+t as a polynomial in t is the minimal polynomial of −M .
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Since detYi is a determinant of a matrix with independent entries, it is
irreducible over C. Let p(x) be a Q-irreducible divisor of detM . Then p divides
Q, so, by reordering Yi’s if necessary, we can assume that p(x) = detY1 . . . detYr

for r ! ". Assume that r < ". Set p0(t) := p(x1 − t, x2, . . . , xN ) and consider
p0(M). We will have

Cp0(M)C−1 =

diag( 0, . . . , 0︸ ︷︷ ︸
k1+...+kr times

, p0(Yr+1), . . . , p0(Yr+1)︸ ︷︷ ︸
kr+1 times

, . . . , p0(Yr+1), . . . , p0(Yr+1)︸ ︷︷ ︸
k! times

).

Since p0 is coprime with the characteristic polynomials of Yr+1, . . . , Y!, each
of the matrices p0(Yr+1), . . . , p0(Y!) is nonsingular. Therefore, the kernel of
Cp0(M)C−1 is exactly the span of the first k1 + . . .+ kr basis vectors. There-
fore, the kernel of p0(M) is the span of this many first columns of C−1. There-
fore, the kernel of p0(M) is A-invariant and is defined over C. On the other
hand, the entries of p0(M) belong to Q(x), so the kernel of p0(M) in fact is
defined over C ∩ Q(x) = Q. Therefore, the kernel of p0(M) yields a nontrivial
A-invariant subspace of Qn contradicting with the irreducibility of this repre-
sentation. Hence p must be equal to Q, so detM must be a power of p.

The proof of the proposition provides a way to find the degree of degP .

Corollary 3. In the notation of the proof (see (6)) of Proposition 1, degP =
n1 + n2 + . . .+ n!.

Proposition 2. Algorithm 2 is correct and terminates with probability one.

Remark 5 (On the probability of termination). By “terminates with prob-
ability one” we mean that the algorithm makes a random choice in an infinite
probability space, and will terminate for all the choices except for a set of proba-
bility zero. Simply put, the algorithm repeatedly tosses a coin and will terminate
as long as there will be at least one heads which will eventually happen with
probability one.

Proof of Proposition 2. We will first prove the correctness. If the algorithm re-
turned on (Step 1), then A is the full matrix algebra, and does not have any
nontrivial proper invariant subspace. If the algorithm returned on (Step 2),
then the returned subspace is invariant by construction. If the algorithm re-
turned on (Step 4), the returned subspace is nonzero, proper (since if A was
a zero algebra, the algorithm would have returned at (Step 2)), and invariant
due to Lemma 2.

It remains to consider the case when the algorithm returns after (Step 5). If
the algorithm returned on (Step 7)(b), then the returned subspace is invariant
by construction and is nonzero because p1(t) divides the charpoly of M , so
p1(M) is a singular matrix. Finally, consider the case when the algorithm
returned on (Step 14). Consider the decomposition (5) from Theorem 3 for A.
If the algorithm reached (Step 11), it contains a matrix with the charpoly being
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p(t)d with Q-irreducible p(t) such that dim C = d2 dimZ. Lemma 5 implies that,
in the decomposition (5), we have " = 1 and m1 = d. Thus, the whole space Qn

can be written as U1⊕U2⊕ . . .⊕Ud such that each of Ui’s is A-invariant without
proper nontrivial A-invariant subspaces. [27, Corollary 2.2.4] implies that, over
Q, each of Ui’s can be decomposed as a direct sum of at most dimZ A-invariant
subspaces. Therefore, the whole Q

n
can be decomposed into at most d dimZ

A-invariant subspaces by [27, Theorem 2.6.2].
Lemma 4 implies that each of Vi’s from (Step 13) is an invariant subspace

w.r.t. A. Since there are d dimZ of them, each of Vi’s does not contain nontrivial
proper A-invariant subspaces. Therefore, the chain V1 ⊂ V1 ⊕ V2 ⊂ . . . ⊂
V1 ⊕ V2 ⊕ . . .⊕V!−1 returned at (Step 14) is maximal. This finished the proof
of the correctness of the algorithm.

We will now prove that the algorithm terminates with probability one. Con-
sider the decomposition (5) of A from Theorem 3. Consider variables z1, . . . , zN
and a matrix M0 :=

∑N
i=1 ziBi. Then M at (Step 6) is a specialization of M0

at zi = ai. Let P (z1, . . . , zN , t) be the charpoly of M0. Consider the decom-
position (5) for A. For every 1 ! i ! ", we apply Proposition 1 to the block
corresponding to Ai and obtain a Q-irreducible Pi and its power di. Thus, we
obtain the following factorization for M0

P = P d1m1

1 P d2m2

2 . . . P d!m!

! .

The characteristic polynomial of M computed at (Step 6) equals P (a1, . . . , aN , t).
Assume that Pi(a1, . . . , aN , t) is Q-reducible for every 1 ! i ! s and these poly-
nomials are distinct.

• Assume that " > 1. Then p1(t) from (Step 7) will be equal to Pi(a1, . . . , aN , t)
for some i. Then Kerp1(M) will be the subspace corresponding to the
i-th block in the decomposition (5). The subspace is invariant, so it will
be returned on (Step 7)(b).

• Assume that " = 1. We will study matrix C similarly to the way we
studied M above. Let y1, . . . , ys be independent variables, and we de-
fine C0 := y1C1 + . . . + ysCs. By the same argument as in the proof
of Lemma 5, we have C ∼= Matr(Z) for some integer r. By [27, Propo-
sition 2.3.4], algebra C is simple and every C-module (in particular, our
ambient space Qn) is a direct sum of isomorphic copies of the same
C-module. We apply Proposition 1 to this module and deduce that
the characteristic polynomial of C0 is of the form Q(y1, . . . , ys, t)h for
some integer h and Q-irreducible polynomial Q. Furthermore, degQ =
d dimZ by Corollary 3. Assume that Q(b1, . . . , bs, t) is Q-irreducible.
Then Q(b1, . . . , bs, t) will be the minimal polynomial of C, so this poly-
nomial will not satisfy the condition of (Step 12) and, thus, the algo-
rithm will terminate without going back to (Step 6).

Combining the two underlined assumptions in the text above, we see that
the algorithm will return for a fixed value of D if the following conditions hold:
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1. Pi(a1, . . . , aN , t) is Q-reducible for every 1 ! i ! s and these polynomi-
als are all distinct;

2. Q(b1, . . . , bs, t) is Q-irreducible.

[30, Theorem 2.1] implies that there exists constants C0, C1 such that the prob-
ability of any of Pi(a1, . . . , aN , t)’s and Q(b1, . . . , bs, t) being Q-reducible is less
that C1

3
√
D

if D > C0. Furthermore, the Schwartz-Zippel lemma [31, Proposi-

tion 98] implies that there exists a constant C2 such that the probability of any
of Pi(a1, . . . , aN , t)’s being equal does not exceed C2

D . Therefore, for D > C0,
the probability that D will be updated is at most C1

3
√
D

+ C2

D
. This number will

eventually become less than 0.99, so the probability of non-termination will be
bounded by 0.99 · 0.99 · . . . = 0.

3.5. Search for invariant subspaces: how to find a chain

In this section, we describe how to use Algorithm 2 in a recursive manner
to find a maximal chain of invariant subspaces in Q w.r.t. the Jacobian algebra
A ⊂ Qn×n of an ODE system. We will denote a basis of A by B1, . . . , BN

In the cases when Algorithm 2 applied to B1, . . . , BN returned NO or a max-
imal chain of invariant subspaces, we are done. Therefore, we consider the case
when Algorithm 2 returns a single invariant subspace V ⊂ Qn. In this case, we
consider two subproblems:

1. Restriction. Since V is invariant w.r.t. B1, . . . , BN , there are well-
defined restrictions B1|V , . . . , BN |V . We fix a basis in V and will de-
note the matrix representations for these restricted operators also by
B∗

1 , . . . , B
∗
N .

2. Quotients. Consider the quotient space Qn/V and the quotient map
π : Qn → Qn/V (see [32, 3.83, 3.88]). Since V is invariant w.r.t.
B1, . . . , BN , we can consider the quotient operators B1/V, . . . , BN/V
(see [32, 5.14]), we denote their matrix representations by B◦

1 , . . . , B
◦
N .

Note that, for every their common invariant subspace U ⊂ Qn/V , the
subspace π−1(U) ⊂ Qn is invariant w.r.t. B1, . . . , BN .

Note that the aforementioned matrix representations can be computed solving
linear systems in n variables. Thus, we can work recursively with algebras
〈B∗

1 , . . . , B
∗
N 〉 on V and 〈B◦

1 , . . . , B
◦
N 〉 on Qn/V . If the resulting maximal chains

of invariant subspaces are

0 ! V1 ! . . . ! Vs ! V and 0 ! U1 ! . . . ! Ur ! Qn/V,

then we can return the following maximal chain of invariant subspaces for
B1, . . . , BN

0 ! V1 ! . . . ! Vs ! V ! π−1(U1) ! . . . ! π−1(Ur) ! Qn.
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3.6. Putting everything together

In this section we collect the subroutines from the preceding sections into
the complete algorithm for finding a maximal chain of lumpings.

Algorithm 3 Finding a maximal chain of lumpings

Input ODE system x′ = f(x) with x = (x1, . . . , xn), f = (f1, . . . , fn) ∈ Q[x]n;

Output a maximal chain of lumpings (see Definition 2 and Example 4);

(Step 1) Compute the Jacobian J(x) of f and the matrices J1, . . . , J! ∈ Qn×n

from its decomposition as in (4).

(Step 2) Use Algorithm 1 to compute the basis B1, . . . , BN of the Jacobian
algebra A = 〈In, J1, . . . , J!〉 of the system.

(Step 3) Apply Algorithm 2 in a recursive way as decribed in Section 3.5 to
compute a maximal chain V1 ! . . . ! Vs of subspaces in Q

n
invariant

w.r.t. A.

(Step 4) For each 1 ! i ! s, find a matrix Li with the columns being a basis
of Vi.

(Step 5) Return L1, . . . , Ls.

4. Implementation and performance

We have implemented Algorithm 3 (and all the algorithms it relies on) in
Julia language [33] as a part of ExactODEReduction.jl package. The package
together with relevant resources to replicate our results is freely available at

https://github.com/x3042/ExactODEReduction.jl

We use libraries AbstractAlgebra.jl and Nemo.jl [34]. Internally, this re-
sults in using FLINT [35] and Calcium [36] (for complex number arithmetic). We
use a version of the code from [22] to improve interpretability of the computed
lumpings. Additionaly, during the development stage, various components of
the package were profiled on collections of sparse matrices from the SuiteSparse
dataset [37]. Our implementation accepts models typed manually or from the
files in the ERODE *.ode format [3, Section 3.2]. We provide documentation,
installation instructions, and usage examples.

Remark 6 (Encoding scalar parameters). Models in the literature often
involve scalar parameters. Our algorithm transforms each such parameter k into
a state k(t) satisfying equations k′(t) = 0 (same transformation is used in ERODE
under the name “currying” [38, p. 15]). This way, one may also find reductions
in the parameters space, not only in the state space. Another approach to
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handle the parameters could be to adjoin them to the field of coefficients (as
allowed in CLUE) thus allowing parameters in the coefficients of a reduction.
This feature is not implemented at the moment but most of the presented theory
and algorithms can be reused for this case.

We will demonstrate the performance of our implementation on a set of
benchmarks2. We use benchmarks from the BioModels database [21] collected
in [39] of dimensions ranging from 4 to 133. We run Algorithm 3 over rationals on
each of the models. Table 1 contains benchmark results aggregated by models’
dimension. For each range, we report:

• the number of models considered;

• the (average) length of a chain of reductions found;

• the (average) number of nonequivalent reductions, where equivalence is
taken up to adding states with constant dynamics. We have chosen to
report this because we think is it a reasonable first approximation to
the number of interesting reductions;

• the (minimum, average, maximum) elapsed runtime of our implemen-
tation;

Models info Reductions Runtime (sec.)
Dimension # Models # Total # Non-equivalent Min. Average Max.

2 - 9 44 4.02 1.39 0.0 s 0.6 s 0.66 s
10 - 19 41 8.15 2.61 0.01 s 0.21 s 1.46 s
20 - 29 46 9.65 2.13 0.08 s 0.44 s 1.48 s
30 - 39 17 19.41 2.71 0.33 s 1.74 s 5.91 s
40 - 59 25 29.08 6.08 0.78 s 4.58 s 26.71 s
60 - 79 20 37.25 6.95 7.7 s 34.57 s 102.92 s
80 - 99 11 42.91 7.09 24.46 s 96.38 s 497.26 s

100 - 133 4 89.0 21.5 75.15 s 202.52 s 312.02 s

Table 1: Benchmark results aggregated by model dimension

The timings were produced on a laptop with 2 cores 1.60GHz each and 8 Gb
RAM3. We would like to note that out of the 208 models considered, at least
one reduction was found in 202 models, and 154 of them admit a non-constant
reduction.

The timings in the table do not include the cost of the positivization step [22],
which is optional. Here, our algorithm uses the Polymake [40] library. With the

2Models are available at https://github.com/x3042/ExactODEReduction.jl/tree/main/data/ODEs ,
commit hash 678d32c5bbc8beedc9e22b673238cde0ec673a46.

3For the overall table, we refer to https://github.com/x3042/ExactODEReduction.jl/blob/main/benchmark/biomodels_benchma
commit hash 23c9f532aa316cbef59a8e3e6be04156a3d9c3eb.
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positivization step, the running time increases no more than by a factor of two
in most instances, and usually the increase is indistinguishable at all4. In the
earlier versions of the implementation of Algorithm 3, computing the algebra
basis on (Step 2) had often been a clear bottleneck on our dataset. With the
modifications to the Algorithm 1 as described in Section 3.2, currently, the most
time-consuming steps are the restriction and quotienting procedures applied on
(Step 3) of Algorithm 3. Solving a number of linear systems to find the matrix
representations of restricted and quotient operators is a clear bottleneck here.

5. Case studies

5.1. Inactivation of factor Va

We will consider a model from [41] which appears in the BioModels database [21]
as BIOMD0000000365. Factor V is a protein involved in the process of coagula-
tion (transforming blood from liquid to gel), and thus is closely related to blood
vessel repair and thrombosis. In particular, it can assist in activating antico-
agulant protein C. The activated factor V, factor Va, can no longer do this. A
model describing deactivation of Va by means of activated protein C (APC) was
proposed and studied in [41].

Factor Va consists of the heavy chain (HC) and light chain (LC), and the
binding of APC happens through the light chain. The model consists of the
following species

• Factor Va and its versions Va3, Va5, Va6, Va53, Va56, Va36, and Va536;

• LC, HC, and the versions of the latter (HC3, HC5, etc) corresponding
to the versions of Va;

• the A1 domain of factor Va, VaLC·A1 and versions of the A2 domain
such as VaA3, VaA53, etc.

• APC, complexes formed by it and LC/Va (such as APC·Va3).

In total, the model contains 30 variables and 9 parameters, and the param-
eters are encoded as constant states as in Remark 6. Our code finds a maximal
chain of lumpings of length 14 in under 5 second on a laptop. The smallest
reduction with nonzero dynamics has dimension three and involves two param-
eters (similar to the one in Example 4):






y′1 = −k1y1y2 + k2y3,

y′2 = −k1y1y2 + k2y3,

y′3 = k1y1y2 − k2y3.

(8)

4One notable exception are models that admit large reductions with large coefficients. For
example, model BIOMD0000000153 of dimension 76 has 22 nontrivial reductions of dimensions
55 and more, and applying the positivization routine increases the total runtime from 40 s to
1240 s.
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The macro-variables are

y1 = [APC],

y2 = [LC] + [Va] + [Va3] + [Va36] + [Va5] + [Va53] + [Va536] + [Va56] + [VaLC ·A1
],

y3 = [LC ·APC] + [Va ·APC] + [Va3 ·APC] + [Va36 ·APC] + [Va5 ·APC]

+ [Va53 ·APC] + [Va536 ·APC] + [Va56 ·APC] + [VaLC ·A1
·APC].

Variable y2 (resp., y3) can be described as the total concentration of the light
chains without (resp., with) bound APC. Therefore, the reduction (8) focuses
on the process of binding/unbinding of APC to the light chains, and it turns out
that the other processes such as reactions between the heavy and light chains
become irrelevant and, in particular, the HCn species do not appear in the
macro-variables at all.
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(a) Some of the states of the original model appearing in y2 and y3
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Figure 2: Numerical simulation for the model from [41] and its reduction using the initial
conditions and parameter values from [41]
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42 other species,

including the ligand-

receptor complex

NFkB A20 mRNA

A20

FLIP mRNA

FLIP

Figure 3: The relevant chemical species and dependencies between them

From a numerical perspective5, the reduction (8) can be interpreted as exact
timescale separation since the dynamics of the macro-variables turns out to be
transient compared to the dynamics of the original system. More precisely, the
original system was studied in [41] and has nontrivial dynamics on the timespan
of 1200 second. In particular, this is the case for the variables contributing to
the macro-variable y2, see Figure 2a. On the other hand, as Figure 2b shows,
the macro-variables y1, y2, y3 have much faster dynamics and reach the steady
state after less than one second.

5.2. Model of cell death

In this subsection, we consider a model designed in [44] in order to study
the sensitivity of the apoptosis (programmed cell death) to the TNF (tumor
necrosis factor) stimulation. The overall model involves 47 chemical species and
numerous interactions between them schematically described in [44, Figure 1].
Our code produces a maximal chain of lumpings of length 23 (16 out of them
with nonconstant dynamics).

We will consider the nonconstant reduction of the smallest dimension. It
involves two proteins, A20 and FLIP, whose concentrations depend on the con-
centrations of the corresponding mRNAs, A20_mRNA and FLIP_mRNA. The
concentrations of these mRNAs are governed by the concentrations of nuclear
NF-κB (NFkB_N). The latter depends (directly or indirectly) on many other
species including the aforementioned protein A20.

These species and relations between them are summarized on Figure 3, and
the corresponding differential equations are:

[A20]′ = k1[A20_mRNA] + k2, [A20_mRNA]′ = k5[NFκB_N ],

[FLIP ]′ = k3[FLIP_mRNA] + k4, [FLIP_mRNA]′ = k6[NFκB_N ],

where k1, . . . , k6 are numeric parameters. Our code finds a three-dimensional
reduction which can be straightforwardly simplified further a two-dimensional

5All numerical simulations in this paper have been done using ModelingToolkit [42] and
DifferentialEquations.jl [43]
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with the following macro-variables y1, y2 and the reduced system:

{
y1 = k6

k1
[A20]− k5

k3
[FLIP ],

y2 = k6[A20_mRNA]− k5[FLIP_mRNA]
=⇒

{
y′1 = y2 +

k2k6

k1
− k4k5

k3
,

y′2 = 0

So the idea is that, although both A20 and FLIP are involved in a complex
reaction network, one can, by eliminating the dependence on NFκB, find a
linear combination of them satisfying a simple system of differential equations
which can be explicitly solved. Such explicit relations on the states can be, for
example, combined with the differential inequalities method in order to obtain
tighter reachability bounds [45].

By going further along the chain of the reductions one can include gradually
more species into the reduced model, for example, a combination of the RIP
protein and the transitional receptor can be included in a similar fashion.

6. Conclusions

We have presented a new algorithm which takes as input a system of ODEs
and produces a longest possible chain of exact linear reductions of the system
such that each reduction in the chain is a refinement of the previous one. This
specification is more general compared to the existing tools as it does not put
any restriction on the new variables other than being the linear combinations of
the original ones and it does not require any initial observable/guess. We expect
that our approach can be extended to the systems with the rational right-hand
side using the ideas from [16], we leave this for future research.

We provided a publicly available implementation in Julia. Our code is able
to analyze models of dimension over a hundred in a couple of minutes using
commodity hardware. We have also demonstrated its applicability to models
arising in life sciences. The performance can be further improved, for example,
by first searching for linear first integrals (which appear frequently, for example,
in chemical reaction networks) and using these constant reductions to skip some
of the steps of our algorithm.

Since the produced reductions are exact, our tool can be used for formal ver-
ification and as a preprocessing for approximate reduction techniques. While
exactness is thus an important feature, it can also be viewed as a limitation since
some models have only a few exact reductions (if any). Therefore, one intriguing
direction for future research is to produce a relaxed version of our algorithm to
find approximate lumpings together with rigorous error bounds. For existing
results on approximate lumping and related approaches based on the singu-
lar perturbation theory, see [46, 47, 48] and references therein. Interestingly,
the core linear algebraic problem of our algorithm, finding common invariant
subspaces, has been recently studied from the perspective of approximate but
rigorous computation in [49, 50] motivated by factoring linear differential op-
erators. We expect the ideas from these papers to be useful in our context as
well.
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