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Role of viscosity in turbulent drop break-up
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We investigate drop break-up morphology, occurrence, time and size distribution, through
large ensembles of high-fidelity direct-numerical simulations of drops in homogeneous
isotropic turbulence, spanning a wide range of parameters in terms of the Weber number
We, viscosity ratio between the drop and the carrier flow μr = μd/μl, where d is the drop
diameter, and Reynolds (Re) number. For μr ≤ 20, we find a nearly constant critical We,
while it increases with μr (and Re) when μr > 20, and the transition can be described in
terms of a drop Reynolds number. The break-up time is delayed when μr increases and is
a function of distance to criticality. The first break-up child-size distributions for μr ≤ 20
transition from M to U shape when the distance to criticality is increased. At high μr, the
shape of the distribution is modified. The first break-up child-size distribution gives only
limited information on the fragmentation dynamics, as the subsequent break-up sequence
is controlled by the drop geometry and viscosity. At high We, a d−3/2 size distribution
is observed for μr ≤ 20, which can be explained by capillary-driven processes, while for
μr > 20, almost all drops formed by the fragmentation process are at the smallest scale,
controlled by the diameter of the very extended filament, which exhibits a snake-like shape
prior to break-up.

Key words: breakup/coalescence, multiphase flow

1. Introduction

1.1. Context and motivation
Breakage of dispersed liquid drops in a carrier flow is of importance in engineering, from
industrial manufacturing of petrochemicals, polymers or pharmaceuticals, to transport of
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mixtures of oil, water and gas in pipelines (Galinat et al. 2005), in the environment with
oil-spill mitigation strategies (Li et al. 2017); while gas bubbles breaking in turbulence
controls mass exchange at the air–water interface, from lakes to the ocean (Deike
2022). Quantifying mass exchange in such flows requires a model for drop break-up in
turbulence over a wide range of parameters. Drops that disperse in a turbulent carrier
flow typically lead to a distribution of drop diameters from μm to cm for oil-in-water
problems.
In homogeneous turbulence, the transient evolution of the drop-size distribution is

described by a population balance equation, whose source terms account for a set of
physical phenomena, in particular, the rate of consumption of drops due to break-up,
and the rate of production of drops due to the break-up of larger drops (Martinez-Bazan
et al. 2010; Qi, Masuk & Ni 2020). The break-up kernel then determines the rate
of production of drops, from one size to another, and can be decomposed into a
parent break-up frequency and child-size distribution (Martinez-Bazan et al. 2010; Aiyer
et al. 2019; Gaylo, Hendrickson & Yue 2021; Ruth et al. 2022). A large variety of
break-up mechanisms have been introduced (Balachandar & Eaton 2010), with most
models for droplet break-up in a turbulent flow considering a single mechanism with
drop interaction with a single turbulent eddy, or a continuum of turbulence scales,
with fluctuations at the size of the drop being the most effective part of the process
(Hinze 1955; Luo & Svendsen 1996; Liao & Lucas 2009; Lalanne, Masbernat & Risso
2019). Binary break-up is often assumed, while highly viscous or energetic break-up
presents a rapid sequence with multiple time scales and processes (Roccon et al.
2017; Rivière et al. 2022; Ruth et al. 2022). Several models consider dimensional
units (Martinez-Bazan et al. 2010; Qi et al. 2020), complicating the comparisons
between different configurations and missing some hidden controlling parameters,
while empirical formula, with important assumptions in the models not rigorously
verified, have been applied outside their initial fitting range (Tsouris & Tavlarides 1994;
Andersson & Andersson 2006; Martinez-Bazan et al. 2010). Recent computational work
has investigated various aspects of the break-up of drops in turbulent flow, including
long bubble lifetime near critical conditions and limits of the Hinze-scale concept
(Vela-Martín & Avila 2022), the interaction of turbulence cascade and the break-up
dynamics in steady-state turbulent emulsion configuration (Crialesi-Esposito et al. 2022;
Crialesi-Esposito, Chibbaro & Brandt 2023), while experimental work has discussed
the role of small-scale eddies in bubble break-up (Qi et al. 2022) or drop break-up
in a von Kármán flow (Ravichandar et al. 2022). Separately, atomization of jets has
received considerable attention, with analysis of the subsequent instabilities controlling
the scale selection, break-up and drop-size distribution (e.g. Eggers & Villermaux 2008;
Villermaux 2020) or analysis of the flow vortical structure (e.g. Zandian, Sirignano &
Hussain 2018).
At this stage, no universal formulation exists over a wide range of controlling

non-dimensional numbers, comparing inertial, capillary and viscous effects, and spanning
various viscosity ratios and turbulence intensities. When the viscosity ratio is significantly
larger than one, surface tension is less important and the break-up process can take
much longer than the turbulence time scales, with viscous breakage only occurring
when the drop has been substantially stretched, similar to low-Re break-up (Stone
1994; Andersson & Andersson 2006; Roccon et al. 2017). We aim to describe the
occurrence of break-up, the break-up time and the number and child sizes, as a function
of a set of well-chosen non-dimensional numbers defined as a function of the liquids
properties.
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1.2. Non-dimensional numbers
Considering an initially spherical drop of diameter d, viscosity μd, and density ρd
in a turbulent carrier flow, characterized by velocity U, density ρl, viscosity μl and
surface tension σ , we have seven controlling parameters, with three units, leading to four
non-dimensional groups. Early theoretical discussion on drop break-up in turbulent flow
(Hinze 1955) has mostly been based on the competition between inertial and surface forces,
and as such the most important relevant dimensionless quantity is the Weber number

We = ρdU2d/σ = 2ρdε2/3d5/3/σ, (1.1)

where ε is the turbulence dissipation rate, used to characterize the inertial range of the
turbulent flow. When considering a turbulent flow, the characteristic velocity is given by
the root mean square fluctuations, urms, the energy-injection scale is the integral length
scale, Lint, and the turbulence intensity is characterized by the turbulent dissipation rate,
ε, with ε = Cεu3rms/Lint where Cε ≈ 2 is a non-dimensional number universal at high
Reynolds number (Dimotakis 2005; Vassilicos 2015). The turbulence is characterized by
the Reynolds number, which can be defined at the integral length scale: Re = urmsLint/νl ∝
k2/νlε, with νl = μl/ρl the kinematic viscosity and k ∝ u2rms the turbulent kinetic energy.
Another commonly used characterization of the turbulent flow is the Taylor-scale Reynolds
number, which compares the strength of velocity fluctuations within the inertial range

Reλ = urmsλ/νl, (1.2)

where λ is the Taylor microscale: λ = √
15νl/εurms = √

15νl(Lint/Cε)
1/3ε−1/6, such that

Re ∝ Re2λ. For Reλ > 100, the mixing properties become mostly independent of Re
(Dimotakis 2005; Mostert, Popinet & Deike 2022).
For drops of low viscosity (or bubbles), break-up occurs above a certain critical Weber

number, We0c , which is of order one (Hinze 1955; Risso & Fabre 1998; Rivière et al.
2022), and the associated Hinze scale can be defined: d0h = (We0c/2)

3/5(σ/ρ)3/5ε−2/5. As
discussed in Rivière et al. (2021, 2022), the critical Weber number, or Hinze scale, should
be considered as a soft limit as the turbulent flow presents large fluctuations, leading to a
broad range of break-up times for the same turbulent conditions, especially close to stable
conditions (Vela-Martín & Avila 2022), which makes estimations of the critical Weber
number challenging. For bubbles and low viscosity drops, variations in the experimentally
reported values of the critical Weber typically go from 0.5 to 5 (Risso & Fabre 1998;
Andersson & Andersson 2006; Liao & Lucas 2009; Martinez-Bazan et al. 2010; Vejražka,
Zedníková & Stanovskỳ 2018). The critical Weber number, or Hinze scale, is defined in a
statistical sense, for a given time (and window) of observation, typically corresponding to
the conditions where half of the droplets will break. Such a definition inherently depends
on an observation time constrained by experimental or computational constraints. The
range of critical Weber numbers observed can be related to variability in the experimental
configurations with different large-scale shear or spatial variations of the dissipation rate.
When the viscosity of the liquid is increased, viscous effects will come into play and

we introduce a dimensionless ‘viscosity group’ (Hinze 1955), which can be defined as the
Ohnesorge number: Oh = μd/

√
ρdσd. At low Oh (typically Oh < 0.1), viscous effects

are not needed to describe break-up properties, while they become essential at higher Oh.
This dimensionless viscosity group can be replaced by another choice of non-dimensional
number, such as the viscosity ratio

μr = μd/μl. (1.3)

Finally, the fourth non-dimensional parameter can be chosen as the density ratio, which is
taken to be unity in the present study, ρd/ρl ≈ 1, relevant for several oil-in-water problems.
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The paper is organized as follows: § 2 presents the computational approach and the large
ensemble of simulations performed. Section 3 discusses the critical break-up conditions as
a function of the appropriate viscosity group, and characterizes the associated time scale
of break-up and size distribution of drops. Section 4 presents conclusions and perspectives
for future work.

2. Approach

We perform direct numerical simulations (DNS) of the two-phase, incompressible
Navier–Stokes equations with surface tension using the open-source software Basilisk
(Popinet 2015, 2018). We solve the full two-phase Navier–Stokes equations based on a
quad/octree adaptive spatial discretization and a multilevel Poisson solver. The interface
between the two liquids is reconstructed by a sharp geometric volume-of-fluid (VOF)
method, momentum-conserving scheme and an accurate, well-balanced surface tension
model. The methodology has been demonstrated to be accurate for capturing the
multi-scale nature of turbulent multiphase flows involving break-up, leveraging adaptive
mesh refinement, where the spatial discretization is adjusted to follow the spatial and
temporal evolution of flow structures. This has been amply demonstrated in recent work
on breaking waves (Deike, Melville & Popinet 2016; Mostert & Deike 2020; Mostert et al.
2022), bubble bursting (Berny et al. 2020), bubble deformation and break-up in turbulence
(Perrard et al. 2021; Rivière et al. 2021, 2022) and bubble gas transfer (Farsoiya, Popinet
& Deike 2021; Farsoiya et al. 2023).
The simulations are performed in two steps. First, we perform a precursor simulation

to generate a homogeneous, isotropic turbulent flow in a single phase, with well-defined
properties. Second, we insert the drop with initially no velocity and analyse its evolution
in the forced turbulent flow.
The turbulent flow is generated by a volumetric force that is locally proportional to the

velocity at every point of the physical space. This approach has been introduced by Rosales
& Meneveau (2005) and produces a well-characterized, homogeneous, isotropic turbulent
flow with properties that closely resemble those obtained with a spectral code. This
approach has been used to study bubble rising (Loisy & Naso 2017), bubble deformation
(Perrard et al. 2021), gas exchange (Farsoiya et al. 2021, 2023) and break-up (Rivière
et al. 2021) in turbulence. The turbulence statistics, including kinetic energy, dissipation
rate and turbulent Reynolds number Reλ as a function of time, have been verified to
reach a statistically stationary regime, while the second-order structure functions display a
well-defined inertial range, in good agreement with the homogeneous, isotropic turbulence
scaling described in the literature; as demonstrated in Perrard et al. (2021), Rivière et al.
(2021) and Farsoiya et al. (2021, 2023). Once the statistically stationary regime is reached,
we extract the velocity fields at different times, termed as precursors, and utilize them
as initial conditions for subsequent simulations where we introduce a drop in the central
region. A central drop of diameter d and density ρd is placed in the domain, and the flow in
the inner phase is initially set to be zero. The solver relaxes within a few time steps after the
initialization and the velocity and pressure become unaffected by the specific initialization
details well before deformations become significant. Each precursor is spaced by at least
one eddy-turnover time at the scale of the drop to ensure statistical independence between
the precursor flow. A detailed description of the numerical configuration can be found in
Perrard et al. (2021), Rivière et al. (2021) and Farsoiya et al. (2021, 2023).
The maximum level of refinement, L, sets the smallest grid size in the domain and allows

us to compare with a fixed grid, equivalent to (2L)3 number of grid points. Adaptive mesh
refinement allows us to reach a wide separation of scales and obtain grid convergence
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We μr Oh Reλ d0/Δx (L) # runs CPUh Figs.

1–10 0.01–350 10−5–16 38, 55, 77 32, 64 (L8, L9) 6600 20 × 106 2, 3
20–30 0.01–350 10−4–28 38, 55, 77 64, 128 (L9, L10) 1320 10 × 106 2, 3

4, 8, 20 0.01, 10, 150 10−4–5 77 64 (L9) 650 1.15 × 106 4, 5
4, 8, 20 0.01, 10, 150 10−4–5 77 128 (L10) 650 2.30 × 106 4, 5

9120 33.45× 106

Table 1. List of simulations for various We, Re and μr indicating the level of resolution on the interface,
the number of runs and the initial drop-to-grid-size ratio. The minimal length of the simulation is t/tc = 20
for cases that do not break, where tc is the eddy-turnover time at the scale of drop diameter and is given by
tc = d2/3ε−1/3. The simulation time is large compared with the Kolmogorov time scale τη with t/τη ≈ 200,
where τη = √

νl/ε. Small ensembles are used to obtain the break-up phase diagram (figures 2 and 3), while
large ensembles are used to obtain the child numbers and size distributions (figure 4).

for child-size data. In the simulations in this study, the flow variables of interest are the
VOF and velocity fields, as in Rivière et al. (2021) and Mostert et al. (2022), and a full
discussion on the adaptive mesh refinement algorithm can be found in van Hooft et al.
(2018) and Mostert et al. (2022). Grid convergence is verified in multiple ways. First,
the present numerical set-up is inherited from our work on bubble break-up, where grid
convergence on break-up time, number of children and size distribution was verified for
a wide range of Weber numbers (Rivière et al. 2021). Similarly, all metrics discussed in
the present paper (break-up occurrence, time and size distribution of child droplets) are
verified to be grid independent in an ensemble average sense, while individual realizations
also demonstrate grid convergence (see Appendix A). Adaptive mesh refinement allows
us to reduce the number of grid points, reducing memory requirements and run time and
allowing us to perform a wide sweep of parameters at moderate cost. The typical number
of grid points for L10 is between 3 × 106 and 6 × 106 depending on the values of We and
viscosity ratios (to be compared with (210)3 ≈ 109 grid points with a fixed grid, i.e. an
≈200-fold reduction in the number of grid points). Reaching a higher Reynolds number
is feasible but significantly increases the number of grid points to resolve the finer scales
of the turbulent flow, hence the computational cost increases. Here, we focus on the wide
sweep in viscosity ratio and Weber number.
The ratio of the initial drop radius to the box size is 0.067 so that the volume ratio is

0.0012; and we can consider that we are in dilute regime. The drop size compared with
the box size is not varied in the present work, and the drop is always in the inertial range
(with slight variations of the ratio of the initial drop size with the turbulence length scales
as the Reynolds number is changed; see Farsoiya et al. (2021, 2023)). Because we are in
the dilute regime, coalescence will be negligible statistically.
A wide range of parameters relevant to the physical problem is swept (see table 1),

with μr between 10−2 and 350, equivalent to Oh from 10−5 to 28, in order to assess the
role of viscosity in break-up frequency, child-size distribution and break-up morphology.
The value ofWe is varied from 1 to 30, spanning regimes including no break-up, break-up
threshold and violent break-up. For each condition, we perform an ensemble of simulations
(10 to 100 realizations) in order to obtain statistical convergence to the metrics of interest,
following the approach successfully employed for bubble break-up (Perrard et al. 2021;
Rivière et al. 2021, 2022). Thanks to the adaptive mesh refinement approach, each
individual run has a low computational cost making the very large ensemble possible.
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We will define the critical Weber as in Perrard et al. (2021) and Rivière et al. (2021)
in terms of the size of our ensembles (ranging from 10 to 150 runs per conditions) and
the duration chosen for the simulations (at least 20 eddy-turnover times at the scale of
the drop, equivalent to approximately 200 times the Kolmogorov time scale, which is
long enough to capture significant statistical variability in the break-up time but is still
manageable in terms of computational cost for the large range of parameters we consider)
and explore the dependence of the obtained critical Weber number on the viscosity ratio
and turbulence Reynolds number. We expect the proposed scalings for the mean lifetime
to be independent of the definition while an analysis of the lifetime distribution would
be sensitive to the statistical definitions (as in any other studies) used for the critical
conditions. We note that all results presented here are statistically converged in terms of the
size of the sample (i.e. results do not change if we only consider half of the ensemble per
condition).

3. Drop break-up: occurrence, morphology and time

3.1. Drop morphology
Examples of drop break-up in turbulent flow for increasing Weber number and viscosity
ratios are shown in figure 1 and illustrate the complexity of the processes at play. The top
row shows a low viscosity drop (μr = 0.01) close to critical break-up conditions (We =
4 � We0c), with a mild break-up occurring on a time scale controlled by the turbulent flow,
and leading to two children of similar sizes. The second row shows the effect of increasing
the droplet viscosity, for the same turbulent flow and We = 4 � We0c . As the viscosity of
the drop increases, break-up is delayed and the formation of a thin thread prior to break-up
is observed. This leads to an increased number of children with increasing μr. Note that
when further increasing the viscosity ratio at We = 4, no break-up is observed within the
observation time (t/tc = 20).
The next two rows show the We = 8 dynamics for increasing viscosity ratios. For low

to intermediate viscosity ratios, a scenario somewhat similar to bag break-up is observed,
reminiscent of the role of turbulent fluctuations at the drop scale at high We far from
critical conditions (We � Wec). At very high viscosity (μr = 150) and We = 8, which is
close to break-up threshold, we observe a very thin thread that characterizes the break-up,
with a break-up time more than an order of magnitude longer due to the viscous effects.
Finally, at μr = 150 and further from break-up threshold (We = 20, last row), the break-up
happens faster but also leads to a very thin filament leading to many tiny drops. It is clear
from these examples that the surrounding flow leading to break-up is different, with high
stretching being required to create the elongated structure necessary for break-up with a
possible importance of the internal flow of the drop.

3.2. Critical Weber number
We analyse the break-up threshold as a function of the various non-dimensional numbers.
Figure 2(a) shows the break-up probability obtained from ensembles of simulations at
variousWe and μr, for Reλ = 77. Each point corresponds to an ensemble of ten runs with
various precursors, and the condition is considered in the break-up region if more than
50% of the cases broke before 20tc after insertion. The criticalWe (Wec) is obtained from
the contours of the break-up probability and is shown as a solid line, showing that Wec
is a function of μr for large viscosity ratio, at a given Re. Grid resolution is verified by
running the same ensemble with higher refinement level. The simulation length of 20tc
was chosen as a trade-off between a long enough sequence to properly define the break-up
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t/tc = 4.5

μr = 0.01

dH t/tc = 4.8

μr = 0.01

dH t/tc = 4.8

μr = 0.01

dH

t/tc = 3.2

μr = 10

dH

μr = 10

dH t/tc = 4

μr = 10

dH

t/tc = 1

μr = 0.01

dH

μr = 0.01

dH t/tc = 4.2

μr = 0.01

dH

t/tc = 16.5

μr = 150

dH

μr  = 150

dH t/tc = 19

μr = 150

dH

t/tc = 5

t/tc = 3.7

t/tc = 2.5

t/tc = 17.7

t/tc = 5.6

μr = 150

dH

μr  = 150

dH t/tc = 7.3

μr = 150

dH

(a) (b) (c)

(d ) (e) ( f )

(g) (h) (i)

( j) (k) (l )

(m) (n) (o)

Figure 1. Break-up event and drop morphology for Reλ = 77, We = 4, μr = 0.01, 10 (a–f ), Reλ = 77, We =
8, μr = 0.01, 150 (g–l) and Reλ = 77, We = 20, μr = 150 (m–o). Hinze scale dh is shown, considering a
constantWe0c , and indicates the scale of the images. The time t/tc corresponds to the time since injection of the
drop in the turbulent flow. The colour variation is due to the ray tracing of the oil droplet.
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W

e
W

e c

W
e c

W
e c30

(a)

0 0.5 1.0

Breakage probability

10–4 10–3 10–2 10–1 100 101
0
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30

(b)

10–2 10–1 100 101 102
0

10

20

30

(c)

50 1000

50

100

150

200

10–3 10–2 10–1 100
0

10

20

30

(d )

Reλ = 38
Reλ = 55
Reλ = 77

Oh

μr

μr

μr
0

1/( )
ρl
ρd μd

ρd urmsλ

Wec
0 exp(1/1.5( ))ρl

ρd μd

ρd urmsλ

Reλ

Figure 2. Drop break-up phase diagram, as a function ofWe and viscosity group:Oh (b); μr (c); and inverse of
a drop Reynolds number (d). (a) Example of data analysis leading to extraction of the critical-Wec line for Reλ =
77 and Δx/d0 = 64 (L9). Each symbol is for an ensemble of simulations obtained using different precursors,
and the percentage of cases broken up within 20tc is colour-coded. The critical-Wec line is extracted as the
50% contour. (b) Critical-Wec contours for various resolutions (circles d0/Δx = 64, L9; squares d0/Δx = 128,
L10; and crosses d0/Δx = 32, L8) and increasing Reλ. Grid convergence is observed between the various
resolutions at a given Reλ, as shown by the overlapping symbols. At low Oh (typically Oh < 0.1), a constant
Wec is observed, close to 2.5. At high Oh (Oh > 1), Wec becomes a function of Oh and Reλ. (c) (3.1) shown
as dashed lines introduces a characteristic viscosity ratio μ0

r above which viscosity controls the break-up, with
μ0
r ≈ 1.5Reλ (inset). (d) Break-up boundaries Wec can be rescaled by the inverse of a drop Reynolds number

((ρl/ρd)(ρdurmsλ/μd)).

occurrence and a reasonable computational cost to perform large ensembles for a wide
range of conditions. This time corresponds to 200τη, the Kolmogorov time scale, so that
the time we systematically explore is much longer than the times tested in Håkansson &
Brandt (2022), giving strong confidence in the resolution of the break-up boundaries. Note
that the time for pinching is smaller than the eddy-turnover time, so when no break-up is
observed at high viscosity ratio, it is not due to an incomplete pinching but simply because
the conditions leading to break-up have not been met. As summarized in table 1, we
performed close to 10 000 individual simulations at relatively high resolutions (interface
resolution equivalent to 5123 to 10243 grid points), systematically exploring high viscosity
ratios, which is the focus on the study, and not the study of rare events, which would require
a much larger number of eddy-turnover times.
Figure 2(b) shows Wec contours as a function of Oh, with Oh ranging from 0.01 to 10,

and We from 0.5 to 30. We observe that, at low Oh (low viscosity), break-up occurs at We
close to Wec ≈ 2.5, in agreement with values reported in the literature for low viscosity
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and bubble conditions (Rivière et al. 2021). At high Oh (higher viscosity), we observe
that Wec is now a function of μr. Additionally, higher We needs to be reached to obtain
break-up, and there is a weaker influence of the Reynolds number Reλ. Here, Wec is grid
converged as shown in figure 2(b) by the different overlapping markers corresponding to
increasing resolution.
Figure 2(c) shows Wec contours as a function μr, for different Reλ. We observe that

Wec is a function of μr alone, with the critical-Weber contour described by a constant
value at low μr, Wec = We0c , with We0c ≈ 2.5, which can be seen as an absolute value
at low viscosity. Note that the particular value might be slightly sensitive to the choice of
averaging, i.e. the size of the ensemble, the 50% threshold and duration of the simulations;
here, 20tc as for any statistical definition of critical break-up conditions in a turbulent flow.
However, the critical value is within the bounds of the literature, and the important physical
result is the existence of the critical value at low viscosity ratio; while when the viscosity
ratio increases, Wec becomes a steep function of μr for μr > 10. Overall the data can be
described by an empirical function

Wec = We0c exp
(
μr/μ

0
r

)
, (3.1)

with the critical viscosity ratio μ0
r obtained for each Re by a least-squares fit. In the

present simulations, μ0
r is found to scale linearly with Reλ: μ0

r = 1.5Reλ; see inset. A
similar discussion could be provided using Oh. The transition from the inertial to the
viscous regime can be interpreted as a constant drop viscosity Reynolds number, since
μ0
r ≈ 1.5Reλ is equivalent to 1/((ρl/ρd)(ρdurmsλ/μd)) ≈ 1.5, so that (3.1) becomes

Wec = We0c exp
(

1
1.5

ρl

ρd

ρdurmsλ
μd

)
, (3.2)

which rescales all data onto a single curve, as shown in figure 2(d).
Note that the functional form in (3.1) is the simplest one we could find, with the smallest

number of parameters, but is not justified by a physical argument at this point and that other
functional forms could be applied. We also comment that we did not vary independently
the density ratio when demonstrating the rescaling (3.2), and that the range of Reynolds
numbers tested remains limited (with Reλ from 40 to 80) due to the higher computational
cost for higher Reynolds numbers. While the values of the Taylor-scale Reynolds number
are modest, they are high enough to observe a reasonable inertial range, as shown in
Perrard et al. (2021), Rivière et al. (2022) and Farsoiya et al. (2021, 2023) and correspond
to integral-length-scale Reynolds number from 100 to 400 approximately (with a scaling
between the integral-length-scale and Taylor-scale Reynolds numbers being Reint ∝ Re2λ;
see Pope 2000).
We can then define a viscosity group–dependent Hinze scale dh that separates stable

drops (d < dh) from those that will break (d > dh) using the viscosity-dependent Wec for
the break-up Wec(μr): dh = (Wec(μr)/2)3/5(σ/ρ)3/5ε−2/5.

3.3. Drop break-up frequency
Within the break-up regime shown in figure 2, we extract the (first) break-up time of the
drop T for each realization that breaks and compute its ensemble average 〈T〉. Figure 3
shows the non-dimensional break-up frequency tc/〈T〉 as a function of We for various μr
at Reλ = 77. The break-up frequency increases with We while reaching saturation values
that increase from high to low μr. The overall trend for each μr is similar to what has been
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Figure 3. (a) Ensemble-averaged drop first break-up frequency tc/〈T〉 made dimensionless using the
eddy-turnover time at the scale of the initial drop, for increasing μr, at Reλ = 77 (and L9). Equation (3.3)
is fitted to the data for each μr (dashed lines), defining α(μr). (b) Same data showing the rescaled break-up
frequency tc/α(μr)〈T〉 as a function of the distance toWec(μr). (c) Data for L8 (small symbols), L9 (medium)
and L10 (large) show grid convergence and various Re. All data collapse onto a single curve. (d) The value of
α(μr) is a function of μr and Reλ, and decreases with the drop Reynolds number.

observed for bubbles (Martinez-Bazan et al. 2010; Rivière et al. 2021). The data can be
described by a formula based on energy arguments (Martinez-Bazan et al. 2010),

tc
〈T〉 = α(μr)

√
We

Wec(μr)
− 1, (3.3)

where α(μr) is a parameter that is obtained by least-squares fitting of the data, while
Wec(μr) is given by (3.1). All data can then be rescaled using the parameter α(μr)
as shown in figure 3(b) for a single Re. The same procedure is applied at each Re
(and resolution), and shown in figure 3(c), demonstrating grid convergence (symbols of
increasing sizes correspond to increasing resolution and overlap). The values of α(μr)
(expressed in terms of the drop Reynolds number) are shown in figure 3(d), with a
maximum value of 0.3 at low viscosity and decaying exponentially to reach a value of
0.1 at high viscosity.
Note that, as discussed by Håkansson (2020), the use of a break-up frequency within a

population model must be made in a consistent way. Here, our definition of the break-up
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frequency has no ambiguity in the region of the break-up diagram where all cases break
before 20tc (equivalent to 200τη, significantly larger than any of the break-up times
discussed by Håkansson & Brandt 2022), which is almost all data points except the ones on
the boundary (see figure 2). For the parameters close to the boundary, the mean break-up
time can become close to the window of observation, and less than 100% of the ensemble
leads to break-up.

3.4. Droplet production and size distribution
We now discuss droplet production and size distribution as a function of distance to critical
conditions (quantified byWe/Wec(μr)) and viscosity ratio μr.
Figure 4(a,b) shows the child-size distribution of the first break-up obtained from large

ensembles (≈100 runs per condition), for μr = 0.01, 10, 150 and We/Wec ≈ 1.5 and 3.2
(corresponding to We = 4, 8 or 20 depending on μr), close to critical conditions (a,
We/Wec ≈ 1.5) and far from critical conditions (b, We/Wec ≈ 3.2).
For low to intermediate μr (μr = 0.01, 10), at We, close to critical conditions (a)

(We/Wec(μr) ≈ 1.5), the child-size distribution presents an M shape, compatible with
previous descriptions of drop or bubble break-up in turbulence close to critical conditions
(e.g. Rivière et al. 2021), corresponding to the production of two children of volumes
0.7V0 and 0.3V0 as the most probable event. At high viscosity, here μr = 150, break-up
at We = 4 does not happen since Wec(μr = 150) ≈ 6.5. When considering μr = 150
close to critical conditions (We/Wec(μr) ≈ 1.5), the child-size distribution clearly changes
compared with low viscosity break-up close to critical conditions, with the production
of two identical volumes being the most probable outcome, illustrating the change in
dynamical regime for the first break-up of viscous drops.
When increasing We moving away from critical conditions (b), We/Wec(μr) ≈ 3.5, at

low viscosity ratio, we observe a transition to a U shape, again compatible with previous
descriptions (Rivière et al. 2021; Ruth et al. 2022), with a very small and a very large drop
being formed, with similar results for μr = 0.01, 10. However, at a high viscosity ratio,
the distribution is close to a bell shape (similar to the shape of the distribution at lower
We for the same viscosity ratio) corresponding to two lobes of equal size, just prior to the
fragmentation into tiny droplets of the snake like shape seen in figure 1.
Models have been developed to rationalize the observed shape of the child-size

distribution of a binary break-up. As summarized by Qi et al. (2020) and Rivière et al.
(2021), models for the first break-up child-size distribution lie in three categories: bell
shaped (Martínez-Bazán, Montanes & Lasheras 1999), U shaped (Tsouris & Tavlarides
1994; Luo & Svendsen 1996) or M shaped. Bell-shaped models correspond to two equal
drops as the most probable outcome, while very unequal break-up that creates a small
and a large bubble has a high probability in U-shaped models. Finally, the M-shaped
models postulate that there is an unequal break-up that is the most likely. The three
models correspond to different assumed physics of the break-up. A mechanism proposed
to explain the M-shape distribution is that eddies smaller or equal to the drop size collide
with the initial drop, which then excite and break the drop in one eddy-turnover time
(see Qi et al. 2020), while the idea of various eddies leading to oscillations at the drop
or bubble resonance frequency has also been proposed (Risso & Fabre 1998). Using the
M-shape in a population balance model would require physical configurations where the
break-ups are independent from one another and always at moderate conditions (close to
critical conditions). A mechanism proposed to explain the U-shape distribution can be
based on minimizing the surface energy increment, where the difference between the total
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Figure 4. Number and size of drops production. (a,b) Child-size distribution of the first break-up event for the
six large ensembles (order 100 realizations). Volumes are normalized by the volume of the initial parent droplet.
The symbols are DNS data (L10), while the solid (dashed) lines are the probability density function from L10
(L9) data estimated using a Gaussian kernel density estimate, close to (a) and far from (b) critical conditions. (c)
Ensemble-averaged number of drops 〈N〉 produced after the first break-up as a function of time, for the large
ensembles, counting drops with more than 4 grid points per diameter at L9 (solid line L10, dashed line L9,
showing reasonable grid convergence). (d) Number of drops 〈N〉 at (t − T)/tc = 2 as a function ofWe/We(μr)

for different viscosity ratios. Circles are from small ensembles (10 realizations) and squares are from L10 large
ensembles. (e, f ) Drop-size distribution for the large ensembles taken at (t − T)/tc = 2. Drops larger than 4Δx
are grid converged, close to (e) and far from ( f ) critical conditions. The shape of the distribution presents large
variations depending on distance to criticality and viscosity ratio.
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surface energy before and after break-up controls the probability and a smaller difference
means a larger probability for such break-up to happen. The U-shape distributions can
be seen as resulting from the tearing of a small part of the initial drop (or bubble) and
can correspond to the beginning of a more complicated break-up sequence. The U-shape
is therefore often used in population balance models, as it allows us to recreate a rapid
sequence as long as the model for the successive break-up times is adequate (see Ruth
et al. 2022). A discussion on the bell shape is provided by Martínez-Bazán et al. (1999),
and relates to the assumption that the probability of generating a child drop of a specific
size is proportional to the product of the excess stress of the two children, where the excess
stress is the difference between the turbulent dynamic pressure around the children and the
capillary pressure of the parent.
To summarize, the first break-up child-size distribution of drops in turbulence is

controlled by two parameters: the distance to critical conditions, with a transition from
M-shape to U-shape at low viscosity ratio, and the viscosity ratio itself, with a bell shape
both close and far from critical conditions.
However, we caution that the analysis of the first break-up child size only gives part

of the story hinted at by the very different geometrical properties of the break-ups (see
figure 1) and the significant history effect being present when considering longer time
evolution and sequences of break-ups. Indeed, at high viscosity ratios, the first break-up is
described by a bell shape, which misses the production of tiny drops related to the snake
like geometry.
Figure 4(c) shows the number of drops being produced as a function of time after the

first break-up for the same ensembles (t − T) (each curve starts with 2 drops at t − T = 0).
Close to critical conditions (We/Wec ≈ 1.5), we observe a mild increase up to 3 to 4 drops,
as very few break-up events occur, compatible with the classic Kolmogorov–Hinze cascade
of drop break-up, producing children of similar sizes and the cascade ends at the Hinze
scale.
Now considering a high viscosity ratio, μr = 150, still close to critical conditions

(We/Wec(μr) ≈ 1.5, which is now We = 8 instead of 4) we observe significantly more
drops formed over the time period than for the low viscosity cases, with up to 10 drops
produced, corresponding to the final break-up of elongated filaments, even close to critical
conditions.
As we move away from critical conditions, We/Wec(μr) = 3.2, for low to intermediate

μr, we observe a strong increase of the number of drops (similar to that reported for
bubbles), with 15 to 20 drops at (t − T)/tc = 2 (with the number of drops increasing
with increasing viscosity ratios). At large viscosity ratio and similar We/Wec(μr) = 3.2,
we now observe more than 50 droplets related to the extreme stretching of the ligament
before break-up.
The number of drops produced is therefore a function of both the distance to critical

conditions and the viscosity ratio, with both parameters leading to an independent increase
of the number of drops produced. This is confirmed by figure 4(d), which shows 〈N〉
(taken at (t − T)/tc = 2) as a function of We/Wec(μr). For μr up to 10, we observe a
linear increase in the number of drops with We/Wec(μr), independent of the viscosity
ratio. The break-up is inertial with no influence of viscosity, similar to the dynamics of
bubble break-up described by Rivière et al. (2021, 2022). When the viscosity ratio is
further increased, the number of drops increases much more sharply.
The drop-size distributions for the large ensembles are shown in figure 4(e, f ), taken at

(t − T)/tc = 2. After two eddy-turnover times of the initial drop, the effect of the complete
break-up sequence can be discussed on the drop-size distribution, and the role of distance
to criticality and viscosity ratio is further confirmed. The time evolution of the drop-size
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distribution is shown in Appendix B and confirm that analysis after 2tc is robust and that
we have large enough statistical sample to analyse the shape of the drop-size distribution.
At low μr and We/Wec(μr) ≈ 3, we observe a distribution close to the d−3/2 scaling,

reminiscent of capillary processes driving fragmentation of large volumes (Rivière et al.
2022; Ruth et al. 2022), with a shape that is not a direct result of the first break-up, as rapid
break-ups follow the initial one, leading to a broad sub-Hinze population.
Close to critical conditions, at low viscosity ratios, we observe a size distribution

coherent with the child-size distribution of the first break-up with mostly drops close to
the Hinze scale. The behaviour of the highest μr is quite different, with a large number
of drops being produced, but their sizes are all concentrated at the smallest possible scale
being resolved, i.e. the scale of the filament at break-up, which is a consequence of the
very strong thinning visible in figure 1. Such a shape could not be inferred from the first
break-up, which displays two lobes of similar sizes, as the thin filament has not yet broken
into multiple small drops.

4. Conclusions

We performed large ensembles of DNS of drop break-up in isotropic turbulence, spanning
orders of magnitude in μr and We, while also exploring the sensitivity to Re. We report
a break-up occurrence diagram, which confirms a constant Wec for low μr, while Wec
becomes a function of a drop Reynolds number combining μr and Re when μr increases.
The first break-up time is found to be a function of the distance to Wec, with an increased
break-up time as drop viscosity increases. Finally, the drop production and size distribution
are analysed. We demonstrate the limits of only looking at the first break-up as the break-up
sequences over an extended period of time present very different statistical behaviour,
with different dynamical regimes at low and high μr, and depending on the distance to
critical conditions. This confirms that population balance models for drops should include
a multi-time-scale drop-size distribution to account for break-up sequences, especially at
high We and high drop Reynolds number. The present work paves the way for a detailed
analysis of the break-up mechanisms, including the role of the flow surrounding the drop
prior to break-up and the internal drop dynamics for the different regimes identified.
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Appendix A. Grid convergence

Together with the statistical convergence shown in figures 3, 4 and 5 for the droplet
occurrence, first break-up time and number of drops as a function of time, we show
here the grid convergence between levels 9 and 10 for selected typical individual runs.
Figure 5 shows the drop diameter as a function of time for representative examples of
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Figure 5. Drop-diameter trees: time evolution of the drop diameter throughout the break-up sequence, for a
representative set of simulations, demonstrating grid convergence between L9 (black) and L10 (red). Overall,
break-up time, number of children and their size are grid converged for the various cases, as long as drops are
resolved with a least 4 to 8 grid points per diameter.

droplet diameter, using the same precursor and two different maximum levels of resolution,
for distance to critical condition, We/Wec(μr) ≈ 1.3 and 3.2 and viscosity ratios μr =
0.01, 10 and 150 (corresponding to We = 4, 8 and 20 to match the distance to critical
conditions). These cases are a subset from the large ensembles shown in figures 4 and 5.
Time 0 corresponds to the injection of the drop in the turbulent precursor. In all cases, we
can see that the first break-up occurs at nearly the same times at both levels of resolution
and produce a similar number of drops of nearly the same sizes for drops of sizes resolved
with more than 4 to 8 grid points per diameter. This empirical convergence threshold is
in agreement with the description from Rivière et al. (2021) regarding bubble break-up.
As the break-up sequence progresses, more drops are produced and the sequences remain
very similar.

Appendix B. Time evolution of the drop-size distribution

Figure 6 shows the time evolution of the size distribution for three large ensembles shown
previously in figure 4. Within the first 2tc after the first break-up, the number of drops
increases but the overall shape of the distribution remains similar for each case, justifying
the discussion on the size distribution at 2tc after break-up.
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Figure 6. Time evolution of the drop-size distribution for the three representative large ensembles (Weber
number and viscosity ratio indicated on the top of the panel) showing that the size distribution shape at
(t − T)/tc = 2 is representative of the break-up sequence.
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