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Abstract—Cache management is a critical aspect of computer
architecture, encompassing techniques such as cache replace-
ment, bypassing, and prefetching. Existing research has often fo-
cused on individual techniques, overlooking the potential benefits
of joint optimization. Moreover, many of these approaches rely
on static and intuition-driven policies, limiting their performance
under complex and dynamic workloads. To address these chal-
lenges, this paper introduces CHROME, a novel concurrency-
aware cache management framework. CHROME takes a holistic
approach by seamlessly integrating intelligent cache replacement
and bypassing with pattern-based prefetching. By leveraging
online reinforcement learning, CHROME dynamically adapts
cache decisions based on multiple program features and applies a
reward for each decision that considers the accuracy of the action
and the system-level feedback information. Our performance
evaluation demonstrates that CHROME outperforms current
state-of-the-art schemes, exhibiting significant improvements in
cache management. Notably, CHROME achieves a remarkable
performance boost of up to 13.7% over the traditional LRU
method in multi-core systems with only modest overhead.

I. INTRODUCTION

With the advancement of large-scale, data-intensive applica-

tions, optimizing the performance of modern memory systems

has become crucial for achieving efficient execution. Cache

hierarchy, designed to bridge the performance gap between

the processor and the main memory, plays a pivotal role in

memory systems [21], [25], [33], [43], [53]. With the esca-

lating performance demands and an increasing number of on-

chip cores, cache hierarchy in modern processors continues to

grow both in depth and capacity [49]. Obviously, unrestricted

growth of cache resources is unfeasible due to area and power

budget constraints [13], [36]. Consequently, computer archi-

tects primarily rely on efficient cache management strategies.

There are three primary cache management techniques to

enhance cache utilization: cache replacement, bypassing, and

prefetching. Cache replacement policies (e.g., [4], [13], [21],

[23], [31], [35], [41], [43], [44], [55], [58]) determine the

eviction of cache blocks to accommodate new data, typically

prioritizing swift eviction of blocks with large predicted reuse

distance. Cache bypassing techniques (e.g., [11], [30], [36])

make decisions on whether to cache incoming blocks or have

them bypass the cache, thus preventing the cache from being

“polluted” with infrequently reused data. Hardware prefetchers

(e.g., [6], [7], [14], [15], [33], [38], [48]) learn from complex

memory access patterns and proactively fetch data most likely

required by future accesses to reduce latency.

Cache replacement, bypassing, and prefetching collectively

constitute the cornerstone of effective cache management,

significantly contributing to the overall system performance.

However, current studies often examine cache replacement,

bypassing, and prefetching in isolation, overlooking the po-

tential benefits that could arise from a joint optimization

strategy. For example, demand accesses and prefetching ac-

cesses frequently exhibit distinct behaviors, necessitating a

replacement policy that is cognizant of prefetching dynamics.

Additionally, considering that a significant portion of cache

blocks experience only a single access, an effective method

capable of predicting and bypassing these blocks could lead

to significantly improved performance due to reduced cache

pollution. Operating in isolation, one might fail to recognize

the complementary nature of these techniques, missing the

opportunities for more efficient utilization of cache resources.

It is advantageous to integrate cache replacement, bypassing,

and prefetching as a cohesive approach rather than treating

them as separate techniques.

Traditional cache management schemes are largely guided

by human intuition, which is grounded in high-level assump-

tions about application behaviors and memory access patterns.

However true, these assumptions may not always hold, leading

to potentially sub-optimal policies for complex workloads and

configurations. The diversity of modern workloads exacer-

bates the situation, making prediction and optimization of

cache performance increasingly difficult. There is a need for

automated techniques that can accurately predict and adapt

to access patterns across various workloads. Reinforcement

learning provides a promising solution, offering the potential

for developing an intelligent cache management framework

that learns from interactions and adapts cache decisions in

response to different workloads and configurations.

In this paper, we introduce CHROME, a concurrency-aware

holistic last-level cache management framework that leverages

online reinforcement learning. We model cache management

as a reinforcement learning problem, where the agent learns

by interacting with its environment, with each action yield-

ing a specific reward. The ultimate goal of the agent is to

maximize cumulative rewards, thus driving the continuous

and autonomous optimization of its policies and actions [52].



0

2

4

6

8

10

12

14

16

18

SPEC GAP

P
e

rc
e

n
ta

g
e

 

S
p

e
e

d
u

p
 o

v
e

r 

LR
U

Hawkeye Glider Mockingjay CARE CHROME

Fig. 1: Comparison of performance improvement with SOTA

cache management schemes over LRU on a 16-core system

(using homogeneous workload mixes).

CHROME has several unique features:

1) CHROME is a holistic cache management framework that

integrates cache bypassing and replacement policies with

pattern-based prefetching. The framework provides the

opportunity for joint optimization, leveraging the comple-

mentary strengths of cache replacement, bypassing, and

prefetching to minimize interference between separate

operations that could lead to competing decisions.

2) CHROME operates as a reinforcement learning agent,

conducting online learning based on predefined rewards

and performance objectives. This unique design elimi-

nates the necessity for offline training, thus avoiding po-

tential constraints imposed by fixed policies that struggle

to adapt to dynamic workloads and configurations.

3) CHROME observes multiple program features, including

control-flow and data-access characteristics, and repre-

sents the last-level cache (LLC) access as a state vec-

tor. By utilizing multiple program features, CHROME

significantly enhances its capacity to accurately capture

the intricate memory access behavior of applications,

ultimately boosting the efficacy of its learning process.

4) CHROME defines a reward for each action that considers

the system-level feedback information. Both data locality

and data access concurrency of the system are presented

to CHROME to better evaluate the impact of its decisions

through reinforcement learning.

5) CHROME is lightweight requiring only a modest hard-

ware implementation overhead (with the smallest storage

overhead among all state-of-the-art cache management

schemes we consider), thus clearing the hurdles for its

practical application.

We evaluate CHROME against four state-of-the-art (SOTA)

cache management schemes, including Hawkeye [21], Glider

[44], Mockingjay [43], and CARE [35], across a variety of

memory-intensive workloads. Figure 1 shows that CHROME

outperforms these schemes when running multi-programmed

workloads on a 16-core system. Overall, CHROME consis-

tently improves performance in the system with prefetching

across various SPEC CPU [46], [47] and GAP [3] workloads.

On average, CHROME improves performance by 13.7% over

the classic Least Recently Used (LRU) baseline. CHROME

outperforms Hawkeye, Glider, Mockingjay, and CARE by

6.6%, 6.9%, 4.6%, and 2.6%, respectively.

The rest of the paper is organized as follows. We present the

background in Section II. In Section III, we identify the major

issues in current cache management schemes, which motivated

the design of CHROME. We formulate the cache management

as a reinforcement learning problem in Section IV, and present

the design of CHROME in Section V. CHROME is a self-

optimizing framework that can dynamically and autonomously

make cache management decisions at the LLC, utilizing

multiple program features and concurrency-aware system-

level information. Sections VI and VII present an extensive

performance evaluation study to demonstrate the adaptability

and scalability of CHROME. We discuss the related works in

Section VIII. Finally, we conclude the paper in Section IX.

II. BACKGROUND

A. Cache Management Schemes

Efficient use of the LLC can mitigate the ever-widening per-

formance gap between CPUs and memory. To ensure that the

cache retains useful blocks and minimizes cache misses, recent

cache management schemes [21], [42]–[44], [53], [55] draw

insights from historical access behavior to predict the future

behavior of incoming blocks, optimizing cache management

and improving overall system performance.

Hawkeye [21] emulates and learns from Belady’s OPT

policy [5] based on an extensive history of cache accesses

to predict the reuse characteristics of future accesses. It

formulates reuse prediction as a binary classification problem

and employs a PC-based predictor to determine whether an

incoming line will be cache-friendly or cache-averse. When

a cache miss occurs, any block that is predicted to be cache-

averse is selected for eviction. Glider [44] applies an offline

attention-based long short-term memory (LSTM) model to the

cache replacement problem. Data derived from Belady’s OPT

policy are used to train the LSTM model offline, which leads

to a simpler online model based on a support vector machine.

Following in the footsteps of Hawkeye, Mockingjay [43]

introduces holistic thinking to guide cache replacement and

bypassing decisions, particularly in the presence of prefetch-

ing. Rather than relying on binary predictions, Mockingjay

effectively emulates Belady’s OPT policy by basing its deci-

sions on multi-class reuse prediction. It estimates the reuse

distances for each program counter (PC) at a fine granularity,

leading to the quick eviction or bypassing of blocks predicted

to be reused furthest. CARE [35] stands out from other

reuse distance prediction-based schemes by considering both

data locality and concurrency in its cache insertion and hit-

promotion decisions. It not only aims to minimize cache

misses, but also works effectively to eliminate the costly ones.

In scalable systems with large numbers of concurrent memory

accesses, CARE demonstrates good scalability.

CHROME drew inspiration from these schemes, yet it

differs significantly as an integrated approach encompassing

cache replacement, bypassing, and prefetching, and as an

online reinforcement learning algorithm to cope with dynamic

workloads and varying system configurations.



B. Reinforcement Learning for Cache Management

Reinforcement learning (RL) [40], [52] is a machine learn-

ing technique that enables an agent to autonomously learn

to maximize the cumulative reward received over its life-

time through feedback from actions and experiences in an

interactive environment. The agent-environment interaction at

timestep t can be expressed as a tuple (St, At, Rt+1), where

the agent observes the state of the environment St and selects

an action At, after which the environment transitions its state

from St to St+1 and provides a numerical reward Rt+1 for the

agent. The goal of an agent is to find an optimal policy that can

maximize the total cumulative reward from the environment

in the long term. An agent must consider the long-term impact

of each action rather than focusing solely on the immediate

reward. The expected value of the cumulative reward that is

obtained when executing an action A in a given state S is

defined as the Q-value of the state-action pair Q(S,A) [54].

SARSA [40] is an on-policy algorithm for learning a

Markov decision process policy, where an agent interacts with

the environment and updates the Q-value depending on the

current state St, current action At, reward obtained Rt+1, next

state St+1, and next action At+1:

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)−Q(St, At)].

The learning rate α determines the rate at which Q values are

updated. The discount factor γ determines how future rewards

are weighed against immediate rewards. When γ approaches 0,

the agent becomes more “opportunistic” and chooses actions

that favor the immediate rewards from the environment. As

γ increases, the agent becomes more “far-sighted” and strives

for higher rewards in the long term.

The RL framework has been successfully applied to system

optimization in areas such as memory scheduling [20], data

prefetching [6], [61], data placement in storage systems [45],

and HPC job scheduling [59], [60]. In this work, we posit

RL is suitable for holistic cache management for four main

reasons: 1) Adaptive online learning. The RL agent learns

online and optimizes its policy through interaction with the

environment. This continuous learning process equips the

agent with the ability to adapt to various configurations and

workloads with different access patterns. 2) Multiple features.

Accurate prediction of the memory access pattern of various

workloads is essential for effective cache management. The

use of multiple program features can improve prediction

accuracy, resulting in better performance [6], [25]. The state in

RL can be defined as a multi-dimensional vector of program

features. 3) Rewards from environment. The RL framework

learns autonomously based on feedback from the environment.

A well-designed reward structure for cache management tasks

allows RL agents to take appropriate actions by considering

both data locality and concurrency. 4) Acceptable overhead.

While machine learning techniques have been applied to cache

management [31], [44], [53], they often involve significant

overhead, including the cost of training, model space re-

quirements, and computational costs. An RL-based framework

eliminates offline training and requires a relatively small

model. The reward functions are simple to compute, and the

Q-values for state-action pairs can be stored in a lookup table

using only moderate computational resources for inference.

C. Concurrent Memory Access Model

In modern processors, concurrency is widely adopted to

mitigate the impact of long latency in accessing off-chip

main memory [8]. Modern high-performance processors with

advanced cache techniques, such as multi-port [62], pipelined

[1], and non-blocking [28], improve the throughput by en-

abling multiple data accesses to overlap in the same cycles,

resulting in increased concurrency of data accesses.

Concurrent Average Memory Access Time (C-AMAT) [50]

is a memory performance model that quantifies the average

real time spent for each memory access. C-AMAT quantifies

the combined impact of locality and concurrency of mem-

ory accesses, while taking into account the overlapping of

data accesses. C-AMAT can be calculated as the memory

active cycles divided by the number of memory accesses.

The memory active cycles are the number of cycles with

active memory accesses, excluding cycles without memory

references. These cycles are defined carefully to account for

overlap—only one cycle is counted when multiple memory

accesses occur concurrently in the same cycle at a memory

layer [32], [34], [35], [50], [57]. In a multi-core system, C-

AMAT tracks the memory active cycles and memory accesses

from each core. Both memory active cycles and the number

of memory accesses can be directly measured by Intel Per-

formance Monitoring Units (PMUs), which have already been

integrated into modern processors [17], [51]. As such, the C-

AMAT value can be monitored without imposing additional

overhead. The C-AMAT model can be generally applied to

any level of the memory hierarchy [37], providing an accurate

performance analysis of memory systems where concurrent

memory accesses are prevalent. In this work, we employ the

C-AMAT model to provide accurate system-level feedback

information, which turns out to be important for evaluating

the cache management decisions for reinforcement learning.

III. MOTIVATION

We identify two major issues in the current cache manage-

ment schemes: the lack of a holistic view of cache manage-

ment and the lack of adaptability for handling complex and

diverse workloads and system configurations.

A. Lack of Holistic View

Although state-of-the-art cache management schemes (such

as Hawkeye [21], Glider [44], and CARE [35]) strive to keep

cache blocks with better data locality in the LLC and minimize

thrashing caused by blocks with large reuse distances, they fo-

cus only on a specific aspect and thereby miss the opportunity

to integrate cache bypassing in the presence of prefetching.

As an example, Figure 2(a) depicts the percentage of LLC

evicted cache blocks that are not reused before eviction.

The target system is a 4-core system. We use the next-line

prefetcher at L1, stride prefetcher at L2 [14], [15], and Glider
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Fig. 2: Inspecting Unreused Blocks in LLC with Glider [44]:

(a) the fraction of blocks not reused before eviction, and (b)

the fraction of unused prefetched blocks among all blocks that

are not reused before eviction.

[44] as the LLC management scheme (see Section VI for

details). On average, 83.7% of evicted blocks in a 12MB

shared LLC are not reused before eviction. The unused evicted

blocks consist of those requested again in the future (28.0%,

depicted in gray on top) and those never requested again

(55.7%, in black at the bottom). Figure 2(b) shows that, on

average, 70.0% of the blocks not reused before eviction come

from prefetching.

Figure 2 underscores the need for a holistic cache man-

agement scheme for modern computing systems. On the one

hand, bypassing is effective for blocks accessed only once.

On the other hand, cache management needs to be aware

of prefetching, since retaining unnecessary prefetched blocks

may lead to the eviction of vital data. These considerations

call for a cache management framework that seamlessly inte-

grates replacement, bypassing, and prefetching. In response,

we introduce CHROME for a holistic approach to cache

management, which adeptly determines whether one should

cache or bypass incoming blocks, and selectively keep the

prefetched blocks, all at the same time.

B. Lack of Adaptability

Mockingjay [43] integrates cache replacement and bypass-

ing, and designs distinct policies for demand accesses and

prefetch accesses. However, the policies are statically designed

based on fixed assumptions that may not be reflective of the

dynamic nature of the workloads and thus can be ineffective

across a broad spectrum of workload demands and diverse

system configurations.

Figure 3 shows the performance of Hawkeye [21], Glider

[44], and Mockingjay [43] under two different multi-level

hardware data prefetching schemes using eight representative

workloads. When employing a next-line prefetcher at L1 and a

stride prefetcher at L2, Figure 3(a) shows that, although Mock-

ingjay integrates replacement, bypassing, and prefetching in

its design, it exhibits better performance with some workloads,

but not others (soplex, wrf, and cc-urand). The unstable
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Fig. 3: Comparing speedup over LRU on a 4-core system be-

tween: (a) using next-line prefetcher at L1 and stride prefetcher

at L2, and (b) using stride prefetcher at L1 and streamer

prefetcher at L2.

performance of Mockingjay across different workloads can

be attributed to the limitations of statically-designed policies

due to their lack of adaptability. Figure 3(b) depicts the

performance comparison of the same schemes under the same

workloads, but utilizing a stride prefetcher at L1 and a streamer

prefetcher at L2. Notably, Mockingjay underperforms Glider

across all workloads.

Figure 3 highlights the pivotal role of adaptive cache

management. First, the inconsistent performance of static

cache management policies across varied workloads accen-

tuates the need for adaptability. Second, the limitations of

static, intuition-driven policies are apparent when dealing with

diverse system configurations. An adaptive framework shall be

able to handle diverse workloads and system configurations.

CHROME is an online reinforcement learning-based cache

management framework, designed to ensure adaptability and

achieve robust and consistent performance for a wide range of

scenarios.

IV. CHROME: RL FORMULATION

We formulate cache management as an RL problem. In

particular, we design CHROME as an RL agent, with the

processor and the memory system acting as the environment.

The primary objective of CHROME is to enhance the overall

cache performance of the workloads running in a particular

system configuration and adjust cache management decisions

pertaining to the dynamic nature of the workloads. Each

time step corresponds to a new cache access, during which

CHROME observes multiple program features of the current

demand or prefetch access, the processor, and the memory

system, formulates them as a state, and subsequently makes

the decision on an action to bypass, replace, or promote a

cache block. In any case, the action works on the environment.

CHROME then receives a reward that considers the accuracy

of the action and system-level feedback information. This

process repeats itself continuously, enabling CHROME to

learn and adapt to the changing environment.



TABLE I: Program features considered for this study.

Control-flow Data-access Combination

PC Memory address PC + delta
Sequence of last 4 PCs Memory address delta PC + page number

Sequence of last 4 deltas PC + page offset
Page number
Page offset

A. State

For each cache access, CHROME utilizes observed program

features to select the most suitable action. Prior research has

highlighted program features that are closely correlated to

the reuse distance of blocks for cache optimization [6], [25],

[30], [43], [55]. In our study, we incorporate different types

of program features to characterize various workloads and

memory behaviors. This approach enables CHROME to gain

a more comprehensive understanding of diverse workloads

and memory behavior, offering multiple perspectives for more

effective learning.

We define the state as a multi-dimensional vector of program

features. Each program feature can either be a control-flow

feature (e.g., PC), a data-access feature (e.g., memory address,

page number, page offset), or a combination of these features

(e.g., bits from the PC and memory address can be composed

by hashing or concatenation). Table I lists the possible program

features. It is important to note that, although observing a

large number of features could theoretically improve learning,

it can also increase overhead and pose practical challenges.

Therefore, we consider the trade-off between performance and

overhead, and apply feature selection [27] to determine which

features to be included in the state vector. In this study, we

define the state as a 2-dimensional vector: St = (PCt, PNt).
PCt is the signature of program counter of the current memory

instruction. PC has been used extensively in earlier studies to

describe program behavior and has proven effective for cache

block reuse prediction [21], [25], [30], [43], [44], [55]. We

combine the PC and the hit/miss information into a hashed

PC signature, which allows CHROME to distinguish between

hit and miss accesses initiated at the same PC. PNt is the

physical page number of the current memory access. Due to

the similarity of access patterns at memory pages, the page

number represents the data-access feature that can complement

the control-flow feature (PC) and provide additional insight

into the program behavior.

Prefetching is an important technique for modern high-

performance processors [33], [48]. In the presence of prefetch-

ing, the behavior of demand and prefetch accesses can be quite

different. For instance, at a particular phase of a workload,

the reuse distance of the demand accesses might be large, and

therefore the corresponding data blocks should be bypassed.

However, the prediction from the prefetcher might be accurate,

and therefore the prefetched blocks should be inserted into the

cache in time [30], [56]. Inspired by [35], [58], to distinguish

between demand accesses generated and prefetch accesses

triggered by the same load instruction, we hash the PC

signature of each access with a is prefetch bit. As a result,

CHROME can learn the caching behavior of demand accesses

and prefetch accesses independently.

In a multi-core system, especially when the cores are execut-

ing different applications simultaneously, accesses generated

by the cores are mixed in the LLC, making it challenging to

observe the access behavior of each core accurately. Therefore,

in order to identify the accesses from different cores, we

further hash the PC signature with the core identifier to

produce a composite signature as a program feature ‘PC+core’

that CHROME needs to observe in multi-core systems.

B. Action

For each access, given a certain state, CHROME selects

an action to guide cache management decisions. Upon a

cache miss, CHROME determines whether the incoming block

should bypass the LLC or be placed in the cache, in which

case it is assigned with one of three possible Eviction Priority

Values (EPVs)1. The EPV of a cache block designates its

eviction priority; a lower EPV implies a lower eviction priority,

while a higher EPV indicates that the cache block is prioritized

for eviction. In the case of a cache hit, CHROME updates the

EPV of the corresponding block, selecting one of the three

possible levels according to the current policy.

C. Reward

In RL, the decisions of the agent are reward-driven: the

goal of the agent is to obtain the maximum cumulative

reward. For CHROME, the reward structure needs to reflect

an evaluation of the accuracy of each action (in terms of

achieving a desirable outcome) by taking into account system-

level feedback.

C-AMAT [50] can quantitatively measure the combined

impact of memory access locality and concurrency, taking

all types of memory access overlapping into account. We

employ the C-AMAT model in this study to provide precise

system-level feedback information to CHROME. The purpose

of having cache hierarchy is to provide faster access to

memory resources, thus avoiding time-consuming accesses

to off-chip main memory. However, not all workloads can

benefit from this. Particularly in multi-core systems, workloads

running on different cores contend for the shared LLC, causing

interference with one another. Assuming workloads are bound

to cores, during a runtime period (100K cycles in this study),

if the concurrent average access time to LLC from corei
is greater than the average latency of main memory, that

is, C-AMATi(LLC) > Tmem, it indicates that there is little

performance benefit for corei to cache the blocks at LLC

during this period, and we call this situation LLC-obstruction

for corei. In this study, we employ the C-AMAT model to

monitor the behavior of LLC-obstruction cores during runtime,

utilizing it as system feedback information to structure our

rewards.

1Advanced cache management schemes (such as [21], [23], [35], [43], [44],
[55]) utilize a similar counter for each cache block, which serves to indicate
the eviction priority of that block. These schemes enforce specialized cache
policies by periodically assigning or updating the eviction priority of each
block. Adopting EPVs in CHROME does not result in additional overhead.



We define four different rewards: RAC, RIN, RAC-NR, and

RIN-NR. 1) The reward RAC is assigned to an action when

its corresponding address is requested by either a demand or

prefetch access, and its corresponding block is in the cache

(cache hit). We further denote RD
AC for demand access and

RP
AC for prefetch access. 2) The reward RIN is assigned to an

action when the corresponding address is requested by either

a demand or prefetch access, and its corresponding block has

been evicted or bypassed (cache miss). Similarly we further

denote RD
IN for demand access and RP

IN for prefetch access. 3)

The reward RAC-NR is granted to an action, which can be a

bypassing action on a cache miss or assigning the block with

the highest EPV on a cache hit, when its corresponding address

is not requested by any demand or prefetch access within a

temporal window. We further differentiate this reward accord-

ing to the system-level feedback: ROB
AC-NR, if the corresponding

core is LLC-obstructed, and RNOB
AC-NR, otherwise. 4) The reward

RIN-NR is granted to an action, which can be a non-bypassing

action on a cache miss or assigning the block with anything

but the highest EPV on a cache hit, when its corresponding

address is not requested by a demand or prefetch access within

a temporal window. Similarly, we further differentiate this

reward according to the system-level feedback: ROB
IN-NR, if the

corresponding core is LLC-obstructed, and RNOB
IN-NR, if not.

The above reward structure in CHROME is designed to

achieve four key objectives. First, it provides positive rewards

for accurate actions leading to cache hits and assigns negative

rewards (penalties) for inaccurate actions leading to cache

misses. Doing so will incentivize CHROME to make more

accurate decisions to reduce cache misses. Second, it differ-

entiates the rewards based on whether the current request is

triggered by a demand or prefetch access. Such differentiation

will encourage CHROME to prioritize retaining blocks likely

to be requested next by demand accesses over those possibly

requested by prefetch accesses. Third, if a corresponding

address is predicted not to be requested by any demand or

prefetch access in a temporal window, we provide rewards to

incentivize the agent to bypass on a cache miss or to assign

the highest EPV to the block on a cache hit. Fourth, if a

corresponding address is not requested by any demand or

prefetch access within a temporal window, CHROME grants

either a larger positive reward or a larger penalty to the action

depending on whether the corresponding core is identified

as an LLC-obstructed core. This approach promotes actions

that can alleviate LLC obstruction, thereby enhancing overall

system performance. To achieve the above objectives, we

select the reward values empirically. Table II shows the specific

reward values used for this study.

V. CHROME: RL DESIGN

A. Overview of the RL Framework

CHROME consists of two separate tasks, an RL decision

task and an RL training task, which can run in parallel. In

order to implement these two tasks, we utilize two hardware

structures: the Q-Table and the Evaluation Queue (EQ). Q-

Table is designed to track the Q-values of all observed state-
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Fig. 4: Overview of CHROME.

action pairs. EQ functions as a first-in-first-out queue with

a fixed capacity. Its primary role is to record the actions of

CHROME within a temporal window, thereby facilitating the

evaluation and reward of each action. Each EQ entry records

five pieces of information: the state vector, the action executed

by CHROME, whether the action was triggered by a hit or a

miss, the memory address of the requested cache block, and

the assigned reward. Figure 4 presents a high-level overview

of the CHROME framework.

RL decision task. For each LLC access, CHROME makes

a decision. CHROME observes the program features (PC and

page number) of the current access and incorporates them into

a state vector ( B ). CHROME then searches the Q-Table to

obtain the Q-values for all possible state-action pairs. Each pair

is composed of the given state and one of the potential actions

( C ). CHROME selects the action with the maximum Q-value

in the current state or chooses a random action with a given

probability (exploration), then executes the action in the cache

hierarchy ( D ). On a cache miss, the incoming cache block

will either be inserted into the LLC with an assigned EPV or

be bypassed. On a cache hit, the EPV of the corresponding

block is updated according to the chosen action.

RL training task. Since the effectiveness of each action

performed by CHROME cannot be immediately evaluated,

CHROME employs EQ to record recent actions, subsequently

assigning rewards to each. CHROME records the recently

executed action, a 1-bit indicator denoting whether the action

was triggered by a hit or miss, the corresponding state vector,

and the corresponding memory address as a new entry in the

EQ ( E ).

For each new LLC request, if the request address matches

the address stored in an EQ entry (indicating that CHROME

has previously executed an action for this address and this

address is now being requested again within a temporal

window), CHROME assigns a reward to the corresponding

EQ entry ( A ). This assignment is based on whether the

current request results in a cache hit (signifying that the action

associated with the EQ entry has effectively led to a cache hit)

or a miss (indicating that the action associated with the EQ

entry is not sufficiently accurate).

The size of the EQ is finite. If an evicted entry never receives

a reward (indicating that the corresponding address is not

requested within a temporal window), CHROME assigns a



1: procedure CHROME (addr)
2: if sampled_set (addr) then
3: entry ± search_EQ (addr)
4: if entry is valid and has_reward (entry) == false  then
5: if addr hits in a sampled set then
6: entry.reward ± %+,

- or %+,
.

7: else
8: entry.reward ± %/0

- or %/0
.

9: state ± get_state ( )
10: if addr misses in LLC then
11: if rand ( ) < ' then
12: action ± random_action ( )
13: else
14: action ± argmax

a
Q (state, a)

15: else
16: if rand ( ) < ' then
17: action ± random_action ( )
18: else
19: action ± argmax

a
Q (state, a)

20: execute action
21: if sampled_set (addr) then
22: new_entry ± create_EQ_entry (addr, state, action, trigger)
23: evict_entry ± insert_EQ (new_entry)
24: if has_reward (evict_entry) == false then
25: if evict_entry.trigger == miss then
26: if evict_entry.action == BYPASS then
27: evict_entry.reward ± %+,'01

23 or %+,'01
023

28: else
29: evict_entry.reward ± %/0'01

23 or %/0'01
023

30: else
31: if evict_entry.action == EPVH then

32: evict_entry.reward ± %+,'01
23 or %+,'01

023

33: else
34: evict_entry.reward ± %/0'01

23 or %/0'01
023

35: R ± evict_entry.reward
36: S1 ± evict_entry.state; A1 ± evict_entry.action
37: S2 ± EQ.head.state; A2± EQ.head.action
38: Q (S1, A1) ± Q (S1, A1) + ³ [R + ³ Q (S2, A2) - Q (S1, A1)]

Algorithm 1 Reinforcement learning-based cache management algorithm
Called for every LLC request

²

When a sampled set is accessed, search the corresponding EQ with the requested address

²

If the request hits the sampled set, assign reward +!"
# or +!"

$

²

If the request misses the sampled set, assign reward +%&
# or +%&

$²

Extract the state vector from the current request

²

Perform exploration with a low probability *, select a legal random action

²

Select the action (insert the incoming block in LLC with an EPV or bypass) with the highest Q-value

²

Perform exploration with a low probability *, select a legal random action

²

Select the action (update the EPV of the corresponding block in LLC) with the highest Q-value

²

If the action occurs on a sampled set 

²

Create a new EQ entry

²

Insert the entry to EQ and get the evicted EQ entry

²

If the evicted entry does not have a reward, and triggered by miss

²

In case of bypassing action, assign reward +!"'&(
)* or +!"'&(

&)*

²

Otherwise assign reward +%&'&(
)* or +%&'&(

&)*

²

If the evicted entry does not have a reward, and triggered by hit

²

In case of assigning EPVH action, assign reward +!"'&(
)* or +!"'&(

&)*

²

Otherwise assign reward +%&'&(
)* or +%&'&(

&)*

²

Get the reward stored in the evicted EQ entry

²

Get the state and action from the evicted EQ entry

²

Get the state and action from the entry at the head of the EQ

²
Update Q-Table, based on SARSA

²

reward based on the corresponding action recorded in that

entry, the trigger (hit or miss) of the action, and system-

level feedback information. Finally, the state vector, action,

and reward of the evicted entry are utilized to update the

corresponding Q-value in the Q-Table ( F ).

B. RL-based Cache Management Algorithm

Algorithm 1 details how CHROME makes decisions and

performs online learning. Initially, all Q-values in the Q-Table

are set optimistically to the highest possible Q-value ( 1

1−γ
),

encouraging CHROME to explore the environment early in

the execution [52]. CHROME is trained by observing the

accesses to several sampled cache sets. Prior studies show

that memory access patterns are consistent across cache sets

[25], [26], [35], [55]. It is thus sufficient to train CHROME

by observing only accesses to a small number of sets (more

details in Section V-D).

For an LLC request with address addr, if it belongs to a

sampled set, CHROME searches EQ for addr (line 3). If a

match is found in the EQ and it does not have a reward,

CHROME assigns a reward to the corresponding EQ entry.

This reward is determined based on whether the corresponding

action results in a cache hit or a miss, and whether the LLC

request is triggered by demand or prefetch (lines 4-8).

For every LLC access, CHROME extracts the state vector

from the observed program features (line 9). CHROME either

selects an action randomly to explore the environment (line

12 for cache miss and line 17 for cache hit) or refers to

the Q-Table based on the given state vector and selects the

action with the highest Q-value (line 14 for cache miss and

line 19 for cache hit). After performing the selected action

(line 20), if it is carried out on a sampled set, CHROME

creates a new EQ entry with the state vector, the selected

action, the corresponding address, and the trigger (lines 21-22).

CHROME then inserts the new entry into the EQ, resulting in

the eviction of the least recent entry (line 23).

If the evicted entry does not have a reward (indicating no

request for the corresponding address within a given temporal

window), CHROME assigns a reward based on the action

it records, the trigger of the action, and concurrency-aware

system-level feedback information (lines 24-34). If the trigger

is a cache miss, bypassing is encouraged, while updating the

block with the highest eviction priority (EPVH) is encouraged

if the trigger is a hit. Finally, CHROME updates the Q-value

of the evicted state-action pair using the reward stored in the

evicted EQ entry and the Q-value of the EQ header entry

according to the SARSA algorithm [40] (lines 35-38).
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C. Q-Table Organization

CHROME retrieves the Q-value via a table lookup, using

the associated state vector and action, to exploit its learned

experiences. A naive implementation uses a monolithic 2-

dimensional Q-Table to record the Q-values for all possible

state-action pairs. However, the storage overhead of such an

implementation can be exorbitant due to the vast number of

potential states. Furthermore, accessing a large monolithic

table can significantly increase latency. One needs a more

practical and efficient method for storing Q-values.

In CHROME, we divide the monolithic Q-Table based on

the number of features in the state vector. Specifically, we

partition the Q-Table into two sections, each corresponding to

a feature, to record the Q-values of the feature-action pairs.

To retrieve the Q-value for a given state S (which is a 2-

dimensional vector of two features, f1 and f2, the PC signature

and the page number) and an action A, CHROME queries the

Q-value for each feature-action pair, i.e., Q(f1, A) and Q(f2,

A), in parallel. The maximum Q-value between Q(f1, A) and

Q(f2, A) is deemed the final Q-value of the state S and action

A: Q(S,A) = max(Q(f1, A), Q(f2, A)). This design ensures

that each CHROME action is driven by the feature offering

the highest feature-action Q-value.

To reduce storage overhead and balance between resolution

and generalization [6], [20], [52], we further divide each

feature-action Q-Table into multiple sub-tables. Each sub-table

is a two-dimensional table indexed by feature and action and

stores a partial Q-value of a feature-action pair. To retrieve

Q(fi, A), CHROME xors the given feature with a constant

number, then uses a hash function to get the feature index for

the corresponding sub-table. CHROME looks up sub-tables

in parallel and obtains all the partial Q-values of a feature-

action pair. The final Q-value for the feature-action pair can

be computed by summing all the respective partial Q-values.

Figure 5 illustrates a five-stage pipeline for the Q-Table

lookup. In the first stage, CHROME extracts the features

from the given state vector and generates feature-action pairs.

In the second stage, CHROME obtains the index for the

corresponding sub-table of each feature-action pair. In the

third stage, CHROME retrieves the partial Q-values from the

sub-tables. In the fourth stage, it calculates the Q-value of

each feature-action pair by summing the corresponding partial

Q-values. Finally, in the fifth stage, CHROME selects the

maximum value among all feature-action Q-values as the Q-

value of the state-action pair.

D. EQ Organization and Q-value Update

CHROME stores a sequence of recent actions in the

EQ, where each stored action is evaluated and assigned an

appropriate reward based on the access patterns observed

subsequently. To strike a balance between functionality and

practicality, the EQ is designed to maintain an adequate

number of entries to store recent actions along with their

corresponding states, addresses, triggers, and received rewards,

while ensuring that the total storage overhead remains ac-

ceptable. Rather than observing the cache requests from all

cache sets in the LLC, CHROME randomly selects a few

sampled cache sets to train the agent, a method that has been

adopted earlier in other contexts [21], [26], [35], [43], [55].

Specifically, CHROME observes the cache behaviors from 64

sampled sets, and records the actions taken on these sampled

sets in the EQ. To ensure the accurate evaluation of actions

from these sampled sets, the EQ is organized into 64 separate

first-in-first-out (FIFO) queues, each with a fixed capacity of

28 entries.

The size of the EQ is determined by balancing the need

for a wider observation window of data accesses against

the frequency of Q-Table updates. We provide a sensitivity

analysis examining the impact of the number of FIFO entries

in Section VII-F. The reward for each EQ entry is assigned

either prior to or at the moment of its eviction from the

corresponding queue (as discussed in Section IV).

Upon eviction of an entry from a queue, the Q-value of

the evicted state-action pair is updated using the SARSA

algorithm [40] based on the reward stored in the evicted EQ

entry and the Q-value of the state-action pair at the head of the

corresponding queue. SARSA is an on-policy reinforcement

learning algorithm that estimates the Q-value based on the

current policy being executed. Given the complex phase-

changing workloads and the diverse access patterns and system

configurations, the use of the online algorithm SARSA is

considered beneficial as it allows for continuous policy updates

in response to the evolving dynamics of the environment.

The operation of updating the Q-value is similar to previous

prediction-based schemes [21], [43] and is carried out off the

critical path. We discuss the cost in more detail in Section V-G.

E. Exploration vs. Exploitation

Exploration and exploitation are important in RL. CHROME

employs the ϵ-greedy method [52] to strike a balance between

exploration and exploitation. CHROME randomizes its action

with a small probability ϵ, exploring to gain further insights

about the access pattern and the memory system. Conversely, it

exploits the learned policy with a probability of 1-ϵ, selecting

the action with the highest Q-value. The ϵ-greedy method

ensures CHROME can sustain exploration while exploiting

the existing policy to secure maximum long-term rewards.



TABLE II: Reward values and hyper-parameters.

Reward Values

RD
AC = 20, RP

AC = 5, RD
IN = -20, RP

IN = -5,

ROB
AC-NR

= 28, RNOB
AC-NR

= 10,

ROB
IN-NR = -22, RNOB

IN-NR = -10

Hyper-parameters ³ = 0.0498, µ = 0.3679, ϵ = 0.001

TABLE III: Storage overhead of CHROME.

Component Details Overhead

Q-Table
2 features; 4 sub-tables/feature;
2048 entries/sub-table; 16 bits/entry

32KB

EQ

64 queues; 28 entries/queue; 58 bits/entry
(state: 33 bits, action: 2 bits, reward: 6 bits,
hashed address: 16 bits, trigger: 1 bit)

12.7KB

Metadata EPV (2-bit/LLC block) 48KB

Total 92.7KB

F. Hyper-Parameter Tuning

Hyper-parameters, such as the learning rate (³), discount

factor (µ), and exploration rate (ϵ), can significantly impact

the learning efficiency of CHROME and the accuracy of

its decisions. Therefore, these hyper-parameters need careful

tuning. First, we define the range within which each parameter

can vary. We set ³ ∈ [1e−9, 1e0], µ ∈ [1e−9, 1e0], and

ϵ ∈ [0, 1], providing a broad and reasonable scope for hyper-

parameter tuning. Second, we divide each value range into

grids, resulting in a total of 1,000 potential hyper-parameter

combinations. Third, we randomly select 20 memory-intensive

SPEC traces. We then evaluate the performance of CHROME

across all hyper-parameter combinations. (We use a 4-core

system configuration with a next-line prefetcher at L1 and a

stride prefetcher at L2.) Fourth, we select the optimal hyper-

parameter combination that provides the most significant ge-

ometric mean performance gain over the LRU baseline.

In Section VII-H, we show the results of a sensitivity study

of the hyper-parameters. The bottom part of Table II displays

the chosen values of the hyper-parameters after tuning. It

is important to note that CHROME only requires a one-

time hyper-parameter tuning. Once we have determined the

hyper-parameters, CHROME is expected to learn online by

interacting with the memory system and making decisions,

without additional offline training or prior knowledge.

G. Overhead of CHROME

Table III shows the storage overhead for CHROME. The

total overhead is 92.7KB, which represents only 0.75% of the

capacity of a 12MB LLC in a 4-core system. This overhead

is distributed across the Q-Table, the EQ, and the storage

for EPVs employed in cache management. In this study, the

overhead of CHROME remains constant. In particular, all

cache behaviors are observed from 64 sampled sets, which

does not change with the LLC capacity, effectively avoiding

an escalation in storage overheads even in larger-scale systems.

As shown in Table IV, CHROME has the least storage over-

head compared to other SOTA cache management schemes.

When an LLC access occurs, there is a high probability

that CHROME will determine the action taken by looking

TABLE IV: Storage overhead for different schemes (4-core

configuration, 12-way 12MB LLC).

Holistic Concurrency-aware Overhead

Hawkeye [21] No No 146KB
Glider [44] No No 254KB
Mockingjay [43] Yes No 170.6KB
CARE [43] No Yes 130.5KB

CHROME Yes Yes 92.7KB

TABLE V: Simulated system configurations.

Processor
4/8/16 cores, 4GHz, 6-wide fetch/execute/commit,
512-entry ROB, Perceptron branch predictor [24]

L1 Cache
private, 48KB D-cache, 64B line, 12-way,
5-cycle latency, 16-entry MSHR, LRU

L2 Cache
private, 1.25MB, 64B line. 20-way,
10-cycle latency, 48-entry MSHR, LRU

LLC
shared, 3MB/core, 64B line, 12-way,
40-cycle latency, 64-entry MSHR/slice

DRAM

8GB 2 channels, 2 ranks/channel, 8 banks/rank,
64-bit channel, DDR4-3200MT/s, tRP=12.5ns,
tRCD=12.5ns, tCAS=12.5ns

TABLE VI: Evaluated workloads.

Suite Workloads

SPEC
06

gcc, bwaves, mcf, milc, zeusmp, gromacs, leslie3d, soplex,
hmmer, GemsFDTD, libquantum, astar, wrf, xalancbmk

SPEC
17

gcc, bwaves, mcf, cactuBSSN, lbm, omnetpp, wrf, xalancbmk,
cam4, pop2, fotonik3d, roms, xz

GAP
bfs-or, bfs-tw, bfs-ur, cc-or, cc-tw, cc-ur, pr-or, pr-tw, pr-ur,
sssp-or, sssp-tw, sssp-ur

up the Q-Table. As a result, the Q-Table lookup operation

directly impacts the decision time of CHROME. We pipeline

the Q-Table lookup to reduce the decision latency (Section

V-C). We use CACTI 7.0 [2] to estimate the latency for the

Q-Table lookups, which comes to approximately 2 cycles in

our configuration. Note that, the Q-Table operations are off the

critical path, ensuring no interference with the determination

of hits or misses by the cache controller. The complexity

of the prediction path in CHROME is similar to that of the

other SOTA prediction-based schemes [21], [35], [43]. We also

use CACTI to evaluate the area and power consumption of

CHROME. CHROME consumes 1.55 mm2 of area and 76.05

mW of power in total, of which 0.30 mm2 of area and 7.27

mW of power are used for EQ to train the RL agent – a

rather modest overhead considering the significant gain in the

memory performance.

VI. EVALUATION METHODOLOGY

We evaluate CHROME using the cycle-accurate ChampSim

simulator [16], with the version released by the 1st Instruc-

tion Prefetching Championship (IPC-1 [19]). We simulate the

latest-generation Intel Alder Lake [39] multi-core processor

that supports up to 16 cores. To evaluate the performance of

CHROME with prefetching, we follow the methodology of

2nd cache replacement championship (CRC-2 [9]) by applying

the next-line prefetcher at L1 and stride prefetcher [14], [15]

at L2 as default. Table V shows the configuration parameters.
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We evaluate CHROME using a diverse set of memory-

intensive workloads from the SPEC CPU2006 [46], SPEC

CPU2017 [47], and GAP [3] benchmark suites. Each selected

workload trace has an LLC miss per kilo instructions (MPKI)

greater than 1 in the baseline system without prefetching.

Table VI summarizes the workloads evaluated in this study.

For the SPEC CPU2006 and SPEC CPU2017 workloads, we

employ the traces provided by the 3rd Data Prefetching Cham-

pionships (DPC-3 [10]), involving a total of 20 traces from

14 SPEC CPU2006 workloads and 22 traces from 13 SPEC

CPU2017 workloads. For the GAP workloads, we select 5

primitive graph algorithms, including Betweenness Centrality

(bc), Breadth First Search (bfs), Connected Components (cc),

PageRank (pr), and Single Source Shortest Path (sssp), and 3

graph datasets, including orkut (or) [29], twitter (tw) [3], and

urand (ur) [3], creating 15 distinct traces for evaluation.

For multi-core multi-programmed simulations, we use both

homogeneous and heterogeneous workload mixes. For an n-

core homogeneous workload setting, we test with n identical

copies of a memory-intensive trace, each core executing the

same trace. For an n-core heterogeneous workload setting,

we randomly select n traces from all memory-intensive SPEC

traces and execute a different trace on each core. We generate

150 4-core, 25 8-core, and 25 16-core heterogeneous mixes.

For simulation, we warm up each core with 50M instructions

from the trace, and then simulate the following 200M instruc-

tions.

To evaluate performance, LRU is selected as the baseline

for comparison. We compare CHROME with four SOTA LLC

management schemes: Hawkeye [21], Glider [44], Mockingjay

[43], and CARE [35]. We report the results as the normalized

weighted speedup over LRU, a measure commonly used for

evaluating shared caches [9], [12], [43].

VII. EXPERIMENT RESULTS

A. Performance on Four-Core Systems

Figure 6 displays the performance improvement of different

cache management schemes in a 4-core system across all
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20%

40%

60%

80%

Bypass Coverage Bypass Efficiency

Mockingjay CHROME

Fig. 9: Bypass coverage and bypass efficiency for 4-core SPEC

homogeneous mixes.

SPEC workloads using homogeneous workload mixes. The

results show that CHROME consistently achieves outstanding

performance. Specifically, with prefetching, CHROME, which

employs a holistic approach to cache management, delivers

an average improvement of 9.2% over the LRU baseline. In

comparison, the average speedups for Hawkeye, Glider, and

CARE, those without the holistic view, are 5.7%, 5.6%, and

7.6%, respectively. CHROME also adapts its caching decisions

using reinforcement learning. It outperforms Mockingjay, a

static method that achieves an average speedup of 7.6%.

In order to analyze the performance of CHROME in depth,

we evaluate the effectiveness of CHROME in comparison with

other SOTA schemes on two key metrics: LLC demand miss

ratio and effective prefetch hit ratio (EPHR).

Figure 7 shows the LLC demand miss ratio comparing five

cache management schemes. CHROME achieves the lowest

LLC demand miss ratio at 71.1%. For comparison, the average

LLC demand miss ratios for Hawkeye, Glider, Mockingjay,

and CARE are 75.9%, 75.7%, 73.6%, and 72.4%, respectively.

The use of online reinforcement learning in CHROME allows

it to dynamically adapt to changing access patterns, ensuring

that cache blocks with higher reuse potential are retained.

Figure 8 displays the LLC EPHR for each scheme. We define

EPHR as the ratio of prefetch hits to the total number of

prefetched blocks inserted into the cache. It is a crucial metric

as it evaluates how effectively prefetched blocks are utilized

before eviction. CHROME leads with the highest EPHR at

41.4%. EPHR for Hawkeye, Glider, Mockingjay, and CARE

comes at 27.9%, 23.0%, 33.2%, and 22.9%, respectively.

This higher EPHR achieved by CHROME indicates its ef-

fectiveness in harmonizing cache replacement, bypassing, and

prefetching, for improving cache performance. The ability

to harmonize cache replacement, bypassing, and prefetching

distinguishes CHROME from other contemporary schemes,

and helps achieve superior performance, specifically its low

demand miss ratio and high EPHR.

Mockingjay represents an alternative scheme that incor-



0

10

20

30

40

50

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0

2

1
0

8

1
1

4

1
2

0

1
2

6

1
3

2

1
3

8

1
4

4

1
5

0

P
e

rc
e

n
ta

g
e

 s
p

e
e

d
u

p
 

o
v

e
r 

LR
U

Hawkeye Glider Mockingjay CHROME

Fig. 10: Weighted speedup on a 4-core system with heteroge-

neous workload mixes.
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Fig. 11: Speedup for systems with 4, 8, and 16 cores (using

SPEC workloads).

porates bypassing. Figure 9 shows the bypass coverage and

bypass efficiency of Mockingjay and CHROME in a 4-core

system. Bypass coverage quantifies the fraction of all incom-

ing blocks that are bypassed, indicating how frequently the

bypassing decisions are made. Bypass efficiency evaluates the

effectiveness of the bypassing decisions by measuring the frac-

tion of bypassed blocks that are not subsequently demanded.

Our experiments show that CHROME provides higher bypass

coverage and efficiency compared to Mockingjay. On average,

41.5% of incoming blocks are bypassed by CHROME, and

70.8% of the bypassed blocks are never required.

For the 4-core heterogeneous workload, we examine 150

combinations of workload mixes, as described in Section VI.

Figure 10 presents the weighted speedup of Hawkeye, Glider,

Mockingjay, and CHROME for all 150 cases sorted in ascend-

ing order of CHROME’s performance. With prefetching en-

abled, CHROME provides a geometric mean speedup of 9.6%

over LRU, outperforming Hawkeye, Glider, and Mockingjay

with a speedup of 6.7%, 7.4%, and 8.6%, respectively. We note

that CHROME demonstrates rather consistent performance

improvement compared to the other SOTA schemes. For 119

out of 150 heterogeneous mixes, CHROME yields the best

performance. In particular, CHROME outperforms the second-

best performing scheme, Mockingjay, in 137 out of 150 cases.

Evidently, CHROME can learn memory access patterns more

effectively, which results in better performance gains overall.

B. Scalability

We examine the performance of CHROME as we increase

the number of cores. Figure 11 summarizes the performance
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Fig. 12: Performance of CHROME and N-CHROME (using

SPEC workloads).

results for both homogeneous and heterogeneous SPEC work-

load mixes. We make three observations from the results. First,

the opportunity for improvement from cache management

grows with more cores due to the increasing pressure on

the LLC. Second, CHROME consistently outperforms the

other SOTA schemes across all system configurations. For

homogeneous workload mixes in eight (and sixteen) core

systems, CHROME achieves a speedup of 10.6% (12.9%),

with 6.3% (6.8%) for Hawkeye, 6.2% (6.2%) for Glider, 8.5%

(8.2%) for Mockingjay, and 8.6% (10.2%) for CARE. For

heterogeneous workload mixes in eight (and sixteen) core

systems, CHROME achieves a speedup of 12.9% (14.4%),

with 6.3% (7.6%) for Hawkeye, 8.2% (9.3%) for Glider, 9.2%

(10.4%) for Mockingjay, and 11.3% (10.8%) for CARE. Last,

the performance advantage of CHROME over others increases

with more cores. CARE considers both data locality and

concurrency when making cache replacement decisions. Con-

sequently, it exhibits better scalability than Hawkeye, Glider,

and Mockingjay. CHROME outperforms CARE by a signif-

icant margin. For homogeneous workload mixes, CHROME

outperforms CARE by 1.4% on 4 cores, by 1.9% on 8 cores,

and by 2.5% on 16 cores. For heterogeneous workload mixes,

CHROME outperforms CARE by 0.6% on 4 cores, by 1.5%

on 8 cores, and by 3.2% on 16 cores.

C. Performance without System-Level Feedback Information

To evaluate the effectiveness of the concurrency-aware

system-level feedback information, we introduce a simpler

version of CHROME, referred to as N-CHROME, which

follows a workflow similar to that of CHROME, but lacks

the awareness of the C-AMAT values for the cores. That is,

N-CHROME does not differentiate situations whether the core

issuing memory access is contributing to LLC obstruction. In

N-CHROME, the RAC-NR and RIN-NR are set to 10 and -10,

respectively, as in the non-LLC-obstruction case.

Figure 12 presents a performance comparison between

CHROME and N-CHROME across all SPEC homogeneous

workload mixes in systems ranging from 4-core to 16-core

configurations. As expected, CHROME consistently outper-

forms N-CHROME for all system configurations. Moreover,

the performance benefit derived from concurrency awareness

increases with the number of cores. On average, CHROME

provides a speedup of 9.2%, 10.6%, and 12.9% in the 4-

core, 8-core, and 16-core systems, respectively, whereas N-

CHROME improves performance by 8.3%, 9.1%, and 10.0%,

respectively. The C-AMAT model offers accurate concurrency-
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Fig. 14: Speedup with different prefetching schemes.

aware system-level feedback information, thereby enhancing

the ability of CHROME to deliver robust performance. As the

number of cores increases, the number of concurrent accesses

in LLC also increases, thus increasing the opportunity for

CHROME to learn about the environment.

D. Performance on Unseen Traces

To demonstrate the generalization of CHROME, we evalu-

ated the performance of CHROME using GAP workloads that

were not used for hyper-parameter tuning. This is to examine

how CHROME reacts to unknown workloads. Figure 13 shows

that CHROME consistently displays outstanding scalability

and outperforms all other schemes for all configurations, even

for the unseen workloads. In the 4-core system, CHROME

outperforms LRU, Hawkeye, Glider, Mockingjay, and CARE

by 9.5%, 6.6%, 5.9%, 4.0%, and 3.0%, respectively. In the 8-

core system, CHROME achieves a speedup of 12.1% over

LRU, compared with an 8.3% improvement provided by

CARE, the second-best scheme among all tested schemes.

In the 16-core system, CHROME improves performance by

16.0%, compared to a 12.5% improvement provided by CARE,

which is again the second-best scheme in this case.

E. Performance on Different Prefetching Schemes

To evaluate the adaptability of cache management schemes,

we present a performance comparison of CHROME in a 4-

core system using two state-of-the-art multi-level prefetching

schemes: (1) a stride prefetcher [14], [15] at L1 and a streamer

prefetcher [7] at L2, a combination commonly employed in

commercial Intel processors [18], and (2) IPCP [38], the

winner prefetching scheme of the DPC-3 [10]. Figure 14

demonstrates that CHROME outperforms all other schemes

with both prefetching configurations. When employing a stride

prefetcher at L1 and a streamer prefetcher at L2, CHROME

enhances performance by 5.9%, while Mockingjay, another

integrated scheme, improves performance by 5.2%. When em-

ploying the IPCP prefetching scheme, CHROME attains a ge-

TABLE VII: Speedup with different FIFO sizes.

FIFO Size 12 16 20 24 28 32 36

Speedup(%) 6.2 7.1 7.8 8.2 9.2 8.0 7.5

UPKSA 911.2 884.1 857.0 830.6 805.2 781.4 759.1

Overhead(MB) 5.4 7.3 9.1 10.9 12.7 14.5 16.3
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Fig. 16: Hyper-parameter sensitivity of CHROME: (a) learning

rate ³, (b) discount factor µ, (c) exploration rate ϵ.

ometric mean speedup of 7.2% over LRU, while Mockingjay

achieves a performance improvement of 5.7%. The integration

of reinforcement learning greatly enhances the adaptability of

CHROME across different prefetch configurations.

F. Performance with Different EQ FIFO Sizes

Table VII shows the speedup of CHROME for all 4-core

SPEC homogeneous mixes, the Q-Table updates per kilo sam-

pled accesses (UPKSA), and the storage overhead associated

with varying EQ FIFO sizes. The FIFO size strikes a balance:

a larger FIFO provides a broader observation window, aiding

CHROME in capturing intricate access patterns. However,

this also reduces the frequency of Q-Table updates, poten-

tially affecting the adaptability of the RL agent. Moreover, a

larger FIFO brings added overhead. Optimal performance for

CHROME is observed with a FIFO size of 28.

G. Performance with Different Features

Figure 15 delineates the impact of individual state features

in CHROME across all 4-core SPEC homogeneous workload

mixes. Utilizing the PC as the sole state feature results in a

7.2% speedup over LRU. Conversely, employing only the PN

achieves a 3.6% speedup. Notably, when CHROME integrates

both PC and PN, a superior speedup of 9.2% is attained.

These results accentuate the combined efficacy of harnessing

control-flow and data-access features. Together, they adeptly

capture the nuanced memory access patterns of applications,

facilitating more informed cache management decisions.

H. Performance with Different Hyper-Parameters

Figure 16 shows the overall speedup achieved by CHROME

for all 4-core SPEC homogeneous workload mixes with dif-



ferent hyper-parameters. Figure 16(a) indicates optimal per-

formance at a learning rate of ³ = 1e−3, emphasizing the

balance between exploiting learned experiences and adapting

to dynamic environments. Figure 16(b) reveals the best dis-

count factor as µ = 1e−1, balancing immediate and long-

term rewards. Lastly, Figure 16(c) suggests that excessive

exploration, beyond ϵ = 0.001, can hinder performance by

not sufficiently leveraging the learned policy.

VIII. OTHER RELATED WORKS

In our experiments, CHROME is evaluated against four

state-of-the-art cache management schemes: Hawkeye [21],

Glider [44], Mockingjay [43], and CARE [35]. In this section,

we discuss the additional related works.

PACMan [56] mitigates prefetch-induced cache interference

by altering cache insertion and hit promotion policies, dis-

tinguishing between demand and prefetch requests. SHiP++

[58] employs a history table (SHCT) to anticipate re-reference

patterns of cache blocks using PCs. It refines SHiP [55] by up-

dating the SHCT solely on the first re-reference, differentiating

demand accesses from prefetches, and implementing prefetch-

aware updates. PA-Hawkeye [22] evolves from Hawkeye [21]

and observes that Belady’s OPT algorithm falls short with

prefetching. To reduce demand misses, it selectively increases

prefetcher traffic. Sethumurugan et al. [42] utilize reinforce-

ment learning offline to bolster prediction accuracy and derive

insights from the learned model. While these schemes empha-

size the synergy between LLC management and prefetching,

they often overlook the significance of bypassing. In contrast,

CHROME stands out as a holistic approach, combining cache

replacement, bypassing, and prefetching. It is also an online

RL-based cache management framework, using multiple pro-

gram features and concurrency-aware feedback.

IX. CONCLUSION

This paper introduces CHROME, a novel concurrency-

aware, online reinforcement learning-based holistic cache

management framework. CHROME continuously learns the

policy by interacting with the processor and the memory

system. The nature of online reinforcement learning allows

CHROME to perform well under varying system config-

urations and dynamic workload characteristics. CHROME

makes bypassing and replacement decisions based on mul-

tiple program features and concurrency-aware system-level

feedback information. Our extensive evaluations demonstrate

that CHROME consistently outperforms state-of-the-art cache

management schemes across different configurations, demon-

strating the significant potential of CHROME for data-

intensive scalable computing systems.
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