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ABSTRACT

We define a notion of modular forms of half-integral weight on the quaternionic excep-
tional groups. We prove that they have a well-behaved notion of Fourier coefficients,
which are complex numbers defined up to multiplication by +1. We analyze the mini-
mal modular form Of, on the double cover of Fj, following Loke—Savin and Ginzburg.
Using ©F,, we define a modular form of weight 3 on (the double cover of ) Ga. We prove
that the Fourier coefficients of this modular form on G9 see the 2-torsion in the narrow
class groups of totally real cubic fields.

1. Introduction

1.1 Main result

We introduce our main result by way of an analogy. Let ©(2) =, .4 q"2, where g = €>™%. As is
well-known, (%) is a classical holomorphic modular form of weight § and level I'1(4) C SLa(Z).
Consider the weight % modular form

Ecz(2) :=0(2)3 = ng(n)q";

n>0

here r3(n) := #{(n1,n2,n3) € Z> : n. = n? + n3 + n3} is the number of ways n can be written as
the sum of three squares. We have named this modular form after Cohen and Zagier, in light of
their papers [Coh75, Zag75].

Recall now the following theorem of Gauss.

THEOREM 1.1.1 (Gauss). Suppose n is squarefree, n = 1,2 (mod 4) and n > 4. Then r3(n) =
12 - |CH(Q(+v/—n))], 12 times the class number of the associated quadratic imaginary field.

Thus, the Fourier coefficients of Ecz(z) see the class numbers of imaginary quadratic fields.
Our main result is the construction of an analogous modular form ©¢, of weight % on GG3, whose
Fourier coefficients see the 2-torsion in the narrow class groups of totally real cubic fields. In
particular, we define a notion of modular forms of half-integral weight on certain exceptional
groups, very similar to the integral weight theory [GGS02]. We prove that these modular forms,
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which are now automorphic forms on certain non-linear double covers of these exceptional groups,
have a robust notion of Fourier coefficients. We then construct a particular interesting example
O¢, on G and partially calculate its Fourier expansion.

To motivate our construction of ©¢,, observe that one has a commuting pair SLy x SO(3) C
Spe- One can also think of Ecyz(z) as the restriction to SLg of a weight % Siegel modular theta
function: Ecz(z) = Ogp,(diag(z, z, z)), where

mivZvt
Osps(2) = Z e*rvs

v=(n1,n2,n3)€Z3

and Z is in the Siegel upper half-space of degree three. Now, there is the following commutative
diagram of inclusions.

Spﬁ Fy

U c U
SL2 X 80(3) GQ X 80(3)

Following Loke and Savin [LS10] and Ginzburg [Ginl9] we consider the automorphic minimal
representation on the double cover of Fy. We show that the minimal representation can be used
to define a weight % modular form ©f, on Fy, and define O¢, as the pullback to G of OF,.

The Fourier coefficients of modular forms ¢ on Gy are parametrized by integral binary
cubic forms f(u,v) = au® + bu?v + cuv? + dv3, a,b,c,d € Z, for which f(u,v) splits into three
linear factors over the real numbers. So, for each such binary cubic f, there is an associated
Fourier coefficient a,(f), which is a complex number well-defined up to multiplication by =+1.
Our main result is the explicit description of the Fourier coefficients of the weight % modular
form ©¢,. More precisely, we can explicitly compute these Fourier coefficients aog, (f) when the
binary cubic f(u,v) has d = 1. We explicate the special case of this result when the cubic ring
Zly]/(f(1,y)) is a maximal order in a totally real cubic field.

THEOREM 1.1.2. There is a modular form O, of weight 1 on G whose Fourier coefficients
satisfy the following: suppose f(u,v) = au® + bu?v + cuv? + dv® is an integral binary cubic form
with d = 1, and that the cubic ring R = Z[y]/(f(1,y)) is a maximal order in a totally real cubic
field E = R® Q.

(i) If the inverse different D}_zl is not a square in the narrow class group of E, then the Fourier
coefficient ag,, (f) = 0.

(ii) If the inverse different Dgl is a square in the narrow class group of E, then the Fourier
coefficient ag, (f) = +24|C1E[2]|, plus or minus 24 times the size of the two-torsion in the
narrow class group of E.

Thus, in both cases of Theorem 1.1.2, the Fourier coefficient of O¢g, corresponding to the
binary cubic f is £24 times the number of square roots of the inverse different 0}_%1 in the narrow
class group CIE of E.

1.2 Extended introduction
In this section we outline the contents of the paper.

1.2.1 Quaternionic modular forms. As our main results concern modular forms of half-
integral weight on the quaternionic exceptional groups, we begin by reviewing the integral weight

theory. To set the stage for these quaternionic modular forms, we first recall holomorphic modular
forms.
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Suppose G is a semisimple algebraic Q-group whose associated symmetric space is a
Hermitian tube domain. Then G has a notion of holomorphic modular forms. These can be
thought of as very special automorphic forms for G, which are closely connected to arithmetic.
They have a classical Fourier expansion and Fourier coefficients, and these Fourier coefficients
often encode arithmetic data.

Among the exceptional Dynkin types, only Fg and E7 have a real form with a Hermitian sym-
metric space, and only Er has a real form with an Hermitian tube domain. So, if one is interested
in studying a class of special automorphic forms on, say, Go, Fy or Eg, there is not an obvious
place to look for such objects. Nevertheless, beginning with work of Gross and Wallach [GW94,
GWO96] and developed in work of Wallach [Wal03] and Gan, Gross and Savin [GGS02], a theory
of special automorphic forms on the exceptional algebraic groups began to emerge.

These special automorphic forms have been dubbed quaternionic modular forms. For each
exceptional Dynkin type, there is a so-called quaternionic real form: for Go and Fy, this is the
split real form, whereas for Eg, F7 and Eg this is the real form with real rank equal to four.
The quaternionic modular forms are special automorphic forms on reductive groups G over Q
for which G(R) is a quaternionic real group.

The real quaternionic exceptional groups never have a symmetric space with complex
structure. However, these groups share similar structures, and the quaternionic modular forms
on these groups share similar properties. To be more specific, suppose G is an adjoint exceptional
group with G(R) quaternionic. Then the maximal compact subgroup K¢ of G(R) is of the form
(SU(2) x L)/pu2(R), for a compact group L that depends upon G. Let Vy denote the standard
representation of SU(2) and for a positive integer £ let V, denote the representation of K¢ that is
the representation Sym?‘(Vs) of the SU(2) factor and the trivial representation of the L-factor.
A quaternionic modular form on G of weight ¢ is an automorphic function ¢ : G(Q)\G(A) — Vy
satisfying:

(i) p(gk) =k™'-p(g) for all k € Kg and g € G(A);
(ii) Dy = 0 for a certain specific differential operator Dy.

This is the definition from [Pol20], which is a slight generalization and paraphrase of the definition
from [GGS02], where quaternionic modular forms are defined in terms of the quaternionic discrete
series representations of the group G(R).

To make this definition precise, of course we must specify the differential operator Dy. Let the
notation be as above. Write gg = £y @ pg for the Cartan decomposition of the Lie algebra gg of
G(R). Then, as a representation of K¢, one has p :=py® C ~ Vo @ W for a certain symplectic
representation W of L. Let {Xa}a be a basis of p and {X}, be the dual basis of p”. For ¢
satisfying p(gk) = k™1 - ¢(g), define Dyp = 3", Xap ® XY. Here X, denotes the right regular

action, and Dy is valued in
Vi @pY ~ Sym? (Vo) W @ Sym2~1(Vy) I W.

We let pr:V,®p¥ — Sym* (Vo) XW be the Kg-equivariant projection and define
Dy=pro 54.

The relationship of the definition of quaternionic modular forms with representation theory
is as follows. Suppose 7 is an irreducible (go, K)-module embedded in the space of automor-
phic forms on G(Q)\G(A) via a map «. Suppose, moreover, that 7 has minimal Kg-type V.
Then out of Vy and « one can construct a quaternionic modular form of weight ¢: for
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g € G(A) set
¢
0(g) = Y alz;)(g) ®y,
j=—t

where {xz;} is a basis of V, C 7, and :c;/ is the dual basis of V}/ ~ V. Using the fact that Vy is
the minimal K-type of 7, it is easy to show that ¢ is a quaternionic modular form of weight .
If ¢ is sufficiently large depending on G, there is a discrete series representation 7, of G(R) whose
minimal Kg-type is Vy, so embeddings of these discrete series representations into the space of
automorphic forms on G give rise to quaternionic modular forms of weight £.

Modular forms of integral weight ¢ have been studied in [GGS02], [Wei06], [Pol20, Pol22a,
Pol21, Pol22c] and [Dal23]. For an introduction to what is known about them, we refer to [Pol22b].
The main result of [Pol20] is that quaternionic modular forms have a robust, semi-classical
Fourier expansion, similar to the Fourier expansion of classical holomorphic modular forms on
tube domains. This result generalized and refined work of Wallach [Wal03].

To explain this Fourier expansion, we recall another common feature of the quaternionic
exceptional groups. While none of them has a parabolic with abelian unipotent radical, they
all have a Heisenberg parabolic P = M N whose unipotent radical N O Z = [N, N] D 1 is two-
step, with one-dimensional center Z. Thus, if ¢ is an automorphic form on G, one can take
the constant term ¢z of ¢ along Z, and Fourier-expand the result along N/Z: ¢z =3 ¢y
where ¢, (g) = IN(Q)\N(A) X 1(n)p(ng)dn. The main result of [Pol20] is an explication of
this Fourier expansion for quaternionic modular forms ¢ of weight ¢. Namely, it is proved
in [Pol20] that there are certain completely explicit functions W, : G(R) — V, so that if ¢
is a weight ¢ modular form, then ¢, (g) = ax(x)(97)Wy(gso) for some locally constant function
ay(x) : G(Ay) — C; here g = grgoo is the factorization of g into its finite-adelic and infinite
parts. The complex numbers a,(x)(1) are called the Fourier coefficients of ¢. This definition
is designed to mimic the classical definition of Fourier coefficients of holomorphic modular
forms.

While defined in a purely transcendental way, the Fourier coefficients of a quaternionic mod-
ular form ¢ appear to have arithmetic significance; for evidence of this claim, see [Pol22a, Pol21,
Pol22c]. One purpose of the present paper is to add to this growing evidence that quaternionic
modular forms have arithmetically interesting Fourier coefficients.

1.2.2 The double cover of quaternionic exceptional groups. In this paper, we define and study
certain quaternionic modular forms of half-integral weight and their Fourier coefficients. To
define these notions, suppose again that G is an adjoint quaternionic exceptional group. Then,
since G(R) deformation retracts onto Kg =~ (SU(2) x L)/u2(R), and K¢ has a 2-cover K¢ ~
SU(2) x L, the group G(R) has a 2-cover G. Choosing a basepoint of G above 1 € G(R)) makes
G into a connected Lie group, which is a central s(R)-extension of G(R.)

1 - m2(R) — G — G(R) — L,

and f((; can be identified with a maximal compact subgroup of G.

Our first result, which is perhaps of independent interest, is an explicit description of these Lie
groups G. To motivate it, let h = SLy (R)/SO(2) denote the upper half-plane and recall that one
can identify the double cover of SLy(R) with pairs (g, j,) where g = (¢ %) € SLy(R) and j, : h —
C* is a holomorphic function that satisfies j;(2)? = ¢z + d. If now G is an adjoint quaternionic
exceptional group, with symmetric space X¢ = G(R)/K¢, we define a factor of automorphy jyy, :
G(R) x Xg — GL3(C), satistying j1in(9192, ) = Jiin(91, 922)J1in (g2, ). We then consider the set
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of pairs (g,7,) with g € G(R) and j, : X¢ — GL3(C) continuous that satisfy Sym?(j,(z))
Jiin(g, ). It is easy to see that this set forms a group with multiplication (g1, jg, (2))(g2, jg. (2)) =
(9192, g, (922) g (2))-

THEOREM 1.2.1. With a certain topology on the set of pairs (g,j,) above, this set can be
identified with the connected topological group G.

When G is a split, simply connected algebraic group, such as Gy or Fy, Steinberg [Stel6] and
Matsumoto [Mat69] have defined a 2-cover G2 (k) of G(k) for every local field k. When k = R
and G = Gy or Fy, this 2-cover can be identified with the 2-cover G. The group G2 (k) can be
constructed by generators and relations [Stel6], as we recall in §2.4. The groups é(z)(Qv) can
be glued together to produce a 2-cover G (A) of G(A). It follows from the construction of
G® (A) and the global triviality of the Hilbert symbol that the group of rational points G(Q)
splits into G (A).

Now suppose £ > 1 is an odd integer. Let V5 = Sym! (V) be the representation of K¢ that
is the /th symmetric power of Vg, as a representation of SU(2), and is the trivial representation
of L. We define a quaternionic modular form ¢ for G of weight ¢/2 to be a V,y-valued

automorphic function ¢ : G(Q)\G@(A) — V2 that satisfies:

(i) @(gk) = k=1 p(g) for all g € G@(A) and k € Kg; and
(i) Dy = 0.

Here the differential operator Dy, is defined exactly as D, was above. If U C G(Ay) is an

open compact subgroup that splits into G® (A), and ¢ is stabilized by U, then we say ¢ has
level U.

To study modular forms of half-integral weight on the group G (A), it helps to have explicit
open compact subgroups U C G(Ay) together with an explicit splitting sy : U — G®? (A). This
is accomplished in the following result in case G is Fjy.

THEOREM 1.2.2. When G = Fy, there is an explicit, large open compact subgroup U, (4) that
splits into the double cover.

When p > 2, it is proved by Loke and Savin [LS10] that the hyperspecial maximal com-
pact subgroup of G(Q,) splits into G(Q)(Qp). Thus, it remains to analyze the case p = 2, and
it is here where we do detailed computations: in §2.5, we produce an explicit (non-maximal)
compact open subgroup of Fy(Q2) that splits into the double cover. Our result in this direc-
tion can be considered an extension of some work of [Kar21], who considers the simply laced
case.

1.2.3 The Fourier expansion of half-integral weight modular forms. With the groups é(Z)(A)
reviewed and the notion of quaternionic modular form defined, it makes sense to ask about exam-
ples and properties of quaternionic modular forms of half-integral weight. The main property
we prove is the existence of a robust, semi-classical Fourier expansion, analogous to the integral-
weight theory. To make sense of Fourier expansions on the covering groups G2 (A), one begins
with the observation that the unipotent group N(Q,) splits uniquely into 6(2)(Qv) for every
place v. Consequently, one can ask about the Fourier expansion of ¢z(g) if ¢(g) is an automorphic
function on G2 (A).

To produce the desired Fourier expansion, we analyze generalized Whittaker functions on the
groups G ~ G@(R). If x : N(R) — C* is a non-trivial unitary character, and ¢ > 1 is an odd
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integer, a generalized Whittaker function of type (V, x, ¢/2) is a smooth function F' : G — \7
satisfying:

(i) F(gk)=k™' F(g) forall g€ G and k € Kg;_
(ii) F(ng) = x(n)F(g) for all n € N(R) and g € G}
(iii) DyjoF = 0.

With regard to these generalized Whittaker functions, we prove the following theorem, which is
the analogue in the half-integral weight case of the main result of [Pol20]. To state the result,
we recall that if G is a quaternionic exceptional group, then there is a notion of ‘positive semi-
definiteness’ of non-trivial unitary characters x of N(R). We let M denote a particular fixed
Levi subgroup of the Heisenberg parabolic P, to be recalled in §2.2.

THEOREM 1.2.3. Let the notation be as above, with x a non-trivial unitary character of N(R).

(i) Suppose F' is a moderate-growth generalized Whittaker function of type (N, x,{/2), and x
is not positive semi-definite. Then F' is identically 0.
(ii) Suppose x is positive semi-definite and ¢ is fixed. There are a pair of non-zero functions
W)% (9) and W)? (g9) that satisfy the following properties:
(a) Wilg) =—Wi(9);
(b) the Wi are moderate growth generalized Whittaker functions of type (N, x,{/2);
(c) the set {W; (9), W)?(g)} depends continuously on x; N
(d) if r is in the derived group [M,M](R) and 7 is a preimage of r in G, then the set
{Wy(Fg), WE(Fg)} = {Wy.,(9), W3..(9)};
(e) moreover, if F' is moderate growth generalized Whittaker function of type (N, x,¢/2),
then there is a pair of complex numbers ay2(F) = —ay1(F') so that F(g)=

ay,; (FYW{(g) for j = 1,2.

Note that, if ¢ is the non-identity element of the preimage of {1} in G, then Wi(¢g) =
W)% (9¢) = —W; (9) = W)? (g9), so that one really needs both Wi and W)? to appear in property
2(d) of Theorem 1.2.3.

The Fourier expansion of quaternionic modular forms on G of weight ¢/2 follows immediately
from Theorem 1.2.3.

COROLLARY 1.2.4. Suppose ¢ is a quaternionic modular form on 6(2)(A) of weight (/2, and
g€ GA(R) ~ G. Then there is a lattice A in (N(Q)/Z(Q)) so that

0z(9) =enlg)+ DY al(x)Wi(g)
1#x€A

for certain complex numbers al,(x) that satisfy al,(X)Wy(g) = a2 (x)W(g).

The elements ai,(x) € C/{£1} are called the Fourier coefficients of . Note that the Fourier
coefficients are defined in terms of the restriction of ¢ to the group G (R) of real points.

1.2.4 The automorphic minimal representation. One of the first examples of quaternionic
modular forms of integral weight is given by the automorphic minimal representation on quater-
nionic Eg, which was produced by Gan [Gan00], see also [Pol22a]. The double cover of Fy has an
automorphic minimal representation; this representation was defined and studied by Loke and
Savin [LS10] and further analyzed by Ginzburg [Ginl19]. Our first example of a modular form of
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half-integral weight, in fact of weight 2, comes from this automorphic minimal representation on
FP(A).

The following is our main result concerning the automorphic minimal representation on
ﬁ4(2) (A). To state the result, let Jy = Sym?(Z3) denote the 3 x 3 integral symmetric matrices,
and let J be the dual lattice with respect to the trace pairing, so that Jj' is the set of half-integral
symmetric 3 X 3 matrices. If N denotes the unipotent radical of the Heisenberg parabolic of Fjy,
then there is an embedding of the lattice W(Z)YV = Z & Jy @ J; @ Z in the space of characters
W(Q)Y = (N(Q)/Z(Q)) = W (z)" Q.

THEOREM 1.2.5. Let Iy = i, f @ nin,eo denote the automorphic minimal representation

of ﬁf) (A). The minimal I?F4-type of Miin,co s Vo = V5. Consequently, if vy € Uy ¢, there

is an associated quaternionic modular form 6(vy) of weight 3 on ﬁf)(A). Moreover:

(i) the (a,b,c,d) € W(Q)Y Fourier coeflicient of 6(vy) is zero unless (a,b, ¢, d) is ‘rank one’;

(ii) the vector vy can be chosen so that §(vs) (cf. Theorem 1.2.2) has level Ur,(4) and has
non-zero (0,0,0,1) € W(Z)" Fourier coefficient.

The fact that the minimal K Fy-type of T is V7 5 follows easily from work of [ABP107]. As
explained above, this implies that there are associated Weight—% modular forms (vy¢) on Fy. The
statement that the Fourier coefficients of §(vs) vanish unless (a, b, ¢, d) is rank one is the result
[Gin19, Proposition 3| of Ginzburg, imported into our language. Where we work hard is the last
statement, that vy can be chosen so that §(vs) has large level and non-zero (0,0, 0, 1)-Fourier
coefficient.

To prove this result about level and Fourier coefficients, we make some detailed computations
of certain twisted Jacquet modules of the automorphic minimal representation 7, especially at the
2-adic place. To do these computations, we bootstrap off of twisted Jacquet module computations
in [GP80], which concerns the Weil representation of a double cover of GL2(Q,).

1.2.5 A modular form on G3. Let ©p, denote a weight 1 level Ur,(4)-modular form on
F 4(2) (A), with non-zero (0, 0,0, 1)-Fourier coefficient, as guaranteed by Theorem 1.2.5. We nor-
malize ©p, so that its (0,0,0, 1)-Fourier coefficient is £1. There is an embedding égQ)(A) C
ﬁf) (A), compatible with the splittings on the rational points. Denote by O, the pullback to

C:’éQ) (A) of ©F,. Then we check that O, is a quaternionic modular form of weight 3. Our main
result concerns the Fourier coefficients of Og,.

To describe these Fourier coefficients, first note that if N is the unipotent radical of the
Heisenberg parabolic of Gy, then (N(Q)/Z(Q))Y can be identified with the rational binary
cubic forms f(u,v) = au?® + bu?v + cuv? + dv3. Tt is easy to show that the Fourier coefficients of
O, vanish outside the lattice of integral binary cubic forms. We give a formula for the Fourier
coefficient ag, (f) for every integral binary cubic form f with d = 1.

To state (the main part) of this formula, we introduce a notation concerning cubic rings,
following Swaminathan [Swa2l]. Let R be an order in a totally real cubic field £ = R ® Q. Let
01}1 be the inverse different of R, i.e. the fractional R ideal consisting of those x € E for which
trp(xA) € Z for all A € R. Say that a pair (I, u) of a fractional R ideal I and a totally positive
unit p € EZ is balanced if:

(i) pl? Cogh
(i) N(p)N(I)%disc(R/Z) = 1.
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Thus, if R is the maximal order in E, (I, 1) is balanced if and only if uI? = 01_%1. Here N (u) is
the norm of p and N(I) (well-defined up to multiplication by +1) is the determinant of a linear
transformation of F that takes a Z-basis of R to a Z-basis of I.

Let Qg be the set of balanced pairs (I, 1) up to equivalence, where we say (I, i) is equivalent
o (I', ) if there exists 3 € E* such that I’ = BI, i/ = f2u. The set Qg is always finite and
sometimes empty. If R is the maximal order and QQr is nonempty, then we show in §3.5 that
|Qr| = |C1[2]| where C1}[2] is the 2-torsion in the narrow class group of E.

THEOREM 1.2.6. Let the notation be as above, and suppose the binary cubic form f(u,v) has
d = 1. Denote by R = Z[y]/(f(1,y)), and suppose that R ® Q is a totally real cubic field. The
weight 3 modular form ©¢, on Gy has Fourier coefficient aeg, (f) = £24|Qr|.

We also give an arithmetic interpretation of the Fourier coefficients of O, in the case that
R ® Q is of the form Q x K for K a real quadratic field. See §3.5.2.

2. Group theory

In this section, we work out many of the group-theoretic aspects of this paper. We prove
Theorems 1.2.1 and 1.2.2 of the introduction.

2.1 Central extensions: the general picture and conventions
Quaterionic modular forms of half-integral weight live on certain central extensions of adjoint
forms of exceptional groups. We therefore begin by discussing some generalities about extensions
of the group of points of algebraic groups and setting certain conventions. The theory is much
more transparent in the simply connected case (which is also our setting when G = Gj, Fy or
Eg), so we recall this setting first. We will only work over Q and its localizations, so we restrict
our discussion to this case. Let p be a place of Q and let Q, be the associated local field; we set
Assume that G is a simply connected, simple linear algebraic group over Q and consider the
topological group G(Q,) for p < co. In [Del96], Deligne constructs a canonical extension

1 — HA(Qp, pu?) — G"(Q,) — G(Qp) — 1

for any n € N. This construction relies heavily on the cohomology of the classifying space BG and
on the construction of the Galois symbol by Tate [Tat76]; we will not review this construction
further.

It is known [Del96, MS82] that if N is the number of roots of unity in Q,, then

H*(Qp, 117,?) = Ka(Qp)/(n, N)K2(Qp) = p1n,n)(Qp), (1)

where K2(Qy) is the Milnor K-theory of Q,. In particular, for any p < oo, we obtain a canonical
double cover

L — p2(Qp) — G(Qp) == GP(Q,) — G(Qy) — 1, (2)
which satisfies the following properties:

(i) when p = oo and G(R) is not topologically simply connected, then G is the unique connected
topological double cover of G(R) (note that 71 (G(R)) is either Z and Z/2Z, so this is
well-defined);

(ii) when G is Q-split, then for all p the group é(Qp) agrees with the topological double cover
constructed by Steinberg and Matsumoto via generators and relations.
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Both of these facts are relevant to us: in §2.3 we give an explicit construction for é(R) for
quaternionic exceptional groups that is amenable to the definition of generalized Whittaker
functions. On the other hand, our main applications to modular forms involve only the split
groups Fy and Gs. In order to make certain local calculations, we recall the Steinberg—Matsumoto
presentation of é(Qp) in §2.4.

If A = Aq is the adele ring, Deligne similarly constructs a canonical central extension of
G(A) by p2(Q), so that we have a short exact sequence of locally compact topological groups

1 — 12(Q) — G(A) — G(A) — 1. (3)

This central extension splits canonically over G(Q), allowing for the definition of automorphic
forms on this group. There is a decomposition G(A) =[], G(Qp)/ug , where G(Q,) is the local
cover (2) and p denotes the subgroup of @p p2(Qp) with product of terms being 1. When G is
a simply connected, semisimple group over Q or Q,, for p < oo (in particular, when G is of type
Ga, Fy or Eg), we always consider this canonical double cover of Deligne.

When our reductive group G is no longer semisimple and simply connected, such as the
adjoint forms of Eg and E7 or for Levi subgroups, there is no canonical central extension of
G(Qp) by 12(Q2); indeed, we will deal with two distinct double covers of GL2(Q)) in §4.3. The
classification of a large class of central extensions (known as Brylinski-Deligne covers) is given
in [BDO1], where the authors classify extensions of G by the Milnor K-theory sheaf Ky, viewed
as sheaves of groups on the big Zariski site over Q,. Given such a central extension of sheaves
of groups over Spec(Qy)

Ky — G — G,

one obtains a topological double cover by taking Q,-points and pushing out by the Hilbert
symbol as follows.

K2 (Qp) —— G(Qp) —— G(Qy)

Lk

12(Qp) —— é(Qp) — G(Qp)

Working globally, Brylinski and Deligne also extend the adelic formulation (3) to this more
general setting. The connection between Deligne’s cover and extensions by Ko may be seen in
the identification (1). Indeed, when G is semisimple and simply connected, it is shown in [BDO1,
§ 4] that for any p, there exists a central extension of sheaves of groups over Spec(Q,) such that
the bottom row of the above diagram recovers the sequence (2).

Suppose now that G is an adjoint exceptional group over Q of type Eg or E7 such that G LR)
is quaternionic (recalled in the next section). In this setting, we construct a double cover G of
G(R) in §2.3. Our convention is that we assume that G is a given Brylinski-Deligne cover of G
satisfying that the induced double cover of G(R) agrees with our construction up to isomorphism.
This is automatic if the pushout G(R) is connected and non-linear.

Finally, suppose that k is either a localization of Q or k= A and let é(k‘) be a given
topological double cover of G(k). If S is a subset of G(k), we denote by S its inverse image
in G(k). If U C G is a unipotent subgroup, then it is known that G(k) splits canonically over
U(k); we use a standard abuse of notation and simply denote by U(k) C U(k) the corresponding
subgroup of G(k).
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TABLE 1. The Freudenthal magic square, J = H3(C).

The group dimC =1 dimC =2 dimC =4 dimC =8
AJ Al A2 CB F4
MJ Ag AQ X A2 A5 E()
HJ 03 As D6 E?
G Fy Es Er Eg

2.2 Review of quaternionic exceptional groups
In this section, we review notation and constructions from [Pol20] concerning quaternionic
exceptional groups. For more details, we refer the reader to [Pol20, §§ 2—4].

First recall the notion of a cubic norm structure .J. This is a finite-dimensional vector space
J over a field k£ that comes equipped with a homogeneous degree-three norm map Ny :J — k, a
non-degenerate trace pairing (, ) : J ® J — k, a distinguished element 1; € J, and a quadratic
map # : J — JY ~ J. The relevant examples of cubic norm structures for this paper are J = k
and J = H3(C), the 3 x 3 hermitian matrices over a composition k-algebra C'.

Out of a cubic norm structure J, one can create various algebraic groups. First, denote by
M the identity component of the algebraic group of linear transformations of J that preserve
the norm Nj; up to scaling. Let M} denote the subgroup of M; with scaling factor equal to 1,
and let Ay be the subgroup of M} that fixes the element 1; of J.

We next discuss the so-called Freudenthal construction. If J is defined over the field k of
characteristic 0, define W; =k & J @ JV @ k, another vector space over k. One puts on W a
certain non-degenerate symplectic form (, ) and a quartic form ¢ : W; — k. The algebraic group
Hj is defined to be the identity component of the set of pairs (g,v(g)) € GL(W;) x GL; that
satisfy (gwi, gws) = v(g)(w1, ws) and q(gw) = v(g)?q(w). The map v : Hy — GL is called the
similitude, and H} is defined to be the kernel of v.

The next algebraic structure defined out of .J is a Lie algebra g(J). There are two equivalent
ways to define g(J). In the first way, one defines

g(N)=shomloheo(VzeJ).

Here m?] is the Lie algebra of M} and Vj is the standard three-dimensional representation of sls.
A Lie bracket can be put on g(J); see [Pol20, §4.2.1]. We refer to this way of thinking about
g(J) as the ‘Z/3-model’. Let E;; be the 3 x 3 matrix with a 1 in the (7, j) position and zeros
elsewhere. If X =3, . a;;Ej; has trace 0, we will sometimes consider X as an element of g(.J)
via the inclusion sl C g(J).

In the second way to define g(J), one puts

g(J)=shahjolheW,.

Here h?] is the Lie algebra of H} and V5 is the standard two-dimensional representation of sls.
We refer to this way of looking at g(J) as the Z/2-model. An explicit isomorphism between the
Z/3-model and the Z/2-model is given in [Pol20, §4.2.4]. An algebraic group G; can now be
defined as Aut’(g(J)), the identity component of the automorphisms of the Lie algebra g(.J).

The algebraic groups Ay, My, Hy, G fit into the Freudenthal magic square, as J = H3(C)
varies with dim C' = 1, 2,4, 8. In Table 1, we list the absolute Dynkin types of the above groups.
The magic square can be extended to a magic triangle, which was studied in [DG02]. We refer
the reader to [DGO02] for properties of this triangle.
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In the algebraic group G; we fix a specific parabolic subgroup Pj, called the Heisenberg
parabolic; see [Pol20, §4.3.2]. The subgroup P; can be defined as the stabilizer of the line
kE13 C g(J). It has H; as a Levi subgroup and unipotent radical N; O Z D 1 which is two-step.
Here Z = [N;, N;] is the exponential of the line kE;3, and one can identify N;/Z with Wy, as
a representation of H ;.

Suppose now that £ = R and the trace pairing on J is positive definite. Then the associated
real groups in each row of the magic square share similar properties: the groups Aj; are all
anistropic, while the groups M ; have real root system of type Ao, with root spaces that can be
naturally identified with the composition algebra C'.

In this setting, the groups H; all have a real root system of type Cs, with short root spaces
identified with C' and long root spaces one-dimensional. Denote by H j the identity component
of H;(R). The group H} or H} (which contains H!) has a hermitian symmetric domain. More
specifically, let H;y = {Z = X +iY : X, Y € J,Y > 0}. Identify H; with a subset of W; ® C via
Z v 19(Z):=(1,-Z,Z#,~N;(Z)). Then one proves (see [Pol20, Proposition 2.3.1]) that given
g € H} and Z € H,, there exists j(g, Z) € C* so that g -ro(Z) = j(g,Z)ro(gZ), for an element
gZ € Hj. This simultaneously defines an action of Hj on H; and the factor of automorphy
(9. Z).

Still assuming that £ = R and the trace pairing on J is positive-definite, the group G is
called a quaternionic group. The groups G in the final row of the Freudenthal magic square
now all have real root system of type Fy, with short root spaces identified with C' and long root
spaces one-dimensional. When J = R instead of H3(C'), the group G is Ga. We refer to these
cases by saying that GG; is a quaternionic adjoint exceptional group. In these cases, the group
G j(R) is connected [Tha00].

Suppose G is an adjoint quaternionic exceptional group. Then a specific Cartan involution
on its Lie algebra g(J) is defined in [Pol20, §4.2.3]. We denote by K the associated maximal
compact subgroup of G ;(R). The group K is of the form (SU(2) x L°(J))/u2(R), for a certain
compact group L°(J).

In [Pol20, §5.1], a specific slo-triple (eg, hy, f¢) of the complexified Lie algebra of the SU(2)
factor of K is defined. We now recall this sly-triple. Let e = (1,0)! and f = (0,1)" denote the
standard basis of the two-dimensional representation of sly C g(J) = sly @ b?] ® Vo ® Wjy. One
sets e = %(z’e + f)®@re(i-1y), fo = —eg and hy = [ey, fo]. Here 1; is the identity element of the
cubic norm structure J.

For ¢ € %Zzo, set Vo = C? and V; = Sym?(Vs), a representation of the Lie algebra of K ;
via the projection to the SU(2) factor. Using the above sls-triple, we fix a basis of V, as follows.
First, let =,y denote a weight basis of Vo for hy with y = fyz. Then we let the monomials %y
for i + 7 = 2¢ be our fixed basis of V,. When /£ is an integer, the representation V; exponentiates
to a representation of K.

2.3 The cover in the archimedean case

In this section, we describe an explicit construction of a connected topological double cover of
the quaternionic adjoint groups G ;(R). This gives the unique non-linear double cover of these
groups.

2.3.1 Preliminaries. Now let J be a cubic norm structure over the real numbers R, with
positive-definite trace pairing. We assume J = R or J = H3(C') with C' a composition algebra
over R with positive-definite norm.

Fix the sly-triple ez, hy, fr of g7 ® C, recalled above. Identify Span(eg, he, fo) with Sym?(Vy)
by sending ey — 22, hy — —2zy, fi— —y?. This identification is K j-equivariant; see the text
immediately before Lemma 9.0.2 in [Pol20].
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We recall an Iwasawa decomposition for the group Gj;(R). Let P;= H;N; be the
Heisenberg parabolic of Gj. Let Q5 be the parabolic subgroup associated to the cochar-
acter t s diag(t,t,t~2?) € SL3 — G;. The Lie algebra of @ contains the root spaces where
Eq1 + Ey — 2E33 acts by the weights 0,1,2 or 3. Moreover, @ stabilizes Span(FE13, E23) in
the Z/3-model of g, as one sees by checking this on the Lie algebra level. Define Ry = Py N Qs
and denote by R}r the connected component of the identity of R;(R). Recall that K ; denotes the
maximal compact subgroup of G;(R) associated to the Cartan involution described in [Pol20].

PROPOSITION 2.3.1. Every g € G;(R) can be written as g =rk with r € R} and k € K.
Moreover, if k € R} N K, then k acts trivially on Span(eg, hy, f¢).

Proof. The first part follows from the usual Iwasawa decomposition of G ;.

For the second part, let M (R ;) denote the standard Levi subgroup of R, so that M(Ry) is
the subgroup of H; that is the centralizer of the cocharacter defined above. Then R;(R)N K =
M(Rj;)(R)N K. Thus, R;(R)N K stabilizes the lines RE3 and RE»3 in the Lie algebra
g(J). We claim that R} N K acts trivially on these lines. To see this, observe that RT N K; =
M(R;)* N K is connected as it is a maximal compact subgroup of a real connected reductive
group. The triviality of the action of RJJr N Ky on Fi3 and Es3 follows.

Recall that H} denotes the similitude equal one subgroup of the Freudenthal group H.
One has H}(R) N K acts by the scalar j(k,i-1;) on es; see Lemma 9.0.1 of [Pol20]. Because
Rj NK;C H}(R) NKy, R}r N Kj acts by a scalar on ey. Because R} N K acts trivially on
Fo3, this scalar is 1. We deduce that RJJr N K ; acts trivially on ey, from which it follows that it
also acts trivially on f; and hy.

Note that for the second part, one cannot replace Rj with R;(R) as some elements of
R;(R)N K act non-trivially on Span(ey, hy, f7). O

2.3.2 The double cover. For k€ Kj, denote by Ad(k) the action of k on the space
Span(es, by, fr) = Sym?*(Vs). Fix an RX-valued character x of R}', to be specified later. We
define

fin : Gy(R) — Autc(Sym®(Va)) ~ GL3(C)

as fin(g9) = x(r)Ad(k) if g =rk with r € R} and k € K;. By Proposition 2.3.1, fi, is well-
defined, because X(RJJr N Ky) =1 as the image is a compact subgroup of RZ,,.
Now, consider the symmetric space X; = G ;(R)/K j; it is connected and contractible. Define
Jiin(g,z) for € Xy and g € G5 (R) as fiin(gh) fin(h) 7! if # = hK ;. Note that jy, is well-defined.
One has the following proposition, whose proof we omit; it follows from the fact that the
Iwasawa decomposition of G j(R) is smooth.

PROPOSITION 2.3.2. The maps
fiin : Gy (R) — Autc(Sym?(Va)) and  jin : Gy(R) x Xj — Autc(Sym?(Vy))
are smooth.
We may now define G.
DEFINITION 2.3.3. Let G be the set of pairs (9,Jg) with g € G;(R) and
g : X5 — Autc(V2)
continuous so that Sym?(js(z)) = jin(g, ). A multiplication is defined as

(91, 51(2)) (92, j2(2)) = (9192, J1(g22)j2()).
The identity is the element (1, e) where e(z) =1 for all x.
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With these definitions, it is easily checked that G J is a group.

A topology can be put on G 7 as follows. Let g = 1K; € X; be the basepoint determined
by K ;. Now, note that given g € G ;(R), there are exactly two continuous lifts X ; — Autc(Vs)
of jin(g, —) : Xj — Autc(Sym?(Vs)), and that these lifts are determined by their value at xq.
Thus, there is an injective map of sets G; — G;(R) x GLy(C) given by (9,dg(x)) — (g, 44(z0))-
We give G the subspace topology of G j(R) x GL2(C) via this map.

For ¢ = (g, jo(z)) € Gy, we write Jua(d', z) = 4y(2).

PROPOSITION 2.3.4. With the above topology, é] is a connected topological group. The
canonical map Gj — G j(R) is a covering map with central us kernel.

Proof. One first proves that G J is a topological group and G 7 — Gj(R) is a covering space.
This is an exercise in covering space theory, so we omit it.
Let us explain the connectedness of G;. We will check that (1,e(z)) and (1, —e(z)) are
connected by a path. Given the other claims, this suffices.
To see that (1,e(x)) is connected to (1, —e(z)), we consider ho = (°; §) € slo C gj =5l ®
9 @ Vo ® W;. Now, by our formulas for the Cartan decomposition, hg is in the Lie algebra of
Ky, so exp(thp) is in K; C G 7(R). One computes that exp(thgy) acts on ey, hy, f; as:

— €yt e_itEg;
— hg— hy;

~ for e fo

Now consider the path [0,27] — K; C G;(R) given by t +— exp(thg). This path is a loop,
with 27 — 1. Because Gy — Gj(R) is a covering space, it lifts to a path 7 : [0,27] — G sat-
isfying 7(0) = 1. Thus, j;/2(7(t), z0) € GL2(C) satisfies that its symmetric square is the action
on ey, hy, f¢ given above. Because it is continuous and the identity at t =0, j;/2(7(t),70) =
diag(e~"/2 ¢*/2). Consequently, J1/2(7(2m), x0) = —1. This proves our assertion. O

Note that since K is itself connected and the path 7 stays in K J, we see that the inverse
image K g of K is a connected compact Lie group.

Because G; — G j(R) is a covering space, G is uniquely a Lie group. Note also that the
map j/2(, o) : K;— Autc(Va) is a group homomorphism. Finally, we remark that Rj splits

into Gy as r — (r, j.(x)) with j,.(z) = x(r)/2 for all z € X.

2.3.3 An application. Define v : Ry — GL; as rE13 = v(r)Ej3 and A : Ry — GL; as rFEy3 =
A(r)E2s 4+ *E13. In other words, if det is the determinant of the action of Ry on Span(FE13, Fa3),
then A = det(-)v~!. Define ¥, the character defining fii, as x = vA~! = v2det(-) . With this
choice, which we will make from now on, one has the following lemma. Let Ky = H}(R) N K
be a maximal compact subgroup of H}(R).

LEMMA 2.3.5. With h € H}, one has jin(h,zo) = diag(j(h,i),1,j(h,i)) via the action on

22, xy,y?. Thus, if z€ Hy= H}(R)/KH C Gy /Ky, then jun(h,z) = diag(j(h,z),1,5(h,z)).
Consequently, the (1, 1)-coordinate of j; o : Hj — GLo(C) defines a squareroot of j(h, z).

Proof. Let Pg denote the Siegel parabolic of Hjy, so that P¢ = Hjy N Rj;. Suppose h € Hj is
h = pk with p € Ps(R)" and k € Ky C HY(R). Then

3(p,i) = (pro(i), Eag) = v(p)(ro(i),p " Eas) = x(p)-
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Moreover, essentially by the definition of j, Ad(k) = diag(j(k,),1,j(k,)). As j(h,i) = j(pk,i) =
j(pa Z)J(kv Z)a one obtains jlin(h7 iL‘()) = dlag(ﬂ(h7 2)7 17 j(ha 7‘))
For the second statement, suppose h, € Hj satisfies h, - i = z. Then

jlin(h7 Z) = fhn(hhz)flln(hz)_l - dlag(](hh27 1)7 17](hhza Z)) dlag(](h37 Z)a 17](h27 Z))_l

= diag(j(h, 2),1,(h, 2)).
The proposition follows. O

2.4 Steinberg generators and relations

In this section, we let k be a local field of characteristic zero and assume that G is a simply
connected simple group over k. In this setting, Deligne’s double cover (2) coincides with the
Steinberg-Matsumoto cover. We thus recall this construction for the purposes of certain p-adic
calculations in later sections.

Suppose that ® is a simple root system and A a set of simple roots. We let (a, 3) denote the
pairing on ® normalized so that («, a) = 2 for a long root (when the root system is simply laced,
we assert that all roots are long). Suppose that g is the associated split, simple Lie algebra over
Q and G the associated split, simply connected group. Steinberg [Stel6] gives a presentation for
the group G(k) in terms of generators and relations. One has generators z,(u) for all roots «
and u € k, subject to the following relations:

(1) za(u)za(v) = za(u +v);
(ii) if o, 8 are roots with o + ( # 0, then the commutator

{za(u), xﬁ(v)} = H xia-}—jﬂ(cijuivj)
ia+jBED,i,j€Z>0
for integers C; ; that depend upon the order in the product but are independent of u, v;
(iii) for t € kX set wq(t) = 2o(t)T_o(—t x4 (t) and ha(t) = wa(t)wa(—1). Then hy(t)ha(s) =
ha(ts);
(iv) when @ is of type A1, then we (t)To(u)wa(—t) = _o(—t2u).

Following Steinberg [Stel6, Theorem 12] (see also [LS10, §2]), a topological double cover
of G(k) can now be defined as follows. Recall the Hilbert symbol (-,-)2 : k™ X k* — pa(k). One
takes as generators elements x,(u) and {1,(} = po satisfying relations (i), (ii) and (iv), along
with:

(v) the elements 1,( are in the center;
(vi) for t € k* set

Ba(t) = 2a(t)T—a(—t DNza(t) and he(t) = Wa(t)Da(—1);
then ha(t)ha(s) = ha(ts)(t, s)2/ ().
From [LS10, § 3, p. 4904], who cite [Mat69, Lemme 5.4], one has
{ha(s).hs(t)} = (.05 7, (4)

where a¥ = 2a/(a,a). We let G(k) denote the double cover of G(k) constructed here, where
the projection p : é(k) — G(k) is given by sending generators to the analogous generators in
G(k). As noted previously, this construction recovers Deligne’s cover (2) in the split case. In
particular, if J = R or H3(R), so that G = G is the split group of type G2 or F}, respectively,
then G(R) = G.
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2.5 2-adic subgroups of Fy
We now specialize to k = Q2 and G the split group of type Fjy. We enumerate the 4 simple roots
in the usual way, so that the Dynkin diagram

O—— —0=>=0———20

has labels oy through a4 from left to right. In this section, we define certain compact open
subgroups Kj(4) and K',(4) of F4(Q2) that we prove inject into F4(Q2). This first group is the
natural analogue in Fy(Qg2) of the classical compact open subgroup

{( é g > € Spg(Za) : C =0 (mod4), det(A),det(D) =1 (mod4)}
that arises in the theory of Siegel theta functions of half-integral weight; indeed, K}, (4) essentially
intersects the standard GSpg-Levi subgroup of ﬁ4(Q2) in this group.

For global purposes, it is better to pass to a certain conjugate of this compact open subgroup,
denoted K7(4). While we do not use the subgroup K7(4) in the sequel, it is nevertheless more
natural to define and prove properties about (splitting, Iwahori decomposition, etc.). Thus, we
consider the case of Kj(4) first, then pass to the conjugate K5 (4) in §2.5.4. In §4.2.1, we use
the group K7,(4) to construct the quaternionic modular forms of half-integral weight described
in Theorem 1.2.6.

Remark 2.5.1. We remark that one can also construct quaternionic modular forms of level K7,(4).
However, it is unclear whether their Fourier coefficients are as interesting.
2.5.1 Preliminaries. To begin, we record the following slight extension of [Kar2l,

Lemma 3.1].

LEMMA 2.5.2. Let k be a local field of characteristic zero. Suppose that ® is a simple root
system and G(k) is the corresponding simply connected group. For any a € ® and s,t € k such
that 1+ st # 0, in the double cover G(k) we have

£\ e s\~ t
« —a =(1 IE—— —a o 1 a .
To(t)T_o(s) < + st 1—|—st>2 x <1+3t>h( + st)x <1+st>

Proof. This follows from [Ste73, Proposition 2.7]. O

COROLLARY 2.5.3. With notation as above, now let k = Qg and let a € ® and s,t € Qs.

(i) If ® is doubly laced and « is a short root, then
To(t)7—al(s) = x_a< s )Eau + st):ca( ! )
1+ st 1+ st
(ii) Let ® be of any type. If valy(s) > 2 and vals(t) > 0, then

o) T_a(s) = 7o <1jst>%a(1 + st)xa<1 i St>.

Proof. The proof of the first claim is immediate from the lemma and our normalization that
(8, 8) = 2 for long roots, so that («, a) = 1 for our short root. The second claim follows precisely
as in the proof of [Kar21l, Lemma 3.1] with A = 0. O

We now return to G = Fy. The inclusion of rational Lie algebras m — g(.J) discussed in
§2.2 gives rise to an embedding of algebraic groups SLs — Fy when J = H3(Q). In terms of
roots, the image corresponds to the subroot system with simple roots {as,as}. When k is a
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local field, note that this embedding lifts to a splitting s : SL3(k) — ﬁ4(k‘). Indeed, the subgroup
SL3(k) of Fy(k) is generated by the elements zg(u) for 5 lying in the subroot system generated
by {as, as}. We may define this SL3(k) via generators and relations as in § 2.4, and the relations

defining it continue to be satisfied in Fy(k) due to Corollary 2.5.3.

LEMMA 2.5.4. Let SLg C Fy be the Q-subgroup just described. For any local field k, the double
cover Fy(k) splits uniquely over SL3(k).

2.5.2 The case of Kj,(4). Recall that a1, as, a3, a4 are the simple roots of Fy, with aq, as
long and as, ay short. Let R = MrUp be the standard non-maximal parabolic subgroup of Fj
with simple roots ag, a4 in the Levi M. The notation R here refers to the non-maximal parabolic
Ry from §2.3 as these two parabolic subgroups agree when G = G is of type Fj. Set

(I)J\+4R = {az, a4, a3 + as},

set @, = _(I)A+JR and @7, = (I>]\+/[R Uy, Let <I>§R =®t\ @LR, so that CI%R contains the roots
in the unipotent radical Ugr of R. B
Set Kj,,.(4) to be the subgroup Mr(Q2) generated by hq, (1 +4Zs) for i = 1,2 and z3(Z2)

for 8 € @y, Let Uf (Z2) be the subgroup of F4(Qy) generated by xg(Zy) for all § € <I>£§R, and
let Up (4Z3) be the subgroup of ﬁ4(Q2) generated by x_g(4Zs) for all § € <I>[§R. Finally, let
K7},(4) be the subgroup of F4(Q2) generated by Ur(4Z3), K}y, (4) and U} (Zs). We have the
following theorem.

THEOREM 2.5.5. Let the notation be as above.

(i) Ome has K§(4) = U (4Z2) K3, (49U (Zo).
(ii) The map K3(4) — Fi(Qz2) is injective.

We will prove this theorem below. While the statement is natural, the proof is technical due
to the lack of uniqueness of sections over various tori in F4(Q2). As a result, we cannot simply
rely on the Iwahori factorization of the image of KF(4).

It is easy to deduce the following corollary of Theorem 2.5.5.

COROLLARY 2.5.6. The group K%(4) has an Iwahori decomposition with respect to any standard
parabolic subgroup containing R.

_ Recall the subgroup SL3 C Fy from the previous subsection. The subgroup s(SL3(k)) of
Fy(k) is that which is generated by the elements zg(u) for 8 € ®ys,. Using Lemma 2.5.4, we
now observe the following.

LEMMA 2.5.7. The map K3}, (4) — Fi(Qz2) is injective.

Proof. If g € K}, (4), it is easy to see that one can express g as a product g = t1tos(g’) with
tj € ha; (14 4Z2) and ¢' € SL3(Qz). Consequently, if g — 1 in Fy(Qg), then t; =t =1 and
g =1, proving that g = 1. O

We will prove part (i) of Theorem 2.5.5 in § 2.5.3. Let us observe now that part (i) implies part
(ii). Indeed, suppose g = nymny is in Kj(4) with ny € U (4Z2), m € K}, (4) and ng € Ut (Zs).
If g+— 1 in F4(Qz2), then we see easily that n; = 1 and ng = 1. Thus, m + 1, hence m =1 by
Lemma 2.5.7.
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2.5.3 Iwahori decomposition. For a non-negative integer m, let U;{(T"ZQ) be the subgroup
of F4(Qa) generated by xg(2MZy) for all B € <I>+R, and let U (2™ Zs2) be the subgroup of Fy(Qy)
generated by x_g(2™Zy) for all § € @gR.

We begin with the following lemma. Let Up be the unipotent radical of the standard Borel
of F4(Q2).

LEMMA 2.5.8. Recall that A = {aq, ag, a3, au} are the simple roots.

(i) The unipotent group Up(Qz2) is generated by the x,,(Q2);
(i) Let Uy be the subgroup of Ug(Qs) generated by the x,(Z2). Then U, contains Uf; (24) for
some A > 0.

Proof. The first part of the lemma is standard. For the second part, suppose a € @;}R. By the
first part, there exists a finite word u in elements of the form x,,(r;) with 7; € Qg, so that
u = x4(1). Let TTF denote the subgroup of t € T with |a;(¢)| < 1 for all i. Conjugating by a
sufficiently deep t € TTT, one finds that there exists a non-zero r, € Zy so that x4 (rs) € Us.
Now, for ¢ € ZJ, consider the commutator {hq(t), 2o(re)}. On the one hand, because t € Z,
this commutator is in Us. On the other hand, this commutator is z,((t? — 1)ry). As t varies in
Zy, 2 — 1 fills out 8Zy. Thus, there is N, > 0 so that x,(2VZy) C Us. The lemma follows. [0

Let U be the set of products of the form U§(4Z2)K]*V[R(4)UE(Z2). Let K%(4,2™) be the
subgroup of F4(Qz) generated by Ug (4Z3), K}y, (4) and Uf (2™Zy), so that Kj(4) = Kj(4,1).
In order to prove Theorem 2.5.5, we need to check that K5 (4) - U = U. We will do this by proving
K3(4,24)-U = U for A>> 0, then inducting down on A to obtain K3(4,1)-U =U.

We start with the following lemma.
LEMMA 2.5.9. One has Up(4Z3) - U =U, and K}, (4) - U =U.

Proof. That Ug (4Z2)U = U is trivial. For the multiplication by K3, (4), one uses that if 8 €
<I>[;R, a € ®pr,, and a, b are positive integers, then if v = aa + b3 is a root, then v € <I>[;R. The
lemma then follows easily by applying the commutator formula.

Now we have the following.

PROPOSITION 2.5.10. There is A > 0 such that U (24)-U C U.

Proof. By Lemma 2.5.8, it suffices to show that z,(Z2)U C U for all simple roots «;. By
Lemma 2.5.9, we must only check this for i = 1, 2.

Thus suppose that «; is a simple root, i = 1,2, and o € @JUFR. Note that if a,b are positive
integers, and o # «, then if v = aa; — ba is a root, then v € 7. Indeed, aa; = v + ba, so that if
~ were positive, we would have that both v and « are proportional to «;, a contradiction. It follows
that, for such a; and avand u € Zy, v’ € 4Zy, the commutator {zq, (u), 2_(u')} € Uz (4Z3). Here
Uy (4Z7) is the subgroup of F4(Q2) generated by x(4Z2) for B a negative root.

Let us also note that Ta,(u)Z_a,(W) = 2_a, (' /(14 wt!))ha, (1 + wt) e, (u/(1 + u)).
Combining these two facts, we obtain the following: if g = nymng is in U, then zq,(u)g =
n)Ta, (w)m'ng with ny € Ug(4Z2) and m' € Ky, (4).

Now, one verifies easily that if m' e K* o(4) and ue€ Ut(Zs), then (m/)~lum’ e
Uf (Zs). Consequently, zq,(u)g =nim'n} is in UB (4Z3) - U. The proposition follows from
Lemma 2.5.9. OJ

It follows from Proposition 2.5.10 and Lemma 2.5.9 that K3(4,24)-U C U for A > 0. As
mentioned, we will now induct downward on A to obtain Kj(4)-U = U.
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We require the following lemma.
LEMMA 2.5.11. Let the notation be as usual.

(i) The sets Eai(l + 4Z5) are subgroups, and they commute with each other.
(ii) Suppose t € 1+4Zy and (€ ®. Then there are ti,...,ts € 1+4Zy so that hg(t) =

H?:l h’ai (tl) .

Proof. The first part of the lemma follows from the usual multiplication formulas, together with
the fact that the Hilbert symbol is trivial when restricted to 1 4+ 4Zs. For the second part of the
lemma, we mimic the proof of [Stel6, Lemma 38(b)]. Thus, suppose = wa; with «; a simple
root. Write w = waw’ where length(w') = length(w) — 1. Set v = waf so that § = wa7y. Now
[Ste16, Lemma 37(c)] yields that @e(1)hy (t)@Wa(—1) = Ay~ (t)(c,t) for some ¢ = +1. However,
because t € 1 4+ 4Zy and ¢ = %1, (¢,t) = 1. Thus, lNzg(t) = ﬂ?;(l)%v(t)@(—l), from which we
obtain

hip(t) = ho (8) (e (1) 00 (1) (8) Wa(=1) = By () (¢ 47 )i (<1),

using [Stel6, Lemma 37(e)] for the second equality. But this is lNLW(t)iNLa(t_@‘m). The lemma
follows by induction on the length of w. O

PROPOSITION 2.5.12. For every non-negative integer m, one has K*(4,2™)-U C U.

Proof. As just noted, Proposition 2.5.10 implies K% (4, 24).U C U for A> 0. We will induct
downward on N to obtain the proposition.

Thus, suppose that we have proved K% (4, 2mT1) .U CU for a non-negative integer
m. We wish to verify that K3(4,2™)-U CU. To do this, it suffices to check that
UE(2mZ2) -U CU. Thus, suppose u = x4(2™s) € UE(2mZQ) and x = n;mny € U. We have
uz = (unju~Y)m(m~lum)ny. It is easy to see that (m~'um)ny € U (Zs). We claim that
unqu~t € Kj(4,2™*1). Granted this claim, the proposition follows.

To prove the claim, suppose ny = v - - - v, with each v; of the form z_g, (4s;) with s; € Zy and
B € @;}R. The commutator formula gives uvju~! = k' with k' € K5(4,2™"1). Indeed, if o # ;
this follows from the commutator formula. If o = (3;, this follows from the formula

Ta(t)x_a(s) = x_a(s/(1 +1ts))ha(1 + st)xa(t/(1 + st)),
which implies

Lo ()T (5)2a(—t) = 2_a(s/(1 +t5))ha(l + st)za(—st?/(1 + st)). O

2.5.4 The case of K75(4). We now define a new subgroup, K(4) C ﬁ4(Q2), by conjugating
K73(4) by a certain element of H;(Qg2). This has the effect of changing which root groups are
generated by entries in Zg or 4Zs. We verify that this conjugate has an appropriate Iwahori
factorizations; that it maps injectively to the linear group F4(Q2) is immediate. Our motivation
is that this new group gives a useful compact open subgroup of ﬁ4(Q2) for global constructions.

We need to introduce a bit more notation. Recall that P¢ = H; N R is the Siegel parabolic
subgroup of H; it has Levi decomposition Ps = MrNg. We set Q = LUg denote the standard
maximal parabolic of Fj associated to the simple root agy. Recalling the notation in §2.3, this
is the parabolic Q; of Gy = F; when J = H3(Q),). Let wg € H;(Z) C H;(Z3) be a represen-
tative of the unique minimal-length Weyl group element for H; which normalizes the My and
conjugates the Siegel parabolic Ps to its opposite.
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Let @} be the set of roots in the unipotent radical N of the Heisenberg parabolic P. Let
<I>X,S be the set of roots in the unipotent group Ng. These are the roots EZ m;o; with mp =0

and mo = 1. Note that @JU“R = oL U @ES ={a} U <I>JUFQ.
We let N (2™Zs) be the subgroup of Fy(Q2) generated by z4(2™Zy) for all a € CDES and

let Nt (2™Zs5) be the subgroup F4(Q3) generated by zq(2™Zs) for all a € @ Similarly, define
N~ (2"Zy) and Ng (2"Zy).

Set U (4,1) to be the subgroup generated by Nd (4Z3) and NT(Zs). Let Ug(1,4) denote
the subgroup generated by Ng (Z2) and N~ (4Z3). Finally, we define K},(4) to be the subgroup
generated by Up (1,4), K}, (4) and Uk (4,1).

The goal of this section is to prove the following theorem.

THEOREM 2.5.13. Let the notation be as above.

(i) One has Kp(4) = Uz (1,4) - K3y (4) - Uf(4,1).
(i) The map Kj(4) — F4(Qg) is injective.

Proof. We first show that K},(4) = woKjw, ! by showing that wg sends the generators of K} (4)
to those of K};(4). This is a straightforward calculation on the level of roots groups in F4(Qz2),
so we need only ensure the claim with our choice of lifts in the cover. Note that the conjugation
action depends only on the element in F4(Q2) and not a choice of lift.

Recall that K73(4) is generated by Uy (4Z2) = N7 (4Z2)Ng (4Z), K7} (4) and Ut(Zs) =
NT(Z3)Ng (Zs). Since the cover splits canonically over unipotent subgroups, the action of wp
on the unipotent generators is uniquely determined by the corresponding conjugation in F4(Q2),
where one readily verifies that

woNg (4Z2)wy ' = NI (4Zs), woN~ (4Zo)wy' = N~ (4Zo),

and similarly for the factors of U;g. In addition, wy permutes the root groups xg(Zs2) for 5 € @y, .
Thus, we need only consider the torus generators Eai(l +4Z3) with i = 3,4 of K}, (4).
Suppose that wg = s153 - - - s be a minimal word decomposition of the associated Weyl group
element in terms of simple root reflections. For any root «, let ﬁa(t) be the distinguished lift of
the corresponding coroot hq(t). Then [Gaol7, 2.1(3)] tells us that for any simple reflection sg,

spha(t)sy’ = ha(t)h(t™ 7).

In particular, this implies that for any ¢t € 1 + 4Zo, woza(t)wo_ Uis a product of (commuting)
elements of the form Eg(s), where s is a power of t and § ranges over the simple roots appearing
in the word decomposition. In particular, for each 7 = 3,4, we see that woﬁai (t)wy e K]T/[R 4),
showing that wo K}, (wy ' = K} (4).

On the other hand, we may also compute this conjugation in the group H;(Qgz) =
GSpg(Qz2), where it is easy to see that for both i = 3,4, wgﬁai (t)wg ! projects to he, (t~1). This
forces wgﬁai (tywy ' = e(t)%ai (t~1) for some central sign character € : 1 + 4Zy — p2(Q2). Since
woha, (wy ' € Ky (4), Theorem 2.5.5 forces woha, (H)wy ' = ha(t™).

Thus, K%(4) = woKjwy ' Theorem 2.5.13(ii) immediately follows from the corresponding
statement in Theorem 2.5.5.

For the Iwahori decomposition, let ¢’ € K% (4) be arbitrary and set g = wy 'g'wo € K5(4).
Recall that P; = H;N; is the Heisenberg parabolic subgroup. Set K7(4) := K3 (4) N H7(Q2).
Then Corollary 2.5.6 implies that g € Kj(4) can be written uniquely as g = nmu, with
n € Nj (4Z3),u € Nj(Z3), and m € K%(4). Note that a simple corollary of the uniqueness in
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Theorem 2.5.5 is that Kj(4) possesses the Iwahori decomposition
Kj(4) = Ng (4Z2) Ky, (4)Ng (Z2). (5)
Conjugating by wy,
wogwy ' = (wonwg ') (womwg ') (wouw ), (6)

where now wouw, e N (4Z3) and wouw lenN 7(Zy). Using the group structure and Iwahori
decomposition (5), we may write m~! =uy'myn; where ny € Ng(Z2), u1 € Ng (4Z3) and
m1 € Ky, (4). Inverting, we get

m=nimiuy € Ns(ZQ)KX/[R (4)NS_ (4Z2).
We can now conjugate by wqg to get

womwo_l = (wgnlwgl)(womlwal)(woulwo_l),

with wouiwy * € Ng(4Zs), woniwy * € Ng (Z2) and womiwy ' € K3y, (4) since woK}“wR(4)11)0_1 =

iy, (4).
R
Combining this with the decomposition (6), we obtain a unique expression

g/ _ wawo—l — n'md

where n/ = wonnlwal eU (1,4), u'= wguluwal ceUT(4,1) and m' = womlwal €
Ky, (4). O

We now state a corollary of Theorem 2.5.13 that we will need. Denote by @il the roots
> mia; with both my, mg > 0. Then @fv is a disjoint union of {«;} and (1>1+,1' Set Uffl(Zg) the
subgroup generated by z,(Zs) for all a € <I>f1. Define Uy ;(4Z2) similarly.

COROLLARY 2.5.14. The group K',(4) has an Iwahori factorization with respect to Q.

Proof. Suppose g € K7(4). By Theorem 2.5.13, we have g = nikny with ny € U5 (1,4), k €
K}y, (4) and ng € U (4,1). Conjugating all terms of the form z_q, (4u) in ny to the right, one can
write n1 = njny, where n} in the group generated by Ng (Z2) and U} | (4Z2), and nf € x_qo, (4Z2).
Similarly, one can write ny = ninb, with n in the group generated by N (4Z,) and U1+, 1(Z9)
and nfy € xq, (Z2). This gives g = n)(n{knf)n}, which is the desired Iwahori factorization. O

2.6 Integral models

In the previous sections, we have defined integral models of the algebraic groups G2 and Fj using
the Chevalley—Steinberg generators and relations at each finite place. To do computations in the
later sections, and to coherently relate these integral models to lattices in € J(R), we will need a
somewhat explicit understanding of these integral models. In this section, we give such explicit
integral models for the groups Gy and Fy. Via the work of Steinberg, this amounts to giving a
Chevalley basis of the corresponding Lie algebras, which is what we do.

2.6.1 Type Ga. We define goz := M3(Z)"=0 @ V3(Z) @ V3'(Z). A Chevalley basis can be
given by X, being E;; in M3(Z)"=°, vy, v2,vs in V3(Z) and —81, —d2, —d3 in V3 (Z). Here vy, v2, v3
is the standard basis of V3 and 41, d2, d3 is its dual basis.

2.6.2 Type Fy. First we set Jy = H3(Z) to be the symmetric 3 x 3 matrices with integer
coefficients. Let mj(Z) be the elements of m; that take Jy to itself.
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We set
faz = (M3(Z) ©my(Z))*"=H/Z(13,21,,) @ V3(Z) @ Jo @ V3(Z)" @ Jo,
where the notation is as follows. Here p : mjy — Q is the map satisfying
(X1, X2, X3) + (X1, X2, X3) + (X1, X2, 0 X3) = p(¢) (X1, X2, X3).

A pair (¢1, ) € M3(Z) ®my(Z) is in (M3(Z) & my(Z))* "= if 2tr(¢1) = pu(¢p2). Note that the
pair (13,21,) is in (M3(Z) © m;(Z))?"=* and we quotient out by the integer multiples of this
pair.

We identify the quotient (M3(Z) ® m;(Z))*"=H/Z(13,21,,) with a subset of sl3 & mY via

(61, 62) = 61 + b3 — tr(d1)1 = (m _ tr(f%) + <¢2 - “(;‘fz)h@) € sly +m0.

It is easy to see that this element acts on V3(Z) ® Jy and V3(Z)Y @ Jy preserving these integral
structures.
One has the following proposition.

PROPOSITION 2.6.1. The lattice fs gz is closed under the bracket.

Now, we observe that because Jy = H3(Z), m; = M3(Q) with X € M3(Z) acting on Y €
H3(Q) as XY + Y X?!. Moreover, one can check by easy explicit calculation, M3(Z) = {X €
my(Z) : u(X) € 2Z}.

Consequently, we have

frz = (M3(Z) + M3(Z))" =" /Z(1,1) + V3(Z) ® Jo + V3(Z)” ® Jo.
For the Chevalley basis, we take the usual bases of X, = E;; of the two copies of M3(Z). Now
Jo is the Z-span of
{e11, e, €33, 11 = €23 + €32, 12 = €31 + €13, 73 = €12 + e},

where e;; denotes the element of M3(Z) with a 1 in the (7, j) location and zeros elsewhere. For
the rest of the Chevalley basis, we take the elements v; ® z, v; ® egg, —0; @ z1, and —0; ® eg.

2.7 Splittings
We may now combine our local results to construct splittings of certain congruence subgroups
of G2(R) and F4(R) into the double cover.

Recall that when p > 2 is odd, we have the hyperspecial maximal compact subgroup K, =
G(Zp) of G(Qp) induced by our integral model.

LEMMA 2.7.1 [LS10, Proposition 2.1]. The central extension é(Qp) splits over K. The splitting
homomorphism s, : K, — G(Q,) is unique, and we denote its image by K.

We now define a congruence subgroup I'r,(4) C Fy(R) and explain that this subgroup splits
into F4(R). Let Kr(4) be the image in F4(Q2) of the subgroup K}(4), and let so : Kp(4) —
F4(Qz2) be the induced splitting. Define now

T'r,(4) == Fi(Q) N Kr(4) [ [ K» € Fu(2). (7)
p>2

To construct a splitting of T', (4) into £y, we will use the following lemma.
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LEMMA 2.7.2. Suppose A, B are two groups containing a central ug, and I' C A/, B/uy. Let
5:T — (Ax B)/us and s4 : T — A be given splittings. Then there exists a unique splitting
sp: T — B so that s(v) = (sa(y), sp(y))us for ally €.

Proof. By assumption, for each v € I" one has s(v) = £(sa(v),sp(y)) for a unique sp(y) €
B. This uniquely determines the map sp:I'— B, and one checks that it is a group
homomorphism. O

Using the inclusion T'g, (4) C F4(Q) C F4(R), we obtain a splitting sr : T, (4) — F4(R) by
applying Lemma 2.7.2 with ' =T'g, (4), A = ﬁ4(Af) and B = Fy(R). Let sf:Tp(4) — ﬁ4(Af)
be the section induced from the local sections s, from Lemma 2.7.1 and Theorem 2.5.5. With
this notation, we have obtained the following.

PROPOSITION 2.7.3. There is a unique splitting s : Tp, (4) — F4(R) characterized by the fact
that sq(v) = £(s¢(7), sr(v)) for all v € I'g, (4).

Below we will need the following proposition.

PROPOSITION 2.7.4. For all integers u, the splitting st satisfies sp(zq(u)) = xq(u) for all a €
o5 U Py, U@y and sp(za(4u)) = zq(4u) for all a € (IDJJ(,S Udy.

Proof. Indeed, this compatibility occurs for sq and s, for all p = 2,3,.... The proposition thus
follows from the definition of sr. O

In the next section, we recall the inclusion of algebraic Q-groups G2 C Fy and prove an
inclusion G2(R) € Fy(R). Assuming these inclusions for the moment, we set I'g,(4) = G2(R) N
I'r, (4) and obtain a splitting I', (4) — G2(R).

2.8 Group embeddings
We conclude this section with some remarks about the inclusion of G5 in Fj.

2.8.1 Algebraic groups over Q. We recall the following proposition from the theory of
algebraic groups; see [Mill7, Theorem 25.4(c)].

PRrROPOSITION 2.8.1. Suppose k is a field of characteristic 0, H, G are algebraic groups over k,
with H semisimple, connected and simply connected. Suppose L : h — g is an embedding of Lie
algebras. Then there exists a unique map H — G of algebraic groups whose differential is L.

We first work with algebraic groups over Q. Either from the proposition or directly, one
can see easily that there is a map SL3 — Fy, lifting the Lie algebra embedding m?, — f4 in the
notation of [Pol20]. Let SO(3) denote the group of g € SL3 with g'g = 1. Composing with the
map SO(3) — SL3, we get an embedding of SO(3) into Fj.

LEMMA 2.8.2. The centralizer of SO(3) in Fy is a split form of type Gs.

Proof. Denote by G’ the identity component of the centralizer of SO(3) in Fy. We first observe
that on the level of Lie algebras, we have go — f4, and this go is exactly fio(g). Consequently,
the action of G’ on f; induces an action of G’ on gs, so we obtain a map a : G’ — G2, because
(2 is defined as the group of automorphisms of its Lie algebra.

In the reverse direction, Proposition 2.8.1 implies the existence of a map G : Go — Fy lifting
the inclusion of Lie algebras go — f4. The image of this Go centralizes SO(3) by uniqueness of
the lift: if g € SO(3), then gB(h)g~! is another lift, so is equal to 3. Consequently, 3 gives a map
Gy — G'. The map a o 3: Go — G5 induces the identity on Lie algebras by construction, so is
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the identity. Similarly, the map 5o« : G’ — G’ induces the identity of Lie algebras, so is the
identity.
Finally, we show Cp,(SO(3)) is connected. The conjugation action of any element 7 €

Cry(SO(3))(Q) on G2 must be inner, since Out(Gz) is trivial. In particular, if Cr, (SO(3)) is not

connected, there must exist a finite-order element 7 ¢ G2(Q) centralizing both SO(3) and Gj.
But this would imply that the Lie subalgebra s0(3) @ g2 C f4 is not maximal, a contradiction. [

2.8.2 Real Lie groups. We now work with real Lie groups. We will explain the fact that the
centralizer of SO(3) in Fy is the group Ga; see also [HPS96].
First consider the case of the linear group Fyj.

LEMMA 2.8.3. The centralizer of SO(3) in Fy(R) is G2(R).

Proof. As in the proof of Lemma 2.8.2, the identity component Cp,®)(SO(3))" maps to the

connected Lie group Ga(R). Moreover, this group has Lie algebra exactly f20(3) = g9 (it is
easy to see that the Lie algebra is contained in this set, and it is surjective by considering the
exponential map). It thus remains to determine which Lie group of type G2 this is.

Because we already know Gy — Fy as real algebraic groups, we obtain Ga(R) —
Cr,®r)(SO(3)). Because the connected double cover of G(R) does not split over G2(R), the
identity component of the centralizer of SO(3) must be the linear group G2(R). Finally, since
Fy(R) and G3(R) are R-split, an argument mirroring that in the algebraic setting shows that
Cry(r)(SO(3)) is connected. O

Now, for the case of covering groups. First observe that SO(3) C SL3(R) C RY, so the SO(3)
splits into F4(R) by Lemma 2.5.4; the splitting is unique because SO(3) is equal to its derived
group.

LEMMA 2.8.4. The identity component of the centralizer CE(R)(SO(?’))O of SO(3) in Fy(R) is
identified with Ga(R).

Proof. Let G' be the identity component of the centralizer of this SO(3) in F4(R). Then G’ con-
sists of elements (g, j1/2(9)) where j; /5(g) : X, — GL2(C) is a continuous map whose symmetric
square is Jiin(g9) : Xp, — GL3(C). Every element g € F4(R) occurring in such a pair commutes
with SO(3), so that g € G2(R). We thus obtain a map G’ — G2(R). An argument with the
exponential map and Lie algebras proves that this map is surjective, because G3(R) is generated
by the image of the exponential map.

We now construct a map G’ — Go(R). We claim that Gy(R)/Kg, = X¢, embeds into
Fy(R)/KF, = XF,; this follows from the claim that the maximal compact subgroups K¢, and
K, satisfy Kg, = Go(R) N Kf,. Granting this for a moment, if (g, j1/2(g)) is in G’, restricting
J1/2(g9) to Xg, gives an element of G2(R). We therefore obtain G/ — Go(R), which covers the
identity map on G2(R). Because G’ is a connected Lie group with Lie algebra g, and G2(R)
does not split into éQ(R), the map G/ — G is an isomorphism.

To see that K, = G2(R) N Kp,, first recall that K¢, and Kf, are the subgroups of Ga(R),
respectively Fy(R), that also preserve the bilinear form By(X,Y) := —B(X,6Y) on g, respec-
tively, f4, where 6 is the Cartan involution on these Lie algebras. Because the Cartan involution
6 on f4 described in [Pol20] restricts to that on g9, it is clear that G2(R) N K, is contained
in K¢g,. For the reverse inclusion, one notes that K, can be generated by the exponentials of

3),0=1 — ¢o=1
C 14

elements of in( , which are in Kp,. O
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Remark 2.8.5. The fact that the Cartan involution on f4 restricts to that on go plays a useful
role in verifying that the pullback of a modular form on Fi4(R) to G2(R) remains a modular
form.

2.8.3 Covering groups. We now explain the map C~¥2(Qv) — f4(Qv). By Proposition 2.8.1,
we have an embedding of linear algebraic groups t, : Go — Fy.

LEMMA 2.8.6. Using the integral structures induced from §2.6, for every prime p one has
uin(G2(Zp)) C Fu(Zyp).

Proof. The Lie algebra constructions of § 2.6 define the adjoint forms of groups of type G2 and Fjy.
Because these groups are also simple, simply connected and have rank at least 2, the hyperspecial
maximal compact subgroups of each are generated by the x,(Z,) for o a root of G, respectively,
Fy. But under the map go — f4, the long root spaces of G map to long roots of Fy, and the
short roots of G2 map to a sum of 3 commuting short roots of F. The lemma follows. O

PROPOSITION 2.8.7. For every place v of Q, there is an injection i, : éQ(QU) — ﬁ4(Qv). The
maps L, glue together to give an injection t: Go(A) — Fy(A), that is compatible with the
splittings on rational points.

Proof. Let GY(Q,) be the inverse image in Fy(Q,) of uin(G2(Qy)) € Fi(Qy). Let G5(Q,) be the
universal central extension of G2(Q,), as constructed in [Stel6, §6]. Then G5(Q,) is a central
extension of G2(Q,) by the Milnor K-group K2(Q,); see [Stel6, § 7, Theorem 12]. On the one
hand, by our definition of ég(Qv) in terms of generators and relations, éQ(QU) is the pushout of
G5(Qy) along the Hilbert symbol of K2(Q,). On the other hand, because G5(Q,) is universal,
there is a unique map K5(Q,) — u2(Q,) for which G(Q,) is obtained by G4(Q,) via pushout.
But as is well-known, K2(Q,)/2K2(Qy) ~ u2(Qy), so the only non-trivial map is given by the
Hilbert symbol. Note now that the extension of G2(Q,) defined by 6’2’ (Qy) is not split, as it is
already not split over the SLs C G C Fj generated by the long roots of Go. Consequently, the
map G5(Q,) — G4(Q,) factors through Ga(Q,). The induced map G2(Q,) — G4(Q,) is clearly
an isomorphism. This constructs the ¢, in the statement of the proposition.

Taking all the ¢, together, we obtain an injection ¢ : G2(A) — Fy(A). By Lemma 2.8.6, the
map is well-defined, i.e. respects the restricted product nature of these groups. Note that here
we are using the uniqueness of the splitting in Lemma 2.7.1.

Finally, we obtain two potentially distinct splittings of Go(Q) into Fj(A): one via +(G2(Q)) C
(G2(A)) and the other via 1 (G2(Q)) C F4(Q) C F4(A). But every map G2(Q) — u2(Q) is
trivial, so these splittings coincide. O

3. Modular forms

In this section, we define quaternionic modular forms of half-integral weight, generalizing the
integral weight theory of [Pol20] and prove the main results about their Fourier expansions and
Fourier coefficients. We then assert the existence of a certain modular form O, of weight 3 on
Fy(A), the proof of which we defer to §4. Finally, we consider the pull back of ©p, to Ga(A),
proving Theorems 1.2.3 and 1.2.6 of the introduction. Along the way, we also do arithmetic
invariant theory related to cubic rings and their inverse differents.

3.1 Quaternionic modular forms
We begin by studying quaternionic modular forms of half-integral weight. Suppose £ > 1 is an
odd integer and recall that V/, 1= Sym*(V,). We consider V, /2 as a representation of K via
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the map j;/2(-, o) : Kj — GL3(V3). A modular form on Gy of weight ¢/2 will be a certain
Vp-valued automorphic function.

To define the appropriate sorts of functions on G J that we will be considering, we require
a certain differential operator. Let g(J) ® C = ¢ @ p be the Cartan decomposition of the Lie
algebra g(J) ® C, which we identify with the complexified Lie algebra of G;. In [Pol20, §5],
an identification is given between p and Vo @ W over C. Let {X,} be a basis of p and {X)}
the dual basis of the dual space p¥. Suppose now that ¢ is a smooth Vy/o-valued function

on Gy satisfying p(gk) = k=1 - p(g) for all g € G, and k € K. For such a function, we define
Dy p0(9) = 30 Xap(g) ® X, which is valued in

Vg/Q &® p\/ o~ Syméil(Vg) QW;ird SymZJrl(Vg) QR Wj.

Let pr: Vg, @ p¥ — Sym‘~1(V,) ® W be the K J-equivariant projection and define the operator
Dyjp =pro D2/2.

Suppose that G is a reductive group over Q such that G (R) is an adjoint quaternionic
exceptional group. Following our conventions from § 2.1, we further assume we are given a meta-
plectic double cover G j(A) of Gj(A) coming from the appropriate Brylinski-Deligne extension.
We thus have a short exact sequence of locally compact topological groups

1 — p2(Q) — Gy(A) — Gy(A) — 1,

which splits canonically over G;(Q); let sq denote this splitting. There is a decomposition
GJ(A) = I, G,(Q,)/us. Our convention implies that G(R) = G.

Then for all but finitely many odd primes p, G is unramified and contains a hyperspecial
subgroup K, := G(Z,) over which the cover G;(Qp) — G(Qp) splits [Weil8, §7]. Let T" be
a finite number of primes containing 2 such that for p ¢ T, the above statement holds. Let
KT c Gj(Ar) = HpeT G(Qp) be a given compact subgroup equipped with a splitting

where G (A7) := [[er GJ(Qp)/13
Setting K7 := KT HpgT K, we have a splitting sz : K7 — G j(Ayf); let K7, denote its image.

DEFINITION 3.1.1. Suppose £ > 1 is an odd integer. An adelic quaternionic modular form on
G j(A) of weight /2 and level (K7, s7) is a smooth function

¢ : G (Q\G(A) = Vi
of moderate growth satisfying:

(i) @(gkoo) = k3 - @(g) for all g € G(A) and k € Ko
(ii) w(gk) = ¢(g) for all g € G;(A) and k € K7;
(iii) D2 = 0.
Our first main result will be to show that such a definition of quaterionic modular form of

half-integral weight has a robust theory of Fourier coefficients, generalizing the integral weight
theory of [Pol20] and its antecedents.
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3.2 Generalized Whittaker functions
We now investigate the so-called generalized Whittaker functions associated to quaternionic
modular forms. In other words, we reproduce the main result of [Pol20] except now in the
half-integral weight case. Because almost all of the proof in [Pol20] carries over, we are quite
brief.

We begin with the following crucial proposition. Recall that an w = (a,b,c,d) € W;(R) is
said to be positive semi-definite if the function p,,(Z) = aN(Z) + (b, Z#) + (¢, Z) + d is never 0
on the upper half-space H; = {X +:Y : X, Y € JY > 0}.

PROPOSITION 3.2.1. Consider the function g — (w, gro(i)) on H;(R)T, and suppose w is posi-

tive semi-definite. Then there exists a smooth genuine function a,(g) : H;(R)T — C satisfying
au(9)? = (w, gro(i)-

Proof. Recall from [Pol20] that (w, gro(i)) = —j(g,%)p.(g - ). Because Hy is contractible and
Pw(Z) is never 0 on Hy, p,(Z) has a smooth square root on H ;. This follows from covering
space theory: the map C* — C* via z — 22 is a cover, so the map Z ~ p,(Z) from H; — C*
lifts to the first copy of C*. Let us pick, arbitrarily, one of the two square roots and call it
pw( Z)1/2.

Now, the function g — j(g,i) on H;(R)" has a genuine square root ji /o on H;(R)"; such
a function was constructed in the Lemma 2.3.5. Thus, a(g) = lejl/Q(g,xo)pw(gi)l/2 is the
desired function. 0

We can now state the main theorem of this section. To do so, we give some notation. First,
let n =€/2 € 1 + Z>. Suppose w € W,;(R) is positive semi-definite. Let a,(g) be one of the two

~——

square roots of (w, gro(i)) to Hy(R)*. For g € Hy(R)*, define
n+uv, n—uv

+1 |aw(9)] 2 2 )
Wool)=rt0 ™ ¥ (20 ke wp TS ®

Here the sum is over half-integers v € % + Z with —n < v < n. Note that:

—n<v<n

(i) m,v are half-integers, i.e. in % + Z, so that n + v and n — v are integers;
(i) v(g) > 0 so v(g)"*! makes sense;
(iii) 2v is an odd integer;
(iv) one has W, _ (9) = =Wy o, (9);

)

1
(v) for e € ua(Q), one has W, o (e9) = eWe 0, (9).

Let N; be the unipotent radical of the Heisenberg parabolic of G ;. This subgroup of G ;(R)
splits uniquely into Gy so we also write N;(R) for its image in G ;. One can extend W, o to a
function on all of G as

Wy o, (nmk) = ei<“”ﬁ>/€_1ww7aw (m)

—_—

forne Nj(R), m€ Hy(R)*, and k € K. One checks immediately that this is well-defined.
Recall that a generalized Whittaker function of weight n for w is a function ¢: Gy —
Sym?"(V3) satisfying:

(i) ¢(gk) =k '¢(g) for all g € G; and k € K ;
(i) ¢(ug) = @™ ¢(g) for all g € Gy and u € Nj(R); here @ is the image of u € Wy (R);
(ifi) Dy = 0.

682

https://doi.org/10.1112/S0010437X23007686 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007686

MODULAR FORMS OF HALF-INTEGRAL WEIGHT ON EXCEPTIONAL GROUPS

THEOREM 3.2.2. Suppose w € W;(R) is non-zero and n € % + Z is positive. Suppose moreover

that ¢ : G 7 — Sym?®"(Vy) is a moderate growth generalized Whittaker function of weight n
for w.

(i) If w is not positive semi-definite, then ¢ = 0.
(ii) Ifw is positive semi-definite, then ¢ is proportional to Wy, . (9).

Proof. The work is nearly identical to [Pol20], so we only sketch the proof.

Let us first review the definition of the right regular action of the Lie algebra g(J) on
smooth functions ¢ on G. Thus, suppose X € g(J). Then for ¢t € R sufficiently small, exp(tX)
is an element of G(R) near the identity. Because Gy — G(R) is a covering space, there is a
unique lift, call it exp’(£X), of exp(tX) to G that is near the identity of G;. Then (X¢)(g) :=
(d/dt)p(gexp’ (tX))|i=o. It is a fact that this definition gives a linear action of the real Lie algebra
a(J) on smooth functions on G.;. One obtains an action of g(J) ® C by complexification.

Now let ¢ = > ¢ ("9 7")/((n + v)!(n — v)!)) be a generalized Whittaker function. (To
make notation consistent with [Pol20], A = w.) By the Iwawasa decomposition Gy = R’;k J, and
because ¢ is K Jj-equivariant, by definition, to determine ¢ it suffices to determine ¢ on Rj.

Now, recall that R}r splits into G J- Thus, ¢| Rt can be thought of as function on the linear
group G j(R), so we may apply [Pol20, Corollary 7.6.1] to obtain differential equations satisfied
by ¢: indeed, the proof of this corollary is to write a basis of X € p as sums X = X; + Xo,
with X7 € Lie(R}) ® C and X5 € Lie(K;) ® C = Lie(K;)® C, and use the given action of
Lie(Kj) = Lie(K;) on ¢ to write the differential equation D,¢ =0 in explicit coordinates
on RY. In [Pol20, Corollary 7.6.1] recall that:

— w € R% is considered as an element in the center of the group H;(R)™ which acts on Ei3
as the real number w? (as opposed to w™2); the element w is in RJJr so the group of such w’s
splits into G 7

~ Z = Mro(i) and 70(Z) = (1,2, Z%,—n(2));

— for E € J, Dyg) denotes the action of the Lie algebra element $M(®1,p) — ing(E), where
®; p is the map J — J given by Z — {E, Z} (see [Pol20, § 3.3.2, equation (7)]; see also [Pol20,
§3.3, equation (3)]) and M(®; g) is defined in §3.4.1 at the top of p. 1229 of [Pol20];

— V(E) is defined in §5.1, equation (19) of [Pol20].

Now, one solves these equations on a connected open subset U of H; where p,(Z) # 0.
To do this, one first argues as in §8.1 of [Pol20] that ¢,(w, X,Y’) (see §8.2, p. 1257) is of the
form w?"+2Y,,(m)K,(|{w, Z)|) for some function Y, (m) that does not depend on w. Indeed, the
differential equations:

(i) (wdy —2(n +1) + k)br = —(w, Z*)dp1;
(il) (WOy —2(n+1) — k)pr = —(w, Z)dp41;

from [Pol20, Corollary 7.6.1], taken together, imply that w=2""2¢,(w, X,Y) satisfies Bessel’s
differential equation. The fact that this function must be of moderate growth as w — oo then
implies that, as a function of w, it is proportional to K,(|(w, Z)|).

To understand the functions Y, (m) = Y, (X,Y), one argues as on the top of p. 1257 of [Pol20)]
to obtain that ¢(w, X,Y) = ¢(w, m) is of the form Yl’/Q(m)WM% (g) for some function Yl’/z(m)
that does not depend on w. In other words, one uses the differential equations in w above again
to relate Y, (m) to Y,11(m) for each v. Note that the function Yl’/2(m) descends to the linear
group.
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Now one proves that the W, o, are annihilated by the operator D,,, exactly as in the proof
of Proposition 8.25 of [Pol20]. Note that in this proof, the term |ay,(g)|aw(g) ™! is rewritten as
a product of |a,(g)|~! and a term that is annihilated by Dy (g). Moreover, the absolute value
| ()|t descends to the linear group. This is why the manipulations of [Pol20] carry over to
this half-integral weight case. In any event, it follows from this that Dz g) (Y] /Q(m)) =0 and
Dy (g~ (Y{/Q(m)) =0, from which one concludes Yl’/Q(m) is constant.

Thus, the Wy, o, are annihilated by the operator D,,, and on an open subset where p,,(Z) # 0,
any moderate growth solution agrees with the W, o up to constant multiple. The rest of the
argument now follows as in the proof of Proposition 8.2.4 of [Pol20]. O

From Theorem 3.2.2 follows immediately the definition of Fourier coefficients of modular
forms of weight £/2: let Z = [N;, N,;] denote the one-dimensional center of N;. Let ¢ be a
modular form for G;(A) of weight ¢/2 and level (K7, sr) as in Definition 3.1.1. Set ¢z (g) =

fZ(Q)\Z(A) ¢(zg) dz and

on(9) = / @(ng) dn.
N;(Q)\N,(A)

Then we have the following generalization of [Pol20, Corollary 1.2.3].

COROLLARY 3.2.3. For each positive semi-definite for w € W;(Q), there exist a constant a,(w),
well-defined up to multiplication by +1, such that for g € Gy C G j(A),

pz(9) =en(g)+ D ap(w)War(g),
weW;(Q)

where the sum runs over positive semi-definite vectors. The function War,(g) is one element of
the set {Warw asres — Worw,asme

The complex number a,(w) is thus well-defined up to multiplication by £1. These numbers
ay(w) € C/{£1} are, by definition, the Fourier coefficients of ¢.

The K-Bessel functions K, (z) in the definition of the Whittaker functions Wy, ,, only occur
for half-integral values of v. This is especially nice as these satisfy the following classical lemma.

LEMMA 3.2.4. the K-Bessel function satisfies the following facts.
(i) For any value of v,
(0. (2K (=) = Ko (2).
(ii) For any value of v,
K_,(2) = Ky(2).

I7T —z
Kl/Q(Z) = ge .

Thus, the functions W, are particularly simple as functions of a,(g) and v(g). For
example, when [ = 1, we have

Welg) = " [(leto, (0,

(iii) We have

o (9)] au(9) low (9)]

if g € HJ(R)+.
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3.3 The minimal modular form of F4(A) N
Our first application is the existence of a particular modular form of weight % on Fy(A) with
exceptionally few non-zero Fourier coefficients in the sense of Lemma 3.3.2 below.

Set Up, (4) = Kpy(4) 1,00 Fi(Zy) C Fa(Aj).

THEOREM 3.3.1. There exists a modular form O, on Fy(A) of weight + which satisfies the
following properties:

(i) ©p, is constructed from the automorphic minimal representation;
(i) the level of O, is Up,(4);
(iii) the (0,0,0,1)-Fourier coefficient of O, is equal to £1.

The proof of this theorem is representation theoretic, relying on the analysis of the auto-
morphic minimal representation I, of }7’4(A), and takes up all of §4. We defer the discussion
of this representation until then. We do, however, need the following properties of ©f,, which
follow from the minimality of IL;y.

To simplify notation, set © = Op,. The automorphic function © has Fourier expansion

Oz(9) =On(9)+ Y Oulg)

weW;(Q)

Here, for g € F4(A), we have

O.(g) = / O(ng)y((w,m) dn.
N;j(Q)\Ns(A)

Recall the notion of rank of an element w € W;(Q) as defined in [Poll8, Definitions 4.2.9
and 4.3.2].

LEMMA 3.3.2. Let the notation be as above.

(i) Ifv € HY(Q), then ©,(vg) = Ouy(g). If v € T, (4) N H}(R), and g = goo Is in the image
of Fy(R) — Fy(A), then O, (sr(7)g) = Ou~(9)-
(ii) One has ©, = 0 unless rk(w) <1. N
(iii) Suppose g = g is in the image of Fy(R) — F4(A) and w is of rank one. Then ©,(g) =0
unless w lies in the lattice Wj(Z) =Z & Jy & Jy ® Z.

Proof. The first part of the first claim follows easily from the usual change of variables in the
integral defining ©,,. For the second part of the first claim, we have

Ou(sr(7)9) = Ou(sr(7)gsr (7)) = Ou(sq(7)g) = Ou~(9)

using that © is right invariant under s¢(I'r, (4)).

The second claim follows from the construction of © from Il,;, in §4 and the minimality of
IInin. More specifically, the claim follows directly from Proposition 3 of [Gin19].

For the final claim, let W;(Z)" be the dual lattice to W;(Z) under the symplectic form,
so that W;(Z)V =Z & Jy & JJ @© Z. We first prove that ©,(g) vanishes unless w is in W;(Z)".
To see this, suppose ng € W, (Z) = W;(Z) ® Z and n = exp(ng) € ﬁ4(Af) — F4(A). Then n €
Kpg(4) ], Kp, so © is right-invariant by n. But then

Ou(9) = Oulgn) = P((w; n0))Ou(9)-

Consequently, if ©,,(g) # 0, then (w, no) € Z for all ng € Wy(Z), so w € W (Z)V.
For the stronger claim that ©,,(g) vanishes unless w € W;(Z) C W;(Z)", we use the following
lemma. n
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LEMMA 3.3.3. If w € W;(Z)" is of rank one, then w € W;(Z).

Proof. Write w = (a,b,c,d). Then b% = ac € Jy and ¢# = db € J by [GS05, Proposition 11.2].
But an elementary check shows that if X € Jy and X # e Jy, then, in fact, X € Jy. The lemma
follows. O

3.4 Pullback to G-

We have defined an inclusion Ga(A) C Fy(A) in §2.8.3 and a modular form O, on the latter
group. Let Og, be the automorphic function that is the pullback of ©p, to Ga(A), which is
evidently smooth of moderate growth and satisfies the equivariance property (i). In fact, it also
satisfies the requisite differential equation.

PROPOSITION 3.4.1. The automorphic function Og¢, is a We1gh1; quaternionic modular form
on Ga(A).

Proof. This follows just as in [Pol21, Corollary 4.2.3]. O

In this section, we partially compute the Fourier expansion of O¢,. For g € ﬁ;(R) we have

©z(g9) = )+ Z a(w; @27w) Warw:ag,., (9)
weW;(Z)
rk(w)=1
with a(w; —aor,) = —a(w; @2xw)-

Suppose v € I'r, (4) N H}(R). Define a3 (9) = aarw(79). Note that

a3, (9)% = 2m(w, g - ro(i)) = 2m(w - v, g - ro(0)),

so that ag_ is an orw.y, and Wz, (79) = Wy . ~vay(9)-

LEMMA 3.4.2. For v € T'g,(4) N HY(R), one has an equality of Fourier coefficients a(w; aary,) =
alw-v;as ).

Proof. By Lemma 3.3.2, one has O(vg) = O.,(g). Thus,

a(w; 2rw) Warwiasr, (79) = Ow(79) = Ouw4(9) = alw - 7; agﬂw)WQTFw"y; » (9)

Xore
= a(w 7 05,) Warwiaz,, (19)-
Consequently, a(w; aor,) = a(w - v;ag. ). O

We now consider the Fourier coefficients of O¢g, = O, ) We require the following two

G (a
lemmas. Recall that the Fourier coefficients of a modular form on G are parameterized by
elements of Wq(Q), which may be thought of as Sym?(Q?) by sending

(r,s,t,2) € WQ(Q) — ru® + 3suv + 3tuv? + zv® € Sym*(Q?).

If w=(a,b,c,d) € W;(Q), set tr(w) = (a,tr(h)/3,tr(c)/3,d) € Sym3(Q?), so that tr(w) corre-
sponds to the binary cubic form au® + tr(b)u’v + tr(c)uv? + dv®. Now, for each ' € Sym?(Q?),
fix a choice of aor.(g). Note that for w € W;(Q) the restriction of aar,(g) to the Heisenberg
Levi in G3(R) C F4(R), is of the form €(w; t1(w)) Qar tr(w) (9) Where e(w; tr(w)) € {£1}.

LEMMA 3.4.3. Suppose ¢ is a modular form on Fy(A) of weight ¢/2, with Fourier expansion
vz(9) = on(9) + X pew, () 4w @2rw) Warwias,, (9). Let ¢' be the restriction of ¢ to G(A).

686

https://doi.org/10.1112/S0010437X23007686 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X23007686

MODULAR FORMS OF HALF-INTEGRAL WEIGHT ON EXCEPTIONAL GROUPS

Then ' is modular form on Gy(A) of weight £/2, with Fourier expansion

(@) =l + Y. bW 00m ) Wareria, (9),
w'€Sym?*(Q?)
where N’ C G4 denotes the unipotent radical of the Heisenberg parabolic. The Fourier coefficients
b(wW'; aor,r) are given as follows:

b(w's Qope) = Z e(w;w"a(w; aony)-
weW;(Q):tr(w)=w’

The sum, a priori infinite, is in fact finite.

Proof. The point is that one can simply restrict the Fourier expansion of ¢ to ég(R) to obtain
the Fourier expansion of ¢’. In more detail, one checks that when the function W, ., on ﬁ4(R)
is restricted to Ga(R), one obtains the function €(w; tr(w)) War tr(w)iag, () O G2(R). We omit
the proof of the finiteness claim, as we do not really need it, but we note that it follows from
the vanishing of the Fourier coefficients that are not positive semi-definite, and that a similar
argument can be found in [Pol21, §5.1]. O

In particular, if we can control the signs e(w;w’), we can use our knowledge of the Fourier
expansion of O g, to obtain information about the Fourier expansion of ©¢,. The following lemma
controls the signs e(w;w’).

Below, for T' € Jy, we set (1) = exp(de ® T'), which are unipotent elements of H} C Fy.

LEMMA 3.4.4. Suppose v1 =n(T1) and v2 = n(Ts) are such that det(Tit + 1) = det(Tat + 1).

Then a;’;(o 0,0,1) and O‘;Qr(o 0,0,1) have equal (as opposed to opposite) restrictions on Ga(R.).

Proof. We have agr,(g) = \/—13'1/2(9,;Uo)pgm(gi)l/2 for a fixed squareroot of por,(Z). Thus,

ag;(07070,1)(1) = Q27(0,0,0,1) (Vi) = V—=171/2(0(T3), 70)P2r(0,0,0,1) (Vi - iz,

Note that p%(o’O’O,l)(Z)l/Q is constant. We thus must analyze j; /o(7(7;), o). But now note that
there is a unique splitting n(J3(R)) — ﬁ4(R), this splitting is continuous, and by Lemma 2.7.4,
this continuous splitting agrees with the splitting over I'r,(4). Consequently j; o(7(T), o) is
a continuous function of T' € J3(R) and, thus, a fixed squareroot of det(7i+ 1). Now, by
Lemma 3.5.4 proved below, there is a path of g; € SO3(R) (which is connected) connecting
T) to Ty. Thus, det(T1i+ 1)1/2 varies continuously to det(Thi+ 1)'/2 via det(g,Thigli + 1)'/2.
But det(g:T1gli + 1) = det(T1i + 1) because g € SO3(R). The lemma follows. O

To describe the Fourier coefficients of ©¢,, we require the following definition.

DEFINITION 3.4.5. Recall that Jy := S%(Z3) = H3(Z) denotes the symmetric 3 x 3 matrices with
integer entries. If X € Jy, then det(¢I + X) is a monic cubic polynomial with integer coefficients.
For a cubic monic polynomial p with integer coefficients, let
Qp ={X € Jy:det(tI + X) =p(t)}

be the set of X in Jy with det(t] + X) = p(t).

The set @, is finite, and can only be nonempty when p(t) has three real roots. In fact, it can
be empty even when p(t) has three real roots.

We now assume that O, is normalized so that its (0, 0,0, 1)-Fourier coefficient is £1. Putting

everything together, we have the following result computing a family of Fourier coefficients
of O¢,.
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THEOREM 3.4.6. The pullback ©¢, of ©OF, to G2(A) has the following Fourier coefficients: if
a,b,c are integers and p(u,v) = au® + bu?v + cuv? + v3, then the p(u,v) Fourier coefficient of

@Gz is i|Qp(1,t)|'

Proof. By Lemmas 3.4.4 and 3.4.3, the Fourier coefficient of O, corresponding to p(u,v) is the
sum of the Fourier coefficients of ©F, corresponding to elements (det(T),T#,T,1) in W, with
T € Jp and det(t1 +T) = p(1,t). Thus, the desired Fourier coefficient of O, is given by a sign
times the number of 7" € Jo with det(t + T") = p(1,t). This is [Qp1,4)|, as claimed. O

3.5 Arithmetic invariant theory

The purpose of this section is to do some arithmetic invariant theory related to the set @),,. In
particular, if R = Z[t]/(p(t)), then we relate @), to the sets Qr defined as follows. Set £ = R ® Q
and assume that p(¢) is such that E is an étale Q-algebra. If I is a fractional ideal of R and
w € E* is totally positive, again as before say that (I, u) is balanced if:

~ N(u)N(I)%disc(R/Z) = 1.
Note that this all makes sense, regardless of whether F is a field. One puts on pairs (I, ) an

equivalence relation: (I, u) ~ (81,37 2u) for B € EX and lets Qg denote the set of equivalence
classes.

3.5.1 The case of a field. Let R = Z[t]/(p(t)) be a monogenic order in a totally real cubic
field E = R ® Q. Observe that the group SO3(Z) acts on the set Q, by X — gXg".

LEMMA 3.5.1. Suppose T € Jy has det(t] +T) = p(t). Then SO3(Z) acts freely on T, i.e. if
g € SO3(Z) and gTg* =T, then g = 1.

Proof. Suppose g € SO3(Z), and T = gTg* = gTg~!. Then g commutes with T, so g € Q[T].
It follows that g is symmetric, so 1 = gg' = g%. Thus, g € u2(Q[T]). But Q[T] is a field by

assumption, so g = £1. Because det(g) = 1, g = 1, proving the lemma.
Note that the lemma is false if we do not assume R ® Q is a field. 0

The following lemma is well-known.

LEMMA 3.5.2. Suppose M = Z> has a symmetric bilinear form on it (, ) which is integral, i.e.
(v,w) € Z for all v,w € M. Suppose moreover that the bilinear form (, ) is positive-definite
and of determinant one, i.e. det((v;,vj)) = 1 for a basis v1,v2,v3 of M over Z. Then M has an
orthonormal basis v}, v}, vh.

Here is the main result of this section.

PROPOSITION 3.5.3. Suppose R = Z]t]/(p(t)) is an order in a totally real cubic field E = R ® Q.
Then there is a bijection (to be given in the proof) between the sets Qr and SO3(Z)\Q,. In

particular, |Qp| = |SO3(Z)| - |Qr| = 24|Qr|.

As mentioned in the introduction, this proposition essentially follows from the work in
[Swa21]. Because [Swa2l] is much more general, we give a direct proof of this simple case that
we need.

Proof. Let w be the image of t in R = Z[t]/(p(t)). Associated to a T € Jy with det(t +T') = p(t),
we obtain a module M = Z3, together with a unimodular quadratic form (, ) and orthonormal
basis e, e2,e3. The element T defines an action of R on M, via wm = —T'm. Because T is
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symmetric, this action is symmetric for the bilinear form: (v, A\w) = (Av,w) for all v,w € M and
A€ R.

We can think of M as a fractional ideal I of F := R ® Q. That is, [ = Zej + Zey + Zes with
e, es,e3 € F such that —we; = Zj T;je;j. Moreover, because the action of R is symmetric, the
bilinear form on [ is of the form (v, w) = tr(pvw) for some fixed u € E*. Because the bilinear
form is positive-definite and because F is totally real, ;4 must be totally positive. We thus obtain
a pair (I, p). The choice of I is well-defined up to scalar multiple. We claim that the pair (I, u)
is balanced. To see this, first note that because our form (v,w) = tr(pvw) is integral on I,
and [ is a fractional ideal, we have ulI? C 01_%1. Now, one checks easily that det((tr(uviv;))) =
N(p) det((tr(vsv;))). Thus,

1 = det((ei, e;5)) = N(u)det(tr(ese;)) = N(u)N(I)*disc(R/Z).

Thus, out of T € @)p, we have constructed a class [I, u] in Qg. Tracing through the maps, one
sees that [I, u] is well-defined. Moreover, if g € SO3(Z), then g - T maps to the same pair [I, p],
because the action of g just changes the basis eq, eq, e3 of I.

In the reverse direction, suppose given a pair (I,p) with (I, ) balanced. Then the pair-
ing (v,w) = tr(uvw) on I is integral. Moreover, if v1,vs,v3 is an integral basis of I, then
det((v;,v;)) = det(tr(pvivj)) = N(u)N(I)?disc(R/Z) = 1. By Lemma 3.5.2, I has an orthonor-
mal basis er,ez,e3. We thus obtain T := —((e;,we;));; with det(t] +T) = p(t). The basis
e1, ez, ez is well-defined up to the action of O3(Z) = {£1} x SO3(Z) so the element T is
well-defined in the orbit space SO3(Z)\Qp.

The maps described above are inverse bijections. Noting that | SO3(Z)| = 24, the proposition
follows. O

The following lemma was used above.

LEMMA 3.5.4. The group SOs3(R) acts transitively on the set of T € Jo ® R with fixed
characteristic polynomial p(t).

Proof. Because O3(R) = {£1} x SO3(R), it suffices to see that O3(R) acts transitively. But
now, every real symmetric matrix can be diagonalized by an element of O3(R). Using the action
of the symmetric group S3 C O3(R) finishes the proof. O

We end this section by discussing the set Qr when R is a maximal order in E.

PROPOSITION 3.5.5. Suppose R is the maximal order in E. Then if Qg is non-empty, |Qr| =
|C15[2]|, the size of the two-torsion in the narrow class group of E.

To prove the proposition, we will use the following lemma. Consider the group Ag of equiv-
alence classes of pairs (J,\) with \.J? = (1), J a fractional E-ideal and \ totally positive. That
is, (J, \) is equivalent to (J’, \') if there exists u € E* so that J' = pJ and N = p~2\. It is clear
that Qr, when non-empty, is a torsor for Ap. Let A, denote the set of such pairs (J, \) except
modulo the equivalence relation (J,\) is equivalent to (J',X') if there exists p € EZ so that
J' =pJ and X = p—2)\

LEMMA 3.5.6. One has the following exact sequences:

1 — R%y/(R%)? — AR — CIf[2] — 1, 9)
and
1— E*/(+£EZ,) - Ar — A — 1. (10)
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Proof. We first consider the sequence (9). The map A, — Clf is given by sending [J,A] to
[J] € CLE. Because [J?] = (A~1) with A totally positive, [J] € C15[2]. It is clear that this map is
surjective.

For the kernel, if [J] =1 in Clf, then J = (€) with € totally positive. Consider Ae?. This
is in R;O. The element ¢ is well-defined up to multiplication by an €; € R;O, so AeZ gives a
well-defined class in RZ,/ (R§0)2. It is checked immediately that this map gives an isomorphism
of the kernel of {A}, — CLL[2]} with RZ,/(RZ,)%.

Now consider the sequence (10). The map A’y — Ap is dividing out by the courser equivalence
relation. The kernel of this map is the image in A, of the set of pairs ((u), u?) with u € E*.
This is trivial in A, precisely when there exists y/ € EZ so that ((u), u?) = ('), '), which
happens precisely if p € £EZ,. The lemma follows. O

Proposition 3.5.5 follows from Lemma 3.5.6 by observing that both RZ,/(RZ;)? and
E*/(£EZ,) have size 4. Finally, again assuming that R is the maximal order in F, we remark
that it follows from [Gro03, Proposition 3.1] that Qg is non-empty if and only if every quadratic
extension of F that is unramified at all finite primes is totally real. Combining Proposition 3.5.3
with Theorem 3.4.6 gives Theorem 1.2.6. Combining the result with Proposition 3.5.5 gives
Theorem 1.1.2.

3.5.2 The general case. In the previous subsection, we discussed the arithmetic invariant
theory of the sets ), when I/ = R ® Q is a field. We now make some remarks about the arithmetic
invariant theory of the sets ), when F is just an étale cubic Q-algebra. We omit the proofs, as
they are simple generalizations of the proofs in the previous subsection.

Recall that if p(t) € Z[t] is cubic and monic, then @, denotes the set of T € Jy = Sym?(Z?)
such that det(tls + 1) = p(t).

One has the following bijection.

PRrOPOSITION 3.5.7. There is a bijection between equivalence classes of balanced pairs (Qr and
the O3(Z) (or, equivalently, SO3(Z)) orbits on Q,. Moreover, the stabilizer of T' € @, under the
action of O3(Z) is p2(Or), where

Or={a€E:al CI}.
As a consequence of the proposition, one obtains
#Qp = Z &(Z)
(1) batancea M2(O1)

In particular, if R is maximal so that Oy = R for all I, then

48

() x #{[(I, )] balanced}.

#Qp =

In this maximal case, assuming that E is étale, one has that (I,u) is balanced precisely if
ul? = 0}_{1. Now one can consider the exact sequences as in Lemma 3.5.6, which become

1— R;O/(R§O)2 — Ay — CIE[2] —1
and

1 — E*/(u2(E)EZ)) — Ay — Agp — 1.
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TABLE 2. Numerical data associated with some of the Fourier coefficients of O, .

p(t) Structure Maximal monogenic (LMFDB) #Q,p Cl} (SAGE)
3 —12 -2t +1 Cubic field Yes 24 1

3 —3t—1 Cubic field Yes 24 1
312 —3t+1 Cubic field Yes 24 1

B3 —t2—-9t+10 Cubic field Yes 48 Cy
13— 2 — 14t + 23 Cubic field Yes 48 Cy

B3 —t2 - 11t + 12 Cubic field Yes 48 Cy

B -2 —12t—1 Cubic field Yes 48 Cy

3 —5t—1 Cubic field Yes 24 1

3 —t2 -9t 438 Cubic field Yes 0 Cs

3 — 21t —35 Cubic field Yes 24 Cs
(t—1)(t?* -2) Quadratic Yes 12 1
(t—2)(t? - 3) Quadratic Yes 0 C

(t —3)(t* - 10) Quadratic Yes 24 Cy

t3 — 2 — 54t + 169 Cubic field Yes 96 Cy x Oy
13 — 2 — 34t — 57 Cubic field Yes 96 Cy x Oy

Considering the different cases separately, one sees that in all étale maximal cases, #Agr =
#Cl1E[2]. Thus, if R is maximal and E is étale, one has the formula

_ B o
#Qp = (B |IC15[2]] x 0r

where g is 0 if the inverse different 0}}1 is not a square in CIJEC and 1 if it is such a square. We
state this as a proposition.

PROPOSITION 3.5.8. Let the notation be as above, and assume that R = Z[t]/(p(t)) is the
maximal order in E = R® Q, which is assumed étale. Then #Agr = #C1}[2]. Consequently,
#Qp = (48/12(R))|C15[2]| x Sk where &g is 0 if the inverse different 5" is not a square in Clf;
and 1 if it is such a square.

Note that if R=7Z x Og with K real quadratic, then Cl}, = Cl;r(. For the sake of
completeness, we now answer the question of when the maximal order in such a case is monogenic.

PROPOSITION 3.5.9. Set R =7 x Ok with K a real quadratic field.

(i) If ¢ is squarefree and O = Z[\/{], then R is monogenic if and only if { = > £ 1 for some r
in Z. In this case, (r,\/!) is a generator of R.

(ii) If Og = Z[w] with w = (1 + v4¢+1)/2, then R is monogenic if and only if the equation
r(r — 1) = £ £ 1 has a solution, in which case (r,w) is a generator.

3.5.3 Table of data. In Table 2, we present a table of numerical data for the Fourier coefhi-
cients |@p| of ©¢,. The rings R were checked to be maximal (monogenic) orders by the L-function
and Modular Form Database (LMFDB) [LMF20]. The computer algebra system SAGE [Sag22]
was used to compute the narrow class groups CIJEC. In the table, the notation C),, denotes the
cyclic group of order n.
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4. The automorphic minimal representation

In this section, we construct and study the modular form ©p, of weight % on the double cover

of Fy and prove Theorem 3.3.1 via a careful analysis of the automorphic minimal representation
of F4(A)

4.1 Review of the construction
We begin by reviewing the construction of the automorphic minimal representation I, on
F4(A), following Loke and Savin [LS10], and then Ginzburg [Gin19).

Recall that we have ordered the simple roots of Fj in the usual way, so that the Dynkin
diagram

O—— —0=>=0———20

has labels o through a4 from left to right. Define mqy, = mq, = 2 and mqy,; = ma, = 1. Let p
be a place of Q, allowing p = co. We begin with the following lemma.
LEMMA 4.1.1. Let T(Q,) denote the inverse image of the fixed split maximal torus of F4(Q,)
in ﬁ4(Qp), and Z(T(Qp)) its center. Then t € Z(T(Qp)) if and only if t = £ [, TLai ().

Proof. One applies the commutator formula (4) {Ea(s),%ﬁ(t)} = (s,1)(@"F), O

We will also have need of a maximal abelian subgroup at every local place. This is handled
uniformly by the following lemma.

LEMMA 4.1.2. For any place p < oo, the subgroup
Ti(Qp) = Fha, (Q oy (Q)*)hay (), (Q))
is a maximal abelian subgroup of Tv(Qp).
Proof. This is an easy check using the commutator formula. ([l
For each p, we let B,(Q,) = Tx(Q,)Ups(Q,) denote the associated subgroup of E(Qp).

DEFINITION 4.1.3. A genuine character x, of Z(T(Qp)) is said to be exceptional if for each

simple root o, Xp(ha(t™)) = |t|y. We let vexe := (1/ma)a € X*(T') ®z R to be the associated
exponent.

Lemma 4.1.1 implies that there is a unique exceptional character x, on the center of the

covering torus of f4(Qp). Let Xexec = [, xp be the induced character on Z(T'(A)). Note that x
is automatically automorphic by the product formula.
We consider the subgroup of T'(A) given by

T.(A) == T(Q)Z(T(A));

this is a maximal abelian subgroup [Weil6, Theorem 4.1]. Abusing notation, write Yexc for
the automorphic extension of Xexe from Z(T'(A)) to Ti(A). Inflating yexc to a character of
B.(A) :=T.(A)Up(A), consider the induced representation

Vo = Indgi((i))(ég erxc),

where dp is the modular character of B(A).

Remark 4.1.4. In their construction of this representation, Loke and Savin instead define a
representation 7(Yexc) of T'(A), inflate to B(A), then induce to Fy(A). It follows from [LS10,
Propositions 4.1 and 5.3] that their 7(Xexc) is an irreducible representation of T'(A) with the
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same central character as Indgéi) (Xexc), SO they are isomorphic. In fact, both representations

are realized as spaces of functions on T(Q)\T'(A), and we claim that they are identical. This is
because there is, in the terminology of [LS10], a unique genuine representation in AT(Q)\T'(A)
that is invariant under MyTy [ <o Tp; see [LS10, Corollary 5.2]. (This is true for Fy, but not
true in general.)

p>2

For s = (s1, 82, 83,54) € C*, define ws a character of T(A) as ws(ha, (t;)) = |t:]*. Set

V, = Indg‘i((‘:))((s}gmxexcws).

Let f(g,s) be a flat section in this induced representation, and set

E(g,f,s)= Y. f(yg,9).
+EBQ\Fi(Q)

The automorphic minimal representation on ﬁ4(A) is constructed as the residue of these
Eisenstein series at a distinguished point.

THEOREM 4.1.5 [LS10, Theorem 7.1]. The Eisenstein series E(g, f,s) have at worst a simple
multi-pole at s = 0. Let

e(ga f) = lg}% 51325354E(g) fa S)

and Il be the space of these residues 0(g, f). Then 0(g, f) is a genuine, square-integrable
automorphic form on Fy(A). Moreover, the representation I, is irreducible.

Remark 4.1.6. In [LS10], this theorem is proved for the associated automorphic representation
on the double cover of all split simply connected semisimple groups over Q. These are examples
of generalized theta representations, which play a fundamental role in the study of automorphic
representations of non-linear covering groups; see, for example, [Pat84, CFH12, BFG03, FG18,
Les19] for some conjectures and aspects of this area.

Write Iy = ®; ITin,p- Then Loke-Savin also identify the representations Iy, in terms
of principal series. To do this, extend the character x, of Z(T(Qp)) to the subgroup B.(Q,),

and let I, = Ind @) (53 x,.).

PRrROPOSITION 4.1.7 [LS10, Proposition 6.3]. The representation I, has a unique irreducible
quotient, which is Il yin p-

The notation Il,,;, references Ginzburg’s theorem [Ginl9, Theorem 1] that I, is an auto-
morphic minimal representation in the sense that the set of nilpotent elements associated to
non-vanishing Fourier—Whittaker coefficients of I, are contained in the minimal nilpotent
orbit Omin C f4(Q); we refer the reader to [Gin14] for the notions of Fourier—-Whittaker coeffi-
cients associated to nilpotent orbits. This result plays a central role in our analysis of the Fourier

expansion of Of,; see Lemma 3.3.2.
4.2 Archimedean aspects
Relating these generalized theta series to quaternionic modular forms requires information of

the Ko-types of the local representation Ilin o. This representation turns out to be the same
as the representation Ilgw constructed by Gross—Wallach in [GW94].
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PROPOSITION 4.2.1. The representation Ilyin o is isomorphic to the minimal representation
IIgw constructed by Gross—Wallach; its K, = SU(2) x Sp(6)-types are

o0
P Sym! T (C?) RV (nws), (11)
n=0

where w3 is the third fundamental weight of Sp(6) and V(nws3) denotes the irreducible rep-

resentation of Sp(6) with highest weight nws. In particular, Ilnineo has minimal K.o-type
V1/2.

Proof. Note that, from [LS10, Proposition 6.3], IIyin « is the Langlands quotient of the principal
series representation

Ind (@ (01 *xoc) 2 IndS (7 (xo0)).

where Xoo 18 the exceptlonal character and 7(yoo) = S Xoo is the induced representation of

T(R) = M - T(R)°. Here M is a certain finite subgroup of T(R) and T(R)° is the connected
component of the identity of the covering torus. Note we use the fact that

Vexe = (3,3, 1,1) =p— 3(w1 +w2) €= X*(T) @z R (12)

lies in the dominant chamber in identifying Il i - as the Langlands quotient.
Referring the reader to [ABPT07, §§4 and 5] for the notions of pseudospherical representa-
tions and notation, in the decomposition

7"-(Xoo) = S X Xoos
the two-dimensional representation 5 is a pseudospherical representation of M. Tt is easy to
check that there is a unique such representation for G F4(R)7 and it arises as the restriction
of the Koo = SU( ) x Sp(6)-representation V; to M C K. In particular, V is the unique
pseudospherical Koo—type for G.

In the notation of [ABP'07], we see that I, o is the Langlands quotient .J (5, Vexc) of the
corresponding pseudospherical principal series

- & =
1(6, Vexe) = IndB(R) (6 X (Vexe + p))-

By [ABP+07 Definition 5.5] and the subsequent discussion, we conclude that Iy oo has the
minimal K so-type V2. The key point, as noted in [ABP+07 § 5], is that this Langlands quotient
J (6 Vexc) 18 the unique irreducible representation of G containing the K ~o-type Vi3 and having

infinitesimal character vex. € t*/W. This follows from the analysis of pseudospherical Koo—types
in [ABP"07] combined with Harish-Chandra’s subquotient theorem.

On the other hand, Gross and Wallach apply cohomological techniques to construct the
minimal representation Ilgw in [GW96]; here, minimal means the ideal of 4(f4(C)) annihilating
IIgw is the Joseph ideal. In particular, they compute that the I?oo—types of Ilgw are precisely
the representations occurring in the proposition [GW96, §12]. Furthermore, as an element of
t*/W, the infinitesimal character of Ilgyy is

— 3
VGW = p — W1,

where w; is the first fundamental weight of Fy (see [GW96, p. 109]). Here W denotes the Weyl
group of the pair (Fy,T).
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To complete the proof, it suffices to check that there exists w € W such that w(vgw) = Veo-
Referencing (12), this is equivalent to the existence of w € W such that

we (—%wl) = —%(wl + wa),

where o denotes the dot action of the Weyl group of Fy on t*. The existence of such an element
may be verified via a computer calculation, using SAGE [Sag22] for example. By uniqueness,
this proves the proposition. ]

4.2.1 Modular forms of weight % Using Proposition 4.2.1, we can now construct modular
forms of weight 1/2 on Fy(A) from Ipin. Let 2,y be our fixed weight basis of V5 = Vg =~ VY.
Setting yin f = ®;<oo min,p, fix a vector vy € iy ¢ and let

a: Ipin = Hmin,f ® Hrnin,oo - A(ﬁll(A))
be the automorphic embedding in Theorem 4.1.5. Define
O(vf) = a(v;@z) @z + vy ®y) yY € A(F4(A)) @ Vy. (13)

One obtains a quaternionic modular form of weight 3 on F4(R). Indeed, the construction
of the Schmid operator D/, precisely detects the fact that the automorphic function 6(vy)

corresponds to the minimal IN(Oo—type Vo, so that Dy /20(1) 7) = 0 for any vy. The other required
properties are clear.

Our goal for the remainder of the section is to prove that v; can be chosen so that 6(vs) has
Ur,(4) level and non-zero (0,0, 0, 1)-Fourier coefficient, as in Theorem 1.2.5.

4.3 Weil representations for GL2
To accomplish this goal, we will calculate a certain twisted Jacquet module of Il;,. For this
latter calculation, we make a detour to consider the Weil representation of GLs.

The main results of this section are Corollaries 4.3.12 and 4.3.14, asserting that if certain
Whittaker functionals vanish on particular subspaces of these Weil representations, then they
vanish identically. For this we need to compare a certain double cover of GL2(Q,) arising in
our context with other constructions in the literature. Strictly speaking, we could appeal to
the results of Kazhdan and Patterson [KP84, §1] to see that the representation theory of these
various covers of GLy(Q,) are related as described in Proposition 4.3.9. We have opted for a
more-or-less self-contained presentation for the sake of the reader.

4.3.1 The double cover of SLa(Qp) and its Weil representation. Now set k = Q, for any
prime p, though the results of this section hold for any local field. We recall various essentially
well-known facts about the group SLo(k) and its Weil representation.

Let (V,q) be a quadratic space over k, and B(z,y) = q(x +y) — q(z) — ¢(y) the associated
bilinear form. We define a representation of §f42(k) on S(V), the Schwartz space of V', which is
genuine if dim(V) is odd.

We fix the additive character ¢ of k. Fix the Haar measure dv on V that is self-dual with
respect to the Fourier transform on V' as

B0) = [ v((w.w)o(w)du.
1%
Define Fy(v) =1 (q(v)), and let y(g) € C be defined as

v(q) = ling LFq(v) dv, (14)
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where the limit indicates that the value stabilizes for sufficiently large lattices L in V and we
take this value. -
One defines a Weil representation of SLa(k) on S(V), via:

(i) ¢ @(v) = ()" M P(v);

) ¢
(i) fva() ®(v) = (tq(v))@(v);
(iii) wy - @(v) = ’y(q)(I)( ), where w; = w4 (1);

(iv) ha(y) - ®(v) = [y|"2(v(ya) /7(2) B (yv).

PROPOSITION 4.3.1. The implied action of SLy(k) on S(V) is well-defined and gives a
representation, denoted by wy, 4. This representation is genuine when dim(V') is odd.

Proof. We omit the proof, which is well-known. O

Consider now the special case where V = k and ¢(z) = 22. The genuine representation Wp.q
is not irreducible: if St (k) is the subspace of even Schwartz functions (i.e. ®(—z) = ®(z)), then
éig(k) preserves this subspace. This gives an irreducible representation, which we will denote
by w;r.

In [Gel76], Gelbart defines a double cover of SLa(k) via an explicit two-cocycle, as follows.
For a matrix s = (‘é g) define

o(s) = {c if ¢ £ 0,

d ifc=0.
Define
a(g1,92) = (z(g1), 2(92))2(—=2(g1)x(g2), ©(g192) )2
and SL) (k) as the set of pairs (g, ¢) with g € SLy(k) and ¢ € {£1} with multiplication
(91,€1)(92, C2) = (9192, (g1, 92)1C2). (15)

Because of the uniqueness up-to-isomorphism of the non-trivial double cover of SLa(k), this
double cover is isomorphic to SLa(k).

4.3.2 Two double covers of GLa. We now define two double covers of the group GLa(k) and
consider extensions of the genuine representation w;; to these groups. Our motivation is to relate

a cover arising in our analysis of modular forms on Fy(k) with one considered in [GP80].

The first construction is given via generators and relations as follows. Consider the group

GL; )(k:) generated by éig(k‘) and hg, (t) for t € k*, subject to the relations that if we let oy

denote the simple root of SLo, then:

(i) ¢ is still central;

(1) Ty ()0, (W) Py ()71 = Ty, (102 F0), where (a, +an) = F1;
(iil) hay(8)hay (t) = hay(st)(s,t)a.
One can prove from these relations the following additional relations:
(iv) the commutator (o, (5), hay ()} = (5,1)2;

(V) Way (t)hay (W)way (—t) = (u™',u™ t)2hay (W)hay (u)

(1)

Sending ﬁaz(t) to diag(1,t), we obtain a surjective homomorphism =) : (/}\fq (k) —

GL2(k), which we claim is a double covering map extending the cover = : SLa(k) — SLa(k).
It is immediately checked that this map is well-defined. Moreover, by a Bruhat decomposition
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—~ (1
argument, one sees that the kernel is exactly the image of ua(k) in GL; )(k) To see that this

image is non-trivial, so that évLél)(k:) is really a double cover of GLy(k), we note that (Ei;l)(k:)

so defined is precisely the full inverse image of the subgroup GLa(k) C Fy(k) in the double cover
Fy(k) described in § 2.4 where GLo(k) C Fy(k) denotes the subgroup generated by the subgroup
isomorphic to SLa(k) associated to the simple root a; and the coroot associated to the simple
root ao.

Remark 4.3.2. In the literature (for example, [KP84]), one often finds this cover described in
terms of the inverse image in SL3(k) of the (2,1)-Levi subgroup. We opt for the inclusion into
F as this better illustrates our interest in this covering group. In any case, we have

GLy (k)  STa(k) C Fa(k),

where the inclusion SL3 C F} is that discussed in §2.8.
Let

G*:={ge éié”(k) : 7r(1)(g) € GLz(k) has determinant a square in k™ }. (16)

As is easily seen, this is the subgroup of G\iél)(k‘) generated by SAIZQ(k) and 7La2 (t?), t € k.
LEMMA 4.3.3. The group G* is generated by §f12(l€) and ﬁaz (t?) subject only to the relations
defining GLa(k), restricted to the hq, (t?).

Proof. Temporarily, let G7 be the group described in the statement of the lemma. Then one has
a tautological surjection G} — G*. Now G7 maps to GLa(k), with kernel at most us(k). Now
suppose € is in the kernel of G — G*. Then € € us(k). But the image of pa(k) in G* has size
two, so € = 1. ]

Fix a character x of k*, with x(—1) = 1. Let ST (k) be the Schwartz space of even functions.
We then have the genuine representation w;z of SLy(k) on ST (k). Following [GP80], one can
extend the action to an action of G* on ST (k) by letting

hay () () = x(a)la| 2 (a"2).
PROPOSITION 4.3.4. The above action gives a well-defined representation of G* on St (k). We
denote the resulting representation as wsy .

Proof. This is a direct check which we omit. 0
In [Gel76] and [GP80], a different double cover of GLa(k) is defined, which we now recall.

For y € k*, define
1 if ¢ # 0,
vy ) = {(y,d)g otherwise,

where s = (¢9). Define s¥ = diag(1,y) 'sdiag(1,y). Now, for 5= (s,() € éi;(k) (defined as
in (15)), let 3¥ = (s¥,v(y, s)¢). It is then proved that this gives an action of £* on éi;(k:) and
one defines GNL;O)(k) to be the semidirect product éi;(k) X k*.

We now compare the double cover (A}iéo)(k‘) and our (/}\iél)(k:) To do this, let G(©) be a group
defined as follows. As a set, it is évL;l)(k‘) The multiplication in G(¥) is defined as

g*h=g-h(det(g),det(h))s,

~—(1
where ¢ - h is the product in GLé )(k)
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(0)

— (0
PROPOSITION 4.3.5. The group G is isomorphic to GLy (k).
(0)

To prove the proposition, we require a few lemmas. Temporarily, let G|’ be the group
generated by SLa(k) and hg,(t) for t € k™, subject to the relations (i), (ii) and:

(iii) Py () hay () = By (st).

LEMMA 4.3.6. The map Ggo) — GO that is the identity on generators is a well-defined
isomorphism.

Proof. 1t is clear that the map is a well-defined homomorphism, because the relations satisfied

in Ggo) are again satisfied in G(°). Moreover, it is clear that the map is surjective, and covers the
identity map on the linear group GLy (k). By another Bruhat decomposition argument, the kernel

of Ggo) — GLy(k) is at most pa(k). It follows that the kernel is exactly po(k) and Ggo) — GO
is an isomorphism. ]

LEMMA 4.3.7. Fixt € k™. Define a map ¢, : é\iz(kﬁ) — éig(k‘) on generators as ¢ — (, Tq, (U) —
T, (t7 ) and 2_4, () — 2_q, (tu). Then this map is a well-defined isomorphism.

Proof. One checks that the relations in the first copy of éig(k:) are satisfied in the second copy.
Thus, the map is a well-defined surjection. Replacing ¢ by ¢! gives a well-defined inverse. Thus,
¢ is an isomorphism. O

LEMMA 4.3.8. The map SL(k) X, (o (1)) — Ggo) defined for h € SLy(k) as
(B Ty (1)) — Doy (1)
is a well-defined isomorphism.

Proof. Checking that it is well-defined amounts to the relation that g, (t1)hoha, (£1) ™ = ¢, (he)
in §I/42(k‘), which is clear.

The inverse map is Ggo) — SNLQ(k:) X (Eaz (t)) given by the obvious map on generators. The
relations defining Ggo) are again satisfied in the semi-direct product, so the map is well-defined.
It is clear that these maps are inverses to each other, giving the lemma. O

Proof of Proposition 4.3.5. Given the previous lemmas, we simply must check that the semi-
direct product defining (f}r\i;o)(k) is the same as that given by ¢;, and one must map our §I:2(k‘)
to SNL;(k) For this latter task, one checks that (1) +— ((1;),1) is a splitting to éi;(k:) (Use the
identity on Hilbert symbols (a, b)2(—ab,a + b)2 = 1.) This splitting pins down the isomorphism
STy (k) — SLy(k). One finds that @a(t) — ((_,—1 '), 1) and that ha, (t) — (diag(t, 1), (£, )2).
We omit the rest of the proof. O

~ (1
Note that this shows that the subgroup G* C GLé )(k) naturally occurs as a subgroup of

@TJ;O)(k), at least once we fix the above isomorphism G(0) = évLéO)(k)-

)

~(1
4.3.3 The Weil representation for GLa. The Weil representation of GL; (k) is defined as

~7 (1)

1 GL, "(k
Qfla)x = Ind ;. ( )(wwvx). (17)
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In order to use results of [GP80], we will need to compare Qq(j}l)x with the Weil representation

studied in [GP80], which is defined as

~7 (0)

0 GL, "(k (0)
be)x = Ind . ( )(W’tlax) ~ Ind&. (Wi )-
To compare these representations, suppose V) is a representation of é:iz;l)(k) Define a
representation V(@) of G(©) by letting V() = V(1) ag vector spaces, with action
det
grp = 2dt9)o)
v(q)
Here v(q) is as in (14).
~7 (1)
PROPOSITION 4.3.9. Suppose S is a representation of G*, V(1) = Indgf2 (k)(S), V() js as above,
and let V' = Indgio)(S ). As representations of (f}\iéo)(k:), V) is isomorphic to V' via the map
7(det(g)q)
fg) = ———~<—1(9)
(@) v(q) )
In particular, the map
(1) 1(0) (0)
(Qw,x) - QWX
given by f(g) — (v(det(g)q)/v(q))f(g) is an isomorphism.
Proof. This is a simple check. O

Remark 4.3.10. As remarked in [GP80], the representation Q(I)X is independent of 1. This implies

the same for Qi(l?)x In any case, this fact could have been derived in the same way as [GP80]. We

retain the notation above simply to keep track of our (fixed) choice of 1, such as our analysis of
various twisted Jacquet functors related to these representations.

We may now derive certain properties of QY from the corresponding results of Gelbart and

Piatetski-Shapiro [GP80]. Temporarily, let U(k) = {z4,(t) : t € k} denote the unipotent radi-

cal of the upper triangular Borel subgroup of GLa(k). This subgroup splits uniquely into both
~ (1 —~ (0

GLé )(k) and GLé )(k), so let U(k) also denote the image under the splitting. If V' is a rep-
resentation of either double cover, and ¢ € k*, a linear functional L :V — C is said to be a
(U, 1p¢)-functional if L(zq(u)v) = ¥ (tu)L(v) for all u € k and v € V.

PROPOSITION 4.3.11. The space of (U,1)-functionals on QS)X is one-dimensional. A basis of
this space of functionals is given by

F el o flha,(tH)(1).

Proof. It is immediately checked that the map f — f(ha,(t71))(1) is a non-zero (U,y)-
functional. Thus, the key statement is the multiplicity-one claim. For the representation
Qf/?)x, this is due to Gelbart and Piatetski-Shapiro [GP80]. Comparing Qz(pl)x with pro)x using
Proposition 4.3.9, we see that
1 0
Homy (Q4),11) = Homy () 1);

the multiplicity one for ngl)x follows. O

We will also require some results on invariant vectors of QS)X To state the first result, let
k = Q2 and let I' ¢1,,(4) be the subgroup of GLa(k) generated by zq(u), £—a(4u), ha, (t), ha, (t)
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with w € Zs and t €1+ 4Z,. Using the generators and relations, an easy analogue of
Theorem 2.5.5 implies that I'; g1,,(4) splits the cover GL2 (QQ) we set I'] g1, (4) for the image

of the splitting. Similarly, we denote by I'] g1 (4) the subgroup of SL»(Q.) generated by 4 (u),
—a(4u), ho, (t) with u € Zy and t € 1 + 4Z5.

COROLLARY 4.3.12. Let L; denote the non-zero (U,y)-functional given in the statement of
Proposition 4.3.11. If t =1 or t = —1, there is a I'] o ,(4)-invariant vector f; € QS)X so that
Li(f;) = 1. In particular, if t =1 or t = —1 and a (U, {y)-functional L on Qf;’)x vanishes on the
'] 1, (4)-invariant vectors, then L = 0.

Proof. Let ¢g € ST(Q2) be the characteristic function of Zs. Define f; € Q(l)x via f1(1) = ¢,

f1(hay(5)) = do and if g ¢ G* U G*hay(5), then f1(g) = 0. Define f—1 € Q) via f_1(hay(~1)) =

®0, [-1(hay(=5)) = ¢ and if g & G*hay(—1) U G*ha,(—5), then f_1(g) = 0
By construction, L¢(f¢) = 1 for ¢ = 1, —1. One readily verifies that fi and f_; are I'] o1, (4)-
invariant: for this, one uses that ¢y is I'] g1 , (4) invariant under the action of wy, and that hq, (5),
ha,(—1) normalize I'] g; . (4). The corollary follows. O
)

We have an analogous statement at the odd primes. Let k£ = Q,, with p odd and let GL3(Z,
be the subgroup of @él)(k) generated by Ziq(u), ha,(t) with u € Z, and t € Z; this is the
image of a splitting of GL2 (Qp) over GLy(Zp).

LEMMA 4.3.13. Suppose p is odd. Let ¢9 € ST(Q,) be the characteristic function of Z,. Let
{1, 1, p, pp} with € Z5 be representatives for QX/(QX) Define fj € IndGL2 (k)(S+(Qp)) by
fo(1) = 6o, fo(hay (1)) = b0, fo(has(p)) = 0 and fo(ha, (pp)) = 0. Then fy is GL3(Z,)-invariant.
Proof. This is a relatively direct check, which we omit. 0

It is proved in [GP80] that pro)x and, thus, Qz(pl)x is irreducible. We will see in §4.4 that

Q(l) embeds in a certain principal series representation, from which it follows that the space

of GLQ( p)-invariant vectors of 0" is at most one-dimensional [GG18, §9.2], and thus exactly
one-dimensional, spanned by the fo of Lemma 4.3.13. We obtain the following corollary.

COROLLARY 4.3.14. Supposet =1 ort = —1, k = Q, with p odd, and L is (U,1)-functional

that is 0 on the unique line of GL5(Zy)-invariant vectors of Qf;)x Then L = 0.

Proof. This follows from a similar argument to the p = 2 case. O

4.4 Jacquet functors

For any finite prime p, let Vi,in = Ilninp denote the local component of I, at p. Recall that
@ = LUg denotes the standard maximal parabolic of Fj associated to the simple root as. In
this subsection, we identify the Jacquet module Vi Uo of Vinin with respect to Ug with the

representation Q(l) of GL2 (Qp) considered in §4.3.3. For this to make sense, we first explicate

a map L(Qp) - GLz (Qp)
Recall the subgroup SL3(Q)) of F4(Q,) as described before Lemma 2.5.7.

PROPOSITION 4.4.1. The group SL3(Qj) splits into FV4(QP) is normal in E(Qp), and one has

E<Qp)/SL3(Qp) GL2 (Qp)
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Proof. We first note that SL3(Q,) is a normal subgroup of L(Q,) such that

L(Qp)/ SL3(Qp) ~ GL2(Qp).
That SL3(Qj) splits into ﬁ4(Qp) is Lemma 2.5.4.

To see that this SL3(Q)) is normal, let s denote the splitting of SL3(Q,) into ﬁ4(Qp). Because
SL3(Qp) is its own derived group, the splitting s is unique. Now, let ¢’ € E(Qp) with image g €
L(Qp). Define s, : SL3(Q,) — ﬁ4(Qp) as sg(h) = g's(g7thg)(¢’)~t. Since SL3(Q,) is normal in
L(Qp), s, is another splitting; thus, s, = s by uniqueness. This implies (¢')"'s(h)g’ = (g~ hg),
proving s( SL3(Qp)) is normal.

Flnally, we have a map GL2 (Qp) — L(Qp) because we know that the relations defin-
ing GL2 (Qp) are satisfied in L(Qp) This induces GL2 (Qp) — L(Qp)/SLg(Qp) The latter

group is a non-split double cover of GL2(Q,), as is GL2 (Qp) Since the map GL2 (Qp)
L(Qp)/ SL3(Qp) is defined in terms of generators and relations, it fits into a commutative diagram

e

1 M2 GL2 (Qp) —_— GLQ(QP) — 1
1 M2 E(Qp)/SLS(Qp) — GL2(Qp) — 1
and is, thus, an isomorphism. O

Let Xexc denote the unique exceptional character of Z(T (Qp)); by an abuse of notation, we
use the same symbol for the extension to T.(Q,) defined by setting

el (1) = 112 200 (18)

for t € Qp; here y(q) is defined in (14). We set BL = LN B =TUpg, the associated Borel subgroup
of the Levi subgroup L and set By, .(Qp) = T4(Qp)Up, (Qp)-

It follows from [LS10, § 6] that there is an embedding Vipin < IndF“((Qp )) (5}3/ *xal) and, thus,

p 1/2 ~ L(Qp 1/2 —
Vmin,UQ - IndQ((?Q ))(5 / Xexlc) = IndB(Lci()Qp)((SB/ Xexlc)‘ (19)

F4(Qp) 1/2 1

This latter map sends a function f € Indjg B.(Q p)(éB Xexe) tO its restriction f|~ It is clear that

this factors through the Jacquet functor me’UQ It is also clear that the map is non-zero.

PROPOSITION 4.4.2. The Jacquet functor Vinin v, is irreducible as a representation of E(Qp).

Moreover, the representation Ind LQ ()Q )(5]13/ QXG_XIC) has a unique irreducible subrepresentation,

which is, thus, identified with me,UQ under the above morphism.
Proof. To prove the irreducibility of Vi, Ugs We follow the argument of [BFGO03, Theorems 2.2

and 2.3]. This relies on the fact that the Jacquet functor of IndF4((Q” )) (5113/ 2Xexc) associated
to any standard non-minimal parabolic subgroup has no supercuspidal subquotients [BZ77,
Corollary 2.13(b)].

Suppose Vi C Vinin,u,, is an E(Qp)—invariant subspace, and V3 the quotient of Viyin,u, by Vi,
giving the short exact sequence of E(Qp)—representations

00—V, — — Vo — 0.

min,Ug
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By exactness of the Jacquet functor down to the unipotent radical Up, of the Borel subgroup
of L, we obtain

0 — Vi, — (Vmin,UQ)UBL = Vainug — Vo,uz, — 0.

The Jacquet functor Vininy, associated to the Borel subgroup of Fj is irreducible [LS10,
Proposition 6.4]. In particular, either VLUBL =0 or ‘/27UBL = 0; suppose it is Vl,UBL = 0.

If V} has no non-zero Jacquet modules, we must have V; = 0 by [BZ77, Corollary 2.13(b)].
Otherwise, let P, = My Ny C L be the standard parabolic subgroup that is minimal among
those such that Vi n, # 0. By assumption, Pr, # By, so that V; y, is a non-zero supercuspidal

F 1/2
Bi((%i)) ((53/ Xexc)NL7

which is a contradiction. An argument is identical if we assume %7UBL = 0, completing the proof
of the irreducibility of Vinin,Ug -

representation of M, £(Qp) and also a subquotient of the Jacquet module Ind

The proof that Indgi%’i)(é}g/ zxe_xlc) has a unique irreducible subrepresentation is exactly the

same as the semisimple case treated in [LS10]. Now recall that one has a non-zero map (19),
giving the final claim. O

Pulling back along the quotient map from Proposition 4.4.1, we now analyze the repre-
sentation Qgpl)x as a representation of L(Qp). Define the multiplicative character X(ﬂ = |v|*/?,
and recall that x determines an extension of the representation on ST(Q,) from SL3(Q,) to

the group G*; see Proposition 4.3.4. Consider the corresponding Weil representation ngl)x =
ALy’ (@p) A7 (D)
Indg. " (S+(Qp)) of GL; (Qp)-
LEMMA 4.4.3. Consider the functional
.oMm
B: wa — C
B(f) = f(1)(0).

Then B(t - f) = (5]13/2xgxlc)(t)B(f) for allt € T, (Qp), where Xexc Is the exceptional character Xexc
of T, (Qp) given by (18).

Proof. Using the formulas in §4.3.1, one has

oy = 127t
B(ha, (t) - f) = [t] ,y(q)B(f)

and
B(ha, (v) - f) = x(0)|o| V2B(f) = [0|B(f).
Moreover, B(hqas(v) - f) = B(ha,(v) - f) = B(f). Now observe that for each simple root

5]13/ Q(ha (t)) = |t|. The lemma now follows from the definition of yexc. O

(1)

Because €, is irreducible [GP80], Frobenius reciprocity provides an embedding of

E(Qp)—representations

1 L(Q 1/2 _
QL — Indjy ¥ (6 xe)-

(1
X
We recall from Remark 4.3.10 that the latter representation is independent of v, as we should

expect for Vinin,Ug -

COROLLARY 4.4.4. The Jacquet module Vinin,Ug 18 isomorphic to 2
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4.5 The minimal modular form
We return now to the global setting. Let J = H3(Q) be the symmetric 3 x 3 matrices with

Q coefficients. Fourier coeflicients of modular forms on F) are parameterized by elements w =
(a,b,c,d) € W;(Q) where

W;Q=QaeJoJ'eaQ=QaJoJoQ

as JV is identified with J via the trace pairing. In this subsection, we show that we may choose
vf € Ilin, f such that the modular form ©p, := 0(vy) satisfies that it has:

(i) Ug,(4) level; and
(ii) non-zero (0,0,0, 1)-Fourier coefficient.

This will rely on the following purely local result. Let p be a finite prime. Denote by K the
compact open subgroup of f4(Qp) at p introduced in § 2.7, so that K3 = K(4) and K = Fj(Z,)
for odd p. Let Ugp = Uy, Ug be the unipotent radical of the parabolic subgroup R C F} associated

to the simple roots a; and «pg; it splits canonically into ﬁ4(Qp). For t =1 or t = —1, define a
character 1 ; on Ur(Qp) by using the fixed additive character ¢, on the root space Uy, .

THEOREM 4.5.1. Let V), denote the vector space underlying Iyin . Suppose L is (Ur,1,)-
functional such that L is 0 on the Kj-fixed vectors of V,. Then L = 0. In particular, the twisted
Jacquet functor associated to (Ug,v1+) induces a surjection

K*
Vo' — Vo)
which is an isomorphism for p # 2.

Proof. There are two cases: p =2 and p > 2.

K L
Let us first handle the case where p is odd. First observe that V,, ¥ — VU(; is well-defined
and non-zero. Indeed, it is clear that the map is well-defined. To see that it is non-zero, consider
the further map to Vy, (recall Up denotes the unipotent radical of the Borel). Recalling the

Kp

embedding of V}, into Indgi((%i )) (5113/ Qnglc), we may consider the linear functional on V), given by
composing this map can with the evaluation-at-1 map: this gives a non-zero functional

Vo — Vug — Vuy — C.
The spherical vector in this induced representation is non-zero at ¢ = 1, so that this functional
. A K . .
is non-vanishing on V,, ”. In particular, the composition

K LNK; TNK:
V,'r —>VU; P VUBm P (20)

is non-zero.

*

Now observe that both V},K; and VPL;K” are at most one-dimensional [GG18, §9.2]. In fact,
each is exactly one-dimensional: in the case of V},, this follows from the intertwining operator
calculations of [LS10]. In the case of V}, 1, it now follows from the non-vanishing of the map (20)
and, in any case, we constructed a spherical vector in Lemma 4.3.13. The claim of the theorem
now follows by Corollary 4.3.14 and the isomorphism

~ ~ (0
%,(U37w1,t) = (‘/;JaUQ)UaFd)t = (Qw,x)Ual,w
We now discuss the case of p = 2. First observe that K5 = K5(4) has an Iwahori factorization
with respect to (Q = LU, as proved in Corollary 2.5.14. Now, it follows by [Cas95, Theorem 3.3.3]
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K% (4) ZOK;—{(ZI) . . . . .
that VAr® — VUQ is surjective. In light of Corollary 4.4.4, the claim of the theorem thus
follows as above by Corollary 4.3.12. O

Remark 4.5.2. The p odd case may also be handled in a similar fashion to the p = 2 case by
instead considering the subgroup I; C K associated to the Iwahori subgroup. The only non-
trivial step is noting that

I K>
P~ p
W=

as both are one-dimensional. This follows for K, as noted above and follows for I} as V}, =
ILmin,p corresponds to the trivial representation of the Iwahori-Hecke algebra under the Shimura
correspondence proved in [LS10, §9]. We thank Gordan Savin for pointing this out to us.

Using Theorem 4.5.1, we obtain the following corollary, completing the proof of
Theorem 3.3.1.

COROLLARY 4.5.3. There is a quaternionic modular form ©, of weight 1 on Fy(A) with Up, (4)
level and non-zero (0,0, 0, 1)-Fourier coefficient.

Proof. Let wy :=(0,0,0,1) € W;(Q) and consider the w;-Fourier coefficient

0 — H(n)wil(«dl?ﬁ» dn,
[NJ]

where 0 is a vector in the space of automorphic forms Il;,. By [Ginl9, Proposition 3|, this
gives a non-zero linear functional L,, on Il,; that is, there are vectors in Il;, with non-
zero wi-Fourier coefficient. Moreover, such a vector can be chosen to be a quaternionic modular
form (in other words, to lie in the minimal K ~o-type at the archimedean place) by the explicit
formula for the generalized Whittaker function proved in Theorem 3.2.2. Indeed, a corollary of
the proof of the explicit formula is that there is a unique moderate growth (N;(R), ¥ ((w1, —)))-
equivariant functional on Ilyin 0 up to scalar multiple, and these functionals are nonvanishing
on the minimal f(oo—type in Iyin,co-

Now consider the linear map on Ty, ¢ given by vy — L, (6(vf)); see (13) for the notation.
By what was just said, this map is non-zero on Iy . Moreover, [Ginl9, Proposition 4] implies
that for any 6, we have

0y (fen ) = [ ( [ty (o) in) a',

where Ng denote the unipotent radical of the Siegel parabolic subgroup of H; = GSpg. But

/[Ns] (/[NJ] 6(nn')¢~" (w1, ) d”) dn’ = /[UR] 9(U)7/1f£1(u) du,

where Ug is the unipotent radical of the parabolic R from Theorem 4.5.1 and 91 —1 = [[, ¥1,-1,0
is the global analogue of the character considered locally. By that result, the non-zero linear
map on iy ¢ given by vy — Ly, (6(vy)) does not vanish on the [, Kj-invariant vectors. The
corollary follows. O

[NJ]
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