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Abstract

We define a notion of modular forms of half-integral weight on the quaternionic excep-
tional groups. We prove that they have a well-behaved notion of Fourier coefficients,
which are complex numbers defined up to multiplication by ±1. We analyze the mini-
mal modular form ΘF4 on the double cover of F4, following Loke–Savin and Ginzburg.
Using ΘF4 , we define a modular form of weight 1

2 on (the double cover of) G2. We prove
that the Fourier coefficients of this modular form on G2 see the 2-torsion in the narrow
class groups of totally real cubic fields.

1. Introduction

1.1 Main result
We introduce our main result by way of an analogy. Let Θ(z) =

∑
n∈Z qn2 , where q = e2πiz. As is

well-known, Θ(z) is a classical holomorphic modular form of weight 1
2 and level Γ1(4) ⊆ SL2(Z).

Consider the weight 3
2 modular form

ECZ(z) := Θ(z)3 =
∑

n≥0

r3(n)qn;

here r3(n) := #{(n1, n2, n3) ∈ Z3 : n = n2
1 + n2

2 + n2
3} is the number of ways n can be written as

the sum of three squares. We have named this modular form after Cohen and Zagier, in light of
their papers [Coh75, Zag75].

Recall now the following theorem of Gauss.

Theorem 1.1.1 (Gauss). Suppose n is squarefree, n ≡ 1, 2 (mod 4) and n ≥ 4. Then r3(n) =
12 · |Cl(Q(

√
−n))|, 12 times the class number of the associated quadratic imaginary field.

Thus, the Fourier coefficients of ECZ(z) see the class numbers of imaginary quadratic fields.
Our main result is the construction of an analogous modular form ΘG2 of weight 1

2 on G2, whose
Fourier coefficients see the 2-torsion in the narrow class groups of totally real cubic fields. In
particular, we define a notion of modular forms of half-integral weight on certain exceptional
groups, very similar to the integral weight theory [GGS02]. We prove that these modular forms,
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which are now automorphic forms on certain non-linear double covers of these exceptional groups,
have a robust notion of Fourier coefficients. We then construct a particular interesting example
ΘG2 on G2 and partially calculate its Fourier expansion.

To motivate our construction of ΘG2 , observe that one has a commuting pair SL2 ×SO(3) ⊆
Sp6. One can also think of ECZ(z) as the restriction to SL2 of a weight 1

2 Siegel modular theta
function: ECZ(z) = ΘSp6(diag(z, z, z)), where

ΘSp6(Z) =
∑

v=(n1,n2,n3)∈Z3

e2πivZvt

and Z is in the Siegel upper half-space of degree three. Now, there is the following commutative
diagram of inclusions.

Sp6 F4⋃
⊆

⋃

SL2 ×SO(3) G2 × SO(3)

Following Loke and Savin [LS10] and Ginzburg [Gin19] we consider the automorphic minimal
representation on the double cover of F4. We show that the minimal representation can be used
to define a weight 1

2 modular form ΘF4 on F4, and define ΘG2 as the pullback to G2 of ΘF4 .
The Fourier coefficients of modular forms ϕ on G2 are parametrized by integral binary

cubic forms f(u, v) = au3 + bu2v + cuv2 + dv3, a, b, c, d ∈ Z, for which f(u, v) splits into three
linear factors over the real numbers. So, for each such binary cubic f , there is an associated
Fourier coefficient aϕ(f), which is a complex number well-defined up to multiplication by ±1.
Our main result is the explicit description of the Fourier coefficients of the weight 1

2 modular
form ΘG2 . More precisely, we can explicitly compute these Fourier coefficients aΘG2

(f) when the
binary cubic f(u, v) has d = 1. We explicate the special case of this result when the cubic ring
Z[y]/(f(1, y)) is a maximal order in a totally real cubic field.

Theorem 1.1.2. There is a modular form ΘG2 of weight 1
2 on G2 whose Fourier coefficients

satisfy the following: suppose f(u, v) = au3 + bu2v + cuv2 + dv3 is an integral binary cubic form
with d = 1, and that the cubic ring R = Z[y]/(f(1, y)) is a maximal order in a totally real cubic
field E = R ⊗ Q.

(i) If the inverse different d−1
R is not a square in the narrow class group of E, then the Fourier

coefficient aΘG2
(f) = 0.

(ii) If the inverse different d−1
R is a square in the narrow class group of E, then the Fourier

coefficient aΘG2
(f) = ±24|Cl+E [2]|, plus or minus 24 times the size of the two-torsion in the

narrow class group of E.

Thus, in both cases of Theorem 1.1.2, the Fourier coefficient of ΘG2 corresponding to the
binary cubic f is ±24 times the number of square roots of the inverse different d−1

R in the narrow
class group Cl+E of E.

1.2 Extended introduction
In this section we outline the contents of the paper.

1.2.1 Quaternionic modular forms. As our main results concern modular forms of half-
integral weight on the quaternionic exceptional groups, we begin by reviewing the integral weight
theory. To set the stage for these quaternionic modular forms, we first recall holomorphic modular
forms.
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Modular forms of half-integral weight on exceptional groups

Suppose G is a semisimple algebraic Q-group whose associated symmetric space is a
Hermitian tube domain. Then G has a notion of holomorphic modular forms. These can be
thought of as very special automorphic forms for G, which are closely connected to arithmetic.
They have a classical Fourier expansion and Fourier coefficients, and these Fourier coefficients
often encode arithmetic data.

Among the exceptional Dynkin types, only E6 and E7 have a real form with a Hermitian sym-
metric space, and only E7 has a real form with an Hermitian tube domain. So, if one is interested
in studying a class of special automorphic forms on, say, G2, F4 or E8, there is not an obvious
place to look for such objects. Nevertheless, beginning with work of Gross and Wallach [GW94,
GW96] and developed in work of Wallach [Wal03] and Gan, Gross and Savin [GGS02], a theory
of special automorphic forms on the exceptional algebraic groups began to emerge.

These special automorphic forms have been dubbed quaternionic modular forms. For each
exceptional Dynkin type, there is a so-called quaternionic real form: for G2 and F4, this is the
split real form, whereas for E6, E7 and E8 this is the real form with real rank equal to four.
The quaternionic modular forms are special automorphic forms on reductive groups G over Q
for which G(R) is a quaternionic real group.

The real quaternionic exceptional groups never have a symmetric space with complex
structure. However, these groups share similar structures, and the quaternionic modular forms
on these groups share similar properties. To be more specific, suppose G is an adjoint exceptional
group with G(R) quaternionic. Then the maximal compact subgroup KG of G(R) is of the form
(SU(2) × L)/µ2(R), for a compact group L that depends upon G. Let V2 denote the standard
representation of SU(2) and for a positive integer " let V# denote the representation of KG that is
the representation Sym2#(V2) of the SU(2) factor and the trivial representation of the L-factor.
A quaternionic modular form on G of weight " is an automorphic function ϕ : G(Q)\G(A) → V#

satisfying:

(i) ϕ(gk) = k−1 · ϕ(g) for all k ∈ KG and g ∈ G(A);
(ii) D#ϕ ≡ 0 for a certain specific differential operator D#.

This is the definition from [Pol20], which is a slight generalization and paraphrase of the definition
from [GGS02], where quaternionic modular forms are defined in terms of the quaternionic discrete
series representations of the group G(R).

To make this definition precise, of course we must specify the differential operator D#. Let the
notation be as above. Write g0 = k0 ⊕ p0 for the Cartan decomposition of the Lie algebra g0 of
G(R). Then, as a representation of KG, one has p := p0 ⊗ C + V2 ⊗ W for a certain symplectic
representation W of L. Let {Xα}α be a basis of p and {X∨

α}α be the dual basis of p∨. For ϕ
satisfying ϕ(gk) = k−1 · ϕ(g), define D̃#ϕ =

∑
α Xαϕ⊗ X∨

α . Here Xαϕ denotes the right regular
action, and D̃#ϕ is valued in

V# ⊗ p∨ + Sym2#+1(V2) ! W ⊕ Sym2#−1(V2) ! W.

We let pr : V# ⊗ p∨ → Sym2#−1(V2) ! W be the KG-equivariant projection and define
D# = pr ◦ D̃#.

The relationship of the definition of quaternionic modular forms with representation theory
is as follows. Suppose π is an irreducible (g0, KG)-module embedded in the space of automor-
phic forms on G(Q)\G(A) via a map α. Suppose, moreover, that π has minimal KG-type V#.
Then out of V# and α one can construct a quaternionic modular form of weight ": for
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g ∈ G(A) set

ϕ(g) =
#∑

j=−#
α(xj)(g) ⊗ x∨

j ,

where {xj} is a basis of V# ⊆ π# and x∨
j is the dual basis of V∨

# + V#. Using the fact that V# is
the minimal K-type of π, it is easy to show that ϕ is a quaternionic modular form of weight ".
If " is sufficiently large depending on G, there is a discrete series representation π# of G(R) whose
minimal KG-type is V#, so embeddings of these discrete series representations into the space of
automorphic forms on G give rise to quaternionic modular forms of weight ".

Modular forms of integral weight " have been studied in [GGS02], [Wei06], [Pol20, Pol22a,
Pol21, Pol22c] and [Dal23]. For an introduction to what is known about them, we refer to [Pol22b].
The main result of [Pol20] is that quaternionic modular forms have a robust, semi-classical
Fourier expansion, similar to the Fourier expansion of classical holomorphic modular forms on
tube domains. This result generalized and refined work of Wallach [Wal03].

To explain this Fourier expansion, we recall another common feature of the quaternionic
exceptional groups. While none of them has a parabolic with abelian unipotent radical, they
all have a Heisenberg parabolic P = MN whose unipotent radical N ⊇ Z = [N, N ] ⊇ 1 is two-
step, with one-dimensional center Z. Thus, if ϕ is an automorphic form on G, one can take
the constant term ϕZ of ϕ along Z, and Fourier-expand the result along N/Z: ϕZ =

∑
χ ϕχ

where ϕχ(g) =
∫
N(Q)\N(A) χ

−1(n)ϕ(ng) dn. The main result of [Pol20] is an explication of
this Fourier expansion for quaternionic modular forms ϕ of weight ". Namely, it is proved
in [Pol20] that there are certain completely explicit functions Wχ : G(R) → V# so that if ϕ
is a weight " modular form, then ϕχ(g) = aϕ(χ)(gf )Wχ(g∞) for some locally constant function
aϕ(χ) : G(Af ) → C; here g = gfg∞ is the factorization of g into its finite-adelic and infinite
parts. The complex numbers aϕ(χ)(1) are called the Fourier coefficients of ϕ. This definition
is designed to mimic the classical definition of Fourier coefficients of holomorphic modular
forms.

While defined in a purely transcendental way, the Fourier coefficients of a quaternionic mod-
ular form ϕ appear to have arithmetic significance; for evidence of this claim, see [Pol22a, Pol21,
Pol22c]. One purpose of the present paper is to add to this growing evidence that quaternionic
modular forms have arithmetically interesting Fourier coefficients.

1.2.2 The double cover of quaternionic exceptional groups. In this paper, we define and study
certain quaternionic modular forms of half-integral weight and their Fourier coefficients. To
define these notions, suppose again that G is an adjoint quaternionic exceptional group. Then,
since G(R) deformation retracts onto KG + (SU(2) × L)/µ2(R), and KG has a 2-cover K̃G +
SU(2) × L, the group G(R) has a 2-cover G̃. Choosing a basepoint of G̃ above 1 ∈ G(R) makes
G̃ into a connected Lie group, which is a central µ2(R)-extension of G(R)

1 → µ2(R) → G̃ → G(R) → 1,

and K̃G can be identified with a maximal compact subgroup of G̃.
Our first result, which is perhaps of independent interest, is an explicit description of these Lie

groups G̃. To motivate it, let h = SL2(R)/ SO(2) denote the upper half-plane and recall that one
can identify the double cover of SL2(R) with pairs (g, jg) where g =

(
a b
c d

)
∈ SL2(R) and jg : h →

C× is a holomorphic function that satisfies jg(z)2 = cz + d. If now G is an adjoint quaternionic
exceptional group, with symmetric space XG = G(R)/KG, we define a factor of automorphy jlin :
G(R) × XG → GL3(C), satisfying jlin(g1g2, x) = jlin(g1, g2x)jlin(g2, x). We then consider the set
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of pairs (g, jg) with g ∈ G(R) and jg : XG → GL2(C) continuous that satisfy Sym2(jg(x)) =
jlin(g, x). It is easy to see that this set forms a group with multiplication (g1, jg1(x))(g2, jg2(x)) =
(g1g2, jg1(g2x)jg2(x)).

Theorem 1.2.1. With a certain topology on the set of pairs (g, jg) above, this set can be

identified with the connected topological group G̃.

When G is a split, simply connected algebraic group, such as G2 or F4, Steinberg [Ste16] and
Matsumoto [Mat69] have defined a 2-cover G̃(2)(k) of G(k) for every local field k. When k = R
and G = G2 or F4, this 2-cover can be identified with the 2-cover G̃. The group G̃(2)(k) can be
constructed by generators and relations [Ste16], as we recall in § 2.4. The groups G̃(2)(Qv) can
be glued together to produce a 2-cover G̃(2)(A) of G(A). It follows from the construction of
G̃(2)(A) and the global triviality of the Hilbert symbol that the group of rational points G(Q)
splits into G̃(2)(A).

Now suppose " ≥ 1 is an odd integer. Let V#/2 = Sym#(V2) be the representation of K̃G that
is the "th symmetric power of V2, as a representation of SU(2), and is the trivial representation
of L. We define a quaternionic modular form ϕ for G of weight "/2 to be a V#/2-valued
automorphic function ϕ : G(Q)\G̃(2)(A) → V#/2 that satisfies:

(i) ϕ(gk) = k−1 · ϕ(g) for all g ∈ G̃(2)(A) and k ∈ K̃G; and
(ii) D#/2ϕ ≡ 0.

Here the differential operator D#/2 is defined exactly as D# was above. If U ⊆ G(Af ) is an
open compact subgroup that splits into G̃(2)(A), and ϕ is stabilized by U , then we say ϕ has
level U .

To study modular forms of half-integral weight on the group G̃(2)(A), it helps to have explicit
open compact subgroups U ⊆ G(Af ) together with an explicit splitting sU : U → G̃(2)(A). This
is accomplished in the following result in case G is F4.

Theorem 1.2.2. When G = F4, there is an explicit, large open compact subgroup UF4(4) that
splits into the double cover.

When p > 2, it is proved by Loke and Savin [LS10] that the hyperspecial maximal com-
pact subgroup of G(Qp) splits into G̃(2)(Qp). Thus, it remains to analyze the case p = 2, and
it is here where we do detailed computations: in § 2.5, we produce an explicit (non-maximal)
compact open subgroup of F4(Q2) that splits into the double cover. Our result in this direc-
tion can be considered an extension of some work of [Kar21], who considers the simply laced
case.

1.2.3 The Fourier expansion of half-integral weight modular forms. With the groups G̃(2)(A)
reviewed and the notion of quaternionic modular form defined, it makes sense to ask about exam-
ples and properties of quaternionic modular forms of half-integral weight. The main property
we prove is the existence of a robust, semi-classical Fourier expansion, analogous to the integral-
weight theory. To make sense of Fourier expansions on the covering groups G̃(2)(A), one begins
with the observation that the unipotent group N(Qv) splits uniquely into G̃(2)(Qv) for every
place v. Consequently, one can ask about the Fourier expansion of ϕZ(g) if ϕ(g) is an automorphic
function on G̃(2)(A).

To produce the desired Fourier expansion, we analyze generalized Whittaker functions on the
groups G̃ + G̃(2)(R). If χ : N(R) → C× is a non-trivial unitary character, and " ≥ 1 is an odd
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integer, a generalized Whittaker function of type (N,χ, "/2) is a smooth function F : G̃ → V#/2

satisfying:

(i) F (gk) = k−1 · F (g) for all g ∈ G̃ and k ∈ K̃G;
(ii) F (ng) = χ(n)F (g) for all n ∈ N(R) and g ∈ G̃;
(iii) D#/2F ≡ 0.

With regard to these generalized Whittaker functions, we prove the following theorem, which is
the analogue in the half-integral weight case of the main result of [Pol20]. To state the result,
we recall that if G is a quaternionic exceptional group, then there is a notion of ‘positive semi-
definiteness’ of non-trivial unitary characters χ of N(R). We let M denote a particular fixed
Levi subgroup of the Heisenberg parabolic P , to be recalled in § 2.2.

Theorem 1.2.3. Let the notation be as above, with χ a non-trivial unitary character of N(R).

(i) Suppose F is a moderate-growth generalized Whittaker function of type (N,χ, "/2), and χ
is not positive semi-definite. Then F is identically 0.

(ii) Suppose χ is positive semi-definite and " is fixed. There are a pair of non-zero functions
W 1
χ(g) and W 2

χ(g) that satisfy the following properties:
(a) W 2

χ(g) = −W 1
χ(g);

(b) the W j
χ are moderate growth generalized Whittaker functions of type (N,χ, "/2);

(c) the set {W 1
χ(g), W 2

χ(g)} depends continuously on χ;

(d) if r is in the derived group [M, M ](R) and r̃ is a preimage of r in G̃, then the set
{W 1

χ(r̃g), W 2
χ(r̃g)} = {W 1

χ·r(g), W 2
χ·r(g)};

(e) moreover, if F is moderate growth generalized Whittaker function of type (N,χ, "/2),
then there is a pair of complex numbers aχ,2(F ) = −aχ,1(F ) so that F (g) =
aχ,j(F )W j

χ(g) for j = 1, 2.

Note that, if ζ is the non-identity element of the preimage of {1} in G̃, then W 1
χ(ζg) =

W 1
χ(gζ) = −W 1

χ(g) = W 2
χ(g), so that one really needs both W 1

χ and W 2
χ to appear in property

2(d) of Theorem 1.2.3.
The Fourier expansion of quaternionic modular forms on G̃ of weight "/2 follows immediately

from Theorem 1.2.3.

Corollary 1.2.4. Suppose ϕ is a quaternionic modular form on G̃(2)(A) of weight "/2, and
g ∈ G̃(2)(R) + G̃. Then there is a lattice Λ in (N(Q)/Z(Q))∨ so that

ϕZ(g) = ϕN (g) +
∑

1'=χ∈Λ

aj
ϕ(χ)W j

χ(g)

for certain complex numbers aj
ϕ(χ) that satisfy a1

ϕ(χ)W 1
χ(g) = a2

ϕ(χ)W 2
χ(g).

The elements aj
ϕ(χ) ∈ C/{±1} are called the Fourier coefficients of ϕ. Note that the Fourier

coefficients are defined in terms of the restriction of ϕ to the group G̃(2)(R) of real points.

1.2.4 The automorphic minimal representation. One of the first examples of quaternionic
modular forms of integral weight is given by the automorphic minimal representation on quater-
nionic E8, which was produced by Gan [Gan00], see also [Pol22a]. The double cover of F4 has an
automorphic minimal representation; this representation was defined and studied by Loke and
Savin [LS10] and further analyzed by Ginzburg [Gin19]. Our first example of a modular form of
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half-integral weight, in fact of weight 1
2 , comes from this automorphic minimal representation on

F̃ (2)
4 (A).

The following is our main result concerning the automorphic minimal representation on
F̃ (2)

4 (A). To state the result, let J0 = Sym2(Z3) denote the 3 × 3 integral symmetric matrices,
and let J∨

0 be the dual lattice with respect to the trace pairing, so that J∨
0 is the set of half-integral

symmetric 3 × 3 matrices. If N denotes the unipotent radical of the Heisenberg parabolic of F4,
then there is an embedding of the lattice W (Z)∨ = Z ⊕ J∨

0 ⊕ J∨
0 ⊕ Z in the space of characters

W (Q)∨ = (N(Q)/Z(Q))∨ = W (Z)∨ ⊗ Q.

Theorem 1.2.5. Let Πmin = Πmin,f ⊗ Πmin,∞ denote the automorphic minimal representation

of F̃ (2)
4 (A). The minimal K̃F4-type of Πmin,∞ is V2 = V1/2. Consequently, if vf ∈ Πmin,f , there

is an associated quaternionic modular form θ(vf ) of weight 1
2 on F̃ (2)

4 (A). Moreover:

(i) the (a, b, c, d) ∈ W (Q)∨ Fourier coefficient of θ(vf ) is zero unless (a, b, c, d) is ‘rank one’;
(ii) the vector vf can be chosen so that θ(vf ) (cf. Theorem 1.2.2) has level UF4(4) and has

non-zero (0, 0, 0, 1) ∈ W (Z)∨ Fourier coefficient.

The fact that the minimal K̃F4-type of π∞ is V1/2 follows easily from work of [ABP+07]. As
explained above, this implies that there are associated weight-1

2 modular forms θ(vf ) on F4. The
statement that the Fourier coefficients of θ(vf ) vanish unless (a, b, c, d) is rank one is the result
[Gin19, Proposition 3] of Ginzburg, imported into our language. Where we work hard is the last
statement, that vf can be chosen so that θ(vf ) has large level and non-zero (0, 0, 0, 1)-Fourier
coefficient.

To prove this result about level and Fourier coefficients, we make some detailed computations
of certain twisted Jacquet modules of the automorphic minimal representation π, especially at the
2-adic place. To do these computations, we bootstrap off of twisted Jacquet module computations
in [GP80], which concerns the Weil representation of a double cover of GL2(Qp).

1.2.5 A modular form on G2. Let ΘF4 denote a weight 1
2 , level UF4(4)-modular form on

F̃ (2)
4 (A), with non-zero (0, 0, 0, 1)-Fourier coefficient, as guaranteed by Theorem 1.2.5. We nor-

malize ΘF4 so that its (0, 0, 0, 1)-Fourier coefficient is ±1. There is an embedding G̃(2)
2 (A) ⊆

F̃ (2)
4 (A), compatible with the splittings on the rational points. Denote by ΘG2 the pullback to

G̃(2)
2 (A) of ΘF4 . Then we check that ΘG2 is a quaternionic modular form of weight 1

2 . Our main
result concerns the Fourier coefficients of ΘG2 .

To describe these Fourier coefficients, first note that if N is the unipotent radical of the
Heisenberg parabolic of G2, then (N(Q)/Z(Q))∨ can be identified with the rational binary
cubic forms f(u, v) = au3 + bu2v + cuv2 + dv3. It is easy to show that the Fourier coefficients of
ΘG2 vanish outside the lattice of integral binary cubic forms. We give a formula for the Fourier
coefficient aΘG2

(f) for every integral binary cubic form f with d = 1.
To state (the main part) of this formula, we introduce a notation concerning cubic rings,

following Swaminathan [Swa21]. Let R be an order in a totally real cubic field E = R ⊗ Q. Let
d−1

R be the inverse different of R, i.e. the fractional R ideal consisting of those x ∈ E for which
trE(xλ) ∈ Z for all λ ∈ R. Say that a pair (I, µ) of a fractional R ideal I and a totally positive
unit µ ∈ E×

>0 is balanced if:

(i) µI2 ⊆ d−1
R ;

(ii) N(µ)N(I)2disc(R/Z) = 1.
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Thus, if R is the maximal order in E, (I, µ) is balanced if and only if µI2 = d−1
R . Here N(µ) is

the norm of µ and N(I) (well-defined up to multiplication by ±1) is the determinant of a linear
transformation of E that takes a Z-basis of R to a Z-basis of I.

Let QR be the set of balanced pairs (I, µ) up to equivalence, where we say (I, µ) is equivalent
to (I ′, µ′) if there exists β ∈ E× such that I ′ = βI, µ′ = β−2µ. The set QR is always finite and
sometimes empty. If R is the maximal order and QR is nonempty, then we show in § 3.5 that
|QR| = |Cl+E [2]| where Cl+E [2] is the 2-torsion in the narrow class group of E.

Theorem 1.2.6. Let the notation be as above, and suppose the binary cubic form f(u, v) has
d = 1. Denote by R = Z[y]/(f(1, y)), and suppose that R ⊗ Q is a totally real cubic field. The
weight 1

2 modular form ΘG2 on G2 has Fourier coefficient aΘG2
(f) = ±24|QR|.

We also give an arithmetic interpretation of the Fourier coefficients of ΘG2 in the case that
R ⊗ Q is of the form Q × K for K a real quadratic field. See § 3.5.2.

2. Group theory

In this section, we work out many of the group-theoretic aspects of this paper. We prove
Theorems 1.2.1 and 1.2.2 of the introduction.

2.1 Central extensions: the general picture and conventions
Quaterionic modular forms of half-integral weight live on certain central extensions of adjoint
forms of exceptional groups. We therefore begin by discussing some generalities about extensions
of the group of points of algebraic groups and setting certain conventions. The theory is much
more transparent in the simply connected case (which is also our setting when G = G2, F4 or
E8), so we recall this setting first. We will only work over Q and its localizations, so we restrict
our discussion to this case. Let p be a place of Q and let Qp be the associated local field; we set
Q∞ = R.

Assume that G is a simply connected, simple linear algebraic group over Q and consider the
topological group G(Qp) for p ≤ ∞. In [Del96], Deligne constructs a canonical extension

1 −→ H2(Qp, µ
⊗2
n ) −→ G̃(n)(Qp) −→ G(Qp) −→ 1

for any n ∈ N. This construction relies heavily on the cohomology of the classifying space BG and
on the construction of the Galois symbol by Tate [Tat76]; we will not review this construction
further.

It is known [Del96, MS82] that if N is the number of roots of unity in Qp, then

H2(Qp, µ
⊗2
n ) ∼= K2(Qp)/(n, N)K2(Qp) ∼= µ(n,N)(Qp), (1)

where K2(Qp) is the Milnor K-theory of Qp. In particular, for any p ≤ ∞, we obtain a canonical
double cover

1 −→ µ2(Qp) −→ G̃(Qp) := G̃(2)(Qp) −→ G(Qp) −→ 1, (2)

which satisfies the following properties:

(i) when p = ∞ and G(R) is not topologically simply connected, then G̃ is the unique connected
topological double cover of G(R) (note that π1(G(R)) is either Z and Z/2Z, so this is
well-defined);

(ii) when G is Q-split, then for all p the group G̃(Qp) agrees with the topological double cover
constructed by Steinberg and Matsumoto via generators and relations.
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Both of these facts are relevant to us: in § 2.3 we give an explicit construction for G̃(R) for
quaternionic exceptional groups that is amenable to the definition of generalized Whittaker
functions. On the other hand, our main applications to modular forms involve only the split
groups F4 and G2. In order to make certain local calculations, we recall the Steinberg–Matsumoto
presentation of G̃(Qp) in § 2.4.

If A = AQ is the adele ring, Deligne similarly constructs a canonical central extension of
G(A) by µ2(Q), so that we have a short exact sequence of locally compact topological groups

1 −→ µ2(Q) −→ G̃(A) −→ G(A) −→ 1. (3)

This central extension splits canonically over G(Q), allowing for the definition of automorphic
forms on this group. There is a decomposition G̃(A) =

∏
p G̃(Qp)/µ+

2 , where G̃(Qp) is the local
cover (2) and µ+

2 denotes the subgroup of
⊕

p µ2(Qp) with product of terms being 1. When G is
a simply connected, semisimple group over Q or Qp for p ≤ ∞ (in particular, when G is of type
G2, F4 or E8), we always consider this canonical double cover of Deligne.

When our reductive group G is no longer semisimple and simply connected, such as the
adjoint forms of E6 and E7 or for Levi subgroups, there is no canonical central extension of
G̃(Qp) by µ2(Q2); indeed, we will deal with two distinct double covers of GL2(Qp) in § 4.3. The
classification of a large class of central extensions (known as Brylinski–Deligne covers) is given
in [BD01], where the authors classify extensions of G by the Milnor K-theory sheaf K2, viewed
as sheaves of groups on the big Zariski site over Qp. Given such a central extension of sheaves
of groups over Spec(Qp)

K2 −→ G −→ G,

one obtains a topological double cover by taking Qp-points and pushing out by the Hilbert
symbol as follows.

Working globally, Brylinski and Deligne also extend the adelic formulation (3) to this more
general setting. The connection between Deligne’s cover and extensions by K2 may be seen in
the identification (1). Indeed, when G is semisimple and simply connected, it is shown in [BD01,
§ 4] that for any p, there exists a central extension of sheaves of groups over Spec(Qp) such that
the bottom row of the above diagram recovers the sequence (2).

Suppose now that G is an adjoint exceptional group over Q of type E6 or E7 such that G(R)
is quaternionic (recalled in the next section). In this setting, we construct a double cover G̃ of
G(R) in § 2.3. Our convention is that we assume that G is a given Brylinski–Deligne cover of G
satisfying that the induced double cover of G(R) agrees with our construction up to isomorphism.
This is automatic if the pushout G̃(R) is connected and non-linear.

Finally, suppose that k is either a localization of Q or k = A and let G̃(k) be a given
topological double cover of G(k). If S is a subset of G(k), we denote by S̃ its inverse image
in G̃(k). If U ⊂ G is a unipotent subgroup, then it is known that G̃(k) splits canonically over
U(k); we use a standard abuse of notation and simply denote by U(k) ⊂ Ũ(k) the corresponding
subgroup of G̃(k).
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Table 1. The Freudenthal magic square, J = H3(C).

The group dimC = 1 dim C = 2 dim C = 4 dim C = 8

AJ A1 A2 C3 F4

MJ A2 A2 × A2 A5 E6

HJ C3 A5 D6 E7

GJ F4 E6 E7 E8

2.2 Review of quaternionic exceptional groups
In this section, we review notation and constructions from [Pol20] concerning quaternionic
exceptional groups. For more details, we refer the reader to [Pol20, §§ 2–4].

First recall the notion of a cubic norm structure J . This is a finite-dimensional vector space
J over a field k that comes equipped with a homogeneous degree-three norm map NJ : J → k, a
non-degenerate trace pairing ( , ) : J ⊗ J → k, a distinguished element 1J ∈ J , and a quadratic
map # : J → J∨ + J . The relevant examples of cubic norm structures for this paper are J = k
and J = H3(C), the 3 × 3 hermitian matrices over a composition k-algebra C.

Out of a cubic norm structure J , one can create various algebraic groups. First, denote by
MJ the identity component of the algebraic group of linear transformations of J that preserve
the norm NJ up to scaling. Let M1

J denote the subgroup of MJ with scaling factor equal to 1,
and let AJ be the subgroup of M1

J that fixes the element 1J of J .
We next discuss the so-called Freudenthal construction. If J is defined over the field k of

characteristic 0, define WJ = k ⊕ J ⊕ J∨ ⊕ k, another vector space over k. One puts on WJ a
certain non-degenerate symplectic form 〈 , 〉 and a quartic form q : WJ → k. The algebraic group
HJ is defined to be the identity component of the set of pairs (g, ν(g)) ∈ GL(WJ) × GL1 that
satisfy 〈gw1, gw2〉 = ν(g)〈w1, w2〉 and q(gw) = ν(g)2q(w). The map ν : HJ → GL1 is called the
similitude, and H1

J is defined to be the kernel of ν.
The next algebraic structure defined out of J is a Lie algebra g(J). There are two equivalent

ways to define g(J). In the first way, one defines

g(J) = sl3 ⊕ m0
J ⊕ V3 ⊗ J ⊕ (V3 ⊗ J)∨.

Here m0
J is the Lie algebra of M1

J and V3 is the standard three-dimensional representation of sl3.
A Lie bracket can be put on g(J); see [Pol20, § 4.2.1]. We refer to this way of thinking about
g(J) as the ‘Z/3-model’. Let Eij be the 3 × 3 matrix with a 1 in the (i, j) position and zeros
elsewhere. If X =

∑
i,j aijEij has trace 0, we will sometimes consider X as an element of g(J)

via the inclusion sl3 ⊆ g(J).
In the second way to define g(J), one puts

g(J) = sl2 ⊕ h0
J ⊕ V2 ⊗ WJ .

Here h0
J is the Lie algebra of H1

J and V2 is the standard two-dimensional representation of sl2.
We refer to this way of looking at g(J) as the Z/2-model. An explicit isomorphism between the
Z/3-model and the Z/2-model is given in [Pol20, § 4.2.4]. An algebraic group GJ can now be
defined as Aut0(g(J)), the identity component of the automorphisms of the Lie algebra g(J).

The algebraic groups AJ , MJ , HJ , GJ fit into the Freudenthal magic square, as J = H3(C)
varies with dim C = 1, 2, 4, 8. In Table 1, we list the absolute Dynkin types of the above groups.
The magic square can be extended to a magic triangle, which was studied in [DG02]. We refer
the reader to [DG02] for properties of this triangle.
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In the algebraic group GJ we fix a specific parabolic subgroup PJ , called the Heisenberg
parabolic; see [Pol20, § 4.3.2]. The subgroup PJ can be defined as the stabilizer of the line
kE13 ⊆ g(J). It has HJ as a Levi subgroup and unipotent radical NJ ⊇ Z ⊇ 1 which is two-step.
Here Z = [NJ , NJ ] is the exponential of the line kE13, and one can identify NJ/Z with WJ , as
a representation of HJ .

Suppose now that k = R and the trace pairing on J is positive definite. Then the associated
real groups in each row of the magic square share similar properties: the groups AJ are all
anistropic, while the groups MJ have real root system of type A2, with root spaces that can be
naturally identified with the composition algebra C.

In this setting, the groups HJ all have a real root system of type C3, with short root spaces
identified with C and long root spaces one-dimensional. Denote by H+

J the identity component
of HJ(R). The group H1

J or H+
J (which contains H1

J) has a hermitian symmetric domain. More
specifically, let HJ = {Z = X + iY : X, Y ∈ J, Y > 0}. Identify HJ with a subset of WJ ⊗ C via
Z 4→ r0(Z) := (1,−Z, Z#,−NJ(Z)). Then one proves (see [Pol20, Proposition 2.3.1]) that given
g ∈ H+

J and Z ∈ HJ , there exists j(g, Z) ∈ C× so that g · r0(Z) = j(g, Z)r0(gZ), for an element
gZ ∈ HJ . This simultaneously defines an action of H+

J on HJ and the factor of automorphy
j(g, Z).

Still assuming that k = R and the trace pairing on J is positive-definite, the group GJ is
called a quaternionic group. The groups GJ in the final row of the Freudenthal magic square
now all have real root system of type F4, with short root spaces identified with C and long root
spaces one-dimensional. When J = R instead of H3(C), the group GJ is G2. We refer to these
cases by saying that GJ is a quaternionic adjoint exceptional group. In these cases, the group
GJ(R) is connected [Tha00].

Suppose GJ is an adjoint quaternionic exceptional group. Then a specific Cartan involution
on its Lie algebra g(J) is defined in [Pol20, § 4.2.3]. We denote by KJ the associated maximal
compact subgroup of GJ(R). The group KJ is of the form (SU(2) × L0(J))/µ2(R), for a certain
compact group L0(J).

In [Pol20, § 5.1], a specific sl2-triple (e#, h#, f#) of the complexified Lie algebra of the SU(2)
factor of KJ is defined. We now recall this sl2-triple. Let e = (1, 0)t and f = (0, 1)t denote the
standard basis of the two-dimensional representation of sl2 ⊆ g(J) = sl2 ⊕ h0

J ⊕ V2 ⊗ WJ . One
sets e# = 1

4(ie + f) ⊗ r0(i · 1J), f# = −e# and h# = [e#, f#]. Here 1J is the identity element of the
cubic norm structure J .

For " ∈ 1
2Z≥0, set V2 = C2 and V# = Sym2#(V2), a representation of the Lie algebra of KJ

via the projection to the SU(2) factor. Using the above sl2-triple, we fix a basis of V#, as follows.
First, let x, y denote a weight basis of V2 for h# with y = f#x. Then we let the monomials xiyj

for i + j = 2" be our fixed basis of V#. When " is an integer, the representation V# exponentiates
to a representation of KJ .

2.3 The cover in the archimedean case
In this section, we describe an explicit construction of a connected topological double cover of
the quaternionic adjoint groups GJ(R). This gives the unique non-linear double cover of these
groups.

2.3.1 Preliminaries. Now let J be a cubic norm structure over the real numbers R, with
positive-definite trace pairing. We assume J = R or J = H3(C) with C a composition algebra
over R with positive-definite norm.

Fix the sl2-triple e#, h#, f# of gJ ⊗ C, recalled above. Identify Span(e#, h#, f#) with Sym2(V2)
by sending e# 4→ x2, h# 4→ −2xy, f# 4→ −y2. This identification is KJ -equivariant; see the text
immediately before Lemma 9.0.2 in [Pol20].
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We recall an Iwasawa decomposition for the group GJ(R). Let PJ = HJNJ be the
Heisenberg parabolic of GJ . Let QJ be the parabolic subgroup associated to the cochar-
acter t 4→ diag(t, t, t−2) ∈ SL3 → GJ . The Lie algebra of QJ contains the root spaces where
E11 + E22 − 2E33 acts by the weights 0, 1, 2 or 3. Moreover, QJ stabilizes Span(E13, E23) in
the Z/3-model of gJ , as one sees by checking this on the Lie algebra level. Define RJ = PJ ∩ QJ

and denote by R+
J the connected component of the identity of RJ(R). Recall that KJ denotes the

maximal compact subgroup of GJ(R) associated to the Cartan involution described in [Pol20].

Proposition 2.3.1. Every g ∈ GJ(R) can be written as g = rk with r ∈ R+
J and k ∈ KJ .

Moreover, if k ∈ R+
J ∩ KJ , then k acts trivially on Span(e#, h#, f#).

Proof. The first part follows from the usual Iwasawa decomposition of GJ .
For the second part, let M(RJ) denote the standard Levi subgroup of RJ , so that M(RJ) is

the subgroup of HJ that is the centralizer of the cocharacter defined above. Then RJ(R) ∩ KJ =
M(RJ)(R) ∩ KJ . Thus, RJ(R) ∩ KJ stabilizes the lines RE13 and RE23 in the Lie algebra
g(J). We claim that R+

J ∩ KJ acts trivially on these lines. To see this, observe that R+
J ∩ KJ =

M(RJ)+ ∩ KJ is connected as it is a maximal compact subgroup of a real connected reductive
group. The triviality of the action of R+

J ∩ KJ on E13 and E23 follows.
Recall that H1

J denotes the similitude equal one subgroup of the Freudenthal group HJ .
One has H1

J(R) ∩ KJ acts by the scalar j(k, i · 1J) on e#; see Lemma 9.0.1 of [Pol20]. Because
R+

J ∩ KJ ⊆ H1
J(R) ∩ KJ , R+

J ∩ KJ acts by a scalar on e#. Because R+
J ∩ KJ acts trivially on

E23, this scalar is 1. We deduce that R+
J ∩ KJ acts trivially on e#, from which it follows that it

also acts trivially on f# and h#.
Note that for the second part, one cannot replace R+

J with RJ(R) as some elements of
RJ(R) ∩ KJ act non-trivially on Span(e#, h#, f#). "

2.3.2 The double cover. For k ∈ KJ , denote by Ad(k) the action of k on the space
Span(e#, h#, f#) = Sym2(V2). Fix an R×

>0-valued character χ of R+
J , to be specified later. We

define
flin : GJ(R) → AutC(Sym2(V2)) + GL3(C)

as flin(g) = χ(r)Ad(k) if g = rk with r ∈ R+
J and k ∈ KJ . By Proposition 2.3.1, flin is well-

defined, because χ(R+
J ∩ KJ) = 1 as the image is a compact subgroup of R×

>0.
Now, consider the symmetric space XJ = GJ(R)/KJ ; it is connected and contractible. Define

jlin(g, x) for x ∈ XJ and g ∈ GJ(R) as flin(gh)flin(h)−1 if x = hKJ . Note that jlin is well-defined.
One has the following proposition, whose proof we omit; it follows from the fact that the

Iwasawa decomposition of GJ(R) is smooth.

Proposition 2.3.2. The maps

flin : GJ(R) −→ AutC(Sym2(V2)) and jlin : GJ(R) × XJ −→ AutC(Sym2(V2))

are smooth.

We may now define G̃J .

Definition 2.3.3. Let G̃J be the set of pairs (g, jg) with g ∈ GJ(R) and

jg : XJ → AutC(V2)

continuous so that Sym2(jg(x)) = jlin(g, x). A multiplication is defined as

(g1, j1(x))(g2, j2(x)) = (g1g2, j1(g2x)j2(x)).

The identity is the element (1, e) where e(x) = 1 for all x.
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With these definitions, it is easily checked that G̃J is a group.
A topology can be put on G̃J as follows. Let x0 = 1KJ ∈ XJ be the basepoint determined

by KJ . Now, note that given g ∈ GJ(R), there are exactly two continuous lifts XJ → AutC(V2)
of jlin(g,−) : XJ → AutC(Sym2(V2)), and that these lifts are determined by their value at x0.
Thus, there is an injective map of sets G̃J → GJ(R) × GL2(C) given by (g, jg(x)) 4→ (g, jg(x0)).
We give G̃J the subspace topology of GJ(R) × GL2(C) via this map.

For g′ = (g, jg(x)) ∈ G̃J , we write j1/2(g′, x) := jg(x).

Proposition 2.3.4. With the above topology, G̃J is a connected topological group. The
canonical map G̃J → GJ(R) is a covering map with central µ2 kernel.

Proof. One first proves that G̃J is a topological group and G̃J → GJ(R) is a covering space.
This is an exercise in covering space theory, so we omit it.

Let us explain the connectedness of G̃J . We will check that (1, e(x)) and (1,−e(x)) are
connected by a path. Given the other claims, this suffices.

To see that (1, e(x)) is connected to (1,−e(x)), we consider h0 =
(

0 1
−1 0

)
∈ sl2 ⊆ gJ = sl2 ⊕

h0
J ⊕ V2 ⊗ WJ . Now, by our formulas for the Cartan decomposition, h0 is in the Lie algebra of

KJ , so exp(th0) is in KJ ⊆ GJ(R). One computes that exp(th0) acts on e#, h#, f# as:

– e# 4→ e−ite#;
– h# 4→ h#;
– f# 4→ eitf#.

Now consider the path [0, 2π] → KJ ⊆ GJ(R) given by t 4→ exp(th0). This path is a loop,
with 2π 4→ 1. Because G̃J → GJ(R) is a covering space, it lifts to a path γ̃ : [0, 2π] → G̃J sat-
isfying γ̃(0) = 1. Thus, j1/2(γ̃(t), x0) ∈ GL2(C) satisfies that its symmetric square is the action
on e#, h#, f# given above. Because it is continuous and the identity at t = 0, j1/2(γ̃(t), x0) =
diag(e−it/2, eit/2). Consequently, j1/2(γ̃(2π), x0) = −1. This proves our assertion. "

Note that since KJ is itself connected and the path γ̃ stays in K̃J , we see that the inverse
image K̃J of KJ is a connected compact Lie group.

Because G̃J → GJ(R) is a covering space, G̃J is uniquely a Lie group. Note also that the
map j1/2( , x0) : K̃J → AutC(V2) is a group homomorphism. Finally, we remark that R+

J splits
into G̃J as r 4→ (r, jr(x)) with jr(x) = χ(r)1/2 for all x ∈ XJ .

2.3.3 An application. Define ν : RJ → GL1 as rE13 = ν(r)E13 and λ : RJ → GL1 as rE23 =
λ(r)E23 + ∗E13. In other words, if det is the determinant of the action of RJ on Span(E13, E23),
then λ = det(·)ν−1. Define χ, the character defining flin as χ = νλ−1 = ν2 det(·)−1. With this
choice, which we will make from now on, one has the following lemma. Let KH = H1

J(R) ∩ KJ

be a maximal compact subgroup of H1
J(R).

Lemma 2.3.5. With h ∈ H+
J , one has jlin(h, x0) = diag(j(h, i), 1, j(h, i)) via the action on

x2, xy, y2. Thus, if z ∈ HJ = H1
J(R)/KH ⊆ GJ/KJ , then jlin(h, z) = diag(j(h, z), 1, j(h, z)).

Consequently, the (1, 1)-coordinate of j1/2 : H̃+
J → GL2(C) defines a squareroot of j(h, z).

Proof. Let PS denote the Siegel parabolic of HJ , so that PS = HJ ∩ RJ . Suppose h ∈ H+
J is

h = pk with p ∈ PS(R)+ and k ∈ KH ⊆ H1
J(R). Then

j(p, i) = 〈pr0(i), E23〉 = ν(p)〈r0(i), p−1E23〉 = χ(p).
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Moreover, essentially by the definition of j, Ad(k) = diag(j(k, i), 1, j(k, i)). As j(h, i) = j(pk, i) =
j(p, i)j(k, i), one obtains jlin(h, x0) = diag(j(h, i), 1, j(h, i)).

For the second statement, suppose hz ∈ H+
J satisfies hz · i = z. Then

jlin(h, z) = flin(hhz)flin(hz)−1 = diag(j(hhz, i), 1, j(hhz, i)) diag(j(hz, i), 1, j(hz, i))−1

= diag(j(h, z), 1, j(h, z)).

The proposition follows. "

2.4 Steinberg generators and relations
In this section, we let k be a local field of characteristic zero and assume that G is a simply
connected simple group over k. In this setting, Deligne’s double cover (2) coincides with the
Steinberg–Matsumoto cover. We thus recall this construction for the purposes of certain p-adic
calculations in later sections.

Suppose that Φ is a simple root system and ∆ a set of simple roots. We let (α,β) denote the
pairing on Φ normalized so that (α,α) = 2 for a long root (when the root system is simply laced,
we assert that all roots are long). Suppose that g is the associated split, simple Lie algebra over
Q and G the associated split, simply connected group. Steinberg [Ste16] gives a presentation for
the group G(k) in terms of generators and relations. One has generators xα(u) for all roots α
and u ∈ k, subject to the following relations:

(i) xα(u)xα(v) = xα(u + v);
(ii) if α,β are roots with α+ β 7= 0, then the commutator

{xα(u), xβ(v)} =
∏

iα+jβ∈Φ,i,j∈Z>0

xiα+jβ(Ciju
ivj)

for integers Ci,j that depend upon the order in the product but are independent of u, v;
(iii) for t ∈ k× set wα(t) = xα(t)x−α(−t−1)xα(t) and hα(t) = wα(t)wα(−1). Then hα(t)hα(s) =

hα(ts);
(iv) when Φ is of type A1, then wα(t)xα(u)wα(−t) = x−α(−t−2u).

Following Steinberg [Ste16, Theorem 12] (see also [LS10, § 2]), a topological double cover
of G(k) can now be defined as follows. Recall the Hilbert symbol (·, ·)2 : k× × k× → µ2(k). One
takes as generators elements xα(u) and {1, ζ} = µ2 satisfying relations (i), (ii) and (iv), along
with:

(v) the elements 1, ζ are in the center;
(vi) for t ∈ k× set

w̃α(t) = xα(t)x−α(−t−1)xα(t) and h̃α(t) = w̃α(t)w̃α(−1);

then h̃α(t)h̃α(s) = h̃α(ts)(t, s)2/(α,α)
2 .

From [LS10, § 3, p. 4904], who cite [Mat69, Lemme 5.4], one has

{h̃α(s), h̃β(t)} = (s, t)(α
∨,β∨)

2 , (4)

where α∨ = 2α/(α,α). We let G̃(k) denote the double cover of G(k) constructed here, where
the projection p : G̃(k) −→ G(k) is given by sending generators to the analogous generators in
G(k). As noted previously, this construction recovers Deligne’s cover (2) in the split case. In
particular, if J = R or H3(R), so that G = GJ is the split group of type G2 or F4, respectively,
then G̃(R) ∼= G̃J .
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Modular forms of half-integral weight on exceptional groups

2.5 2-adic subgroups of F4

We now specialize to k = Q2 and G the split group of type F4. We enumerate the 4 simple roots
in the usual way, so that the Dynkin diagram

◦ − −− ◦ =>= ◦ − −− ◦

has labels α1 through α4 from left to right. In this section, we define certain compact open
subgroups K∗

R(4) and K ′
R(4) of F̃4(Q2) that we prove inject into F4(Q2). This first group is the

natural analogue in F4(Q2) of the classical compact open subgroup
{(

A B
C D

)
∈ Sp6(Z2) : C ≡ 0 (mod4), det(A), det(D) ≡ 1 (mod4)

}

that arises in the theory of Siegel theta functions of half-integral weight; indeed, K∗
R(4) essentially

intersects the standard GSp6-Levi subgroup of F̃4(Q2) in this group.
For global purposes, it is better to pass to a certain conjugate of this compact open subgroup,

denoted K ′
R(4). While we do not use the subgroup K∗

R(4) in the sequel, it is nevertheless more
natural to define and prove properties about (splitting, Iwahori decomposition, etc.). Thus, we
consider the case of K∗

R(4) first, then pass to the conjugate K ′
R(4) in § 2.5.4. In § 4.2.1, we use

the group K ′
R(4) to construct the quaternionic modular forms of half-integral weight described

in Theorem 1.2.6.

Remark 2.5.1. We remark that one can also construct quaternionic modular forms of level K∗
R(4).

However, it is unclear whether their Fourier coefficients are as interesting.

2.5.1 Preliminaries. To begin, we record the following slight extension of [Kar21,
Lemma 3.1].

Lemma 2.5.2. Let k be a local field of characteristic zero. Suppose that Φ is a simple root
system and G(k) is the corresponding simply connected group. For any α ∈ Φ and s, t ∈ k such
that 1 + st 7= 0, in the double cover G̃(k) we have

xα(t)x−α(s) =
(

1 + st,
t

1 + st

)−2/(α,α)

2

x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
.

Proof. This follows from [Ste73, Proposition 2.7]. "
Corollary 2.5.3. With notation as above, now let k = Q2 and let α ∈ Φ and s, t ∈ Q2.

(i) If Φ is doubly laced and α is a short root, then

xα(t)x−α(s) = x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
.

(ii) Let Φ be of any type. If val2(s) ≥ 2 and val2(t) ≥ 0, then

xα(t)x−α(s) = x−α

(
s

1 + st

)
h̃α(1 + st)xα

(
t

1 + st

)
.

Proof. The proof of the first claim is immediate from the lemma and our normalization that
(β,β) = 2 for long roots, so that (α,α) = 1 for our short root. The second claim follows precisely
as in the proof of [Kar21, Lemma 3.1] with λ = 0. "

We now return to G = F4. The inclusion of rational Lie algebras m0
J → g(J) discussed in

§ 2.2 gives rise to an embedding of algebraic groups SL3 → F4 when J = H3(Q). In terms of
roots, the image corresponds to the subroot system with simple roots {α3,α4}. When k is a
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local field, note that this embedding lifts to a splitting s : SL3(k) → F̃4(k). Indeed, the subgroup
SL3(k) of F4(k) is generated by the elements xβ(u) for β lying in the subroot system generated
by {α3,α4}. We may define this SL3(k) via generators and relations as in § 2.4, and the relations
defining it continue to be satisfied in F̃4(k) due to Corollary 2.5.3.

Lemma 2.5.4. Let SL3 ⊂ F4 be the Q-subgroup just described. For any local field k, the double
cover F̃4(k) splits uniquely over SL3(k).

2.5.2 The case of K∗
R(4). Recall that α1,α2,α3,α4 are the simple roots of F4, with α1,α2

long and α3,α4 short. Let R = MRUR be the standard non-maximal parabolic subgroup of F4

with simple roots α3,α4 in the Levi MR. The notation R here refers to the non-maximal parabolic
RJ from § 2.3 as these two parabolic subgroups agree when G = GJ is of type F4. Set

Φ+
MR

= {α3,α4,α3 + α4},

set Φ−
MR

= −Φ+
MR

and ΦMR = Φ+
MR

∪ Φ−
MR

. Let Φ+
UR

= Φ+ \ Φ+
MR

, so that Φ+
UR

contains the roots
in the unipotent radical UR of R.

Set K∗
MR

(4) to be the subgroup M̃R(Q2) generated by h̃αi(1 + 4Z2) for i = 1, 2 and xβ(Z2)
for β ∈ ΦMR . Let U+

R (Z2) be the subgroup of F̃4(Q2) generated by xβ(Z2) for all β ∈ Φ+
UR

, and
let U−

R (4Z2) be the subgroup of F̃4(Q2) generated by x−β(4Z2) for all β ∈ Φ+
UR

. Finally, let
K∗

R(4) be the subgroup of F̃4(Q2) generated by U−
R (4Z2), K∗

MR
(4) and U+

R (Z2). We have the
following theorem.

Theorem 2.5.5. Let the notation be as above.

(i) One has K∗
R(4) = U−

R (4Z2)K∗
MR

(4)U+
R (Z2).

(ii) The map K∗
R(4) → F4(Q2) is injective.

We will prove this theorem below. While the statement is natural, the proof is technical due
to the lack of uniqueness of sections over various tori in F4(Q2). As a result, we cannot simply
rely on the Iwahori factorization of the image of K∗

R(4).
It is easy to deduce the following corollary of Theorem 2.5.5.

Corollary 2.5.6. The group K∗
R(4) has an Iwahori decomposition with respect to any standard

parabolic subgroup containing R.

Recall the subgroup SL3 ⊂ F4 from the previous subsection. The subgroup s(SL3(k)) of
F̃4(k) is that which is generated by the elements xβ(u) for β ∈ ΦMR . Using Lemma 2.5.4, we
now observe the following.

Lemma 2.5.7. The map K∗
MR

(4) → F4(Q2) is injective.

Proof. If g ∈ K∗
MR

(4), it is easy to see that one can express g as a product g = t1t2s(g′) with
tj ∈ hαj (1 + 4Z2) and g′ ∈ SL3(Q2). Consequently, if g 4→ 1 in F4(Q2), then t1 = t2 = 1 and
g′ = 1, proving that g = 1. "

We will prove part (i) of Theorem 2.5.5 in § 2.5.3. Let us observe now that part (i) implies part
(ii). Indeed, suppose g = n1mn2 is in K∗

R(4) with n1 ∈ U−
R (4Z2), m ∈ K∗

MR
(4) and n2 ∈ U+

R (Z2).
If g 4→ 1 in F4(Q2), then we see easily that n1 = 1 and n2 = 1. Thus, m 4→ 1, hence m = 1 by
Lemma 2.5.7.
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2.5.3 Iwahori decomposition. For a non-negative integer m, let U+
R (2mZ2) be the subgroup

of F̃4(Q2) generated by xβ(2mZ2) for all β ∈ Φ+
UR

, and let U−
R (2mZ2) be the subgroup of F̃4(Q2)

generated by x−β(2mZ2) for all β ∈ Φ+
UR

.
We begin with the following lemma. Let UB be the unipotent radical of the standard Borel

of F̃4(Q2).

Lemma 2.5.8. Recall that ∆ = {α1,α2,α3,α4} are the simple roots.

(i) The unipotent group UB(Q2) is generated by the xαi(Q2);
(ii) Let Us be the subgroup of UB(Q2) generated by the xαi(Z2). Then Us contains U+

R (2A) for
some A 9 0.

Proof. The first part of the lemma is standard. For the second part, suppose α ∈ Φ+
UR

. By the
first part, there exists a finite word u in elements of the form xαi(ri) with ri ∈ Q2, so that
u = xα(1). Let T++ denote the subgroup of t ∈ T with |αi(t)| < 1 for all i. Conjugating by a
sufficiently deep t ∈ T++, one finds that there exists a non-zero rα ∈ Z2 so that xα(rα) ∈ Us.
Now, for t ∈ Z×

2 , consider the commutator {hα(t), xα(rα)}. On the one hand, because t ∈ Z×
2 ,

this commutator is in Us. On the other hand, this commutator is xα((t2 − 1)rα). As t varies in
Z×

2 , t2 − 1 fills out 8Z2. Thus, there is Nα 9 0 so that xα(2NαZ2) ⊆ Us. The lemma follows. "
Let U be the set of products of the form U−

R (4Z2)K∗
MR

(4)U+
R (Z2). Let K∗

R(4, 2m) be the
subgroup of F̃4(Q2) generated by U−

R (4Z2), K∗
MR

(4) and U+
R (2mZ2), so that K∗

R(4) = K∗
R(4, 1).

In order to prove Theorem 2.5.5, we need to check that K∗
R(4) · U = U . We will do this by proving

K∗
R(4, 2A) · U = U for A 9 0, then inducting down on A to obtain K∗

R(4, 1) · U = U .
We start with the following lemma.

Lemma 2.5.9. One has U−
R (4Z2) · U = U , and K∗

MR
(4) · U = U .

Proof. That U−
R (4Z2)U = U is trivial. For the multiplication by K∗

MR
(4), one uses that if β ∈

Φ−
UR

, α ∈ ΦMR , and a, b are positive integers, then if γ = aα+ bβ is a root, then γ ∈ Φ−
UR

. The
lemma then follows easily by applying the commutator formula. "

Now we have the following.

Proposition 2.5.10. There is A 9 0 such that U+
R (2A) · U ⊆ U .

Proof. By Lemma 2.5.8, it suffices to show that xαi(Z2)U ⊆ U for all simple roots αi. By
Lemma 2.5.9, we must only check this for i = 1, 2.

Thus suppose that αi is a simple root, i = 1, 2, and α ∈ Φ+
UR

. Note that if a, b are positive
integers, and α 7= αi, then if γ = aαi − bα is a root, then γ ∈ Φ−. Indeed, aαi = γ + bα, so that if
γ were positive, we would have that both γ and α are proportional to αi, a contradiction. It follows
that, for such αi and α and u ∈ Z2, u′ ∈ 4Z2, the commutator {xαi(u), x−α(u′)} ∈ U−

B (4Z2). Here
U−

B (4Z2) is the subgroup of F̃4(Q2) generated by xβ(4Z2) for β a negative root.
Let us also note that xαi(u)x−αi(u′) = x−αi(u′/(1 + uu′))h̃αi(1 + uu′)xαi(u/(1 + uu′)).

Combining these two facts, we obtain the following: if g = n1mn2 is in U , then xαi(u)g =
n′

1xαi(u)m′n2 with n′
1 ∈ U−

B (4Z2) and m′ ∈ K∗
MR

(4).
Now, one verifies easily that if m′ ∈ K∗

MR
(4) and u ∈ U+

R (Z2), then (m′)−1um′ ∈
U+

R (Z2). Consequently, xαi(u)g = n′
1m

′n′
2 is in U−

B (4Z2) · U . The proposition follows from
Lemma 2.5.9. "

It follows from Proposition 2.5.10 and Lemma 2.5.9 that K∗
R(4, 2A) · U ⊆ U for A 9 0. As

mentioned, we will now induct downward on A to obtain K∗
R(4) · U = U .
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We require the following lemma.

Lemma 2.5.11. Let the notation be as usual.

(i) The sets h̃αi(1 + 4Z2) are subgroups, and they commute with each other.

(ii) Suppose t ∈ 1 + 4Z2 and β ∈ Φ. Then there are t1, . . . , t4 ∈ 1 + 4Z2 so that h̃β(t) =∏4
i=1 h̃αi(ti).

Proof. The first part of the lemma follows from the usual multiplication formulas, together with
the fact that the Hilbert symbol is trivial when restricted to 1 + 4Z2. For the second part of the
lemma, we mimic the proof of [Ste16, Lemma 38(b)]. Thus, suppose β = wαi with αi a simple
root. Write w = wαw′ where length(w′) = length(w) − 1. Set γ = wαβ so that β = wαγ. Now
[Ste16, Lemma 37(c)] yields that w̃α(1)h̃γ(t)w̃α(−1) = h̃wαγ(t)(c, t) for some c = ±1. However,
because t ∈ 1 + 4Z2 and c = ±1, (c, t) = 1. Thus, h̃β(t) = w̃α(1)h̃γ(t)w̃α(−1), from which we
obtain

h̃β(t) = h̃γ(t)(h̃γ(t)−1w̃α(1)h̃γ(t))w̃α(−1) = h̃γ(t)w̃α(t−〈α,γ〉)w̃α(−1),

using [Ste16, Lemma 37(e)] for the second equality. But this is h̃γ(t)h̃α(t−〈α,γ〉). The lemma
follows by induction on the length of w. "

Proposition 2.5.12. For every non-negative integer m, one has K∗(4, 2m) · U ⊆ U .

Proof. As just noted, Proposition 2.5.10 implies K∗
R(4, 2A) · U ⊆ U for A 9 0. We will induct

downward on N to obtain the proposition.
Thus, suppose that we have proved K∗

R(4, 2m+1) · U ⊆ U for a non-negative integer
m. We wish to verify that K∗

R(4, 2m) · U ⊆ U . To do this, it suffices to check that
U+

R (2mZ2) · U ⊆ U . Thus, suppose u = xα(2ms) ∈ U+
R (2mZ2) and x = n1 mn2 ∈ U . We have

ux = (un1u−1)m(m−1um)n2. It is easy to see that (m−1um)n2 ∈ U+
R (Z2). We claim that

un1u−1 ∈ K∗
R(4, 2m+1). Granted this claim, the proposition follows.

To prove the claim, suppose n1 = v1 · · · vr with each vi of the form x−βi(4si) with si ∈ Z2 and
βi ∈ Φ+

UR
. The commutator formula gives uvju−1 = k′ with k′ ∈ K∗

R(4, 2m+1). Indeed, if α 7= βi

this follows from the commutator formula. If α = βi, this follows from the formula

xα(t)x−α(s) = x−α(s/(1 + ts))h̃α(1 + st)xα(t/(1 + st)),

which implies

xα(t)x−α(s)xα(−t) = x−α(s/(1 + ts))h̃α(1 + st)xα(−st2/(1 + st)). "

2.5.4 The case of K ′
R(4). We now define a new subgroup, K ′

R(4) ⊆ F̃4(Q2), by conjugating
K∗

R(4) by a certain element of HJ(Q2). This has the effect of changing which root groups are
generated by entries in Z2 or 4Z2. We verify that this conjugate has an appropriate Iwahori
factorizations; that it maps injectively to the linear group F4(Q2) is immediate. Our motivation
is that this new group gives a useful compact open subgroup of F̃4(Q2) for global constructions.

We need to introduce a bit more notation. Recall that PS = HJ ∩ R is the Siegel parabolic
subgroup of HJ ; it has Levi decomposition PS = MRNS . We set Q = LUQ denote the standard
maximal parabolic of F4 associated to the simple root α2. Recalling the notation in § 2.3, this
is the parabolic QJ of GJ = F4 when J = H3(Qp). Let w0 ∈ HJ(Z) ⊂ HJ(Z2) be a represen-
tative of the unique minimal-length Weyl group element for HJ which normalizes the MR and
conjugates the Siegel parabolic PS to its opposite.
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Let Φ+
N be the set of roots in the unipotent radical N of the Heisenberg parabolic P . Let

Φ+
NS

be the set of roots in the unipotent group NS . These are the roots
∑

i miαi with m1 = 0
and m2 = 1. Note that Φ+

UR
= Φ+

N : Φ+
NS

= {α1} : Φ+
UQ

.

We let N+
S (2mZ2) be the subgroup of F̃4(Q2) generated by xα(2mZ2) for all α ∈ Φ+

NS
and

let N+(2mZ2) be the subgroup F̃4(Q2) generated by xα(2mZ2) for all α ∈ Φ+
N . Similarly, define

N−(2mZ2) and N−
S (2mZ2).

Set U+
R (4, 1) to be the subgroup generated by N+

S (4Z2) and N+(Z2). Let U−
R (1, 4) denote

the subgroup generated by N−
S (Z2) and N−(4Z2). Finally, we define K ′

R(4) to be the subgroup
generated by U−

R (1, 4), K∗
MR

(4) and U+
R (4, 1).

The goal of this section is to prove the following theorem.

Theorem 2.5.13. Let the notation be as above.

(i) One has K ′
R(4) = U−

R (1, 4) · K∗
MR

(4) · U+
R (4, 1).

(ii) The map K ′
R(4) → F4(Q2) is injective.

Proof. We first show that K ′
R(4) = w0K∗

Rw−1
0 by showing that w0 sends the generators of K∗

R(4)
to those of K ′

R(4). This is a straightforward calculation on the level of roots groups in F4(Q2),
so we need only ensure the claim with our choice of lifts in the cover. Note that the conjugation
action depends only on the element in F4(Q2) and not a choice of lift.

Recall that K∗
R(4) is generated by U−

R (4Z2) = N−(4Z2)N−
S (4Z2), K∗

MR
(4) and U+

R (Z2) =
N+(Z2)N+

S (Z2). Since the cover splits canonically over unipotent subgroups, the action of w0

on the unipotent generators is uniquely determined by the corresponding conjugation in F4(Q2),
where one readily verifies that

w0N
−
S (4Z2)w−1

0 = N+
S (4Z2), w0N

−(4Z2)w−1
0 = N−(4Z2),

and similarly for the factors of U+
R . In addition, w0 permutes the root groups xβ(Z2) for β ∈ ΦMR .

Thus, we need only consider the torus generators h̃αi(1 + 4Z2) with i = 3, 4 of K∗
MR

(4).
Suppose that w0 = s1s2 · · · s6 be a minimal word decomposition of the associated Weyl group

element in terms of simple root reflections. For any root α, let h̃α(t) be the distinguished lift of
the corresponding coroot hα(t). Then [Gao17, 2.1(3)] tells us that for any simple reflection sβ ,

sβh̃α(t)s−1
β = h̃α(t)h̃β(t−〈α̌,β〉).

In particular, this implies that for any t ∈ 1 + 4Z2, w0h̃α(t)w−1
0 is a product of (commuting)

elements of the form h̃β(s), where s is a power of t and β ranges over the simple roots appearing
in the word decomposition. In particular, for each i = 3, 4, we see that w0h̃αi(t)w

−1
0 ∈ K∗

MR
(4),

showing that w0K∗
MR

(4)w−1
0 = K∗

MR
(4).

On the other hand, we may also compute this conjugation in the group HJ(Q2) ∼=
GSp6(Q2), where it is easy to see that for both i = 3, 4, w0h̃αi(t)w

−1
0 projects to hαi(t−1). This

forces w0h̃αi(t)w
−1
0 = ε(t)h̃αi(t−1) for some central sign character ε : 1 + 4Z2 −→ µ2(Q2). Since

w0h̃αi(t)w
−1
0 ∈ K∗

MR
(4), Theorem 2.5.5 forces w0h̃αi(t)w

−1
0 = h̃α(t−1).

Thus, K ′
R(4) = w0K∗

Rw−1
0 . Theorem 2.5.13(ii) immediately follows from the corresponding

statement in Theorem 2.5.5.
For the Iwahori decomposition, let g′ ∈ K ′

R(4) be arbitrary and set g = w−1
0 g′w0 ∈ K∗

R(4).
Recall that PJ = HJNJ is the Heisenberg parabolic subgroup. Set K∗

J(4) := K∗
R(4) ∩ HJ(Q2).

Then Corollary 2.5.6 implies that g ∈ K∗
R(4) can be written uniquely as g = nmu, with

n ∈ N−
J (4Z2), u ∈ NJ(Z2), and m ∈ K∗

J(4). Note that a simple corollary of the uniqueness in
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Theorem 2.5.5 is that K∗
J(4) possesses the Iwahori decomposition

K∗
J(4) = N−

S (4Z2)K∗
MR

(4)N+
S (Z2). (5)

Conjugating by w0,

w0gw−1
0 = (w0nw−1

0 )(w0mw−1
0 )(w0uw−1

0 ), (6)

where now w0uw−1
0 ∈ N−

J (4Z2) and w0uw−1
0 ∈ NJ(Z2). Using the group structure and Iwahori

decomposition (5), we may write m−1 = u−1
1 m−1

1 n−1
1 where n1 ∈ NS(Z2), u1 ∈ N−

S (4Z2) and
m1 ∈ K∗

MR
(4). Inverting, we get

m = n1m1u1 ∈ NS(Z2)K∗
MR

(4)N−
S (4Z2).

We can now conjugate by w0 to get

w0mw−1
0 = (w0n1w

−1
0 )(w0m1w

−1
0 )(w0u1w

−1
0 ),

with w0u1w
−1
0 ∈ NS(4Z2), w0n1w

−1
0 ∈ N−

S (Z2) and w0m1w
−1
0 ∈ K∗

MR
(4) since w0K∗

MR
(4)w−1

0 =
K∗

MR
(4).

Combining this with the decomposition (6), we obtain a unique expression

g′ = w0gw−1
0 = n′m′u′

where n′ = w0nn1w
−1
0 ∈ U−(1, 4), u′ = w0u1uw−1

0 ∈ U+(4, 1) and m′ = w0m1w
−1
0 ∈

K∗
MR

(4). "

We now state a corollary of Theorem 2.5.13 that we will need. Denote by Φ+
1,1 the roots∑

i miαi with both m1, m2 > 0. Then Φ+
N is a disjoint union of {α1} and Φ+

1,1. Set U+
1,1(Z2) the

subgroup generated by xα(Z2) for all α ∈ Φ+
1,1. Define U−

1,1(4Z2) similarly.

Corollary 2.5.14. The group K ′
R(4) has an Iwahori factorization with respect to Q.

Proof. Suppose g ∈ K ′
R(4). By Theorem 2.5.13, we have g = n1kn2 with n1 ∈ U−

R (1, 4), k ∈
K∗

MR
(4) and n2 ∈ U+

R (4, 1). Conjugating all terms of the form x−α1(4u) in n1 to the right, one can
write n1 = n′

1n
′′
1, where n′

1 in the group generated by N−
S (Z2) and U−

1,1(4Z2), and n′′
1 ∈ x−α1(4Z2).

Similarly, one can write n2 = n′′
2n

′
2, with n′

2 in the group generated by N+
S (4Z2) and U+

1,1(Z2)
and n′′

2 ∈ xα1(Z2). This gives g = n′
1(n′′

1kn′′
2)n′

2, which is the desired Iwahori factorization. "

2.6 Integral models
In the previous sections, we have defined integral models of the algebraic groups G2 and F4 using
the Chevalley–Steinberg generators and relations at each finite place. To do computations in the
later sections, and to coherently relate these integral models to lattices in G̃J(R), we will need a
somewhat explicit understanding of these integral models. In this section, we give such explicit
integral models for the groups G2 and F4. Via the work of Steinberg, this amounts to giving a
Chevalley basis of the corresponding Lie algebras, which is what we do.

2.6.1 Type G2. We define g2,Z := M3(Z)tr=0 ⊕ V3(Z) ⊕ V ∨
3 (Z). A Chevalley basis can be

given by Xα being Eij in M3(Z)tr=0, v1, v2, v3 in V3(Z) and −δ1,−δ2,−δ3 in V ∨
3 (Z). Here v1, v2, v3

is the standard basis of V3 and δ1, δ2, δ3 is its dual basis.

2.6.2 Type F4. First we set J0 = H3(Z) to be the symmetric 3 × 3 matrices with integer
coefficients. Let mJ(Z) be the elements of mJ that take J0 to itself.
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Modular forms of half-integral weight on exceptional groups

We set

f4,Z := (M3(Z) ⊕ mJ(Z))2 tr=µ/Z(13, 21J0) ⊕ V3(Z) ⊗ J0 ⊕ V3(Z)∨ ⊗ J0,

where the notation is as follows. Here µ : mJ → Q is the map satisfying

(φX1, X2, X3) + (X1,φX2, X3) + (X1, X2,φX3) = µ(φ)(X1, X2, X3).

A pair (φ1,φ2) ∈ M3(Z) ⊕ mJ(Z) is in (M3(Z) ⊕ mJ(Z))2 tr=µ if 2 tr(φ1) = µ(φ2). Note that the
pair (13, 21J0) is in (M3(Z) ⊕ mJ(Z))2 tr=µ and we quotient out by the integer multiples of this
pair.

We identify the quotient (M3(Z) ⊕ mJ(Z))2 tr=µ/Z(13, 21J0) with a subset of sl3 ⊕ m0
J via

(φ1,φ2) 4→ φ1 + φ2 − tr(φ1)1 :=
(
φ1 −

tr(φ1)
3

13

)
+

(
φ2 −

µ(φ2)
3

1J0

)
∈ sl3 + m0

J .

It is easy to see that this element acts on V3(Z) ⊗ J0 and V3(Z)∨ ⊗ J0 preserving these integral
structures.

One has the following proposition.

Proposition 2.6.1. The lattice f4,Z is closed under the bracket.

Now, we observe that because J0 = H3(Z), mJ = M3(Q) with X ∈ M3(Z) acting on Y ∈
H3(Q) as XY + Y Xt. Moreover, one can check by easy explicit calculation, M3(Z) = {X ∈
mJ(Z) : µ(X) ∈ 2Z}.

Consequently, we have

f4,Z = (M3(Z) + M3(Z))tr1=tr2/Z(1,1) + V3(Z) ⊗ J0 + V3(Z)∨ ⊗ J0.

For the Chevalley basis, we take the usual bases of Xα = Eij of the two copies of M3(Z). Now
J0 is the Z-span of

{e11, e22, e33, x1 = e23 + e32, x2 = e31 + e13, x3 = e12 + e21},

where eij denotes the element of M3(Z) with a 1 in the (i, j) location and zeros elsewhere. For
the rest of the Chevalley basis, we take the elements vj ⊗ xk, vj ⊗ ekk,−δj ⊗ xk and −δj ⊗ ekk.

2.7 Splittings
We may now combine our local results to construct splittings of certain congruence subgroups
of G2(R) and F4(R) into the double cover.

Recall that when p > 2 is odd, we have the hyperspecial maximal compact subgroup Kp =
G(Zp) of G(Qp) induced by our integral model.

Lemma 2.7.1 [LS10, Proposition 2.1]. The central extension G̃(Qp) splits over Kp. The splitting

homomorphism sp : Kp −→ G̃(Qp) is unique, and we denote its image by K∗
p .

We now define a congruence subgroup ΓF4(4) ⊆ F4(R) and explain that this subgroup splits
into F̃4(R). Let KR(4) be the image in F4(Q2) of the subgroup K ′

R(4), and let s2 : KR(4) →
F̃4(Q2) be the induced splitting. Define now

ΓF4(4) := F4(Q) ∩ KR(4)
∏

p>2

Kp ⊂ F4(Z). (7)

To construct a splitting of ΓF4(4) into F̃4, we will use the following lemma.
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Lemma 2.7.2. Suppose A, B are two groups containing a central µ2, and Γ ⊆ A/µ2, B/µ2. Let
s : Γ → (A × B)/µ∆

2 and sA : Γ → A be given splittings. Then there exists a unique splitting
sB : Γ → B so that s(γ) = (sA(γ), sB(γ))µ∆

2 for all γ ∈ Γ.

Proof. By assumption, for each γ ∈ Γ one has s(γ) = ±(sA(γ), sB(γ)) for a unique sB(γ) ∈
B. This uniquely determines the map sB : Γ → B, and one checks that it is a group
homomorphism. "

Using the inclusion ΓF4(4) ⊂ F4(Q) ⊂ F4(R), we obtain a splitting sΓ : ΓF4(4) → F̃4(R) by
applying Lemma 2.7.2 with Γ = ΓF4(4), A = F̃4(Af ) and B = F̃4(R). Let sf : ΓF4(4) → F̃4(Af )
be the section induced from the local sections sp from Lemma 2.7.1 and Theorem 2.5.5. With
this notation, we have obtained the following.

Proposition 2.7.3. There is a unique splitting sΓ : ΓF4(4) → F̃4(R) characterized by the fact
that sQ(γ) = ±(sf (γ), sΓ(γ)) for all γ ∈ ΓF4(4).

Below we will need the following proposition.

Proposition 2.7.4. For all integers u, the splitting sΓ satisfies sΓ(xα(u)) = xα(u) for all α ∈
Φ+

N ∪ Φ−
NS

∪ ΦMR and sΓ(xα(4u)) = xα(4u) for all α ∈ Φ+
NS

∪ Φ−
N .

Proof. Indeed, this compatibility occurs for sQ and sp for all p = 2, 3, . . .. The proposition thus
follows from the definition of sΓ. "

In the next section, we recall the inclusion of algebraic Q-groups G2 ⊆ F4 and prove an
inclusion G̃2(R) ⊆ F̃4(R). Assuming these inclusions for the moment, we set ΓG2(4) = G2(R) ∩
ΓF4(4) and obtain a splitting ΓG2(4) → G̃2(R).

2.8 Group embeddings
We conclude this section with some remarks about the inclusion of G2 in F4.

2.8.1 Algebraic groups over Q. We recall the following proposition from the theory of
algebraic groups; see [Mil17, Theorem 25.4(c)].

Proposition 2.8.1. Suppose k is a field of characteristic 0, H, G are algebraic groups over k,
with H semisimple, connected and simply connected. Suppose L : h → g is an embedding of Lie
algebras. Then there exists a unique map H → G of algebraic groups whose differential is L.

We first work with algebraic groups over Q. Either from the proposition or directly, one
can see easily that there is a map SL3 → F4, lifting the Lie algebra embedding m0

J → f4 in the
notation of [Pol20]. Let SO(3) denote the group of g ∈ SL3 with gtg = 1. Composing with the
map SO(3) → SL3, we get an embedding of SO(3) into F4.

Lemma 2.8.2. The centralizer of SO(3) in F4 is a split form of type G2.

Proof. Denote by G′ the identity component of the centralizer of SO(3) in F4. We first observe
that on the level of Lie algebras, we have g2 → f4, and this g2 is exactly f

SO(3)
4 . Consequently,

the action of G′ on f4 induces an action of G′ on g2, so we obtain a map α : G′ → G2, because
G2 is defined as the group of automorphisms of its Lie algebra.

In the reverse direction, Proposition 2.8.1 implies the existence of a map β : G2 → F4 lifting
the inclusion of Lie algebras g2 → f4. The image of this G2 centralizes SO(3) by uniqueness of
the lift: if g ∈ SO(3), then gβ(h)g−1 is another lift, so is equal to β. Consequently, β gives a map
G2 → G′. The map α ◦ β : G2 → G2 induces the identity on Lie algebras by construction, so is

678

4  :��  1�����3 ������� �������
.����
	�	��!06��421��86�82�0#�
/70��132��8�"2��� #���2��

https://doi.org/10.1112/S0010437X23007686


Modular forms of half-integral weight on exceptional groups

the identity. Similarly, the map β ◦ α : G′ → G′ induces the identity of Lie algebras, so is the
identity.

Finally, we show CF4(SO(3)) is connected. The conjugation action of any element τ ∈
CF4(SO(3))(Q) on G2 must be inner, since Out(G2) is trivial. In particular, if CF4(SO(3)) is not
connected, there must exist a finite-order element τ /∈ G2(Q) centralizing both SO(3) and G2.
But this would imply that the Lie subalgebra so(3) ⊕ g2 ⊂ f4 is not maximal, a contradiction. "

2.8.2 Real Lie groups. We now work with real Lie groups. We will explain the fact that the
centralizer of SO(3) in F̃4 is the group G̃2; see also [HPS96].

First consider the case of the linear group F4.

Lemma 2.8.3. The centralizer of SO(3) in F4(R) is G2(R).

Proof. As in the proof of Lemma 2.8.2, the identity component CF4(R)(SO(3))0 maps to the
connected Lie group G2(R). Moreover, this group has Lie algebra exactly f

SO(3)
4 = g2 (it is

easy to see that the Lie algebra is contained in this set, and it is surjective by considering the
exponential map). It thus remains to determine which Lie group of type G2 this is.

Because we already know G2 → F4 as real algebraic groups, we obtain G2(R) →
CF4(R)(SO(3)). Because the connected double cover of G2(R) does not split over G2(R), the
identity component of the centralizer of SO(3) must be the linear group G2(R). Finally, since
F4(R) and G2(R) are R-split, an argument mirroring that in the algebraic setting shows that
CF4(R)(SO(3)) is connected. "

Now, for the case of covering groups. First observe that SO(3) ⊆ SL3(R) ⊆ R+
J , so the SO(3)

splits into F̃4(R) by Lemma 2.5.4; the splitting is unique because SO(3) is equal to its derived
group.

Lemma 2.8.4. The identity component of the centralizer CF̃4(R)(SO(3))0 of SO(3) in F̃4(R) is

identified with G̃2(R).

Proof. Let G′ be the identity component of the centralizer of this SO(3) in F̃4(R). Then G′ con-
sists of elements (g, j1/2(g)) where j1/2(g) : XF4 → GL2(C) is a continuous map whose symmetric
square is jlin(g) : XF4 → GL3(C). Every element g ∈ F4(R) occurring in such a pair commutes
with SO(3), so that g ∈ G2(R). We thus obtain a map G′ → G2(R). An argument with the
exponential map and Lie algebras proves that this map is surjective, because G2(R) is generated
by the image of the exponential map.

We now construct a map G′ → G̃2(R). We claim that G2(R)/KG2 = XG2 embeds into
F4(R)/KF4 = XF4 ; this follows from the claim that the maximal compact subgroups KG2 and
KF4 satisfy KG2 = G2(R) ∩ KF4 . Granting this for a moment, if (g, j1/2(g)) is in G′, restricting
j1/2(g) to XG2 gives an element of G̃2(R). We therefore obtain G′ → G̃2(R), which covers the
identity map on G2(R). Because G′ is a connected Lie group with Lie algebra g2, and G2(R)
does not split into G̃2(R), the map G′ → G̃2 is an isomorphism.

To see that KG2 = G2(R) ∩ KF4 , first recall that KG2 and KF4 are the subgroups of G2(R),
respectively F4(R), that also preserve the bilinear form Bθ(X, Y ) := −B(X, θY ) on g2, respec-
tively, f4, where θ is the Cartan involution on these Lie algebras. Because the Cartan involution
θ on f4 described in [Pol20] restricts to that on g2, it is clear that G2(R) ∩ KF4 is contained
in KG2 . For the reverse inclusion, one notes that KG2 can be generated by the exponentials of
elements of f

SO(3),θ=1
4 ⊆ fθ=1

4 , which are in KF4 . "
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Remark 2.8.5. The fact that the Cartan involution on f4 restricts to that on g2 plays a useful
role in verifying that the pullback of a modular form on F̃4(R) to G̃2(R) remains a modular
form.

2.8.3 Covering groups. We now explain the map G̃2(Qv) → F̃4(Qv). By Proposition 2.8.1,
we have an embedding of linear algebraic groups ιlin : G2 → F4.

Lemma 2.8.6. Using the integral structures induced from § 2.6, for every prime p one has
ιlin(G2(Zp)) ⊆ F4(Zp).

Proof. The Lie algebra constructions of § 2.6 define the adjoint forms of groups of type G2 and F4.
Because these groups are also simple, simply connected and have rank at least 2, the hyperspecial
maximal compact subgroups of each are generated by the xα(Zp) for α a root of G2, respectively,
F4. But under the map g2 → f4, the long root spaces of G2 map to long roots of F4, and the
short roots of G2 map to a sum of 3 commuting short roots of F4. The lemma follows. "
Proposition 2.8.7. For every place v of Q, there is an injection ιv : G̃2(Qv) → F̃4(Qv). The
maps ιv glue together to give an injection ι : G̃2(A) → F̃4(A), that is compatible with the
splittings on rational points.

Proof. Let G̃′′
2(Qv) be the inverse image in F̃4(Qv) of ιlin(G2(Qv)) ⊆ F4(Qv). Let G′

2(Qv) be the
universal central extension of G2(Qv), as constructed in [Ste16, § 6]. Then G′

2(Qv) is a central
extension of G2(Qv) by the Milnor K-group K2(Qv); see [Ste16, § 7, Theorem 12]. On the one
hand, by our definition of G̃2(Qv) in terms of generators and relations, G̃2(Qv) is the pushout of
G′

2(Qv) along the Hilbert symbol of K2(Qv). On the other hand, because G′
2(Qv) is universal,

there is a unique map K2(Qv) → µ2(Qv) for which G̃′′
2(Qv) is obtained by G′

2(Qv) via pushout.
But as is well-known, K2(Qv)/2K2(Qv) + µ2(Qv), so the only non-trivial map is given by the
Hilbert symbol. Note now that the extension of G2(Qv) defined by G̃′′

2(Qv) is not split, as it is
already not split over the SL3 ⊆ G2 ⊆ F4 generated by the long roots of G2. Consequently, the
map G′

2(Qv) → G̃′′
2(Qv) factors through G̃2(Qv). The induced map G̃2(Qv) → G̃′′

2(Qv) is clearly
an isomorphism. This constructs the ιv in the statement of the proposition.

Taking all the ιv together, we obtain an injection ι : G̃2(A) → F̃4(A). By Lemma 2.8.6, the
map is well-defined, i.e. respects the restricted product nature of these groups. Note that here
we are using the uniqueness of the splitting in Lemma 2.7.1.

Finally, we obtain two potentially distinct splittings of G2(Q) into F̃4(A): one via ι(G2(Q)) ⊆
ι(G̃2(A)) and the other via ιlin(G2(Q)) ⊆ F4(Q) ⊆ F̃4(A). But every map G2(Q) → µ2(Q) is
trivial, so these splittings coincide. "

3. Modular forms

In this section, we define quaternionic modular forms of half-integral weight, generalizing the
integral weight theory of [Pol20] and prove the main results about their Fourier expansions and
Fourier coefficients. We then assert the existence of a certain modular form ΘF4 of weight 1

2 on
F̃4(A), the proof of which we defer to § 4. Finally, we consider the pull back of ΘF4 to G̃2(A),
proving Theorems 1.2.3 and 1.2.6 of the introduction. Along the way, we also do arithmetic
invariant theory related to cubic rings and their inverse differents.

3.1 Quaternionic modular forms
We begin by studying quaternionic modular forms of half-integral weight. Suppose " ≥ 1 is an
odd integer and recall that V#/2 := Sym#(V2). We consider V#/2 as a representation of K̃J via

680

4  :��  1�����3 ������� �������
.����
	�	��!06��421��86�82�0#�
/70��132��8�"2��� #���2��

https://doi.org/10.1112/S0010437X23007686


Modular forms of half-integral weight on exceptional groups

the map j1/2(·, x0) : K̃J → GL2(V2). A modular form on GJ of weight "/2 will be a certain
V#/2-valued automorphic function.

To define the appropriate sorts of functions on G̃J that we will be considering, we require
a certain differential operator. Let g(J) ⊗ C = k ⊕ p be the Cartan decomposition of the Lie
algebra g(J) ⊗ C, which we identify with the complexified Lie algebra of G̃J . In [Pol20, § 5],
an identification is given between p and V2 ⊗ WJ over C. Let {Xα} be a basis of p and {X∨

α}
the dual basis of the dual space p∨. Suppose now that ϕ is a smooth V#/2-valued function
on G̃J satisfying ϕ(gk) = k−1 · ϕ(g) for all g ∈ G̃J and k ∈ K̃J . For such a function, we define
D′
#/2ϕ(g) =

∑
α Xαϕ(g) ⊗ X∨

α , which is valued in

V#/2 ⊗ p∨ + Sym#−1(V2) ⊗ WJ ⊕ Sym#+1(V2) ⊗ WJ .

Let pr : V#/2 ⊗ p∨ → Sym#−1(V2) ⊗ WJ be the K̃J -equivariant projection and define the operator
D#/2 = pr ◦ D′

#/2.
Suppose that GJ is a reductive group over Q such that GJ(R) is an adjoint quaternionic

exceptional group. Following our conventions from § 2.1, we further assume we are given a meta-
plectic double cover G̃J(A) of GJ(A) coming from the appropriate Brylinski–Deligne extension.
We thus have a short exact sequence of locally compact topological groups

1 −→ µ2(Q) −→ G̃J(A) −→ GJ(A) −→ 1,

which splits canonically over GJ(Q); let sQ denote this splitting. There is a decomposition
G̃J(A) =

∏
p G̃J(Qp)/µ+

2 . Our convention implies that G̃J(R) ∼= G̃J .
Then for all but finitely many odd primes p, GJ is unramified and contains a hyperspecial

subgroup Kp := GJ(Zp) over which the cover G̃J(Qp) → GJ(Qp) splits [Wei18, § 7]. Let T be
a finite number of primes containing 2 such that for p /∈ T , the above statement holds. Let
KT ⊂ GJ(AT ) :=

∏
p∈T GJ(Qp) be a given compact subgroup equipped with a splitting

where G̃J(AT ) :=
∏

p∈T G̃J(Qp)/µ+
2 .

Setting KT := KT ∏
p/∈T Kp, we have a splitting sT : KT → G̃J(Af ); let K∗

T denote its image.

Definition 3.1.1. Suppose " ≥ 1 is an odd integer. An adelic quaternionic modular form on
G̃J(A) of weight "/2 and level (KT , sT ) is a smooth function

ϕ : GJ(Q)\G̃J(A) → V#/2

of moderate growth satisfying:

(i) ϕ(gk∞) = k−1
∞ · ϕ(g) for all g ∈ G̃J(A) and k ∈ K̃∞;

(ii) ϕ(gk) = ϕ(g) for all g ∈ G̃J(A) and k ∈ K∗
T ;

(iii) D#/2ϕ ≡ 0.

Our first main result will be to show that such a definition of quaterionic modular form of
half-integral weight has a robust theory of Fourier coefficients, generalizing the integral weight
theory of [Pol20] and its antecedents.
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3.2 Generalized Whittaker functions
We now investigate the so-called generalized Whittaker functions associated to quaternionic
modular forms. In other words, we reproduce the main result of [Pol20] except now in the
half-integral weight case. Because almost all of the proof in [Pol20] carries over, we are quite
brief.

We begin with the following crucial proposition. Recall that an ω = (a, b, c, d) ∈ WJ(R) is
said to be positive semi-definite if the function pω(Z) = aN(Z) + (b, Z#) + (c, Z) + d is never 0
on the upper half-space HJ = {X + iY : X, Y ∈ J, Y > 0}.

Proposition 3.2.1. Consider the function g 4→ 〈ω, gr0(i)〉 on HJ(R)+, and suppose ω is posi-

tive semi-definite. Then there exists a smooth genuine function αω(g) : H̃J(R)+ → C satisfying
αω(g)2 = 〈ω, gr0(i)〉.

Proof. Recall from [Pol20] that 〈ω, gr0(i)〉 = −j(g, i)pω(g · i). Because HJ is contractible and
pω(Z) is never 0 on HJ , pω(Z) has a smooth square root on HJ . This follows from covering
space theory: the map C× → C× via z 4→ z2 is a cover, so the map Z 4→ pω(Z) from HJ → C×

lifts to the first copy of C×. Let us pick, arbitrarily, one of the two square roots and call it
pω(Z)1/2.

Now, the function g 4→ j(g, i) on HJ(R)+ has a genuine square root j1/2 on H̃J(R)+; such
a function was constructed in the Lemma 2.3.5. Thus, αω(g) =

√
−1j1/2(g, x0)pω(gi)1/2 is the

desired function. "
We can now state the main theorem of this section. To do so, we give some notation. First,

let n = "/2 ∈ 1
2 + Z≥0. Suppose ω ∈ WJ(R) is positive semi-definite. Let αω(g) be one of the two

square roots of 〈ω, gr0(i)〉 to H̃J(R)+. For g ∈ H̃J(R)+, define

Wω,αω(g) = ν(g)n+1
∑

−n≤v≤n

(
|αω(g)|
αω(g)

)2v

Kv(|αω(g)|2) xn+vyn−v

(n + v)!(n − v)!
. (8)

Here the sum is over half-integers v ∈ 1
2 + Z with −n ≤ v ≤ n. Note that:

(i) n, v are half-integers, i.e. in 1
2 + Z, so that n + v and n − v are integers;

(ii) ν(g) > 0 so ν(g)n+1 makes sense;
(iii) 2v is an odd integer;
(iv) one has Wω,−αω(g) = −Wω,αω(g);
(v) for ε ∈ µ2(Q), one has Wω,αω(εg) = εWω,αω(g).

Let NJ be the unipotent radical of the Heisenberg parabolic of GJ . This subgroup of GJ(R)
splits uniquely into G̃J so we also write NJ(R) for its image in G̃J . One can extend Wω,αω to a
function on all of G̃J as

Wω,αω(nmk) = ei〈ω,n〉k−1Wω,αω(m)

for n ∈ NJ(R), m ∈ H̃J(R)+, and k ∈ K̃J . One checks immediately that this is well-defined.
Recall that a generalized Whittaker function of weight n for ω is a function φ : G̃J →

Sym2n(V2) satisfying:

(i) φ(gk) = k−1φ(g) for all g ∈ G̃J and k ∈ K̃J ;
(ii) φ(ug) = ei〈ω,u〉φ(g) for all g ∈ G̃J and u ∈ NJ(R); here u is the image of u ∈ WJ(R);
(iii) Dnφ ≡ 0.
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Modular forms of half-integral weight on exceptional groups

Theorem 3.2.2. Suppose ω ∈ WJ(R) is non-zero and n ∈ 1
2 + Z is positive. Suppose moreover

that φ : G̃J → Sym2n(V2) is a moderate growth generalized Whittaker function of weight n
for ω.

(i) If ω is not positive semi-definite, then φ ≡ 0.
(ii) If ω is positive semi-definite, then φ is proportional to Wω,αω(g).

Proof. The work is nearly identical to [Pol20], so we only sketch the proof.
Let us first review the definition of the right regular action of the Lie algebra g(J) on

smooth functions φ on G̃J . Thus, suppose X ∈ g(J). Then for t ∈ R sufficiently small, exp(tX)
is an element of GJ(R) near the identity. Because G̃J → GJ(R) is a covering space, there is a
unique lift, call it exp′(tX), of exp(tX) to G̃J that is near the identity of G̃J . Then (Xφ)(g) :=
(d/dt)φ(g exp′(tX))|t=0. It is a fact that this definition gives a linear action of the real Lie algebra
g(J) on smooth functions on G̃J . One obtains an action of g(J) ⊗ C by complexification.

Now let φ =
∑

v φv((xn+vyn−v)/((n + v)!(n − v)!)) be a generalized Whittaker function. (To
make notation consistent with [Pol20], λ = ω.) By the Iwawasa decomposition G̃J = R+

J K̃J , and
because φ is K̃J -equivariant, by definition, to determine φ it suffices to determine φ on R+

J .
Now, recall that R+

J splits into G̃J . Thus, φ|R+
J

can be thought of as function on the linear
group GJ(R), so we may apply [Pol20, Corollary 7.6.1] to obtain differential equations satisfied
by φ: indeed, the proof of this corollary is to write a basis of X ∈ p as sums X = X1 + X2,
with X1 ∈ Lie(R+

J ) ⊗ C and X2 ∈ Lie(KJ) ⊗ C = Lie(K̃J) ⊗ C, and use the given action of
Lie(KJ) = Lie(K̃J) on φ to write the differential equation Dnφ ≡ 0 in explicit coordinates
on R+

J . In [Pol20, Corollary 7.6.1] recall that:

– w ∈ R×
>0 is considered as an element in the center of the group HJ(R)+ which acts on E13

as the real number w2 (as opposed to w−2); the element w is in R+
J so the group of such w’s

splits into G̃J ;
– Z̃ = Mr0(i) and r0(Z) = (1,−Z, Z#,−n(Z));
– for E ∈ J , DZ(E) denotes the action of the Lie algebra element 1

2M(Φ1,E) − inL(E), where
Φ1,E is the map J → J given by Z 4→ {E, Z} (see [Pol20, § 3.3.2, equation (7)]; see also [Pol20,
§ 3.3, equation (3)]) and M(Φ1,E) is defined in § 3.4.1 at the top of p. 1229 of [Pol20];

– V (E) is defined in § 5.1, equation (19) of [Pol20].

Now, one solves these equations on a connected open subset U of HJ where pω(Z) 7= 0.
To do this, one first argues as in § 8.1 of [Pol20] that φv(w, X, Y ) (see § 8.2, p. 1257) is of the
form w2n+2Yv(m)Kv(|〈ω, Z̃〉|) for some function Yv(m) that does not depend on w. Indeed, the
differential equations:

(i) (w∂w − 2(n + 1) + k)φk = −〈ω, Z̃∗〉φk−1;
(ii) (w∂w − 2(n + 1) − k)φk = −〈ω, Z̃〉φk+1;

from [Pol20, Corollary 7.6.1], taken together, imply that w−2n−2φv(w, X, Y ) satisfies Bessel’s
differential equation. The fact that this function must be of moderate growth as w → ∞ then
implies that, as a function of w, it is proportional to Kv(|〈ω, Z̃〉|).

To understand the functions Yv(m) = Yv(X, Y ), one argues as on the top of p. 1257 of [Pol20]
to obtain that φ(w, X, Y ) = φ(w, m) is of the form Y ′

1/2(m)Wω,αω(g) for some function Y ′
1/2(m)

that does not depend on w. In other words, one uses the differential equations in w above again
to relate Yv(m) to Yv+1(m) for each v. Note that the function Y ′

1/2(m) descends to the linear
group.
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Now one proves that the Wω,αω are annihilated by the operator Dn, exactly as in the proof
of Proposition 8.25 of [Pol20]. Note that in this proof, the term |αω(g)|αω(g)−1 is rewritten as
a product of |αω(g)|−1 and a term that is annihilated by DZ(E). Moreover, the absolute value
|αω(g)|−1 descends to the linear group. This is why the manipulations of [Pol20] carry over to
this half-integral weight case. In any event, it follows from this that DZ(E)(Y ′

1/2(m)) = 0 and
DZ(E)∗(Y ′

1/2(m)) = 0, from which one concludes Y ′
1/2(m) is constant.

Thus, the Wω,αω are annihilated by the operator Dn, and on an open subset where pω(Z) 7= 0,
any moderate growth solution agrees with the Wω,αω up to constant multiple. The rest of the
argument now follows as in the proof of Proposition 8.2.4 of [Pol20]. "

From Theorem 3.2.2 follows immediately the definition of Fourier coefficients of modular
forms of weight "/2: let Z = [NJ , NJ ] denote the one-dimensional center of NJ . Let ϕ be a
modular form for G̃J(A) of weight "/2 and level (KT , sT ) as in Definition 3.1.1. Set ϕZ(g) =∫
Z(Q)\Z(A) ϕ(zg) dz and

ϕN (g) =
∫

NJ (Q)\NJ (A)
ϕ(ng) dn.

Then we have the following generalization of [Pol20, Corollary 1.2.3].

Corollary 3.2.3. For each positive semi-definite for ω ∈ WJ(Q), there exist a constant aϕ(ω),
well-defined up to multiplication by ±1, such that for g ∈ G̃J ⊆ G̃J(A),

ϕZ(g) = ϕN (g) +
∑

ω∈WJ (Q)

aϕ(ω)W2πω(g),

where the sum runs over positive semi-definite vectors. The function W2πω(g) is one element of
the set {W2πω,α2πω ,−W2πω,α2πω}.

The complex number aϕ(ω) is thus well-defined up to multiplication by ±1. These numbers
aϕ(ω) ∈ C/{±1} are, by definition, the Fourier coefficients of ϕ.

The K-Bessel functions Kv(z) in the definition of the Whittaker functions Wω,αω only occur
for half-integral values of v. This is especially nice as these satisfy the following classical lemma.

Lemma 3.2.4. the K-Bessel function satisfies the following facts.

(i) For any value of v,

−zv(∂z(z−vKv(z))) = Kv+1(z).

(ii) For any value of v,

K−v(z) = Kv(z).

(iii) We have

K1/2(z) =
√

π

2z
e−z.

Thus, the functions Wω,αω are particularly simple as functions of αω(g) and ν(g). For
example, when l = 1, we have

Wω,αω(g) =

√
πν(g)3

2
e−|αω(g)|2

|αω(g)|

[(
|αω(g)|
αω(g)

)
x +

(
αω(g)
|αω(g)|

)
y

]

if g ∈ H̃J(R)+.
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3.3 The minimal modular form of F̃4(A)
Our first application is the existence of a particular modular form of weight 1

2 on F̃4(A) with
exceptionally few non-zero Fourier coefficients in the sense of Lemma 3.3.2 below.

Set UF4(4) = K ′
R(4)

∏
p>2 F4(Zp) ⊆ F4(Af ).

Theorem 3.3.1. There exists a modular form ΘF4 on F̃4(A) of weight 1
2 which satisfies the

following properties:

(i) ΘF4 is constructed from the automorphic minimal representation;
(ii) the level of ΘF4 is UF4(4);
(iii) the (0, 0, 0, 1)-Fourier coefficient of ΘF4 is equal to ±1.

The proof of this theorem is representation theoretic, relying on the analysis of the auto-
morphic minimal representation Πmin of F̃4(A), and takes up all of § 4. We defer the discussion
of this representation until then. We do, however, need the following properties of ΘF4 , which
follow from the minimality of Πmin.

To simplify notation, set Θ = ΘF4 . The automorphic function Θ has Fourier expansion

ΘZ(g) = ΘN (g) +
∑

ω∈WJ (Q)

Θω(g).

Here, for g ∈ F̃4(A), we have

Θω(g) =
∫

NJ (Q)\NJ (A)
Θ(ng)ψ−1(〈ω, n〉) dn.

Recall the notion of rank of an element ω ∈ WJ(Q) as defined in [Pol18, Definitions 4.2.9
and 4.3.2].

Lemma 3.3.2. Let the notation be as above.

(i) If γ ∈ H1
J(Q), then Θω(γg) = Θω·γ(g). If γ ∈ ΓF4(4) ∩ H1

J(R), and g = g∞ is in the image

of F̃4(R) → F̃4(A), then Θω(sΓ(γ)g) = Θω·γ(g).
(ii) One has Θω ≡ 0 unless rk(ω) ≤ 1.
(iii) Suppose g = g∞ is in the image of F̃4(R) → F̃4(A) and ω is of rank one. Then Θω(g) ≡ 0

unless ω lies in the lattice WJ(Z) = Z ⊕ J0 ⊕ J0 ⊕ Z.

Proof. The first part of the first claim follows easily from the usual change of variables in the
integral defining Θω. For the second part of the first claim, we have

Θω(sΓ(γ)g) = Θω(sΓ(γ)gsf (γ)) = Θω(sQ(γ)g) = Θω·γ(g)

using that Θ is right invariant under sf (ΓF4(4)).
The second claim follows from the construction of Θ from Πmin in § 4 and the minimality of

Πmin. More specifically, the claim follows directly from Proposition 3 of [Gin19].
For the final claim, let WJ(Z)∨ be the dual lattice to WJ(Z) under the symplectic form,

so that WJ(Z)∨ = Z ⊕ J∨
0 ⊕ J∨

0 ⊕ Z. We first prove that Θω(g) vanishes unless ω is in WJ(Z)∨.
To see this, suppose n0 ∈ WJ(Ẑ) = WJ(Z) ⊗ Ẑ and n = exp(n0) ∈ F̃4(Af ) → F̃4(A). Then n ∈
KR(4)

∏
p Kp, so Θ is right-invariant by n. But then

Θω(g) = Θω(gn) = ψ(〈ω, n0〉)Θω(g).

Consequently, if Θω(g) 7= 0, then 〈ω, n0〉 ∈ Ẑ for all n0 ∈ WJ(Ẑ), so ω ∈ WJ(Z)∨.
For the stronger claim that Θω(g) vanishes unless ω ∈ WJ(Z) ⊆ WJ(Z)∨, we use the following

lemma. "
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Lemma 3.3.3. If ω ∈ WJ(Z)∨ is of rank one, then ω ∈ WJ(Z).

Proof. Write ω = (a, b, c, d). Then b# = ac ∈ J∨
0 and c# = db ∈ J∨

0 by [GS05, Proposition 11.2].
But an elementary check shows that if X ∈ J∨

0 and X# ∈ J∨
0 , then, in fact, X ∈ J0. The lemma

follows. "

3.4 Pullback to G2

We have defined an inclusion G̃2(A) ⊆ F̃4(A) in § 2.8.3 and a modular form ΘF4 on the latter
group. Let ΘG2 be the automorphic function that is the pullback of ΘF4 to G̃2(A), which is
evidently smooth of moderate growth and satisfies the equivariance property (i). In fact, it also
satisfies the requisite differential equation.

Proposition 3.4.1. The automorphic function ΘG2 is a weight 1
2 quaternionic modular form

on G̃2(A).

Proof. This follows just as in [Pol21, Corollary 4.2.3]. "

In this section, we partially compute the Fourier expansion of ΘG2 . For g ∈ F̃4(R) we have

ΘZ(g) = ΘN (g) +
∑

ω∈WJ (Z)
rk(ω)=1

a(ω;α2πω)W2πω;α2πω(g)

with a(ω;−α2πω) = −a(ω;α2πω).
Suppose γ ∈ ΓF4(4) ∩ H1

J(R). Define αγ2πω(g) = α2πω(γg). Note that

αγ2πω(g)2 = 2π〈ω, γg · r0(i)〉 = 2π〈ω · γ, g · r0(i)〉,

so that αγ2πω is an α2πω·γ , and W2πω;α2πω(γg) = W2πω·γ,αγ
2πω

(g).

Lemma 3.4.2. For γ ∈ ΓF4(4) ∩ H1
J(R), one has an equality of Fourier coefficients a(ω;α2πω) =

a(ω · γ;αγ2πω).

Proof. By Lemma 3.3.2, one has Θω(γg) = Θω·γ(g). Thus,

a(ω;α2πω)W2πω;α2πω(γg) = Θω(γg) = Θω·γ(g) = a(ω · γ;αγ2πω)W2πω·γ;αγ
2πω

(g)

= a(ω · γ;αγ2πω)W2πω;α2πω(γg).

Consequently, a(ω;α2πω) = a(ω · γ;αγ2πω). "

We now consider the Fourier coefficients of ΘG2 = ΘF4 |G̃2(A). We require the following two
lemmas. Recall that the Fourier coefficients of a modular form on G2 are parameterized by
elements of WQ(Q), which may be thought of as Sym3(Q2) by sending

(r, s, t, z) ∈ WQ(Q) 4−→ ru3 + 3su2v + 3tuv2 + zv3 ∈ Sym3(Q2).

If ω = (a, b, c, d) ∈ WJ(Q), set tr(ω) = (a, tr(b)/3, tr(c)/3, d) ∈ Sym3(Q2), so that tr(ω) corre-
sponds to the binary cubic form au3 + tr(b)u2v + tr(c)uv2 + dv3. Now, for each ω′ ∈ Sym3(Q2),
fix a choice of α2πω′(g). Note that for ω ∈ WJ(Q) the restriction of α2πω(g) to the Heisenberg
Levi in G̃2(R) ⊂ F̃4(R), is of the form ε(ω; tr(ω))α2π tr(ω)(g) where ε(ω; tr(ω)) ∈ {±1}.

Lemma 3.4.3. Suppose ϕ is a modular form on F̃4(A) of weight "/2, with Fourier expansion
ϕZ(g) = ϕN (g) +

∑
ω∈WJ (Q) a(ω;α2πω)W2πω;α2πω(g). Let ϕ′ be the restriction of ϕ to G̃2(A).
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Then ϕ′ is modular form on G̃2(A) of weight "/2, with Fourier expansion

ϕ′
Z′(g) = ϕ′

N ′(g) +
∑

ω′∈Sym3(Q2)

b(ω′;α2πω′)W2πω′;α2πω′ (g),

where N ′ ⊂ G2 denotes the unipotent radical of the Heisenberg parabolic. The Fourier coefficients
b(ω′;α2πω′) are given as follows:

b(ω′;α2πω′) =
∑

ω∈WJ (Q):tr(ω)=ω′

ε(ω;ω′)a(ω;α2πω).

The sum, a priori infinite, is in fact finite.

Proof. The point is that one can simply restrict the Fourier expansion of ϕ to G̃2(R) to obtain
the Fourier expansion of ϕ′. In more detail, one checks that when the function Wω,α2πω on F̃4(R)
is restricted to G̃2(R), one obtains the function ε(ω; tr(ω))W2π tr(ω);α2π tr(ω)

on G̃2(R). We omit
the proof of the finiteness claim, as we do not really need it, but we note that it follows from
the vanishing of the Fourier coefficients that are not positive semi-definite, and that a similar
argument can be found in [Pol21, § 5.1]. "

In particular, if we can control the signs ε(ω;ω′), we can use our knowledge of the Fourier
expansion of ΘF4 to obtain information about the Fourier expansion of ΘG2 . The following lemma
controls the signs ε(ω;ω′).

Below, for T ∈ J0, we set n(T ) = exp(δ2 ⊗ T ), which are unipotent elements of H1
J ⊆ F4.

Lemma 3.4.4. Suppose γ1 = n(T1) and γ2 = n(T2) are such that det(T1t + 1) = det(T2t + 1).
Then αγ12π(0,0,0,1) and αγ22π(0,0,0,1) have equal (as opposed to opposite) restrictions on G̃2(R).

Proof. We have α2πω(g) =
√
−1j1/2(g, x0)p2πω(gi)1/2 for a fixed squareroot of p2πω(Z). Thus,

αγi

2π(0,0,0,1)(1) = α2π(0,0,0,1)(γi) =
√
−1j1/2(n(Ti), x0)p2π(0,0,0,1)(γi · i)1/2.

Note that p2π(0,0,0,1)(Z)1/2 is constant. We thus must analyze j1/2(n(Ti), x0). But now note that
there is a unique splitting n(J3(R)) → F̃4(R), this splitting is continuous, and by Lemma 2.7.4,
this continuous splitting agrees with the splitting over ΓF4(4). Consequently j1/2(n(T ), x0) is
a continuous function of T ∈ J3(R) and, thus, a fixed squareroot of det(Ti + 1). Now, by
Lemma 3.5.4 proved below, there is a path of gt ∈ SO3(R) (which is connected) connecting
T1 to T2. Thus, det(T1i + 1)1/2 varies continuously to det(T2i + 1)1/2 via det(gtT1gt

ti + 1)1/2.
But det(gtT1gt

ti + 1) = det(T1i + 1) because gt ∈ SO3(R). The lemma follows. "
To describe the Fourier coefficients of ΘG2 , we require the following definition.

Definition 3.4.5. Recall that J0 := S2(Z3) = H3(Z) denotes the symmetric 3 × 3 matrices with
integer entries. If X ∈ J0, then det(tI + X) is a monic cubic polynomial with integer coefficients.
For a cubic monic polynomial p with integer coefficients, let

Qp := {X ∈ J0 : det(tI + X) = p(t)}

be the set of X in J0 with det(tI + X) = p(t).

The set Qp is finite, and can only be nonempty when p(t) has three real roots. In fact, it can
be empty even when p(t) has three real roots.

We now assume that ΘF4 is normalized so that its (0, 0, 0, 1)-Fourier coefficient is ±1. Putting
everything together, we have the following result computing a family of Fourier coefficients
of ΘG2 .
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Theorem 3.4.6. The pullback ΘG2 of ΘF4 to G̃2(A) has the following Fourier coefficients: if
a, b, c are integers and p(u, v) = au3 + bu2v + cuv2 + v3, then the p(u, v) Fourier coefficient of
ΘG2 is ±|Qp(1,t)|.

Proof. By Lemmas 3.4.4 and 3.4.3, the Fourier coefficient of ΘG2 corresponding to p(u, v) is the
sum of the Fourier coefficients of ΘF4 corresponding to elements (det(T ), T#, T, 1) in WJ with
T ∈ J0 and det(t1 + T ) = p(1, t). Thus, the desired Fourier coefficient of ΘG2 is given by a sign
times the number of T ′ ∈ J0 with det(tI + T ′) = p(1, t). This is |Qp(1,t)|, as claimed. "

3.5 Arithmetic invariant theory
The purpose of this section is to do some arithmetic invariant theory related to the set Qp. In
particular, if R = Z[t]/(p(t)), then we relate Qp to the sets QR defined as follows. Set E = R ⊗ Q
and assume that p(t) is such that E is an étale Q-algebra. If I is a fractional ideal of R and
µ ∈ E× is totally positive, again as before say that (I, µ) is balanced if:

– µI2 ⊆ d−1
R ;

– N(µ)N(I)2disc(R/Z) = 1.

Note that this all makes sense, regardless of whether E is a field. One puts on pairs (I, µ) an
equivalence relation: (I, µ) ∼ (βI,β−2µ) for β ∈ E× and lets QR denote the set of equivalence
classes.

3.5.1 The case of a field. Let R = Z[t]/(p(t)) be a monogenic order in a totally real cubic
field E = R ⊗ Q. Observe that the group SO3(Z) acts on the set Qp by X 4→ gXgt.

Lemma 3.5.1. Suppose T ∈ J0 has det(tI + T ) = p(t). Then SO3(Z) acts freely on T , i.e. if
g ∈ SO3(Z) and gTgt = T , then g = 1.

Proof. Suppose g ∈ SO3(Z), and T = gTgt = gTg−1. Then g commutes with T , so g ∈ Q[T ].
It follows that g is symmetric, so 1 = ggt = g2. Thus, g ∈ µ2(Q[T ]). But Q[T ] is a field by
assumption, so g = ±1. Because det(g) = 1, g = 1, proving the lemma.

Note that the lemma is false if we do not assume R ⊗ Q is a field. "
The following lemma is well-known.

Lemma 3.5.2. Suppose M = Z3 has a symmetric bilinear form on it ( , ) which is integral, i.e.
(v, w) ∈ Z for all v, w ∈ M . Suppose moreover that the bilinear form ( , ) is positive-definite
and of determinant one, i.e. det((vi, vj)) = 1 for a basis v1, v2, v3 of M over Z. Then M has an
orthonormal basis v′1, v

′
2, v

′
3.

Here is the main result of this section.

Proposition 3.5.3. Suppose R = Z[t]/(p(t)) is an order in a totally real cubic field E = R ⊗ Q.
Then there is a bijection (to be given in the proof) between the sets QR and SO3(Z)\Qp. In
particular, |Qp| = |SO3(Z)| · |QR| = 24|QR|.

As mentioned in the introduction, this proposition essentially follows from the work in
[Swa21]. Because [Swa21] is much more general, we give a direct proof of this simple case that
we need.

Proof. Let ω be the image of t in R = Z[t]/(p(t)). Associated to a T ∈ J0 with det(tI + T ) = p(t),
we obtain a module M = Z3, together with a unimodular quadratic form ( , ) and orthonormal
basis e1, e2, e3. The element T defines an action of R on M , via ωm = −Tm. Because T is
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symmetric, this action is symmetric for the bilinear form: (v,λw) = (λv, w) for all v, w ∈ M and
λ ∈ R.

We can think of M as a fractional ideal I of E := R ⊗ Q. That is, I = Ze1 + Ze2 + Ze3 with
e1, e2, e3 ∈ E such that −ωei =

∑
j Tijej . Moreover, because the action of R is symmetric, the

bilinear form on I is of the form (v, w) = tr(µvw) for some fixed µ ∈ E×. Because the bilinear
form is positive-definite and because E is totally real, µ must be totally positive. We thus obtain
a pair (I, µ). The choice of I is well-defined up to scalar multiple. We claim that the pair (I, µ)
is balanced. To see this, first note that because our form (v, w) = tr(µvw) is integral on I,
and I is a fractional ideal, we have µI2 ⊆ d−1

R . Now, one checks easily that det((tr(µvivj))) =
N(µ) det((tr(vivj))). Thus,

1 = det((ei, ej)) = N(µ) det(tr(eiej)) = N(µ)N(I)2disc(R/Z).

Thus, out of T ∈ Qp, we have constructed a class [I, µ] in QR. Tracing through the maps, one
sees that [I, µ] is well-defined. Moreover, if g ∈ SO3(Z), then g · T maps to the same pair [I, µ],
because the action of g just changes the basis e1, e2, e3 of I.

In the reverse direction, suppose given a pair (I, µ) with (I, µ) balanced. Then the pair-
ing (v, w) = tr(µvw) on I is integral. Moreover, if v1, v2, v3 is an integral basis of I, then
det((vi, vj)) = det(tr(µvivj)) = N(µ)N(I)2disc(R/Z) = 1. By Lemma 3.5.2, I has an orthonor-
mal basis e1, e2, e3. We thus obtain T := −((ei,ωej))ij with det(tI + T ) = p(t). The basis
e1, e2, e3 is well-defined up to the action of O3(Z) = {±1}× SO3(Z) so the element T is
well-defined in the orbit space SO3(Z)\Qp.

The maps described above are inverse bijections. Noting that |SO3(Z)| = 24, the proposition
follows. "

The following lemma was used above.

Lemma 3.5.4. The group SO3(R) acts transitively on the set of T ∈ J0 ⊗ R with fixed
characteristic polynomial p(t).

Proof. Because O3(R) = {±1}× SO3(R), it suffices to see that O3(R) acts transitively. But
now, every real symmetric matrix can be diagonalized by an element of O3(R). Using the action
of the symmetric group S3 ⊆ O3(R) finishes the proof. "

We end this section by discussing the set QR when R is a maximal order in E.

Proposition 3.5.5. Suppose R is the maximal order in E. Then if QR is non-empty, |QR| =
|Cl+E [2]|, the size of the two-torsion in the narrow class group of E.

To prove the proposition, we will use the following lemma. Consider the group AR of equiv-
alence classes of pairs (J,λ) with λJ2 = (1), J a fractional E-ideal and λ totally positive. That
is, (J,λ) is equivalent to (J ′,λ′) if there exists µ ∈ E× so that J ′ = µJ and λ′ = µ−2λ. It is clear
that QR, when non-empty, is a torsor for AR. Let A′

R denote the set of such pairs (J,λ) except
modulo the equivalence relation (J,λ) is equivalent to (J ′,λ′) if there exists µ ∈ E×

>0 so that
J ′ = µJ and λ′ = µ−2λ.

Lemma 3.5.6. One has the following exact sequences:

1 → R×
>0/(R×

>0)
2 → A′

R → Cl+E [2] → 1, (9)

and

1 → E×/
(
± E×

>0

)
→ A′

R → AR → 1. (10)
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Proof. We first consider the sequence (9). The map A′
R → Cl+E is given by sending [J,λ] to

[J ] ∈ Cl+E . Because [J2] = (λ−1) with λ totally positive, [J ] ∈ Cl+E [2]. It is clear that this map is
surjective.

For the kernel, if [J ] = 1 in Cl+E , then J = (ε) with ε totally positive. Consider λε2. This
is in R×

>0. The element ε is well-defined up to multiplication by an ε1 ∈ R×
>0, so λε2 gives a

well-defined class in R×
>0/(R×

>0)
2. It is checked immediately that this map gives an isomorphism

of the kernel of {A′
R → Cl+E [2]} with R×

>0/(R×
>0)

2.
Now consider the sequence (10). The map A′

R → AR is dividing out by the courser equivalence
relation. The kernel of this map is the image in A′

R of the set of pairs ((µ), µ2) with µ ∈ E×.
This is trivial in A′

R precisely when there exists µ′ ∈ E×
>0 so that ((µ), µ2) = ((µ′), µ′2), which

happens precisely if µ ∈ ±E×
>0. The lemma follows. "

Proposition 3.5.5 follows from Lemma 3.5.6 by observing that both R×
>0/(R×

>0)
2 and

E×/(±E×
>0) have size 4. Finally, again assuming that R is the maximal order in E, we remark

that it follows from [Gro03, Proposition 3.1] that QR is non-empty if and only if every quadratic
extension of E that is unramified at all finite primes is totally real. Combining Proposition 3.5.3
with Theorem 3.4.6 gives Theorem 1.2.6. Combining the result with Proposition 3.5.5 gives
Theorem 1.1.2.

3.5.2 The general case. In the previous subsection, we discussed the arithmetic invariant
theory of the sets Qp when E = R ⊗ Q is a field. We now make some remarks about the arithmetic
invariant theory of the sets Qp when E is just an étale cubic Q-algebra. We omit the proofs, as
they are simple generalizations of the proofs in the previous subsection.

Recall that if p(t) ∈ Z[t] is cubic and monic, then Qp denotes the set of T ∈ J0 = Sym2(Z3)
such that det(t13 + T ) = p(t).

One has the following bijection.

Proposition 3.5.7. There is a bijection between equivalence classes of balanced pairs QR and
the O3(Z) (or, equivalently, SO3(Z)) orbits on Qp. Moreover, the stabilizer of T ∈ Qp under the
action of O3(Z) is µ2(OI), where

OI = {α ∈ E : αI ⊆ I}.

As a consequence of the proposition, one obtains

#Qp =
∑

[(I,µ)] balanced

#O3(Z)
µ2(OI)

.

In particular, if R is maximal so that OI = R for all I, then

#Qp =
48

µ2(R)
× #{[(I, µ)] balanced}.

In this maximal case, assuming that E is étale, one has that (I, µ) is balanced precisely if
µI2 = d−1

R . Now one can consider the exact sequences as in Lemma 3.5.6, which become

1 → R×
>0/(R×

>0)
2 → A′

R → Cl+E [2] → 1

and

1 → E×/(µ2(E)E×
>0) → A′

R → AR → 1.
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Table 2. Numerical data associated with some of the Fourier coefficients of ΘG2 .

p(t) Structure Maximal monogenic (LMFDB) #Qp Cl+E (SAGE)

t3 − t2 − 2t + 1 Cubic field Yes 24 1
t3 − 3t − 1 Cubic field Yes 24 1
t3 − t2 − 3t + 1 Cubic field Yes 24 1
t3 − t2 − 9t + 10 Cubic field Yes 48 C4

t3 − t2 − 14t + 23 Cubic field Yes 48 C4

t3 − t2 − 11t + 12 Cubic field Yes 48 C4

t3 − t2 − 12t − 1 Cubic field Yes 48 C4

t3 − 5t − 1 Cubic field Yes 24 1
t3 − t2 − 9t + 8 Cubic field Yes 0 C6

t3 − 21t − 35 Cubic field Yes 24 C3

(t − 1)(t2 − 2) Quadratic Yes 12 1
(t − 2)(t2 − 3) Quadratic Yes 0 C2

(t − 3)(t2 − 10) Quadratic Yes 24 C2

t3 − t2 − 54t + 169 Cubic field Yes 96 C2 × C2

t3 − t2 − 34t − 57 Cubic field Yes 96 C4 × C2

Considering the different cases separately, one sees that in all étale maximal cases, #AR =
#Cl+E [2]. Thus, if R is maximal and E is étale, one has the formula

#Qp =
48

µ2(R)
|Cl+E [2]|× δR

where δR is 0 if the inverse different d−1
R is not a square in Cl+E and 1 if it is such a square. We

state this as a proposition.

Proposition 3.5.8. Let the notation be as above, and assume that R = Z[t]/(p(t)) is the
maximal order in E = R ⊗ Q, which is assumed étale. Then #AR = #Cl+E [2]. Consequently,
#Qp = (48/µ2(R))|Cl+E [2]|× δR where δR is 0 if the inverse different d−1

R is not a square in Cl+E
and 1 if it is such a square.

Note that if R = Z ×OK with K real quadratic, then Cl+E = Cl+K . For the sake of
completeness, we now answer the question of when the maximal order in such a case is monogenic.

Proposition 3.5.9. Set R = Z ×OK with K a real quadratic field.

(i) If " is squarefree and OK = Z[
√
"], then R is monogenic if and only if " = r2 ± 1 for some r

in Z. In this case, (r,
√
") is a generator of R.

(ii) If OK = Z[ω] with ω = (1 +
√

4"+ 1)/2, then R is monogenic if and only if the equation
r(r − 1) = "± 1 has a solution, in which case (r,ω) is a generator.

3.5.3 Table of data. In Table 2, we present a table of numerical data for the Fourier coeffi-
cients |Qp| of ΘG2 . The rings R were checked to be maximal (monogenic) orders by the L-function
and Modular Form Database (LMFDB) [LMF20]. The computer algebra system SAGE [Sag22]
was used to compute the narrow class groups Cl+E . In the table, the notation Cn denotes the
cyclic group of order n.
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4. The automorphic minimal representation

In this section, we construct and study the modular form ΘF4 of weight 1
2 on the double cover

of F4 and prove Theorem 3.3.1 via a careful analysis of the automorphic minimal representation
of F̃4(A).

4.1 Review of the construction
We begin by reviewing the construction of the automorphic minimal representation Πmin on
F̃4(A), following Loke and Savin [LS10], and then Ginzburg [Gin19].

Recall that we have ordered the simple roots of F4 in the usual way, so that the Dynkin
diagram

◦ − −− ◦ =>= ◦ − −− ◦

has labels α1 through α4 from left to right. Define mα1 = mα2 = 2 and mα3 = mα4 = 1. Let p
be a place of Q, allowing p = ∞. We begin with the following lemma.

Lemma 4.1.1. Let T̃ (Qp) denote the inverse image of the fixed split maximal torus of F4(Qp)
in F̃4(Qp), and Z(T̃ (Qp)) its center. Then t ∈ Z(T̃ (Qp)) if and only if t = ±

∏
i h̃αi(t

mi
i ).

Proof. One applies the commutator formula (4) {h̃α(s), h̃β(t)} = (s, t)(α∨,β∨). "
We will also have need of a maximal abelian subgroup at every local place. This is handled

uniformly by the following lemma.

Lemma 4.1.2. For any place p ≤ ∞, the subgroup

T∗(Qp) := ±h̃α1(Q
×
p )h̃α2((Q

×
p )2)h̃α3(Q

×
p )h̃α4(Q

×
p )

is a maximal abelian subgroup of T̃ (Qp).

Proof. This is an easy check using the commutator formula. "
For each p, we let B∗(Qp) = T∗(Qp)UB(Qp) denote the associated subgroup of B̃(Qp).

Definition 4.1.3. A genuine character χp of Z(T̃ (Qp)) is said to be exceptional if for each
simple root α, χp(h̃α(tmα)) = |t|v. We let νexc := (1/mα)α ∈ X∗(T ) ⊗Z R to be the associated
exponent.

Lemma 4.1.1 implies that there is a unique exceptional character χp on the center of the
covering torus of F̃4(Qp). Let χexc =

∏
p χp be the induced character on Z(T̃ (A)). Note that χ

is automatically automorphic by the product formula.
We consider the subgroup of T̃ (A) given by

T∗(A) := T (Q)Z(T̃ (A));

this is a maximal abelian subgroup [Wei16, Theorem 4.1]. Abusing notation, write χexc for
the automorphic extension of χexc from Z(T̃ (A)) to T∗(A). Inflating χexc to a character of
B∗(A) := T∗(A)UB(A), consider the induced representation

V0 := IndF̃4(A)
B∗(A)(δ

1/2
B χexc),

where δB is the modular character of B(A).

Remark 4.1.4. In their construction of this representation, Loke and Savin instead define a
representation π(χexc) of T̃ (A), inflate to B̃(A), then induce to F̃4(A). It follows from [LS10,
Propositions 4.1 and 5.3] that their π(χexc) is an irreducible representation of T̃ (A) with the
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same central character as IndT̃ (A)
T∗(A)(χexc), so they are isomorphic. In fact, both representations

are realized as spaces of functions on T (Q)\T̃ (A), and we claim that they are identical. This is
because there is, in the terminology of [LS10], a unique genuine representation in AT (Q)\T̃ (A)
that is invariant under MsT 1

2

∏
p>2 Tp; see [LS10, Corollary 5.2]. (This is true for F4, but not

true in general.)

For s = (s1, s2, s3, s4) ∈ C4, define ωs a character of T (A) as ωs(hαi(ti)) = |ti|si . Set

Vs = IndF̃4(A)
B∗(A)(δ

1/2
B χexcωs).

Let f(g, s) be a flat section in this induced representation, and set

E(g, f, s) =
∑

γ∈B(Q)\F4(Q)

f(γg, s).

The automorphic minimal representation on F̃4(A) is constructed as the residue of these
Eisenstein series at a distinguished point.

Theorem 4.1.5 [LS10, Theorem 7.1]. The Eisenstein series E(g, f, s) have at worst a simple
multi-pole at s = 0. Let

θ(g, f) = lim
s→0

s1s2s3s4E(g, f, s)

and Πmin be the space of these residues θ(g, f). Then θ(g, f) is a genuine, square-integrable
automorphic form on F̃4(A). Moreover, the representation Πmin is irreducible.

Remark 4.1.6. In [LS10], this theorem is proved for the associated automorphic representation
on the double cover of all split simply connected semisimple groups over Q. These are examples
of generalized theta representations, which play a fundamental role in the study of automorphic
representations of non-linear covering groups; see, for example, [Pat84, CFH12, BFG03, FG18,
Les19] for some conjectures and aspects of this area.

Write Πmin =
⊗′

p Πmin,p. Then Loke–Savin also identify the representations Πmin,p in terms
of principal series. To do this, extend the character χp of Z(T̃ (Qp)) to the subgroup B∗(Qp),

and let Ip = Ind F̃4(Qp)
B∗(Qp)(δ

1/2
B χp).

Proposition 4.1.7 [LS10, Proposition 6.3]. The representation Ip has a unique irreducible
quotient, which is Πmin,p.

The notation Πmin references Ginzburg’s theorem [Gin19, Theorem 1] that Πmin is an auto-
morphic minimal representation in the sense that the set of nilpotent elements associated to
non-vanishing Fourier–Whittaker coefficients of Πmin are contained in the minimal nilpotent
orbit Omin ⊂ f4(Q); we refer the reader to [Gin14] for the notions of Fourier–Whittaker coeffi-
cients associated to nilpotent orbits. This result plays a central role in our analysis of the Fourier
expansion of ΘF4 ; see Lemma 3.3.2.

4.2 Archimedean aspects
Relating these generalized theta series to quaternionic modular forms requires information of
the K̃∞-types of the local representation Πmin,∞. This representation turns out to be the same
as the representation ΠGW constructed by Gross–Wallach in [GW94].
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Proposition 4.2.1. The representation Πmin,∞ is isomorphic to the minimal representation

ΠGW constructed by Gross–Wallach; its K̃∞ = SU(2) × Sp(6)-types are

∞⊕

n=0

Sym1+n(C2) ! V(nω3), (11)

where ω3 is the third fundamental weight of Sp(6) and V(nω3) denotes the irreducible rep-
resentation of Sp(6) with highest weight nω3. In particular, Πmin,∞ has minimal K̃∞-type
V1/2.

Proof. Note that, from [LS10, Proposition 6.3], Πmin,∞ is the Langlands quotient of the principal
series representation

IndF̃4(R)
B∗(R)(δ

1/2
B χ∞) ∼= IndG

B̃
(π(χ∞)),

where χ∞ is the exceptional character and π(χ∞) ∼= δ̃ ! χ∞ is the induced representation of
T̃ (R) = M̃ · T (R)◦. Here M̃ is a certain finite subgroup of T̃ (R) and T (R)◦ is the connected
component of the identity of the covering torus. Note we use the fact that

νexc =
(

1
2 , 1

2 , 1, 1
)

= ρ− 1
2(ω1 + ω2) ∈ t∗ := X∗(T ) ⊗Z R (12)

lies in the dominant chamber in identifying Πmin,∞ as the Langlands quotient.
Referring the reader to [ABP+07, §§ 4 and 5] for the notions of pseudospherical representa-

tions and notation, in the decomposition

π(χ∞) = δ̃ ! χ∞,

the two-dimensional representation δ̃ is a pseudospherical representation of M̃ . It is easy to
check that there is a unique such representation for G̃ = F̃4(R), and it arises as the restriction
of the K̃∞ = SU(2) × Sp(6)-representation V1/2 to M̃ ⊂ K̃∞. In particular, V1/2 is the unique
pseudospherical K̃∞-type for G̃.

In the notation of [ABP+07], we see that Πmin,∞ is the Langlands quotient J(δ̃, νexc) of the
corresponding pseudospherical principal series

I(δ̃, νexc) = IndG̃
B̃(R)

(δ̃ ! (νexc + ρ)).

By [ABP+07, Definition 5.5] and the subsequent discussion, we conclude that Πmin,∞ has the
minimal K̃∞-type V1/2. The key point, as noted in [ABP+07, § 5], is that this Langlands quotient
J(δ̃, νexc) is the unique irreducible representation of G̃ containing the K̃∞-type V1/2 and having
infinitesimal character νexc ∈ t∗/W . This follows from the analysis of pseudospherical K̃∞-types
in [ABP+07] combined with Harish-Chandra’s subquotient theorem.

On the other hand, Gross and Wallach apply cohomological techniques to construct the
minimal representation ΠGW in [GW96]; here, minimal means the ideal of U(f4(C)) annihilating
ΠGW is the Joseph ideal. In particular, they compute that the K̃∞-types of ΠGW are precisely
the representations occurring in the proposition [GW96, § 12]. Furthermore, as an element of
t∗/W , the infinitesimal character of ΠGW is

νGW := ρ− 3
2ω1,

where ω1 is the first fundamental weight of F4 (see [GW96, p. 109]). Here W denotes the Weyl
group of the pair (F4, T ).
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To complete the proof, it suffices to check that there exists w ∈ W such that w(νGW) = ν∞.
Referencing (12), this is equivalent to the existence of w ∈ W such that

w •
(
−3

2ω1
)

= −1
2(ω1 + ω2),

where • denotes the dot action of the Weyl group of F4 on t∗. The existence of such an element
may be verified via a computer calculation, using SAGE [Sag22] for example. By uniqueness,
this proves the proposition. "

4.2.1 Modular forms of weight 1
2 . Using Proposition 4.2.1, we can now construct modular

forms of weight 1/2 on F̃4(A) from Πmin. Let x, y be our fixed weight basis of V1/2 = V2 + V∨
2 .

Setting Πmin,f =
⊗′

p<∞ Πmin,p, fix a vector vf ∈ Πmin,f and let

α : Πmin = Πmin,f ⊗ Πmin,∞ → A(F̃4(A))

be the automorphic embedding in Theorem 4.1.5. Define

θ(vf ) := α(vf ⊗ x) ⊗ x∨ + α(vf ⊗ y) ⊗ y∨ ∈ A(F̃4(A)) ⊗ V∨
2 . (13)

One obtains a quaternionic modular form of weight 1
2 on F̃4(R). Indeed, the construction

of the Schmid operator D1/2 precisely detects the fact that the automorphic function θ(vf )
corresponds to the minimal K̃∞-type V2, so that D1/2θ(vf ) ≡ 0 for any vf . The other required
properties are clear.

Our goal for the remainder of the section is to prove that vf can be chosen so that θ(vf ) has
UF4(4) level and non-zero (0, 0, 0, 1)-Fourier coefficient, as in Theorem 1.2.5.

4.3 Weil representations for GL2

To accomplish this goal, we will calculate a certain twisted Jacquet module of Πmin. For this
latter calculation, we make a detour to consider the Weil representation of GL2.

The main results of this section are Corollaries 4.3.12 and 4.3.14, asserting that if certain
Whittaker functionals vanish on particular subspaces of these Weil representations, then they
vanish identically. For this we need to compare a certain double cover of GL2(Qp) arising in
our context with other constructions in the literature. Strictly speaking, we could appeal to
the results of Kazhdan and Patterson [KP84, § 1] to see that the representation theory of these
various covers of GL2(Qp) are related as described in Proposition 4.3.9. We have opted for a
more-or-less self-contained presentation for the sake of the reader.

4.3.1 The double cover of SL2(Qp) and its Weil representation. Now set k = Qp for any
prime p, though the results of this section hold for any local field. We recall various essentially
well-known facts about the group S̃L2(k) and its Weil representation.

Let (V, q) be a quadratic space over k, and B(x, y) = q(x + y) − q(x) − q(y) the associated
bilinear form. We define a representation of S̃L2(k) on S(V ), the Schwartz space of V , which is
genuine if dim(V ) is odd.

We fix the additive character ψ of k. Fix the Haar measure dv on V that is self-dual with
respect to the Fourier transform on V as

Φ̂(v) =
∫

V
ψ((v, w))Φ(w) dw.

Define Fq(v) = ψ(q(v)), and let γ(q) ∈ C be defined as

γ(q) = lim
L⊂V

∫

L
Fq(v) dv, (14)
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where the limit indicates that the value stabilizes for sufficiently large lattices L in V and we
take this value.

One defines a Weil representation of S̃L2(k) on S(V ), via:

(i) ζ · Φ(v) = (−1)dim(V )Φ(v);
(ii) xα(t) · Φ(v) = ψ(tq(v))Φ(v);
(iii) w1 · Φ(v) = γ(q)Φ̂(v), where w1 = w̃α(1);
(iv) h̃α(y) · Φ(v) = |y|d/2(γ(yq)/γ(q))Φ(yv).

Proposition 4.3.1. The implied action of S̃L2(k) on S(V ) is well-defined and gives a
representation, denoted by ωψ,q. This representation is genuine when dim(V ) is odd.

Proof. We omit the proof, which is well-known. "
Consider now the special case where V = k and q(x) = x2. The genuine representation ωψ,q

is not irreducible: if S+(k) is the subspace of even Schwartz functions (i.e. Φ(−x) = Φ(x)), then
S̃L2(k) preserves this subspace. This gives an irreducible representation, which we will denote
by ω+

ψ .
In [Gel76], Gelbart defines a double cover of SL2(k) via an explicit two-cocycle, as follows.

For a matrix s =
(

a b
c d

)
define

x(s) =

{
c if c 7= 0,

d if c = 0.

Define
α(g1, g2) = (x(g1), x(g2))2(−x(g1)x(g2), x(g1g2))2

and S̃L
′
2(k) as the set of pairs (g, ζ) with g ∈ SL2(k) and ζ ∈ {±1} with multiplication

(g1, ζ1)(g2, ζ2) = (g1g2,α(g1, g2)ζ1ζ2). (15)

Because of the uniqueness up-to-isomorphism of the non-trivial double cover of SL2(k), this
double cover is isomorphic to S̃L2(k).

4.3.2 Two double covers of GL2. We now define two double covers of the group GL2(k) and
consider extensions of the genuine representation ω+

ψ to these groups. Our motivation is to relate
a cover arising in our analysis of modular forms on F̃4(k) with one considered in [GP80].

The first construction is given via generators and relations as follows. Consider the group
G̃L

(1)
2 (k) generated by S̃L2(k) and h̃α2(t) for t ∈ k×, subject to the relations that if we let α1

denote the simple root of SL2, then:

(i) ζ is still central;
(ii) h̃α2(t)x±α1(u)h̃α2(t)−1 = x±α1(t〈α

∨
2 ,±α1〉u), where 〈α∨

2 ,±α1〉 = ∓1;
(iii) h̃α2(s)h̃α2(t) = h̃α2(st)(s, t)2.

One can prove from these relations the following additional relations:

(iv) the commutator {h̃α1(s), h̃α2(t)} = (s, t)2;
(v) w̃α1(t)h̃α2(u)w̃α1(−t) = (u−1, u−1t)2h̃α1(u)h̃α2(u)

Sending h̃α2(t) to diag(1, t), we obtain a surjective homomorphism π(1) : G̃L
(1)
2 (k) −→

GL2(k), which we claim is a double covering map extending the cover π : S̃L2(k) −→ SL2(k).
It is immediately checked that this map is well-defined. Moreover, by a Bruhat decomposition
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argument, one sees that the kernel is exactly the image of µ2(k) in G̃L
(1)
2 (k). To see that this

image is non-trivial, so that G̃L
(1)
2 (k) is really a double cover of GL2(k), we note that G̃L

(1)
2 (k)

so defined is precisely the full inverse image of the subgroup GL2(k) ⊂ F4(k) in the double cover
F̃4(k) described in § 2.4 where GL2(k) ⊂ F4(k) denotes the subgroup generated by the subgroup
isomorphic to SL2(k) associated to the simple root α1 and the coroot associated to the simple
root α2.

Remark 4.3.2. In the literature (for example, [KP84]), one often finds this cover described in
terms of the inverse image in S̃L3(k) of the (2, 1)-Levi subgroup. We opt for the inclusion into
F4 as this better illustrates our interest in this covering group. In any case, we have

G̃L
(1)
2 (k) ⊂ S̃L3(k) ⊂ F̃4(k),

where the inclusion SL3 ⊂ F4 is that discussed in § 2.8.

Let

G∗ := {g ∈ G̃L
(1)
2 (k) : π(1)(g) ∈ GL2(k) has determinant a square in k×}. (16)

As is easily seen, this is the subgroup of G̃L
(1)
2 (k) generated by S̃L2(k) and h̃α2(t2), t ∈ k×.

Lemma 4.3.3. The group G∗ is generated by S̃L2(k) and h̃α2(t2) subject only to the relations

defining G̃L2(k), restricted to the h̃α2(t2).

Proof. Temporarily, let G∗
1 be the group described in the statement of the lemma. Then one has

a tautological surjection G∗
1 → G∗. Now G∗

1 maps to GL2(k), with kernel at most µ2(k). Now
suppose ε is in the kernel of G∗

1 → G∗. Then ε ∈ µ2(k). But the image of µ2(k) in G∗ has size
two, so ε = 1. "

Fix a character χ of k×, with χ(−1) = 1. Let S+(k) be the Schwartz space of even functions.
We then have the genuine representation ω+

ψ of S̃L2(k) on S+(k). Following [GP80], one can
extend the action to an action of G∗ on S+(k) by letting

h̃α2(a
2)φ(x) = χ(a)|a|−1/2φ(a−1x).

Proposition 4.3.4. The above action gives a well-defined representation of G∗ on S+(k). We
denote the resulting representation as ωψ,χ.

Proof. This is a direct check which we omit. "
In [Gel76] and [GP80], a different double cover of GL2(k) is defined, which we now recall.

For y ∈ k×, define

v(y, s) =

{
1 if c 7= 0,

(y, d)2 otherwise,

where s =
(
a b
c d

)
. Define sy = diag(1, y)−1s diag(1, y). Now, for s = (s, ζ) ∈ S̃L

′
2(k) (defined as

in (15)), let sy = (sy, v(y, s)ζ). It is then proved that this gives an action of k× on S̃L
′
2(k) and

one defines G̃L
(0)
2 (k) to be the semidirect product S̃L

′
2(k) " k×.

We now compare the double cover G̃L
(0)
2 (k) and our G̃L

(1)
2 (k). To do this, let G(0) be a group

defined as follows. As a set, it is G̃L
(1)
2 (k). The multiplication in G(0) is defined as

g ∗ h = g · h(det(g), det(h))2,

where g · h is the product in G̃L
(1)
2 (k).
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Proposition 4.3.5. The group G(0) is isomorphic to G̃L
(0)
2 (k).

To prove the proposition, we require a few lemmas. Temporarily, let G(0)
1 be the group

generated by S̃L2(k) and h̃α2(t) for t ∈ k×, subject to the relations (i), (ii) and:

(iii) h̃α2(s)h̃α2(t) = h̃α2(st).

Lemma 4.3.6. The map G(0)
1 → G(0) that is the identity on generators is a well-defined

isomorphism.

Proof. It is clear that the map is a well-defined homomorphism, because the relations satisfied
in G(0)

1 are again satisfied in G(0). Moreover, it is clear that the map is surjective, and covers the
identity map on the linear group GL2(k). By another Bruhat decomposition argument, the kernel
of G(0)

1 → GL2(k) is at most µ2(k). It follows that the kernel is exactly µ2(k) and G(0)
1 → G(0)

is an isomorphism. "

Lemma 4.3.7. Fix t ∈ k×. Define a map φt : S̃L2(k) → S̃L2(k) on generators as ζ 4→ ζ, xα1(u) 4→
xα1(t−1u) and x−α1(u) 4→ x−α1(tu). Then this map is a well-defined isomorphism.

Proof. One checks that the relations in the first copy of S̃L2(k) are satisfied in the second copy.
Thus, the map is a well-defined surjection. Replacing t by t−1 gives a well-defined inverse. Thus,
φt is an isomorphism. "

Lemma 4.3.8. The map S̃L2(k) "φt 〈h̃α2(t)〉 → G(0)
1 defined for h ∈ S̃L2(k) as

(h, h̃α2(t)) 4−→ hh̃α2(t)

is a well-defined isomorphism.

Proof. Checking that it is well-defined amounts to the relation that h̃α2(t1)h2h̃α2(t1)−1 = φt1(h2)
in S̃L2(k), which is clear.

The inverse map is G(0)
1 → S̃L2(k) "φt 〈h̃α2(t)〉 given by the obvious map on generators. The

relations defining G(0)
1 are again satisfied in the semi-direct product, so the map is well-defined.

It is clear that these maps are inverses to each other, giving the lemma. "

Proof of Proposition 4.3.5. Given the previous lemmas, we simply must check that the semi-
direct product defining G̃L

(0)
2 (k) is the same as that given by φt, and one must map our S̃L2(k)

to S̃L
′
2(k). For this latter task, one checks that ( 1

c 1 ) 4→ (( 1
c 1 ) , 1) is a splitting to S̃L

′
2(k). (Use the

identity on Hilbert symbols (a, b)2(−ab, a + b)2 = 1.) This splitting pins down the isomorphism
S̃L2(k) → S̃L

′
2(k). One finds that w̃α(t) 4→ (

( t
−t−1

)
, 1) and that h̃α1(t) 4→ (diag(t, t−1), (t, t)2).

We omit the rest of the proof. "

Note that this shows that the subgroup G∗ ⊂ G̃L
(1)
2 (k) naturally occurs as a subgroup of

G̃L
(0)
2 (k), at least once we fix the above isomorphism G(0) ∼= G̃L

(0)
2 (k).

4.3.3 The Weil representation for GL2. The Weil representation of G̃L
(1)
2 (k) is defined as

Ω(1)
ψ,χ := IndG̃L

(1)
2 (k)

G∗ (ωψ,χ). (17)
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In order to use results of [GP80], we will need to compare Ω(1)
ψ,χ with the Weil representation

studied in [GP80], which is defined as

Ω(0)
ψ,χ := IndG̃L

(0)
2 (k)

G∗ (ωψ,χ) + IndG(0)

G∗ (ωψ,χ).

To compare these representations, suppose V (1) is a representation of G̃L
(1)
2 (k). Define a

representation V (0) of G(0) by letting V (0) = V (1) as vector spaces, with action

g ∗ v =
γ(det(g)q)

γ(q)
gv.

Here γ(q) is as in (14).

Proposition 4.3.9. Suppose S is a representation of G∗, V (1) = IndG̃L
(1)
2 (k)

G∗ (S), V (0) is as above,

and let V ′ = IndG(0)

G∗ (S). As representations of G̃L
(0)
2 (k), V (0) is isomorphic to V ′ via the map

f(g) 4→ γ(det(g)q)
γ(q)

f(g).

In particular, the map
(
Ω(1)
ψ,χ

)(0) −→ Ω(0)
ψ,χ

given by f(g) 4→ (γ(det(g)q)/γ(q))f(g) is an isomorphism.

Proof. This is a simple check. "
Remark 4.3.10. As remarked in [GP80], the representation Ω(1)

ψ,χ is independent of ψ. This implies

the same for Ω(0)
ψ,χ. In any case, this fact could have been derived in the same way as [GP80]. We

retain the notation above simply to keep track of our (fixed) choice of ψ, such as our analysis of
various twisted Jacquet functors related to these representations.

We may now derive certain properties of Ω(1)
ψ,χ from the corresponding results of Gelbart and

Piatetski-Shapiro [GP80]. Temporarily, let U(k) = {xα1(t) : t ∈ k} denote the unipotent radi-
cal of the upper triangular Borel subgroup of GL2(k). This subgroup splits uniquely into both

G̃L
(1)
2 (k) and G̃L

(0)
2 (k), so let U(k) also denote the image under the splitting. If V is a rep-

resentation of either double cover, and t ∈ k×, a linear functional L : V → C is said to be a
(U,ψt)-functional if L(xα(u)v) = ψ(tu)L(v) for all u ∈ k and v ∈ V .

Proposition 4.3.11. The space of (U,ψt)-functionals on Ω(1)
ψ,χ is one-dimensional. A basis of

this space of functionals is given by

f ∈ Ω(1)
ψ,χ 4→ f(hα2(t

−1))(1).

Proof. It is immediately checked that the map f 4→ f(hα2(t−1))(1) is a non-zero (U,ψt)-
functional. Thus, the key statement is the multiplicity-one claim. For the representation
Ω(0)
ψ,χ, this is due to Gelbart and Piatetski-Shapiro [GP80]. Comparing Ω(1)

ψ,χ with Ω(0)
ψ,χ using

Proposition 4.3.9, we see that

HomU (Ω(1)
ψ,χ,ψt) = HomU (Ω(0)

ψ,χ,ψt);

the multiplicity one for Ω(1)
ψ,χ follows. "

We will also require some results on invariant vectors of Ω(1)
ψ,χ. To state the first result, let

k = Q2 and let Γ1,GL2(4) be the subgroup of GL2(k) generated by xα(u), x−α(4u), hα1(t), hα2(t)
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with u ∈ Z2 and t ∈ 1 + 4Z2. Using the generators and relations, an easy analogue of
Theorem 2.5.5 implies that Γ1,GL2(4) splits the cover G̃L

(1)
2 (Q2); we set Γ∗

1,GL2
(4) for the image

of the splitting. Similarly, we denote by Γ∗
1,SL2

(4) the subgroup of S̃L2(Q2) generated by xα(u),
x−α(4u), hα1(t) with u ∈ Z2 and t ∈ 1 + 4Z2.

Corollary 4.3.12. Let Lt denote the non-zero (U,ψt)-functional given in the statement of

Proposition 4.3.11. If t = 1 or t = −1, there is a Γ∗
1,GL2

(4)-invariant vector ft ∈ Ω(1)
ψ,χ so that

Lt(ft) = 1. In particular, if t = 1 or t = −1 and a (U,ψt)-functional L on Ω(1)
ψ,χ vanishes on the

Γ∗
1,GL2

(4)-invariant vectors, then L = 0.

Proof. Let φ0 ∈ S+(Q2) be the characteristic function of Z2. Define f1 ∈ Ω(1)
ψ,χ via f1(1) = φ0,

f1(hα2(5)) = φ0 and if g /∈ G∗ ∪ G∗hα2(5), then f1(g) = 0. Define f−1 ∈ Ω(1)
ψ,χ via f−1(hα2(−1)) =

φ0, f−1(hα2(−5)) = φ0 and if g /∈ G∗hα2(−1) ∪ G∗hα2(−5), then f−1(g) = 0.
By construction, Lt(ft) = 1 for t = 1,−1. One readily verifies that f1 and f−1 are Γ∗

1,GL2
(4)-

invariant: for this, one uses that φ0 is Γ∗
1,SL2

(4) invariant under the action of ωψ, and that hα2(5),
hα2(−1) normalize Γ∗

1,SL2
(4). The corollary follows. "

We have an analogous statement at the odd primes. Let k = Qp with p odd and let GL∗
2(Zp)

be the subgroup of G̃L
(1)
2 (k) generated by x±α(u), h̃α2(t) with u ∈ Zp and t ∈ Z×

p ; this is the

image of a splitting of G̃L
(1)
2 (Qp) over GL2(Zp).

Lemma 4.3.13. Suppose p is odd. Let φ0 ∈ S+(Qp) be the characteristic function of Zp. Let

{1, µ, p, µp} with µ ∈ Z×
p be representatives for Q×

p /(Q×
p )2. Define f0 ∈ IndG̃L

(1)
2 (k)

G∗ (S+(Qp)) by

f0(1) = φ0, f0(h̃α2(µ)) = φ0, f0(h̃α2(p)) = 0 and f0(h̃α2(pµ)) = 0. Then f0 is GL∗
2(Zp)-invariant.

Proof. This is a relatively direct check, which we omit. "
It is proved in [GP80] that Ω(0)

ψ,χ and, thus, Ω(1)
ψ,χ is irreducible. We will see in § 4.4 that

Ω(1)
ψ,χ embeds in a certain principal series representation, from which it follows that the space

of GL∗
2(Zp)-invariant vectors of Ω(1)

ψ,χ is at most one-dimensional [GG18, § 9.2], and thus exactly
one-dimensional, spanned by the f0 of Lemma 4.3.13. We obtain the following corollary.

Corollary 4.3.14. Suppose t = 1 or t = −1, k = Qp with p odd, and L is (U,ψt)-functional

that is 0 on the unique line of GL∗
2(Zp)-invariant vectors of Ω(1)

ψ,χ. Then L = 0.

Proof. This follows from a similar argument to the p = 2 case. "

4.4 Jacquet functors
For any finite prime p, let Vmin = Πmin,p denote the local component of Πmin at p. Recall that
Q = LUQ denotes the standard maximal parabolic of F4 associated to the simple root α2. In
this subsection, we identify the Jacquet module Vmin,UQ of Vmin with respect to UQ with the

representation Ω(1)
ψ,χ of G̃L

(1)
2 (Qp) considered in § 4.3.3. For this to make sense, we first explicate

a map L̃(Qp) → G̃L
(1)
2 (Qp).

Recall the subgroup SL3(Qp) of F4(Qp) as described before Lemma 2.5.7.

Proposition 4.4.1. The group SL3(Qp) splits into F̃4(Qp), is normal in L̃(Qp), and one has

L̃(Qp)/ SL3(Qp) + G̃L
(1)
2 (Qp).
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Proof. We first note that SL3(Qp) is a normal subgroup of L(Qp) such that

L(Qp)/ SL3(Qp) + GL2(Qp).

That SL3(Qp) splits into F̃4(Qp) is Lemma 2.5.4.
To see that this SL3(Qp) is normal, let s denote the splitting of SL3(Qp) into F̃4(Qp). Because

SL3(Qp) is its own derived group, the splitting s is unique. Now, let g′ ∈ L̃(Qp) with image g ∈
L(Qp). Define sg : SL3(Qp) → F̃4(Qp) as sg(h) = g′s(g−1hg)(g′)−1. Since SL3(Qp) is normal in
L(Qp), sg is another splitting; thus, sg = s by uniqueness. This implies (g′)−1s(h)g′ = s(g−1hg),
proving s

(
SL3(Qp)

)
is normal.

Finally, we have a map G̃L
(1)
2 (Qp) → L̃(Qp), because we know that the relations defin-

ing G̃L
(1)
2 (Qp) are satisfied in L̃(Qp). This induces G̃L

(1)
2 (Qp) → L̃(Qp)/ SL3(Qp). The latter

group is a non-split double cover of GL2(Qp), as is G̃L
(1)
2 (Qp). Since the map G̃L

(1)
2 (Qp) →

L̃(Qp)/ SL3(Qp) is defined in terms of generators and relations, it fits into a commutative diagram

and is, thus, an isomorphism. "
Let χexc denote the unique exceptional character of Z(T̃ (Qp)); by an abuse of notation, we

use the same symbol for the extension to T∗(Qp) defined by setting

χexc(hα1(t)) = |t|1/2 γ(q)
γ(tq)

(18)

for t ∈ Qp; here γ(q) is defined in (14). We set BL = L ∩ B = TUBL the associated Borel subgroup
of the Levi subgroup L and set BL,∗(Qp) = T∗(Qp)UBL(Qp).

It follows from [LS10, § 6] that there is an embedding Vmin ↪→ IndF̃4(Qp)
B∗(Qp)(δ

1/2
B χ−1

exc) and, thus,

Vmin,UQ −→ Ind Q̃(Qp)
B∗(Qp)(δ

1/2
B χ−1

exc) ∼= IndL̃(Qp)
BL,∗(Qp)(δ

1/2
B χ−1

exc). (19)

This latter map sends a function f ∈ IndF̃4(Qp)
B∗(Qp)(δ

1/2
B χ−1

exc) to its restriction f |Q̃. It is clear that
this factors through the Jacquet functor Vmin,UQ . It is also clear that the map is non-zero.

Proposition 4.4.2. The Jacquet functor Vmin,UQ is irreducible as a representation of L̃(Qp).

Moreover, the representation IndL̃(Qp)
BL,∗(Qp)(δ

1/2
B χ−1

exc) has a unique irreducible subrepresentation,

which is, thus, identified with Vmin,UQ under the above morphism.

Proof. To prove the irreducibility of Vmin,UQ , we follow the argument of [BFG03, Theorems 2.2

and 2.3]. This relies on the fact that the Jacquet functor of IndF̃4(Qp)
B∗(Qp)(δ

1/2
B χexc) associated

to any standard non-minimal parabolic subgroup has no supercuspidal subquotients [BZ77,
Corollary 2.13(b)].

Suppose V1 ⊆ Vmin,UQ is an L̃(Qp)-invariant subspace, and V2 the quotient of Vmin,UQ by V1,
giving the short exact sequence of L̃(Qp)-representations

0 −→ V1 −→ Vmin,UQ −→ V2 −→ 0.
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By exactness of the Jacquet functor down to the unipotent radical UBL of the Borel subgroup
of L, we obtain

0 −→ V1,UBL
−→

(
Vmin,UQ

)
UBL

∼= Vmin,UB −→ V2,UBL
−→ 0.

The Jacquet functor Vmin,UB associated to the Borel subgroup of F4 is irreducible [LS10,
Proposition 6.4]. In particular, either V1,UBL

= 0 or V2,UBL
= 0; suppose it is V1,UBL

= 0.
If V1 has no non-zero Jacquet modules, we must have V1 = 0 by [BZ77, Corollary 2.13(b)].

Otherwise, let PL = MLNL ⊂ L be the standard parabolic subgroup that is minimal among
those such that V1,NL 7= 0. By assumption, PL 7= BL, so that V1,NL is a non-zero supercuspidal

representation of M̃L(Qp) and also a subquotient of the Jacquet module IndF̃4(Qp)
B∗(Qp)(δ

1/2
B χexc)NL ,

which is a contradiction. An argument is identical if we assume V2,UBL
= 0, completing the proof

of the irreducibility of Vmin,UQ .

The proof that IndQ̃(Qp)
B∗(Qp)(δ

1/2
B χ−1

exc) has a unique irreducible subrepresentation is exactly the
same as the semisimple case treated in [LS10]. Now recall that one has a non-zero map (19),
giving the final claim. "

Pulling back along the quotient map from Proposition 4.4.1, we now analyze the repre-
sentation Ω(1)

ψ,χ as a representation of L̃(Qp). Define the multiplicative character χ(v) = |v|3/2,
and recall that χ determines an extension of the representation on S+(Qp) from S̃L2(Qp) to
the group G∗; see Proposition 4.3.4. Consider the corresponding Weil representation Ω(1)

ψ,χ =

Ind G̃L
(1)
2 (Qp)

G∗ (S+(Qp)) of G̃L
(1)
2 (Qp).

Lemma 4.4.3. Consider the functional

B : Ω(1)
ψ,χ −→ C

B(f) = f(1)(0).

Then B(t · f) = (δ1/2
B χ−1

exc)(t)B(f) for all t ∈ T∗(Qp), where χexc is the exceptional character χexc

of T∗(Qp) given by (18).

Proof. Using the formulas in § 4.3.1, one has

B(hα1(t) · f) = |t|1/2 γ(tq)
γ(q)

B(f)

and
B(hα2(v

2) · f) = χ(v)|v|−1/2B(f) = |v|B(f).

Moreover, B(hα3(v) · f) = B(hα4(v) · f) = B(f). Now observe that for each simple root
δ1/2
B (hα(t)) = |t|. The lemma now follows from the definition of χexc. "

Because Ω(1)
ψ,χ is irreducible [GP80], Frobenius reciprocity provides an embedding of

L̃(Qp)-representations

Ω(1)
ψ,χ −→ IndL̃(Qp)

BL,∗(Qp)(δ
1/2
B χ−1

exc).

Corollary 4.4.4. The Jacquet module Vmin,UQ is isomorphic to Ω(1)
ψ,χ.

We recall from Remark 4.3.10 that the latter representation is independent of ψ, as we should
expect for Vmin,UQ .
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4.5 The minimal modular form
We return now to the global setting. Let J = H3(Q) be the symmetric 3 × 3 matrices with
Q coefficients. Fourier coefficients of modular forms on F4 are parameterized by elements ω =
(a, b, c, d) ∈ WJ(Q) where

WJ(Q) = Q ⊕ J ⊕ J∨ ⊕ Q = Q ⊕ J ⊕ J ⊕ Q

as J∨ is identified with J via the trace pairing. In this subsection, we show that we may choose
vf ∈ Πmin,f such that the modular form ΘF4 := θ(vf ) satisfies that it has:

(i) UF4(4) level; and
(ii) non-zero (0, 0, 0, 1)-Fourier coefficient.

This will rely on the following purely local result. Let p be a finite prime. Denote by K∗
p the

compact open subgroup of F̃4(Qp) at p introduced in § 2.7, so that K∗
2 = K ′

R(4) and K∗
p = F ∗

4 (Zp)
for odd p. Let UR = Uα1UQ be the unipotent radical of the parabolic subgroup R ⊂ F4 associated
to the simple roots α1 and α2; it splits canonically into F̃4(Qp). For t = 1 or t = −1, define a
character ψ1,t on UR(Qp) by using the fixed additive character ψt on the root space Uα1 .

Theorem 4.5.1. Let Vp denote the vector space underlying Πmin,p. Suppose L is (UR,ψ1,t)-
functional such that L is 0 on the K∗

p -fixed vectors of Vp. Then L = 0. In particular, the twisted
Jacquet functor associated to (UR,ψ1,t) induces a surjection

V
K∗

p
p −→ Vp,(U,ψ1,t),

which is an isomorphism for p 7= 2.

Proof. There are two cases: p = 2 and p > 2.

Let us first handle the case where p is odd. First observe that V
K∗

p
p → V

L̃∩K∗
p

UQ
is well-defined

and non-zero. Indeed, it is clear that the map is well-defined. To see that it is non-zero, consider
the further map to VUB (recall UB denotes the unipotent radical of the Borel). Recalling the

embedding of Vp into IndF̃4(Qp)
B∗(Qp)(δ

1/2
B χ−1

exc), we may consider the linear functional on Vp given by
composing this map can with the evaluation-at-1 map: this gives a non-zero functional

Vp −→ VUQ −→ VUB −→ C.

The spherical vector in this induced representation is non-zero at t = 1, so that this functional
is non-vanishing on V

K∗
p

p . In particular, the composition

V
K∗

p
p −→ V

L̃∩K∗
p

UQ
−→ V

T̃∩K∗
p

UB
(20)

is non-zero.
Now observe that both V

K∗
p

p and V
L̃∩K∗

p

p,UQ
are at most one-dimensional [GG18, § 9.2]. In fact,

each is exactly one-dimensional: in the case of Vp, this follows from the intertwining operator
calculations of [LS10]. In the case of Vp,UQ , it now follows from the non-vanishing of the map (20)
and, in any case, we constructed a spherical vector in Lemma 4.3.13. The claim of the theorem
now follows by Corollary 4.3.14 and the isomorphism

Vp,(UR,ψ1,t)
∼=

(
Vp,UQ

)
Uα1 ,ψt

∼=
(
Ω(1)
ψ,χ

)
Uα1 ,ψt

.

We now discuss the case of p = 2. First observe that K∗
2 = K ′

R(4) has an Iwahori factorization
with respect to Q = LUQ, as proved in Corollary 2.5.14. Now, it follows by [Cas95, Theorem 3.3.3]
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that V K∗
R(4) → V

L̃∩K∗
R(4)

UQ
is surjective. In light of Corollary 4.4.4, the claim of the theorem thus

follows as above by Corollary 4.3.12. "
Remark 4.5.2. The p odd case may also be handled in a similar fashion to the p = 2 case by
instead considering the subgroup I∗p ⊂ K∗

p associated to the Iwahori subgroup. The only non-
trivial step is noting that

V
I∗p
p

∼= V
K∗

p
p

as both are one-dimensional. This follows for K∗
p as noted above and follows for I∗p as Vp =

Πmin,p corresponds to the trivial representation of the Iwahori–Hecke algebra under the Shimura
correspondence proved in [LS10, § 9]. We thank Gordan Savin for pointing this out to us.

Using Theorem 4.5.1, we obtain the following corollary, completing the proof of
Theorem 3.3.1.

Corollary 4.5.3. There is a quaternionic modular form ΘF4 of weight 1
2 on F̃4(A) with UF4(4)

level and non-zero (0, 0, 0, 1)-Fourier coefficient.

Proof. Let ω1 := (0, 0, 0, 1) ∈ WJ(Q) and consider the ω1-Fourier coefficient

θ 4−→
∫

[NJ ]
θ(n)ψ−1(〈ω1, n〉) dn,

where θ is a vector in the space of automorphic forms Πmin. By [Gin19, Proposition 3], this
gives a non-zero linear functional Lω1 on Πmin; that is, there are vectors in Πmin with non-
zero ω1-Fourier coefficient. Moreover, such a vector can be chosen to be a quaternionic modular
form (in other words, to lie in the minimal K̃∞-type at the archimedean place) by the explicit
formula for the generalized Whittaker function proved in Theorem 3.2.2. Indeed, a corollary of
the proof of the explicit formula is that there is a unique moderate growth (NJ(R),ψ(〈ω1,−〉))-
equivariant functional on Πmin,∞ up to scalar multiple, and these functionals are nonvanishing
on the minimal K̃∞-type in Πmin,∞.

Now consider the linear map on Πmin,f given by vf 4→ Lω1(θ(vf )); see (13) for the notation.
By what was just said, this map is non-zero on Πmin,f . Moreover, [Gin19, Proposition 4] implies
that for any θ, we have

∫

[NJ ]
θ(n)ψ−1

(
〈ω1, n〉

)
dn =

∫

[NS ]

(∫

[NJ ]
θ(nn′)ψ−1

(
〈ω1, n〉

)
dn

)
dn′,

where NS denote the unipotent radical of the Siegel parabolic subgroup of HJ = GSp6. But
∫

[NS ]

(∫

[NJ ]
θ(nn′)ψ−1

(
〈ω1, n〉

)
dn

)
dn′ =

∫

[UR]
θ(u)ψ−1

1,−1(u) du,

where UR is the unipotent radical of the parabolic R from Theorem 4.5.1 and ψ1,−1 =
∏

v ψ1,−1,v

is the global analogue of the character considered locally. By that result, the non-zero linear
map on Πmin,f given by vf 4→ Lω1(θ(vf )) does not vanish on the

∏
p K∗

p -invariant vectors. The
corollary follows. "
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