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Abstract. Let F' = (¢,v) : D* — D? denote a holomorphic self-map of
the bidisk without interior fixed points. It is well-known that, unlike the

case with self-maps of the disk, the sequence of iterates

{F":=FoFo---0oF}

needn’t converge. The cluster set of {F"} was described in a classical
1954 paper of Hervé. Motivated by Hervé’s work and the Hilbert space
perspective of Agler, McCarthy and Young on boundary regularity, we
propose a new approach to boundary points of Denjoy—Wolff type for
the coordinate maps ¢, 1. We establish several equivalent descriptions
of our Denjoy—Wolff points, some of which only involve checking specific
directional derivatives and are particularly convenient for applications.
Using these tools, we are able to refine Hervé’s theorem and show that,
under the extra assumption of ¢ and 1 possessing Denjoy—Wolff points
with certain regularity properties, one can draw much stronger conclu-

sions regarding the behavior of {F"}.
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1. Introduction

Let D denote the open unit disk. Given a holomorphic map f : D — D without
fixed points, a theorem of Wolff [38] states that there exists a boundary point
7 € 0D such that every closed disk internally tangent to I at 7 (in other
words, every horocycle containing 7) is invariant under f. From this, one
can deduce the classical Denjoy—Wolff Theorem [18,36,37]: the sequence of

iterates
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converges to 7 uniformly on compact subset of D. In this setting, the (unique)
point 7 is termed the Denjoy—Wolff point of f. See [14] for a nice exposition
of the details and many historical remarks.

A lot of work has been devoted to obtaining higher-dimensional gener-
alizations of the Denjoy—Wolff Theorem. The first such result is due to Hervé
[24], who proved an exact analogue of the Denjoy—Wolff Theorem for fixed-
point-free self-maps of the unit ball B, C C" (see also [27]). Later, Abate
[1] (see also the excellent survey [2]) achieved a generalization of this result
to all smoothly bounded strongly convex domains in C™, paving the way
for further extensions to smoothly bounded pseudoconvex domains of both
finite and infinite type (see [26] and the references therein). More recently,
Budzynska [12] (see also [11,13]) showed that the smoothness assumption can
be dropped if one restricts to strictly convex domains.

Unfortunately, the situation becomes considerably more complicated in
general bounded domains. The proofs of the above results utilize certain f-
invariant domains (usually termed horospheres, as they generalize Wolff’s
horocycles) which may have too large intersections with the boundary of the
domain in the general case, making it difficult to control the behavior of the
iterates. Indeed, even though several different types of horospheres have been
considered in the literature with varying degrees of generality (see e.g. [2,4,12,
16,20,29], where the focus is either on bounded convex or bounded symmetric
domains), boundary smoothness or extra convexity assumptions (or a mixture
of both) are generally required to control the size of the intersection with the
boundary. This is true even in very simple finite-dimensional domains, such
the unit polydisk D™, where the presence (for n > 2) of large “flat” boundary
components prevents the iterates from converging. In such a case, one seeks
to understand the cluster points of {f"}. Although holomorphic dynamics
on D™ (for general n) have been studied by a number of authors (see e.g.
[3,4,10,17,20,30]), progress on iteration-theoretic questions remains limited.

Somewhat stronger conclusions can be drawn if one restricts their at-
tention to the bidisk. Let F' = (¢,) : D* — D? be holomorphic and without
fixed points. The best known general results regarding the behavior of the
iterates {F"} in this setting can be found in the classical paper [23] of Hervé
(see also [20,22,31,34] for more recent work concerning the bidisk). Hervé ob-
served that all holomorphic maps ¢ : D? — D (that are not coordinate projec-
tions) can be classified into two separate categories (see Definition 2.6) based
on the location of the Denjoy—Wolff points of the slice functions ¢, : D — D,
where ¢, (X) = ¢(A, ) for all A\, € D. He then gave a description of the
cluster points of {F"} by considering three distinct cases (see Theorem 2.7),
depending on the categories that the coordinate functions ¢ and v belong
to. [23] also contains numerous examples demonstrating that, from a certain
viewpoint, these results are optimal.
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In the present work, motivated by the model-theoretic techniques of
[7,32], we propose new definitions for Denjoy—Wolff-type points of holomor-
phic functions ¢ : D? — D (see Definition 2.8). These will be boundary points
where ¢ satisfies a mild regularity condition (termed B-points following [7],
see Sect. 2 for definitions) and appropriate contractivity assumptions stated
in terms of the model function. We prove several equivalent characterizations
of our Denjoy—Wolff points, some of which are particularly easy to verify in
practice and involve certain directional derivatives of ¢ at the points in ques-
tion (see Theorems 2.9, 2.10 and 2.11). This constitutes a departure from the
usual criteria for Denjoy—Wolff points used in the setting of D?, which depend
on the existence of invariant horospheres. With these tools in our disposal,
we are able to refine Hervé’s theorem. Among several results, we show that
if the coordinate functions ¢ and 1 of F' possess certain Denjoy—Wolff points
but don’t have angular gradients there (i.e. the points in question are B-
but not C-points), then one gains much tighter control over the behavior of
the iterates {F™}(see Theorems 2.12 and 2.13). Roughly, this is because the
structure of the model function at Denjoy—Wolff points that are not C-points
allows one to deduce many different (contractive) versions of Julia’s inequal-
ity there, thus increasing the supply of invariant horospheres available (see
Corollaries 4.5 and 4.9). We also provide examples to illustrate the different
cases contained in our theorems.

The paper is arranged as follows. Section 2 contains the necessary back-
ground on the notions of a model of a function, B-points and C-points and
the main result of [23]. It also presents our new definitions of Denjoy—Wolff
points and the main results of this paper. In Sect. 3, we prove general results
concerning the relation between the model function and certain directional
derivatives at B-points, as well as a refined version of Julia’s inequality for
the bidisk (see Theorem 3.10). These will be much needed in the sequel but
are also of independent interest. In Sect. 4, we prove several equivalent char-
acterizations of our Denjoy—Wolff points (see Theorems 2.9, 2.10 and 2.11),
uniqueness results (Propositions 4.4 and 4.8) and useful corollaries involv-
ing weighted Julia inequalities (Corollaries 4.5 and 4.9). Next, in Sect. 5, we
revisit Hervé’s Theorem and establish several partial refinements using our
tools from the previous sections. These refinements include Theorems 2.12,
2.13 and 5.2. We also provide relevant examples (see Examples 5.6 and 5.9).
Finally, in Sect. 6, we discuss Frosini’s work on Denjoy—Wolff-type points on
the bidisk and show how our main results can be used to recover a theorem
from [20] on the classification of a certain type of these points.

2. Background and Main Results
2.1. Models

Let S and Ss denote the one- and two-variable Schur classes, i.e. the sets
of analytic functions on I and D? respectively that are bounded by 1 in
modulus. We require the notion of a model of a Schur-class function, as seen
in [7]. It is well known that every function in Sy possesses such a model,
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however this ceases to be the case in higher-dimensional polydisks (this is a
consequence of the fact that von Neumann’s inequality fails in more than two
variables, see also [9, Section 9.7]).

Definition 2.1. Let ¢ € Sy. We say that (M, u) is a model for ¢ if M = M* @
M? is an orthogonally decomposed separable Hilbert space and v : D? — M
is an analytic map such that, for all A = (A}, \2), u = (ut, p?) € D2,

L= oMNo(n) = (1= Nl (uy,wy) + (1= Np2) (w3, i) (21)

In equation (2.1) we have written uy for u(\),u*(\) = Pypu()), and
u?(\) = Ppr2u(N). In general, given v € M, we will write v! for Py;iv and
v? for Py2v. Note that we may suppose, without loss of generality, that
{w/(\) : A € D?} spans a dense subspace of M7, since otherwise we may
replace M/ by this span. However, it needn’t be true that {u()\) : A € D?}
spans a dense subspace of M (these observations can be found in [7, Section

3]).

2.2. B-points and C-points

If S ¢ D? and 7 € OD?, we say that S approaches T nontangentially if
7 € cl(S) (where cl(S) denotes the topological closure of S) and there exists
a constant ¢ > 0 such that

7 = All < e(@ = [IAID; (2.2)

for all A € S, where [|(A!, A?)|| = max{|AL[,|A\?|}.
Now, let ¢ € S, and 7 € 9D?. T is said to be a B-point for ¢ if the
Carathéodory condition

fo L OOV

m (2.3)
A—T 1— ||)\||

holds. The nontangential limit of ¢ at any such 7 always exists [3] and will
be denoted by ¢(7).

While in one variable the Julia-Carathéodory Theorem [15] tells us that
a function in S has an angular derivative at any B-point 7, a function ¢ €
So does not necessarily have an angular gradient at all of its B-points. If
¢ does have an angular gradient at 7, we will say that 7 is a C-point for
¢. In any case, ¢ will always have a directional derivative at a B-point in
any direction pointing into the bidisk. Moreover, as was shown in [7], the
directional derivatives in question will vary holomorphically with respect to
direction (actually, the derivatives can be described in terms of certain one-
variable Pick functions [5], though we won’t be needing this result here).

To state the relevant theorems, we need some notation. Let (M, u) be a
model for ¢ € Sy and define the nontangential cluster set X, of the model at
a B-point 7 of ¢ to be the set of weak limits of weakly convergent sequences
{uy, } over all sequences {\,} that converge nontangentially to 7 in D?. X,
turns out to be a subset of the cluster set of (M,u) at T, which is defined
as the set of limits in M of the weakly convergent sequences {uy, } as {\,}
ranges over all sequences in D? that tend to 7 in such a way that
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_ (2.4)
L= [Anl]
remains bounded. The cluster set at 7 will be denoted by Y.. Also, let H =
{z € C: Rz > 0}, T = 9D and define, for every 7 € D?,
TH x 2H  if 7 € T?,
H(r) =< 7' HxC ifre€TxD,
Cx7t?H ifreDxT.
For the remainder of this subsection, fix a function ¢ € Sy with model

(M,u) and a B-point 7 € 9D?. The next lemma can be easily obtained from
(2.1).

Lemma 2.2. (see [7], Proposition 4.2) We have X, # (. Moreover, for all
z €Y, and \ € D?,

1= oNo(r) = Y (1= N7I)(u}, o). (2.5)
7i]=1

As a consequence, we obtain:

Lemma 2.3. (see [7], Lemma 8.10) If |[7/| < 1 for j =1 or 2, then
Y, = {u,}, whereul =0.

A consequence of the following theorem is that facial B-points are always
C-points (see [8] for more results in that direction).

Theorem 2.4. (see [7], Corollary 8.11) 7 is a C-point for ¢ if and only if X,
is a singleton set.

Now, since 7 is a B-point for ¢, we know that for every § € H(r) the
directional derivative
b —t0) = é(r)
D-s¢(r) = tLH(I)1+ t
exists. Much more can be said.

Theorem 2.5. (see [7], Theorems 7.1, 7.8) For any § € H(r), the nontangen-
tial limit (in the norm of M)
2-(0) = lim  wr_s
‘rfzéih'

exists in M. In addition,

(1) «(-) is a holomorphic M -valued function on H(T);

(2) x:() € X, for all § € H(T);

(3) x,(28) = x,(0) for all z € C such that §,z6 € H(r) (i.e. .(-) is homo-

geneous of degree 0 in §);
(4) D_s¢(7) is analytic, homogeneous of degree 1 in § and satisfies

D_s¢(r) = —¢(r) D 8|2} ()I>

I77]=1
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2.3. Horocycles and Horospheres

The language of horospheres and horocycles will be required for our iteration-
theoretic results. Recall that a horocycle in D is a set of the form E(7, R) for
some 7 € cl(D) and R > 0, where

A -1
E = D: ——
(1, R) {Ae 1_|)\‘2<R
for 7 € T, while E(7, R) = D otherwise. Letting D(z,r) denote the Euclidean
disk in C with centre z and radius r > 0, it is not hard to see that, given any
7 € T, we always have

T R
E(r,R) =D ——, ).
(7. B) (R+1’R+1)
Also, for 7 = (71,72) € 9D? and Ry, Ry > 0, we define the (weighted)
horosphere E(T, Ry, R2) to be the set E(7!, R1) x E(12, Ry).
Now, given ¢ € S and a B-point 7 € T, it is known that

1— o)

= i >0
T T T

A—>T
exists. Julia’s inequality [15,25] (see also the more modern [33]) then states
that
¢(E(T,R)) C E(¢(7),aR), (2.6)
for all R > 0. Generalizations of this result to the bidisk are contained in
[2,35] (see also [7, Section 4] for a model-theoretic proof). In particular, given
¢ € Sy and a B-point 7 € OD?, it is known that, for any o > 0, we have

1= o(N)]
B URES
if and only if
¢(E(T, R, R)) C E(¢(7), aR), (2.7)

for all R > 0 (if &« = 0, then ¢ is constant). In Sect. 3, we use ideas from [7] to
establish a refined version of the previous equivalence, one that is expressed
in terms of weighted horospheres (see Theorem 3.10).

Lastly, we will occasionally be making use of the horospheric topology
on cl(D?), which is the topology with base consisting of all open sets of D?
together with all sets of the form {7} U E(r, Ry, R), where 7 € 0D? and
Ry, Ra > 0 (see [7, Section 4] for more details). Note that (2.7) tells us that
d(A) — &(7) whenever 7 is a B-point and A — 7 horospherically.

2.4. Hervé’s Result
For i € {1,2}, define the coordinate projections 7’ : D? — D, 7% (\) = A%
Given ¢ € Sz and i € D, we will denote by ¢, € S the slice function

6N = () (AeD).

Also, we let ¢ € Sy denote the function ¢(N) = ¢(A2, A1), for obtained from
¢ by interchanging the arguments.

Holomorphic functions ¢ : D?> — D can be classified according to the
Denjoy—-Wolff points of their slices.
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Definition 2.6. Assume ¢ € Ss. ¢ is said to be a:

(i) left Type I function if ¢ # 7! and there exists 71 € T such that 7! is
the common Denjoy—Wolff point of the maps ¢, € S, for all p € D

(ii) right Type I function if 5 is a left Type I function;

(iii) left Type II function if ¢ # 7' and there exists a holomorphic map
¢ : D — D such that, for all A,z € D, we have ¢,(A) = X if and only if
E(n) = X; B

(iv) right Type II function if ¢ is a left Type II function.

Surprisingly, it turns out that any ¢ € S that is not a coordinate
projection will either be a left Type I or a left Type II function (respectively,
either a right Type I or a right Type II function), a result originally proved
by Hervé in [23]. In Sect. 4, we give a new proof of this using purely model-
theoretic methods (see Theorem 4.3).

Using the Type I/Type II terminology, the main result of [23] can be
stated as follows.

Theorem 2.7. [Hervé] Let F = (¢,1) : D? — D? be a holomorphic self-map
of the bidisk without fized points. Then, one and only one of the following
Cases 0ccurs:
(i) if v = 72 (respectively, ¢ = '), then {F"} converges uniformly on
compact sets to (11, 7%), where 7t € T (respectively, to (w',72), where
2 e T);
(ii) if ¢ is a left Type I and 1 is right Type I function, then there exist
7t 72 € T such that
(a) either every cluster point of {F™} has the form (7', h), where h is
either a holomorphic function D*> — D or the constant 72,
(b) or every cluster point of {F"} has the form (g,7%), where g is
either a holomorphic function D?> — D or the constant T';

(iii) if ¢ is a left Type I function and 1) is a right Type II function (respec-
tively, ¢ is a left Type II function and v is a right Type I function),
there exists 71 € T such that every cluster point of {F"™} has the form
(1, h), where h € Sy (respectively, there exists 7> € T such that every
cluster point of {F™} has the form (g,7%), where g € Sz);

(iv) if ¢ is a left Type II and v is a right Type II function, then there
exist 74,72 € T such that {F,} converges uniformly on compact sets
to (1, 72).

2.5. Principal Results
We begin with our model-theoretic definitions of Denjoy—Wolff-type points.

Definition 2.8. Let ¢ € Sy with model (M, u). Assume first that ¢ # 7.

(i) A point (71,0) € T x cl(D) will be called a left Type I DW point for ¢
if it is a B-point, ¢(7',0) = 7' and there exists u(;1,,) € ¥{;1,4) such
that |\u%7170)|| <1 and U%Tl,o') =0.

(ii) A point 7 = (71,72) € T? will be called a left Type II DW point for ¢
if it is a B-point, ¢(7) = 7!, there exists u, € Y, such that |[ul|] < 1
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and 7 is not a left Type I DW point for ¢. In particular, if K > 0 is any
constant such that

lJuz || + K|lu7|]* < 1,
we will say that 7 is a left Type II DW point with constant K.

Now, assume instead that ¢ # 2.

(iii) A point (o, 72) € cl(D) x T will be called a right Type I DW point for ¢
if (12,0) is a left Type I DW point for ®.

(iv) A point 7 = (71,72) € T? will be called a right Type II DW point for ¢
(with constant K > 0) if 7 = (72, 71) is a left Type II DW point for ¢
(with constant K > 0).

An immediate consequence of Definition 2.8 is that every left (resp.,
right) Type II DW point is a left (resp., right) Type II DW point with
constant K, for some K > 0.

The following characterizations are proved in Sect.4 (notice that the
property of being a Type I/Type II point turns out not to depend on the
model of the function).

Theorem 2.9. Let ¢ € Sy with model (M,u) and 7' € T. Assume also that
¢ # ', The following assertions are equivalent:

(i) there exists o € cl(D) such that (t%,0) is a left Type I DW point for ¢;
(i) every point in {T'} x cl(D) is a left Type I DW point for ¢;
(iil) ¢ is a left Type I function and the common Denjoy—Wolff point of all
slice functions ¢, € S is T';
(iv) there ezists o € cl(D) such that (t1,0) is a B-point, ¢(t',0) = 1 and

D—(Tl,aM)¢(Tla U)

<1
1 =

. VM > 0;

1

(v) for every o € cl(D), (11,0) is a B-point, ¢(7%,0) = 11 and

D—(TI,UM)¢(T17 U)

—r1

<1, VM >0.

Moreover, assuming that any of the above statements holds and letting (bL (1)
denote the angular derivative of ¢, at 7', we obtain

A/}iinoo D—(Tl,oM)d)(Tla o) = 771(;5;1 (Tl)’

for all w € D and all |o] < 1. There is an analogous statement for right Type
I DW points (we need to assume that ¢ # ).

Theorem 2.10. Let ¢ : D? — D be holomorphic with model (M,u). Also, let
7= (r1,7%) € T%, K > 0 and assume that ¢ # 7. The following assertions
are equivalent:

(i) 7 is a left Type II DW point for ¢ with constant K ;
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(ii) ¢ is a left Type II function. Also, letting £ : D — D denote the holomor-
phic function such that ¢(§(p), 1) = &(w), for all p € D, we have that
72 is a B-point for &, £(7%) = 1! and
1) 1
A S
(iii) 7 s a B-point for ¢, ¢(17) = 71, the quantity D_ (11 z2p1)¢(T) is not
constant with respect to M > 0 and also there exists A > K such that

D—(TI,TZA)¢(T)
— 5 =1L
-7

Moreover, assuming that any of the above statements holds,

-1
A = |liminf M
z—T2 1— |Z|
will be the mazximum among all constants K > 0 such that 7 is a left Type I1
DW point for ¢ with constant K. It will also be the unique positive number
such that D_(;1 ;2 0)0(7)/(—71) = 1.
There is an analogous statement for right Type II DW points (we need
to assume that ¢ # 7).

A consequence of Theorem 2.10 is that not all Type II functions have
Type II DW points (just choose e.g. any left Type II function such that
¢ has no B-points). However, Type II DW points do appear naturally when
investigating iteration-theoretic questions. In particular, if F' = (¢,) : D? —
D? has no fixed points, ¢ is left Type II and 1 is right Type II, then both ¢
and 1 will have Type II DW points (see Theorem 5.1 for details).

Theorems 2.9-2.10 allow us to give a simple, unified characterization of
Type I/II DW points, one that is expressed in terms of directional derivatives
and is easier to verify in practice than checking for invariant horospheres. To
state it, set (for any function ¢ € Sy such that 7 € 9D? is a B-point)

Koo = Do)

It can be shown (see Proposition 3.5) that K- (M) is nonnegative and increas-
ing with respect to M. This observation, combined with Theorems 2.9-2.10,
leads to:

Theorem 2.11. Let ¢ € Sy and assume 7 = (71,72) € OD? is a B-point for ¢
such that ¢(1) = 1. Assume also that ¢ # w*.

(a) If |7%| < 1, then T is a left Type I DW point that is also a C-point for
¢ if and only if

(M > 0).

K.(M)=a<1, VYM>0.

In any other case, T will be neither a left Type I nor a left Type II DW
point.
(b) If |72| = 1, then T is a:
(i) left Type I DW point that is also a C-point if and only if

K, (M)=a<1, YM >O0;
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(ii) left Type I DW point that is not a C-point if and only if { K+ (M)} m
s non-constant and

K.(M)<1, VM >0;

(iii) left Type II DW point if and only if {K.(M)}ar is non-constant
and there exists A > 0 such that

K. (A) =1,
(iv) neither a left Type I nor a left Type I DW point if and only if
K,(M)>1, VM >O0.

There is an analogous statement for right Type I/IT DW points (we need to
assume that ¢ # 72).

Using our work on DW points, we are able to offer the following refine-
ments of Theorem 2.7.

Theorem 2.12. Assume F = (¢,v) : D? — D? is holomorphic, ¢ is left Type
I and 4 is right Type II. Let 7' denote the common Denjoy—Wolff point of
all slice functions ¢,,. If there exists o € T such that (7', 0) is a right Type
II DW point for 1) but not a C-point for ¢, then F™ — (71, 0) uniformly on
compact subsets of D?.

Theorem 2.13. Assume F = (¢,v) : D?> — D? is holomorphic, ¢ is left Type
I and 1 is right Type I. Let 7' and 72 denote the common Denjoy—Wolff
points of all slice functions ¢(-, 1) and p(N,-), respectively. If T = (r1,72)
is not a C-point for ¢, then every cluster point of {F™} will have the form
(1, h), where h is either a holomorphic function D* — D or the constant 72.
An analogous conclusion can be reached if T is not a C-point for 1.

Applications are contained in Examples 5.6 and 5.9. A further refine-
ment can be found in Theorem 5.2.

3. B-Points and Directional Derivatives Along (7!, 72 M)

This section contains several technical results that build upon the model
theory of [7,8], the highlights being Theorems 3.3 and 3.9-3.10. These will
be critical for our work in Sects.4, 5, but are also interesting in their own
right.

Now, choose an arbitrary ¢ € Sy with model (M, u) and a B-point
7 = (r1,72?) € OD?. These will be fixed for the remainder of this section.
Recall that we can define

z-(6) =  lim  wur_.s,
26
for any 6 € H(7), where the limit is with respect to the norm of M. The
following easy consequence of (2.5) will be used repeatedly throughout the
paper.
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Lemma 3.1. Assume 7 € T2. Then, for any u, € Y, we have

7252
<fﬂi(5)7ui>+ﬁ<$3(5),%> = |z (8)* + 151|| a2 (9)|[*,
for all § € H(r).
Proof. Applying (2.5) twice gives us
1— 272 1—\272
(uh, ul) + ﬁ(ug,u% = (u}, x7(9)) + 1_7)\17_—1@?\7173(5)%

for all A € D? and § € H(7). Setting A\ = 7 — rd and letting 7 — 0+ then
finishes off the proof. O

We also require the following lemma.

Lemma 3.2. Assume 7 € T?. If u,,v, € Y, are such that vt = v = 0 for
some i € {1,2}, we must have u, = v,.

Proof. Without loss of generality, assume ¢ = 2. Applying (2.5) twice, we
obtain

L= (N)¢ ( )=(1—>\1 b (ux, uz),
= (1= A7h)(ui, vp),
for all A € D?. Thus, (u)\, ul —ol) = 0 for all \. This equality, combined
with the fact that both v! and vl are weak limits of vectors in the span of
{u} : A € D?} implies that

[luz|[* = [lvz][* = (uz, v7).

T YT

Thus, vl = ul and we are done. 0

Our next result shows that the presence of vectors with null compo-
nents in X, has a surprisingly strong impact on the boundary regularity of
the function. We exclude facial B-points from our theorem, since they are
automatically C-points.

Theorem 3.3. Assume 7 € T? and also that there exists x.(5) € X, with
2t (8) = 0 for some i € {1,2}. Then, T is a C-point for ¢.

Pr00f Without loss of generality, assume that there exists x,(dp) € X, with
22(80) = 0. We may assume that x1(5p) # 0, else ¢ would be a unimodular
constant In view of Lemma 3.1, we obtain

(21(8), 22(60)) = [22(6 >|\2+l1§1\| 2(9)|P%. (3.1)

for all 0 € H(7). Choose any open subset © of H(7) with the property that

° has positive real part for all 6 € . (3.1) then implies that
|27 ()] < [|l27 (o)l

151
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for all 6 € Q. Indeed, if this were not the case, we would be able to write

R(zH(8), 21 (00)) < [le-(@)]] - [[22(0)]
< Ilzk6)I1
7252

151

s|xi<5>||2+%( )|x3<5>||2

whenever § € , a contradiction.
Now, assume ||z1(8)|| = [|zL(0)]|| for all § € Q. The previous chain of
inequalities then implies that

(@7(8), 47(80)) = ||l27(8)]1* = [[a7(80) [,
for all § € . This gives us z1(§) = x1(8y) on €, and hence also on H(T).

In view of (3.1), we obtain that z2(-) must be identically zero. Hence, X, =
{(21(80),0)} and we obtain (by Lemma 2.4) that 7 is a C-point.

Assume, on the other hand, that we can find ; € H(7) such that
l[z1(61)|] < [|#1(d0)||- Applying 2.5 again, with § = dp and u, = z.(61),
we deduce that

(@7(00), 27.(01)) = lla7 (%),

a contradiction. This concludes the proof. O

Remark 3.4. 1f we merely assume the existence of u, € Y, such that ul =0
for some ¢ € {1,2}, 7 will not necessarily be a C-point; see Example 5.6.

Next, we show that the directional derivatives of ¢ along (7%, 72M) can
be naturally associated with an increasing (with respect to M) sequence of
positive numbers. Indeed, put 6, = (7%, 72M) and define
_ D5y 0(7)

BrAM):= ==

= [|z7(6an)I1> + M2 (5a0)|[?,
for all M > 0.

Proposition 3.5. For any u, € Y, we have

Ko (M) < lug|? + M|[u2|?, ¥M >0,
with equality if and only if v-(0pr) = ur. In particular, K, (M) is increasing
with respect to M. It will be strictly increasing if and only if X, # {(z1,0)}.

Proof. First, assume 7 is a facial B-point. If |72| < 1, then Lemma 2.3 tells
us that YV, = X, = {(z1,0)}, hence K, (M) is constant and there is nothing
to prove. If |7!| < 1, then Y, = X, = {(0,22)}, K, (M) is strictly increasing
with respect to M and the theorem obviously holds.
Now, assume 7 € T? and fix u, € Y;, M > 0. In view of Lemma 3.1, we
can apply Cauchy-Schwarz to obtain
Ko (M) = (e (0ar),ul) + M2 (5, 2)

< lzzGan)ll - Nuzll + (VM2 (@an)ll) (VMIluZ]])  (3:2)

< VE D/ TallP+ M. (33
Thus, K,(M) < [Ju||? + Mju2] 2
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When does equality hold? For (3.2) to hold as an equality, we must have

¢t € RT U {0} such that cfal (5p7) = ul, for i € {1,2}. For (3.3), we need
[z @an)|] - [[uZ]] = NlaZ(@an)l] - [uzll- (3-4)
Now, assume that either z% () = 0 or uZ = 0 for some i. For definite-
ness, let us assume u2 = 0 (the other cases are proved in an identical way). In
view of (3.4), we must have either 22(5y7) = 0 or ul = 0. If the latter holds,
we obtain u, = 0, hence ¢ is a unimodular constant and there is nothing to
prove. Thus, we may assume x2(8y7) = 0. In this case, we may replace ul by

clzl(8) in the equality

[laz (0an)l[* = K7 (M) = (27(0), uz) + M (27 (6n), u7) = (w7(001), uz)

to obtain ||zL(5ar)[|? = ||z (5ar)| | If 21(6ar) = 0, we again obtain that ¢ is
a unimodular constant, while z1(§,7) # 0 implies ¢! = 1, hence = (x1) = u..

On the other hand, assume z1 (55/), 22 (8pr), ul, u2 are all nonzero. (3.4)
then gives us ¢! = ¢® = ¢. Replacing u’ by ca® (637) in the equality

K7 (M) = (w7(0nr), uz) + M (27 (0nr), u3),

we obtain ¢ = 1, hence 2, (dp7) = ur.

Now, we show that K, (M) is increasing with respect to M. Indeed, let
N > M > 0. Setting u, = z,(dy) in our previous result implies

Ko (M) < ||z (0n)] + MlJa7(0w)]] < K- (N),

as desired.

Now, if X, = {(z1,0)}, it is evident that K, (M) will be constant (and
equal to ||zL||? for all M). On the other hand, assume X, is not a singleton
of the form {(x1,0)} but that we can also find positive numbers M < N such
that K (M) = K,(N). As we have already seen, this implies that z,(dy) =
2+ (0n), which, combined with K (M) = K.(N), allows us to deduce that
22(0pr) = 22(6n) = 0. Theorem 3.3 then tells us that X, = {(21(dr),0)},

O

a contradiction.
We now explore some consequences of Proposition 3.5.

Corollary 3.6. Given any M > 0 andu, € Y,, we must either have ||zL(5pr)|] <
lluzl| or [l27 (a0l < |[u7l]. Moreover, if

(i) Ile(5M)II1= [z | (resp., l22@an)ll = [[uZll), then ||lz7(0an)] < [|uZ]]
(resp-, o7 (6an)l| < luzll);
(i) (- (Oan)l| = llur|l, then z+(6rr) = ur.

Proof. Assume that [|z%(5pr)|| > |ul]| for all i € {1,2}. Thus, K, (M) >
||ul||?+ M|[u2||?, which contradicts Proposition 3.5. The rest of the corollary
is proved by applying Proposition 3.5 in an analogous manner. g

Corollary 3.7. Given any M, N > 0, one and only one of the following cases
can occur:

(@) [lzr (@)l < (|7 (On)II (resp., |23 On)|] < |27 (0n)I] ) and [|23 (6ar)]| >
226N (resp., [lz3(6a)ll > |l (On)I1);
(ii) zr(6a7) = 2+ ().
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Proof. Suppose first that ||z} (5a)| < ||z} (0n)|]- T [|22 (6ar)|] < |22 (5w )],
one obtains

K7 (N) > ||lzz(0an)l|* + N7 (0a)I,

which contradicts Proposition 3.5. Thus, ||z2(8ar)|| > ||22(6n)|]- The proof
in the case that ||z2(dp)|| < |[22(dn)|| proceeds in an entirely analogous
manner.

Now, assume [|z7(6r)|| = [lz7.(0n)||- If [|22(6a)l| < [[27(0n)|l, then
we again obtain K, (N) > |[zL(6p)||* + N||z2(dam)|[?, a contradiction (the
inequality ||z2(6ar)|| > ||z2(dn)|| can be ruled out in an analogous way).
Thus, we must have ||z, (0ar)|| = ||z+(0n)||, which, by Proposition 3.5, gives
us 2 (0pr) = - (0n). O

Our next proposition (while fitting the theme of this section) will not be
used in the sequel, so we record it without a proof (one can use Proposition
3.5 in combination with the previous two lemmas).

Proposition 3.8. Assume 7 € T2. Then,
. 1 o . . 1
Jim el @l = Jm VR0 = it {JlaGa)]1}

(resp., 1mar— oo |02 (3a0) || = limar o0 /K7 (M) = infarso {||o2(dar) 1} ):

Moreover, if there exist u € Y, and a sequence { My} of positive numbers
such that My — 0 (resp. My, — o) and ||ul]| < [|z1(0ar,)|| (resp., ||uZ]| <
[|22(8ar,)||) for all k, then

lilgn r:(0pr,) = ul in norm
(resp., limy, 22 (0, ) = u2 in norm).

We now prove a theorem that describes those vectors in Y, with null
components (recall that, by Lemma 3.2, these vectors, if they exist, must be
unique).

Theorem 3.9. Assume the B-point 7 € T2 is such that there exists u, € Y,
with u2 = 0. Then,
lim K, (M) = [Jul]
M —+oc0
and also

lim x,(0p) = ur
M —~+oc0
in NoTm.
Moreover, T is a C-point for ¢ if and only if X, = {u.}. In this case,
every v, € Y, such that v, # u, must satisfy ||vl]] > |[ul]] and vZ # 0.

Proof. We prove the C-point portion of the theorem first. If X, = {u,},
Theorem 2.4 implies that 7 is a C-point. Conversely, assume that 7 is a
C-point. Write X, = {x,}. Proposition 3.5 then implies that

[zl + M]|22]]* < [Juz]]?,
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for all M > 0. Thus, 22 = 0. Lemma 3.2 then gives us z, = u, and we can
also write

1= ¢(Ne(r) = (1= Arh)(uj,a7) (A€ D?). (3-5)
Assume 2L # 0 (else the result will be be trivial) and let v, € Y,. Lemma
3.1 implies that

(w7, v7) = ||zl

= [|#1]]? = (zl,vl), which leads to

Thus, either [|vl]| > |[zl]], or ||v T, Us
1

vl = 1. But then, comparing

L= o(No(r) = (1= A (u, o) + (1= A*72)(u}, 07)
with (3.5) gives us v2 = 0, thus v, = z, as desired. Finally, if v2 = 0, we can
apply Lemma 3.2 to conclude that v, = x,.

Now, we prove the first part of the theorem. If 7 is a C-point, the
theorem follows by our previous result. So, assume that 7 is not a C-point,
in which case Proposition 3.5 implies that K (M) is strictly increasing. The
bound K, (M) < |[ul||?, for every M > 0, implies that limps_, 100 #2(6ps) = 0
in norm and also that {||zL(dx)||} is bounded with respect to M.

Now, let {M},} be any sequence converging to +oo such that x1(dy,)
converges to some x! € M! weakly. Also, fix a decreasing null sequence {ey }.
In view of Theorem 2.5, we can find {\;} C D? that converges to 7 and such
that |¢p(Ax) — ¢(7)| < e and also ||z (das,) — ua, || < €k, for all k. Thus,
limg p(Ag) = o(7), u}\k converges weakly to 2! and uik converges to 0 in
norm. Now, the model formula (2.1) implies that

1= ¢(No(Ae) = (1= AN (g, uf,) + (1= ANF) (w3, uf, ),
for all k and A € D?. Letting k — oo then gives us,

1= ¢(N)e(r) = (1= A1) {uy, at), (3.6)

for all A\. However, since u, € Y, we can also write (in view of (2.5))

1= ¢(Ne(r) = (1= Nr1){uy, uz),

for all \. Comparing this equality with (3.6) then gives us (u},ul) = (u},z')
for all . Since both vectors ul,z! are weak limits of elements from {u} : A €
D?}, we may conclude that ul = x'. But then, observe that (by a standard

property of weak limits)

1||2

[|ugl[* = []=*|?
< 1imkinf||x1(5Mk)H2
< limsup ||2L (ar,)]|?
k
< limsup K, (My)
k

< [url?,

which implies that limy x (6Mk) = 2! in norm and also that limy, K, (M) =

[[ul]|>. We conclude that z1(dss) converges to ul in norm and also that
limpy o0 K7 (M) = ||uk||?, as desired. O
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We end this section with a weighted version of Julia’s inequality for
the bidisk, which will be of critical importance in Sect.5. Our methods are
motivated by the proof of [7, Theorem 4.9].

Theorem 3.10. Let ¢ € Sy and 7 = (71,72) € T?. Assume also that o« and
M are positive numbers. The following assertions are equivalent:

(i) 7 is a B-point for ¢ and

D7(71)72M)¢(T) .
o

2
(ii) There exists a sequence {\,} C D? such that A, — T, lim,, }:R;‘} =M
and /

i L0 _ fa iz
2T [l

A=l T e M <1
(iii) There exists w € T such that
¢(E(7,R1, R2)) C E(w,max{aRy,aRs/M?}), YRy, Ry > 0.
If (i11) holds, w will necessarily be equal to (7).

Proof. Let (M, u) be a model for ¢.

First, we show that (i) implies (ii). Assuming (i) holds, set dpr =
(r1,72M) and fix a decreasing null sequence {r,}. Since 7 is a B-point,
Theorem 2.5 allows us to deduce that

a7 (Gan)l1? + M7 (0ar)|* < a, (3.7)
and also limy, u;—p,_ 5,, = ©+(dpr) (in norm). Now, assume M > 1 and put

An =T —Tp0pr. (2.1) allows us to write:

lim 1- M)()‘n)l ST 1- |¢()‘n>|2

= lim
no 1= no 1= An]?
— TP

) 1_|A2|2
:117{n<|u}\"|2+1—|)\g|2||u§"||2

= [laz (8an)lI” + M7 (0a)I*,

which, combined with (3.7), gives us (ii). The proof for M < 1 is entirely
analogous and is omitted.

Next, we show that (ii) implies (iii). The assumptions in (ii) clearly
imply that 7 is a B-point for ¢. But then, we can argue as above to deduce
that (3.7) holds. Thus, we can use (2.5) to obtain

1= o) < 1= N7l (@an)l] - [luxll + 11 = X272] - |22 (8ar) ] - [[a3]],
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for all A € D?. Setting R; = % (j = 1,2) and applying Cauchy-Schwarz
then gives us
|6(7) = (NI < (Il (Oan)|I* + MI[2?(8ar)]?)
1 vz, TP AP e
x (17t = NI 2 + T2 )
< amax{Ry, Ro/M}((1 = N[} |* + (1= [A2*)[[u3]]?)
= max{aRl, aRQ/M}(]‘ - |¢)(>\)|2)7
which implies
8(7) — o(N)[?
L= p(N)[?
and our proof is complete.

Lastly, we show that (iii) implies (i). Set A, = 7 — r,,0as, where {r,} is
a decreasing null sequence. Assuming (iii) holds, we obtain

0 (I NP LI M)

< max{aR;,aRy/M} () €D?)

L—lp(A)* — L= AL M 1— A2
3 "o Ty
amaX{Q—rn’2—Mrn}
= R,.

Thus, we can write

qS(/\,,L)ECI(E(w,Rn)):cl(D<w B ))

R,+1 R,+1
for all n > 1.
Now, assume M > 1 (the proof in the case where M < 1 will be entirely
analogous). Then, R,, = 2_"'](};”, [|An]] =1 =7, and we can compute
1- ‘(b()‘n)l — 1— |¢<)\n)‘
L—1|Anll T'n
< |¢()\n) — w|
T'n
2 _R,
“r, R, +1
2
= — — (X
2+ (a— M)ry, ’
as n — oo. This implies that 7 is a B-point for ¢ and w = ¢(7). Also, since
. 1 - )\n
tim SOt 5,112+ 26 2
n 1= A
we obtain that (3.7) holds. Theorem 2.5 then finishes off the proof. O

Remark 3.11. In this theorem, we only considered points 7 in the distin-
guished boundary. For facial B-points, the situation is more straightforward;
see [8, Theorem 3.2].
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Remark 3.12. Observe that if we assume

lim M — liminfw < a,
r—1-— 1—HTT|| A—T 1—||)\||
we obtain that (ii) holds with M = 1. Hence,
¢(E(1, R, R)) C E(¢(7), amax{R, R}) = E(¢(1), aR),

for all R > 0, which is the usual statement of Julia’s inequality over the
bidisk.

Remark 3.15. Julia-type inequalities like the one in Theorem 3.10(iii) were
also considered by Frosini in [20], where she used Busemann sublevel sets to
obtain analogous statements. Specifically, her Julia-type lemma [20, Theo-
rem 1] depends on the behavior of ¢ along chosen complex geodesics that
approach the boundary point 7. Theorem 3.10 can then be viewed as a re-
finement of that result, as it essentially says that every “weighted” version of
Julia’s inequality is equivalent to an inequality involving certain directional
derivatives of ¢ at the corresponding boundary B-point.

4. Criteria for Denjoy—Wolff Points

We will now use our work from Sect.3 to study Type I/II DW points, as
defined in subsection 2.5.
We start with two lemmas.

Lemma 4.1. Let ¢ € Sy with model (M, u) and assume (), u are points in
D such that p(&(u), ) = E(w). Then, [[ufe oIl < 1. Also, [[ufe(,y oIl =1 if
and only if ué(“)’“) =0.

Proof. In (2.1), set (A}, \2) = (u!, pu?) = (£(1), p) to obtain
L= &)1 = 1= 1@(E(), I* = (1= €)1 [uequy,m1” + (1 = [l lule oy, m1*-
Since [€(p)], || < 1, the conclusions of the lemma follow easily. O

The next lemma is well-known (e.g. it appears as Theorem 2 in [23]).
We include a proof for the sake of completeness.

Lemma 4.2. Assume ¢ € Sy and that there exists g € D such that the slice
function ¢, is the identity on D. Then, ¢ = 7.

Proof. Let (M, u) be a model for ¢. We can use (2.1) to obtain

1*|¢()\,#0)|2 1 2 1*|H0|2 2 2
1= 1_—|)\‘2 = HU(A,HO)H + 1_7|/\2|Hu(/\,p0)|| ) (4.1)
for all A € D. Thus, Hub\#O)H < 1, for all A € D, with equality if and only if

U%A#LO) =0.

Now, fix 71 € T and let A — 7! in (4.1) to obtain that (71, p0) is a
B-point for ¢, ¢(71, o) = 7! and also that there exists Urt ) € Y
such that [[u{. | <1and uf, , ) =0.(2.5) then implies that

1 - (ZS(A?M)ﬁ = (1 - Aﬁ)<u%k7u)7u%7'l,uo)>’ (42)

Th,10)
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for all A\, u € D. Setting p = po then gives us
1— )\? = (1 — )\ﬁ)<u%)\,uo)’u%7'l~,#0)>’
hence

<U'(1/\,u,0)’u%7'17p0)> =1= ‘|U%>\7MO)||2, ||u%7'1,u,0)||2'

This implies that u, ., = and both have to be unit vectors) and

T, 10) (
also u%A_#O) =0, for all A € D. Hence,

1= oA\ )N = 1 — ¢(\, w)d(N, o)
= (1 — )\)\/)<u%/\7u)7 u%/\’,;bo)>
= (1 — )\)\l)<u%)\’p,)7u%‘r1,lto)>’

for all A\, u, N € D. Since both sides are affine functions of ), we obtain
d(A, ) = A, for all A, € D, as desired. O

Now, we use model theory to give a new proof of the fact that every
¢ € Sy (that is not a coordinate projection) must either be a Type I or a
Type II function, a result originally due to Hervé (see [23, Theorem 1]).

Theorem 4.3. Every ¢ € Sy such that ¢ # w' (resp., ¢ # 72) is either a left
Type I (resp. right Type 1) or a left Type II (resp. right Type II) function.

Proof. First, we prove the left Type I/II version of the theorem. Note that,
since ¢ # 7!, Lemma 4.2 implies that ¢, is not the identity on D, for any
1 € . Thus, every such slice function will have a unique Denjoy—Wolff point
(either on the interior of the disk or on the boundary).

To begin, assume that there exists some pg € D such that the slice
®u, has its Denjoy-Wolff point 7! on T. Let A\, = p,7!, where {p,} is an
increasing sequence of positive numbers tending to 1. By the single-variable
theory of Denjoy—Wolff points, we have lim,, ¢,,,(\,) = 7' and

1- |¢()‘H7NJO)‘2 o 1- ‘¢,uo(>\n)|2

= — oy, <1,
L= 1[(Ans o) |2 L —[Anf? Ho

as n — oo. Thus, (71, o) is a B-point for ¢. Using the model formula for ¢,
we also see that

1 — |pol? 1 — {8 (An)?

1 2 2 2 o \"\n

||u()\n7HU)|‘ + 1 _ |An|2 ||u(>\na/l‘0)‘| - 1 _ |)\’I’L|2 ’ vn 2 1
1—|pol?

Letting n — oo and taking into account that Ton [z — 00, we obtain the

|§a#0§1andu2

existence of u(;1 ) € Y(r1 ,,) satisfying ||u% (o) =

Tl7uo)|
0. In view of (2.5), we can write

1-— ¢(A, ,LL); = (]. — )\”7'71)<’LL%/\’H)7 u%’rl,uo)% (43)
for all A, u € D.

Now, assume there exists some slice ¢,,, such that u; # po and ¢,, has
an interior fixed point p € D. Set (A, ) = (p, u1) in (4.3) to obtain

1= pﬁ = _pﬁxu%nm)’u%ﬂwo)%
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hence (ug, ,)s (1 ,,)) = 1. Lemma (4. 1) then implies that u(, , v = u(1 )

(and both will be unit vectors) and u(p,m) = 0. Thus, we may substitute
(,ul,,u2) = (p,p1) in (2.1) to obtain
— o\ wp = (1= Xp)(y (Au)r W (p m)) =(1- Aﬁ)(ub’u),ubguo)% (44)

for all A, € D. Comparing (4.4) with (4.3) then allows us to deduce that ¢
is equal to the identity, a contradiction.

So far, we have proved that every slice function ¢, must have its Denjoy—
Wolff point on the boundary of D (under the assumption that at least one of
them does). We now show that 7! (the Denjoy—Wolff point of the slice ¢,
we started with) is actually the Denjoy—Wolff point of all slices ¢,,. Indeed,
suppose we can find a slice ¢, with a different Denjoy—Wolff point o' € T.
Arguing as in the beginning of the proof, we obtain that (o!,u;) is a B-
point for ¢, its value at (o1, 1) is o' and also there exists Ut puy) € Yot u)

satisfying ‘|U:(Lg1,m)|| <1 and u%ﬂl,m) = 0. (2.5) implies that

- (b(Aa ,LL); = (1 - /\;) <u%>\,u)7 u%ol,ul)>7 V)H [IAS D. (45)

If in (4.5) we let (A, ) — (71, o) in such a way that u%)\ ) converges weakly

to ul we obtain (since ¢(71, o) = 7! and o' # 71)

(T1m0)?
<U’%0'1 pl)’u%‘rl /1,0)> =1= Hul 1 MI)H2’ ||u%‘r1 ;,LO)HQ’

hence u%al,m) = ( o). Comparing (4.3) with (4. 5) then gives us that ¢ is
equal to the identity, a contradiction.

On the other hand, assume that every slice ¢,, has a (necessarily unique)
interior fixed point £(u). To show that ¢ is a left Type II function, it suffices
to prove that £ : D — D is actually a holomorphic function. First, note that

putting (A, A2) = (€(1), ) and (1, 4?) = (€(u), ) in (2.1) gives us
1—€(wel)
1 1 V(02 2
= (1= E(EWN (e () > Wy wry) T (1= 1)) ) Uy )
(4.6)
for all p, 1/ € D.
Now, if ||u%€(u’),u’)” =1 for some y/ € D, the model formula for ¢ yields
(since u%&(u’),lﬂ) =0 in view of Lemma 4.1)

= SN WEW) = (1= AU s Ul (ury. o) (4.7)

for all A, p. Plugging in (A, ) = (£(w), ) gives us <u%€(u),u)’u%€(u/)7u')> =1,
for all p, hence “:(Lg(#),#) = ué =constant (of norm 1) and “%5(#),#) =0 for all

. Thus, we obtain

- (b()‘a N)@ = (1 - )‘%) <u%)\,#)7 u%>7 (48)

for all A\, u, 0 € D.
There are now two separate cases to examine. Either ¢(A\ pu) =
Augy 0 ug) for all A, in which case (4.8) implies that (u, ), u¢) = 1
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(for all A\, 1), hence ¢ = 7!, a contradiction, or we can find Ao, o € D such
that ¢(o, 10) 7 Mo (U(y, ,io): Ue)- Then, (4.8) implies that

o) = w0 ~1
/\0<“%xo,uo>’“§> — (Ao, o)

for all o € D. Thus, £ is constant (and trivialy holomorphic).
There is one more possibility to consider: suppose that ||u(1f(u/) ol <1
for all y/. (4.6) then becomes

Py — (e 2 “leury )
1- §(u)§(,u ) = (1 — B ) 1 _ <U1 U,l >7 (49)
(&(p) o) (&) 1)

for all u, p/ € D. In other words,
1= &(wé(n)
L— !
is the Schur product of the positive-semidefinite kernels
2 2
(Ul ) ) ey, )

and
1

1 1
L= ey, Weury !

(the latter is actually a complete Pick kernel, see [6, Chapter 8]), hence it
must be positive semi-definite as well. Automatic holomorphy of models (see
[9, Proposition 2.32]) then implies that ¢ is a holomorphic function on D,
concluding the proof.

The right Type I/II version of the theorem follows by applying the left
Type I/1I version to the function ¢ : D2 — D defined by ¢(A) = (A2, A1),
for all A € D?. 0

Next, we provide criteria for Type I DW points, as stated in Sect. 2.5.
Recall that, given ¢ € Sy with model (M,u) and a B-point 7 € T?, we have
defined 657 = (71, 72M) and

Ko (M) = |Ja3 (0a)|1? + M| |23 (6a0) ],
for all M > 0.

Proof of Theorem 2.9. First, we show that (iii) implies (ii). Indeed, assume
that 7! is the common Denjoy-Wolff point of all slice functions ¢,, and let
lo| < 1. We will show that (71,0) is a left Type I DW point for ¢.

Fix a sequence {u,} C D tending to o. Now, since 7! is the Denjoy—
Wolft point of ¢,, we obtain that 7! is a B-point for s (/5“(7'1) = 7! and
also

lim
At

1—|gu(N)
i KT |
L—[A2 =7
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for all 4 € D. Thus, it is possible to choose a sequence {\,,} C D converging to

71 nontangentially, and sufficiently fast, so that we obtain lim,, ¢,,, (\,) = T

lim,, % =0 and also
. B |¢()‘n»/1'n)|2 : 1-— |¢,u ()\n)|2
limsup —————— = limsup ——F—*— < 1, (4.10)
no 1= [(An, pn)|? n L—|Anf?

which implies that (71, o) is a B-point for ¢ and also ¢(71, o) = 7. Moreover,
the model formula for ¢ tells us

1 — |pn|? 1 —[¢(An, ) ?
1 2 n 2 ny Hn
||u(>\n,}1«n)|| 1— |)\n|2||u(/\nvﬂn)|| - 1 — |)\n‘2 )

2
for all n. Letting n — oo and taking into account the limits lim,, t‘|2nl2 =

0 and (4.10), we can deduce the existence of wu(;1,,) € Y1) such that
[ugr |l <1 and uf i ) = 0. This implies that (7',0) is a left Type I DW
point for ¢. Since o was arbitrary, (ii) has been established.

That (ii) implies (i) is obvious.

Now, we prove that (i) implies (iii). So, assume that there exists |o| < 1

such that (7!,0) is a B-point for ¢, ¢(r!, a) = 7! and also there exists
U(r1,0) € Y(r1 ») such that ||u(T1,U || <1 and u 1 ) = 0. We obtain
1_¢H(A)ﬁ:1_¢(A?M) (1_AT )< (A,p)? :(lTl,O')>’ (411)

for all A\, € D. If we fix p, we may repeat the proof of “(ii) implies (iii)”
from Theorem 3.10 to obtain

1G] S e O 1) P e\
L—g. (N2 1=lo(\ )l = 7 1T=[A)R7

for all A\, € D, where o, = |\u%T17U)H2. Such an equality is then known to

imply (see Sect. 2.2) that 7! is a B-point for ¢, ¢,(7) = 7! and also that
the angular derivative of ¢, at 7! is equal to o, < 1, for all u € D. Since
we also know (in view of Lemma 4.2) that ¢, # Idp, for all © € D, we can
conclude that 7! is the common Denjoy—Wolff point of every slice function,
i.e. (iii) holds.

Before we proceed, a few important observations are in order. Our pre-
vious arguments show that, if at least one point in the closed face {7!} x cl(D)
is a left Type I DW point for ¢, then for every |o| < 1 there exists u(1 ) =
(uf ):0) € Y(71,4) such that |\u%T170)|\ < 1 and also (4.11) holds, for all

(1,0

A, 10 € D. Since o was arbitrary, (4.11) implies that the vectors u%T o) do

not actually depend on o, thus u(1 5 = u;r = (ul;,0) for all O’ € cl(D). In
particular, letting ¢/u<7—1> denote the angular derivative of ¢,, at 7!, we obtain
¢,(r") = llun[]? < 1, (4.12)
for all |u] < 1. Also, notice that, in view of Lemma 3.2, u,1 will be the unique
vector in Y1 ) with M?-component equal to 0, for all |o| < 1.
Next, we show that (iii) implies (v). Fix an arbitrary o € cl(D). By our
previous results, (71, ¢) is a B-point for ¢, ¢(71, ) = 7! and also there exists
ur = (ul,0) € Y71 ) (not depending on o) such that ||u,1|| < 1. If we also
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assume |o| < 1, then (7!, 0) is a facial B-point, so [8, Theorem 3.2] implies
that Y(;1 o) = {u,1} and also
D—(Tl,O'M)d)(Tl? U) o D—(T17UM)¢(T170)
— T
for all M > 0, as desired. On the other hand, assume that |o| = 1. We may
apply Theorems 2.5 and 3.9 to obtain that

D_ Tl,0M QS(T U)
SARADK = K1 (M) < [Jun|? <1,

= |lun|]* <1,

—T
for all M > 0. Actually, one can deduce the even stronger statement

1i D_ (rt 70'M)¢(T U)
11m 1
M —o0 —T

= i Koy (M) = [fun [ = 6,(7),
for all 4 € D. Since o was arbitrary, we have established (v).

That (v) implies (iv) is evident, so all that remains is to show that
(iv) implies (iii). So, assume there exists (71,0) € T x cl(D) such that the
assumptions of (iv) are satisfied. If [o| < 1, then Y{;1 o) = {(u(lTlp),O)} and
for any M > 0 we have

<1

D_ oM ¢(7_170.)
[t o] [2 = =220

This shows that (71,0) is a left Type I DW point for ¢, which gives us
(i), hence (iii) holds. On the other hand, assume |o| = 1. Fix an increasing
sequence { My} tending to oco. Since, by assumption, we have

Df(‘rl,UMk)qb(Tlﬂj)
1
for all k, Theorem 3.10 implies that
¢(E((7—17 U)a Rla RQ)) c E(T17 maX{Rla R2/Mk})a
for all £ > 1 and Ry, Ry > 0. Letting k£ — oo yields

S(B((r',0), R1, R)) C E(r', R1}),
for all Ry, Ry > 0, which translates into the inequality

= u W _ [ AP

L—]g.(N]F = T=[APR’
for all A\, x € D. As already mentioned during the proof of “(i) implies (iii)”,
this implies that 7' is the Denjoy~Wolff point of ¢,, for all u, hence (iii)
holds.

Finally, to prove the right Type I-version of the theorem, notice that

the function ¢ : D? — D defined by ¢(\) = ¢(A2, A1) (A € D?) has (M, ) as
a model, where @ : D? — M = M? @ M! is defined as

<1

)

u(A) = <17}\717§7> = <U%,\2,,\1)v“(1>\2,,\1)>a
for all A € D?. By definition, (o,72) is a right Type I DW point for ¢ if and
only if (72, ) is a left Type I DW point for ¢. Thus, to obtain the right Type
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L-version of Theorem 2.9, one simply has to apply the left Type I-version of
that same theorem to ¢.

We also establish a uniqueness result for Type I DW points.

Proposition 4.4. Let ¢ € Sy be a left Type I function with model (M,w) such
that ¢ # 7' and 7' € T is the common Denjoy— Wolff poz’nt of all maps ¢,,.
Then, there exists u1 = (ul,,0) € M such that |[u|[* = ¢/, (') < 1, for all
L. Moreover, given any o = (o',0%) € T x cl(D), if
(i) ot = 7' and |0?| = 1, we have u1 € Y,. Also, given any v, € Y,, we
have v2 = 0 if and only if vo = u,1. If, in addition, we assume that o
is a C-point, we obtain that every v, € Y, that is not equal to w1 must
satisfy |ok][ > |[un|| and o2 £ 0;
(ii) o' =7 and |0?| < 1, we have Y, = {u,1};
(iii) o' # 71, o is a B-point for ¢ and ¢(c) = o, then every vy € Yy must
satisfy either |[vL]| > 1 or |[vl|| =1 and v2 # 0.
Consequently, if o = (o',0%) € T x cl(D), then o is a left Type I DW point
for ¢ if and only if o' = 7'1. Also, no point in T x cl(D) can be a left Type IT
DW point for ¢.
There is an analogous statement for right Type I DW points (we need
to assume that ¢ # 7).

Proof. Let ¢ be a left Type I function satisfying our assumptions and denote
by w1 € Y1 4 (for all |o| < 1) the vector described after the “(i) implies
(iii)” part of the proof of Theorem 2.9. Also, let 0 = (c1,0%) € T x cl(D).

First, assume o! = 71 and |0?| = 1. The conclusions of (i) then follow
by invoking Lemma 3.2 and Theorem 3.9.

On the other hand, if 0! = 7! and |0?| < 1, an application of Theorem
2.4 does the job.

Now, assume o' # 71, o is a B-point for ¢ and ¢(0) = o'. Let v, € Y,
be such that |[vl|| < 1 and choose {(An,pn)} C D? that converges to o
and also satisfies lim,, ¢(A\p, pin) = ol and U, 1) — Vo Weakly as m — oo.
Setting (A, ;1) = (An, pin) in (4.11) and letting n — oo then allows us to
obtain

Since o # 71, we obtain
(vg,uzn) =1 > |[vgl?, [Jupa |12,

which implies that v; = u!, and both have to be unit vectors. However, if we
also assume that v2 = 0, we obtain that o is a left Type I DW point for ¢.
In view of Theorem 2.9, this implies that the common Denjoy—Wolff point of
all maps ¢, is o' # 71, a contradiction (since ¢ # 7'). Thus, we must have
v2 # 0 and the proof of (iii) is complete.

Finally, to prove the right Type I-version of the theorem, apply the left
Type I-version to 55 O

Note also the following consequence of Theorem 2.9, which (especially
the second part) will be instrumental in Sect. 5.
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Corollary 4.5. Let ¢ : D> — D, ¢ # w', be holomorphic. Then, ¢ has a left
Type I DW point of the form (71,0) € T x cl(D) if and only if

[ = s _ 7= A2

L—[pA\p)* = 1=[A2 "

If, in addition, we assume that T = (7%, 72) is not a C-point for some

72 € T, then for any increasing sequence { My} C Rt tending to oo one can
find a sequence {ry} such that rp > 1, rp, — 1 and

[T — o\ p)? [ s T e
T a0 2 S maxy — 20 2 (7
1— oA, 1) re L= (AP T My 1— A
for all \,p €D and k > 1.
There is an analogous statement for right Type I DW points.

V(A p) € D%

Proof. We only prove the left Type I-version. Since 7! will be the Denjoy—
Wolff point of every map ¢,,, to obtain the first part of the theorem it suffices
(in view of Theorem 2.9) to apply the one-variable Julia’s inequality to every
%

To prove the second part, assume that there exists 72 € T such that
7 = (71,7%) is not a C-point (it will necessarily be a B-point). In view of
Proposition 3.5 and Theorem 3.9, {K, (M)}, will be strictly increasing,
hence

|27 (6an)|1? + Mil[22 (0, * < 1,
for all k£ > 1. In particular, we can find r; > 1 such that

K<Mk> <L
Tk Tk

for all £ > 1. Theorems 2.5 and 3.10 then allows us to deduce the desired
inequality. O

Next, we turn to Type II DW points.

Proof of Theorem 2.10. Let (M, u) be a model for ¢.

First, we show that (i) implies (ii). By assumption, 7 is a B-point for ¢
that is not a left Type I DW point, ¢(7) = 7! and also there exists u, € Y,
such that |[ul|| <1 and

] + Kl2? < 1. (4.13)

To begin, we show that ¢ has to be a left Type II function. Indeed,
assume instead that ¢ is a left Type I function, o' € T being the common
Denjoy-Wolff point of all maps ¢,. We cannot have o' = 7!, since then 7
would be (in view of Theorem 2.9) a left Type I DW point, contradicting
the definition of a left Type II DW point. On the other hand, if o' # 7!, we
obtain a contradiction in view of Proposition 4.4(iii). Thus, ¢ cannot be a
left Type I function and we conclude (by Theorem 4.3) that ¢ is a left Type
IT function.

Now, let £ : D — D denote the holomorphic function that keeps track
of the unique (interior) fixed point of each slice ¢,,, i.e. we have ¢(&(u), 1) =
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&(p), for all p € D. Let 0 < K’ < K. Since (4.13) holds and u2 # 0, we must
have r||[ul||? + K'|[u2||?> < 1 whenever r > 1 is sufficiently close to 1, hence

1
llur|® + H A<

Proposition 3.5 then implies that

D_ (1 25 gf)(T)
(rt7m2K7 /) _
- =K, (K'/r)<1/r.

In view of Theorem 3.10, we obtain
[t — o\ )2 { e i O e M|2}
— 2 <max , , 4.14
T o) TP K 1l )
for all A\, x € D. Plugging in A = &(p) in (4.14) then gives us
1_ 2 111 — 2 12 2
oS (SR L)
1—[&(m) r L= K 1=
for all p € D. Since 1/r < 1, this last inequality implies
L e ) S O et
rl=lg(w T K 1= |puf?
whenever r > 1 is sufficiently close to 1. Letting r — 1 first and K’ — K
afterwards yields

—T

R T,

L=l — K 1—|u*”
for all g € D. The one-variable Julia’s inequality (see Sect.2) then allows us
to deduce that 72 is a B-point for &, £(72) = 7! and also

= [§(w)]
A= <huni1‘rr%f - ) > K. (4.15)

To show that (ii) implies (i), assume that ¢ is a left Type II function

and ¢ satisfies the given hypotheses. Substituting A = £(u) into the model
formula

L= o\ w)* = (1= M)y 1P+ (1= )y ) 11

yields
1= I6E P 1l
1—|pf? 1 —|pf?
é- 2
_| |< |l' ke oll2 + e P (4.16)

for all 4 € D. By assumption, we can find a (radial) sequence {u,} C D such
that hm” Hn = T27 hmn f(un) = hmn ¢(€(,u'n),,u'n) = 7—1 and

1-— 1-— 2 1
i L) 1K) 1
n 1 — |l o 1 — || K

Note also that lim, % > 0, else the single-variable Julia’s inequality
would imply that £ is a unimodular constant, a contradiction. Thus, plugging
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in = p, in (4.16) and letting n — oo allows us to conclude that 7 is a B-
point for ¢, ¢(7) = 7! and also there exists u, € Y, such that

[Juz|* + K[uf]]* < 1.

Moreover, since ¢ is a left Type II function, Theorem 2.9 implies that 7
cannot be a left Type I DW point and u2 # 0, hence ||ul|| < 1 and we are
done.

Note that the previous argument actually shows that A (as defined in
(4.15)) is the maximum among all constants K > 0 such that 7 is a left Type
II DW point for ¢ with constant K.

Next, we show that (i) implies (iii). So, assume that all relevant assump-
tions are satisfied. Note that we cannot have

—D*““T”IV’W(T) =K, (M) <1
-7
for all M > 0, as in such a case Theorem 2.9 would imply that 7 is a left
Type I DW point, a contradiction. Since K,.(M) is continuous, increasing
and K, (K) < 1, there must exist C' > K such that K.(C) = 1. Moreover,
K. (M) cannot be constant (again by Theorem 2.9), hence (iii) holds.

We now prove the converse. Assume 7 is a B-point for ¢, ¢(7) = 71,
K. (M) is not constant with respect to M and also there exists C' > K such
that K-(C) =1, hence

llzz(8c)I1* + CllaZ(dc)I* = 1.

We cannot have 22(d¢) = 0 (else, Theorem 3.3 would imply that K, (M) is
constant), thus ||z1(6¢)|| < 1. Moreover, T cannot be a left Type I DW point,
as, in view of Theorem 2.9 and the equality K, (C) = 1, the only way for this
to be possible would be having K.(M) = 1, for all M > 0, a contradiction.
Thus, 7 is a left Type II DW point with constant C' > K and we are done.

We can say more about the constant C' (which is uniquely determined,
as K, (M) is strictly increasing). Indeed, our previous argument shows that
7 is a left Type II DW point with constant C. Now, if C’ > C, then

1= KT(C) < KT(C/)a
and thus, in view of “(i) implies (iii)”, we obtain that 7 cannot be a left Type
IT DW point with costant C”. This means that C' is the largest constant with
this property, hence C' = A, as defined in (4.15).
Finally, as seen in the end of the proof of Theorem 2.9, to show the right
Type Il-version of the theorem we only need apply the left Type II-version

to ¢.

Proof of Theorem 2.11. Combine Theorems 2.9-2.10 with Lemma 2.3, The-
orem 3.3 and Proposition 3.5.

Remark 4.6. Let £ : D — D be holomorphic. Then, one can always find ¢ € S
(that will necessarily be a left Type II function) such that ¢(&(u), ) = ()
for all p € D. Indeed, it can be easily verified that the function

P\, ) = )\%M
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has the property in question.

Remark 4.7. As already mentioned in Sect. 2.5, there exist left Type II func-
tions that do not have left Type II DW points. Indeed, if e.g. ¢ is any left
Type II function such that the map ¢ satisfies £(D) C 7D for some r € (0, 1),
then Theorem 2.10 implies that ¢ does not have any left Type II DW points
(on account of £ not having any B-points).

We can also prove certain uniqueness results for Type II DW points.

Proposition 4.8. Let ¢ : D* — D with model (M, u) be such that T = (71,72) €
T? is a left Type II DW point, with & : D — D satisfying ¢(E(u), 1) = &(p),
for all w € D, and A > 0 defined as in (4.15). Then, the following assertions
all hold.

(i) 2+(04) is the unique vector u, € Y; such that
|2 + AlJu2]? < 1. (4.17)
(ii) No point in T x cl(D) can be a left Type I DW point for ¢.
(iii) Ifo € T and o # 7', then (0,72) is not a left Type II DW point for ¢.
There is an analogous result for right Type II DW points.

Proof. First, we prove (i). Note that x,(d4) certainly satifies
a7 (I + AllaZ(0)I1* = 1,
as K;(A) = 1. Also, if u, € Y; is such that (4.17) holds, Proposition 3.5
implies that [|ul||® + Al[u2||?> =1 and x,(54) = u,, as desired.
(ii) is an immediate consequence of Proposition 4.4.
Finally, (iii) is a simple application of Theorem 2.10, since £ cannot have

two distinct values (at least not in the sense of nontangential limits) at its
B-point 72. O

The following Julia-type inequalities are obtained as a consequence of
Theorem 2.10. The significance of parts (ii) and (iii) will be made apparent
in Sect. 5.

Corollary 4.9. Assume ¢ : D> — D has a left Type I DW point T = (11,7%) €
T? and let A > 0 be defined as in (4.15). Also, fir A_ < A and r; < 1.
(i) For all (\, ) € D?, we have
1 _ d(n )2 T_\2 1 72— 2
SO (IO L)
L—[o(A, p) L—[AP 7 A 1—|u
(ii) Moreover, if ro > 1 is sufficiently close to 1, then
1 _ g(h )2 TIrl— A2 1 72— 2
N N )
L— (A, 1) rg 1= AP T A 1— |yl
for all (\, ) € D?;
(iii) Finally, if 21(04) #0 and A < Ay is sufficiently close to A, then
[ — 6 1) LI AP 1 jr = p?
Ty N2 S max 4§ — 20 A 2 )
1—[¢(A, p)l 1 L= A2 T AL 1 —p]
for all (\, ) € D2,

i
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There is an analogous result for right Type I DW points.

Proof. To prove (i), combine Theorems 3.10 and 2.10.
For (ii), note that, since ||z1(64)||? + Al|z2(04)|]* = 1, A_ < A and
22(84) # 0 (by definition of a left Type II DW point), one obtains that

ra||zz(84)|* + A-[|27(0)]]* < 1,

for all 7o > 1 sufficiently close to 1, hence K,(A_/ry) < 1/rs. An application
of Theorem 3.10 then finishes the job.

(iii) is proved in an analogous manner (note that we have to assume
21(84) # 0, since not all left Type IT DW points have this property). O

5. Refining Hervé’s Theorem

Let F = (¢,%) denote a holomorphic self-map of D? without interior fixed
points. We use

F" = (¢p,top) =FoFo---oF
ntimes
to denote the sequence of iterates of F. Note that ¢po F™* = ¢, 11 and po F™ =
Ypy1, for all n > 1.

Hervé analysed the behavior of { F”"} by looking at three separate cases,
depending on the Type of ¢ and . In this section, we study the connection
between Hervé’s results from [23] and the DW points we defined in Sect. 4. In
particular, we will show how the conclusions of Theorem 2.7 can be strength-
ened if one assumes that the DW points of ¢ and/or ¢ are not C-points (i.e.
the functions do not possess angular gradients there).

5.1. The (Type 11, Type II) Case

We begin with the case where ¢ and v are left Type II and right Type
IT functions, respectively. Even though not every Type II function will, in
general, have Type II DW points (see Remark 4.7), F' having no interior fixed
points changes the situation dramatically, as seen in the following theorem.
A proof of it (without the model terminology) is essentially contained in [21,
Theorem 2] (see also [23, Section 16]). We give an alternative proof by using
the results we have developed so far.

Theorem 5.1. Assume F = (¢,v) : D? — D? is holomorphic and ¢, 1) are left
Type II and right Type 11 functions, respectively. Also, let £&,m: D — D denote
the (unique) functions such that ¢(&(p), n) = &(p) and w(A,n(X)) =n(N), for
all \,p € D. Then, F has no interior fized points if and only if
(i) there exist 7 € T? and K > 0 such that T is simultaneously a left Type
II DW point for ¢ with constant K and a right Type II DW point for
with constant 1/K and also
(ii) ¢pon # Idy and no ¢ # Idp.
Moreover, assuming F has no interior fived points, the point 7 = (11,72) € T?
above is uniquely determined: 7' is the Denjoy—Wolff point of &€ on, while T2
is the Denjoy—Wolff point of no¢&.
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Proof. Let (M, u), (N,v) be models for ¢ and v, respectively. Also, for 7 €
0D?, we will denote the corresponding cluster sets by Y. and Y.

First, assume F' has no interior fixed points. Let 0 < 7,, T 1 and consider
the functions 7, - F. Since cl(r,, F(D?)) C D?, for every n, the Earle-Hamilton
Theorem [19] implies that each r, F has a fixed point (A, u1,,) € D?. Since F
has no fixed points in D?, we obtain that (\,, u,) — 9D?. There are three
possible cases to examine.

If lim,, } }2I2 =0, then (An,pin) — 7 = (11,0) € T x cl(D). We can

use the model formula for ¢ to write

e e ;Mnﬁ = 1= |60\, pn)|”

n
= (1= Pallugs, yo P+ @ = lin ) ufy, o)l

Thus, for n large enough, we deduce

L—[6(An )P 1= [$(An, )|

1> =
L= {|(An, pa)[|? 1—[A,[?
1 — |
TS 2 n 2
- ||u(>\mun) + W ||u(x\mun) e (5.1)
Letting n — oo, we obtain (in view of lim,, 1 = } |‘2 =0 and lim,, ¢(Ap, i) =

1) that 7 = (71, 0) is a B-point for ¢, ¢(7) = 71 and also there exists a weak
limit u, € Y2 such that |[ul|| < 1,u2 = 0. This implies that 7 is a left Type
I DW point for ¢, contradicting the fact that ¢ is a left Type II function.

If lim,, § 1= IA |‘2 = 00, one can argue in a manner analogous to the pre-
vious case to deduce that ¢ has a right Type I DW point, which is again a
contradiction. )

Finally, assume that lim,, % = i € (0,00). Hence, (An, ftn) — T =
(1, 72) 6 T?2. Letting n — oo in (5.1) then yields that 7 is a B-point for ¢,
qb(T) = 7! and also there exists u, € Y,® such that |[ul||? + K|[u2|]*> < 1.
Note that u2 # 0, else 7 would be a left Type I DW point. Thus, since ¢ is a
left Type II function, 7 must be a left Type II DW point for ¢ with constant
K. Further, an analogous argument involving the model formula for 1) shows
that 7 is a B-point for 1, ¢(7) = 72 and also there exists v, € Y;¥ such that
(1/K)|[vX]|? +|[v2]|* < 1. Also, v} # 0, since 1 is not a right Type I function.
Thus, 7 must be a right Type II DW point for ¢ with constant 1/K, which
proves (i). To show that (ii) holds, note that if e.g. £(n(X)) = A for some
A € D, then

F(E(n(A),n(\) = (6(&(m(A),n(N), 1 (E(m(N)),n(N)))
= (£m(AN)),n(N),

a contradiction. In particular, we obtain the even stronger conclusion that
neither £ o n nor n o € can have interior fixed points.

Conversely, assume that (i) and (ii) both hold. In view of Theorem 2.10,
(i) implies that 7 and 72 are B-points for n and ¢ respectively, £(72) = 71,
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n(7!) = 72 and also (by the single-variable Julia’s inequality)
¢E(r*R)) C E(r',R/K) and n(E(r',R)) C E(T*,KR),

for all R > 0. Thus, (£ on)(E(t!,R)) C (&(E(r?, KR)) C E(r, R), for all
R > 0, which (combined with the fact that £ o # Idp must have a unique
Denjoy—Wolff point) allows us to deduce that 7! is the Denjoy—Wolff point
of £ o 1. An analogous argument shows that 72 is the Denjoy—Wolff point
of no&. Thus, the point 7 is indeed uniquely determined. Also, notice that,
in view of these observations, neither £ o n nor 7 o £ can have interior fixed
points. Now, let (Ao, 110) be an interior fixed point of F. We obtain

d(Mo, o) = Ao and (Ao, o) = Ho-

Thus, (o) = Ao and n(Xg) = po, which implies that £(n(A\g)) = Ao, a
contradiction. O

Now, let F' = (¢,%) : D? — D?, 7 € T? and K > 0 be as in Theorem
5.1, with F' having no interior fixed points. Recall that, in this setting, one
obtains a perfect analogue of the one-variable Denjoy—Wolff Theorem, i.e. the
sequence of iterates { F™} converges uniformly on compact sets to 7 (Theorem
2.7(iv)). A crucial ingredient for Hervé’s proof of this fact is given by the
invariant horospheres

F(E(r,R,KR)) C E(t,R,KR), (5.2)

obtained as an application of Corollary 4.9.

So, we know that the entire sequence { F™} has to converge to 7, but can
we use (5.2) to say more? Our main result in this subsection is a refinement
of [23, Lemme 2], which concerns the location of the orbits {F™ (X, i)}, with
respect to the boundary of the invariant horospheres (5.2). To set up the
statement, fix (Ao, tio) € D?. For convenience, we will write F" = (¢,,, 1) in
place of F™(Ag, 110) = (¢n (Ao, o), Yn(Xo, t10)). We also define:

|T1_¢n|2 |T2_wn‘2
A, =T =0l a B, = T Unl
1- |¢n|2 1- |wn|2

Theorem 5.2. Let F' = (¢,¢) : D? — D?, 7 € T2 and K > 0 be as in
Theorem 5.1, with F having no interior fized points. Then, either F™ — T
in the horospheric topology or there exist pg, p1 > 0 (depending on (Ao, o))
that are not both 0 such that

Asp — po,  Aosny1 — p1, Bong1 — Kpo, Ba, — Kpy.

Moreover, if T is not a C-point for either ¢ or 1, we can take pg = p1.

Proof. For every n > 1, let R,, denote the smallest radius such that F;, €
E, :=cl(E(r, Ry, KR,)). In view of (5.2), the sequence { R, } is non-increasing.
{A,},{Bn} needn’t also be non-increasing, however they have to satisty (by
definition of R,,) max{KA,, B,} = KR,, for all n.

Now, if R,, — 0, then A,,, B,, — 0 and we conclude that F,, — 7 in the
horospheric topology. So, assume R,, converges to p > 0.

First, consider the case where 7 is not a C-point for either ¢ or .
Without loss of generality, we may suppose that 7 is not a C-point for ¢. Let
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u, denote any vector in Y? such that ||ul||? + K|[u2||? <1 (its existence is
guaranteed by Theorem 2.10). In view of Theorem 3.3, it must be true that
ul # 0. We will show that A,, — p and B,, — Kp.

Indeed, aiming towards a contradiction, assume B, / Kp (the case
where A,, /4 p can be treated in an analogous manner). In view of the equality
max{KA,, B,} = KR,, there exists a subsequence {ny} and r € (0, p) such
that B,, < Kr for all k. This implies that A,,, = R, for all k. Now, given
0 < K_ < K sufficiently close to K, we can choose ry > 1 sufficiently close
to 1 such that Kr/K_ < p/ro and also, in view of Corollary 4.9(ii),

1_ 2 12 2 12
T ¢(/\,u)\2 §max{1|T AP 1| =y }
1 —[p(X, p)

ro T— A2 K_ 1—|ul?
for all A\, u € D. In particular, we have

|T1 - ¢nk+1|2
1= [@n+1]?

1 1
< —An, 7= Bn
_max{r2 . k}

1 1
S max {rank, KKT}

Ank—O—l -

_ Bu (5.3)

T2

as % < % < R%;’“, for all k. Now, let v, denote any vector in Y,¥ such that
K|[v}||? + [[v2|]> < 1, where K = 1/K (as in the case of u,, we obtain the
existence of this vector by Theorem 2.10). We look at two separate cases,
depending on whether v2 # 0.

So, assume v2 # 0. In this case, given 11 < 1 sufficiently close to 1, we
can find K < I~(+ sufficiently close to K such that Kr—f < f(p and also, in

view of the right Type II version of Corollary 4.9(iii),

7% = ) Lr = AP 12—
Ty N2 S max =, PR 2 ’
L=\ p)l Ky 1=[A2 T 1=y

for all A, p € D. In particular, we have

A’I’L Bn
B’I’Lk+1 S maX{,vk7k}
) K+ T1

< max{R:"’“, r }
K+ K?"l
— Rw
K,
"2 for all k. Combining (5.3) with (5.4), we obtain
-

(5.4)

I L <
as " < R S

KRnk-l-l = maX{KAnk+1,Bnk+1} < CKRnk,

for some ¢ € (0,1) and all k large enough. Letting k& — oo then leads to a
contradiction.



IEOT Denjoy—Wolff Points on the Bidisk via Models Page 33 of 42 30

Now, assume v? = 0. In view of (5.3), we can find 7/ < p such that for
all k large enough we have A, 11 <7’ < p. Also, since v} # 0, we can mimic
the proof of (5.3) (with # in place of ¢) to obtain By, 42 < ¢1 KRy, +1 for
some ¢; € (0,1) and all k large enough. Similarly, since ul # 0, we can mimic
the proof of (5.4) (with ¢ in place of 1) to obtain the existence of ¢ € (0,1)
such that A,, 1o < caR,, 41, for all k large enough. Thus, we arrive at the
conclusion KRy, +o = max{KA,, 12, Bn, 42} < max{ci,c2}KR,, 1, for all
k large enough, which yields a contradiction when we let k£ — oo.

The only case left to examine is when R, — p > 0 and ul = 02 =
0. Mimicking the proof of “(ii) implies (iii)” from Theorem 3.10, we may
conclude that

B,
An+1 S ?L and Bn+1 S KAna

for all n > 1. Thus,
An+2 < An and Bn+2 < Bna

which means that the sequences { Ao, }, {A2nt1}, {Ban} and {Ba, 11} are all
non-increasing. Thus, there exist nonnegative numbers pg, p1, pj, pj such that
Asn — po, Aant1 — p1, Bant1 — p) and Ba, — pf). The inequalities A, 1 <
Ban and By, < KAy, 1 give us p; < ph/K and p) < Kp;, respectively.
Thus, pj, = Kp; and an entirely analogous argument shows that pj = Kpy.
We conclude that

Aoy — po,  Aopt1 — p1, Bopg1 — Kpo, Boy — Kpy,

where max{pg, p1} = p (by definition of p) and so pg, p; cannot be zero at
the same time. This concludes the proof. 0

5.2. The (Type I, Type II) Case

Assume now that ¢ and 1 are left Type I and right Type II functions, respec-
tively. This immediately implies that F' = (¢,1) does not have any interior
fixed points. In this setting, Hervé proved that any cluster point of the se-
quence of iterates { F™} must be of the form (71, h), where h is either a holo-
morphic function D?> — D or a unimodular constant and 7' is the common
Denjoy—Wolff point of all slices ¢,, (Theorem 2.7(iii)). Examples showing that
this conclusion cannot, in general, be improved, are contained in [23, Section
11].

Now, if we, in addition, assume the existence of o € T such that (!, 0)

is a right Type II DW point for 1, stronger conclusions can be drawn about
the cluster set of {F™}.
Proposition 5.3. Assume F = (¢,1) : D? — D? is such that ¢ is a left Type I
function (with 7" being the common Denjoy-Wolff point of all slices ¢,,) and
Y has a right Type II DW point of the form 7 = (71,0) € T?. Then, there
exists K > 0 such that

F(E(r,R,KR)) C E(T,R,KR),
for all R > 0. Thus, any cluster point of the sequence of iterates {F™} must

be of the form (71, h), where h is either a holomorphic function D* — D or
the constant o.
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Proof. Assuming 1 has a right Type II DW point of the form 7 = (7!

one can combine Corollary 4.5 with Corollary 4.9 to conclude that
F(E(r,AR,R)) C E(1,AR, R),

,0),

-1
for all R > 0, where A = (lim infy_, 1 1;'7&?) >0and n: D — D is the
holomorphic function satisfying (A, n(A\)) = n(A) for all A € D.
To obtain the conclusion regarding the behavior of the iterates, combine
the previous result with Theorem 2.7(iii) and the observation that, for any

R>0, cl(E(T,AR,R)) NT? = 7. O

Remark 5.4. In the absence of a right Type II DW of the form (7!,0) for
1, the behavior of {F™} could be considerably more complicated. Indeed, it
could even happen that infinitely many unimodular constants {o(¢) | i € I'}
exist such that the constant (71,0(i)) is a cluster point of {F"}, for every
i € I; see the 2nd example in [23, Section 11].

In the setting of Proposition 5.3, it is clear (in view of Theorem 2.9)
that (71, ) will always be a left Type I DW point for ¢, no matter the value
of o. Surprisingly, having (7%, 7) not be a C-point for ¢ will force the entire
sequence {F™} to converge to (71,0). This is the content of Theorem 2.12,

the proof of which does not make use of Hervé’s results.

Proof of Theorem 2.12. Assume 7 = (71, 0) € T? satisfies the hypotheses of
the theorem. Clearly, ¢ and ¢ will be left Type I and right Type II functions,
respectively, with the common Denjoy—Wolff point of all slices ¢,, being i
By Proposition 5.3, there exists K > 0 such that

F(E(r,KR,R)) C E(t,KR,R), (5.5)

for all R > 0. Now, fix (Ao, 1) € D?. For convenience, we will write F" =

(¢n, ) in place of F™(Ag, 10) = (¢dn(Xos 110), (N0, o). We also define:
A = IT" — ¢nl? _ o — |
T 1= gnl? 1— |¢n|?’
for all n > 1. Corollary 4.5 then yields that {A,} is non-increasing.
First, we show that A,, — 0. Indeed, assume instead that A, — p > 0.
(5.5) implies that there exists B > 0 such that B,, < B, for all n > 1. Also, let
{My} C RT be any increasing sequence tending to oo. Corollary 4.5 implies
that we can find a decreasing sequence {ry}, 7 — 1 such that

A, B
Ay < - 5.6
o< { 2, Pl (5.6)
for all n,k > 1. Let € > 0 and choose k = ko to be such that B/My, < p.
Also, since 7, > 1, we can find N > 1 such that Ay /7y, < p. Thus, (5.6)

yields

and B,

AN BN }
A < max , < p,
N+1 { "o Mg P

a contradiction. Hence, A,, — 0. We will show that B,, — 0 as well. Indeed,
assume that B,, /4 0. (5.5) combined with the fact that A,, — 0 implies that
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liminf,, B, = s > 0. Also, given 0 < K_ < K, Corollary 4.9 yields that for
any to > 1 sufficiently close to 1 one obtains

A, B,
By < maX{K_’tQ}’ (5.7)

for all n > 1. Now, choose ng such that A,,/K_ < s/2 and also B, /t2 < s.
In view of (5.7), we obtain

A,, Bn
Bn0+1 < ma'X{ K_Oa t20 } <s,

a contradiction. We conclude that A,,, B,, — 0, which gives us F™ = F™ (Ao, po) —
(r1, ). Since (Ao, i1o) was arbitrary, we are done.

Remark 5.5. We have actually reached the even stronger conclusion that, in
the setting of Theorem 2.12, the iterates F™()\) converge to (71,0) in the
horospheric topology, for any A € D?.

Ezample 5.6. Define ¢, : D? — D by

1—AA2
N =g
and
(A2 =A1)—2(1-21)(1-22) log (1525 1227 £ AL 2
P(A) = § 2=AD)+2(1-A)(1-22) log (37 1537) ’
—34+5X1 " Al _ A27

5—3A!

for all A € D? (¢ has been taken from [28]).

Since the slice function ¢y has 1 as its Denjoy—Wolff point, Theorem
2.9 implies that the entire closed face {1} x cl(ID) consists of B-points for ¢
and also ¢(1,0) =1, for all |o| < 1. Actually, it is easy to see that ¢ extends
analytically across (1,0) whenever o # 1. Now, for 0 = 1, it can be verified
that

D_qné(1,1)

for all M > 0. Thus, (1,1) is not a C-point for ¢ and also, since lim s, oo M/(M+
1) =1, the angular derivative of every slice function ¢,, at its Denjoy—Wolff
point 1 has to be equal to 1 (this can be also verified directly, as the slice
functions are easy to compute in this case).

Now, we look at 1. Since ¥(0,0) = 0, ¢ is clearly a left (also a right)
Type II function. Also, as shown in [28], (1,1) is a B-point for ¢ that is not
a C-point and ¢ (1,1) = 1. We wish to determine whether (1,1) is also a left
Type II DW point for ¢. However, computing the function £ : D — D such
that ¥ (&(u), p) = &(p), for all p € D, seems impractical here. Instead, we will
look at the directional derivatives of ¢ at (1,1) along dps = (1, M) and then

=-D_gmo(1,1) =

<1
M+1 ’
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use Theorem 2.11. Indeed, in [28, Section 4] it was determined that

D_ 1,1
Ka1)(M) = % =—D_qm¥(1,1)

! dt
:4M/_1 T—0+0+0M

B {4%}“@4 if M #1,

4 if M =1.

Since K(1,1)(1) > 1 and limp o4 K(1,1)(M) = 0, there exists C' > 0 such
that K(;,1)(C) = 1. Theorem 2.11 then implies that (1,1) is a left Type II
DW point for 9. Also, since (A, A2) = (A2, A1), (1,1) must also be a right
Type II DW point for .

Now, define F' = (¢,) : D? — D?. In view of our previous observations,
we have that (1,1) is a left Type I DW point for ¢ that is not a C-point and
it is also a right Type II DW point for 1. Theorem 2.12 then allows us to
conclude that F™ — (1, 1) uniformly on compact subsets of D?.

Before ending this subsection, we remark that the (Type II, Type I)
case can be treated in an entirely analogous way.

5.3. The (Type I, Type I) Case

Finally, assume that ¢ and ¢ are left Type I and right Type I functions,
respectively, hence F' = (¢,1) does not have any interior fixed points. The
following characterization is an easy consequence of Theorem 2.9, so we omit
the proof.

Proposition 5.7. Let F' = (¢,%) : D> — D? be holomorphic. Then, ¢ and 1
are left Type I and right Type I functions, respectively, if and only if there
exists T = (71, 72) € T? that is a left Type I DW point for ¢ and a right Type
I DW point for 1.

Now, let 7! and 72 be as in Proposition 5.7. In this setting, Hervé proved
that either every cluster point of {F"} will be of the form (71, k), where h
is either a holomorphic function D? — D or the constant 72, or every cluster
point will be of the form (g,72), where g is either a holomorphic function
D? — D or the constant 7! (Theorem 2.7(ii)). Also, it is not hard to see that in
e.g. the former case, there exists a (parabolic) fractional linear transformation
T with Denjoy—Wolff point 72 such that, whenever both (71, hy) and (71, hs)
appear as non-constant cluster points of {F"}, it must be true that hy =
T o hy (see the 2nd remark in [23, Section 14]). Examples showing that these
conclusions cannot, in general, be improved are contained in [23, Section 15].

Unfortunately, the proof of Theorem 2.7(ii) (to be found in [23, Sections
12-13]) does not make it clear whether it is possible to determine “before-
hand” which of the two constants (7! or 72) will be the one that appears as
a coordinate in every cluster point of {F"}. We will show that, under the
extra assumption of (71,72) not being a C-point for either ¢ or ¢, one can
draw stronger conclusions. Our proof is independent of Hervé’s result.
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Proof of Theorem 2.13. Assume 7 = (71, 72) € T? satisfies the hypotheses of
the theorem. Clearly, ¢ and v will be left Type I and right Type I functions,
respectively. Also, Corollary 4.9 tells us that

F(E(1,R1,Ry)) C E(1, R1, Ra), (5.8)
for all Ry, Ry > 0. For any fixed (Ao, po) € D?, define:

A — |7t — ¢ (Mo, po)]? |72 — ¥n (o, o) |2
" 1= [n(Xo, po)|? L= [¥n (Ao, o) >’

for all n > 1. (5.8) then implies that both {A,} and {B,,} are non-increasing.
We can then argue as in the proof of Theorem 2.12 to deduce that A,, — 0
(assuming 7 is not a C-point for ¢). Thus, every cluster point of {F"} will
be of the form (7!,h), where h is holomorphic on D? and bounded by 1.
Moreover, since {B,} is bounded, one can deduce that h will have to be
either a holomorphic map D? — I or the constant 72.

and B, =

Remark 5.8. We have actually reached the even stronger conclusion that, in
the setting of Theorem 2.13 with e.g. 7 not being a C-point for ¢, the points
¢n(N) converge to 7! in the horospheric topology of the unit disk, for any
A e D%

Ezample 5.9. Define ¢ : D? — D by

BAIAZ - AL A2 1
3—Al— X2 —AIN2

¢(A) =

for all A € D? (this example appears in [34]). It can be easily verified that the
Denjoy—Wolff point of the slice function ¢g(z) = (2 +1)/(3 — 2) is equal to 1.
Theorem 2.9 then implies that the closed face {1} x cl(D) consists of B-points
for ¢ and also ¢(1,0) =1, for all |o| < 1. Moreover, we can compute

D_q,an9(1,1) -
% =-D-_am¢(L,1) =

S M+1
for all M > 0. Thus, (1,1) is not a C-point for ¢ (and also ¢, (1) =
limps oo M/(M + 1) =1, for all p € D).

Now, let F = (¢,%) : D* — D?, where 1 is any (holomorphic) right
Type I function such that the Denjoy—Wolff point of all slice functions (A, -)
is equal to 1. Theorem 2.13 then implies that every cluster point of {F™} will
be of the form (1,h), where h is either a holomorphic function D? — D or
the constant 1. Now, if we take 1 to be e.g.

1— A2
My = — -~
YL AT 2 — 21—\’
our observations from Example 5.6 (and the fact that (A, A?) = (A%, A1))
show that (1,1) will be a right Type I DW point for ¢ that is not a C-point.
Applying Theorem 2.13 again then yields (for this particular choice of )
that F™ — (1,1) uniformly on compact subsets of D?.
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6. Connection with Frosini’s Work

Points of Denjoy~Wolff type for holomorphic maps F : D? — D? have been
investigated by Frosini in [20-22]. She defined Denjoy-Wolff points for F
as those fixed boundary points where F-invariant horospheres are centered,
with the exact definition depending on the kind of horospheres in question.
In particular, motivated by the definition of “small” and “big” horospheres
found in [3], she defined (see [22, Definitions 3.2—3.3]) quasi- Wolff and Wolff
points for F' as those fixed boundary points where small horospheres are
mapped into big ones and small horospheres are mapped into small ones,
respectively. Unfortunately, the existence of quasi-Wolff points is, in general,
not very helpful for describing the behavior of { F}, as big horospheres offer
very limited control over the iterates. On the other hand, while Wolff points
do offer much more restrictive Julia-type inequalities, they do not always exist
(see [22, Theorem 4.1] for a characterization of the set of Wolff points for any
self-map F' of D?). Finally, in [20, Section 8], Frosini considered generalized
Wolff points, which motivate our next definition.

Definition 6.1. Let F = (¢,%) : D> — D? be holomorphic with 7 € 9D?. If
there exists M € (0,00) such that

F(E(r,R,MR)) C E(t,R,MR),
for all R > 0, 7 will be called a generalized Denjoy—Wolff point for F.

As a consequence of Julia’s inequality for the bidisk, any generalized
Denjoy—Wolff point 7 € OD? of F must be a B-point point for both ¢ and 1
such that F'(7) = 7. Notice also that, in contrast to [20, Definition 33], we do
not assume the existence of any complex geodesics, instead relying only on
the existence of F-invariant “weighted” horospheres (although the definitions
turn out to be equivalent, see Remark 3.13).

Let W(F') denote the set of all generalized Denjoy—Wolff points of F.
Our next result is a slight refinement of [20, Theorem 39|, obtained as a
straightforward application of the results developed in this paper. Note that

71,72 will always denote points in T.

Theorem 6.2. Let F = (¢,1) : D> — D? be holomorphic such that ¢ # w*,
W # 72 and without any interior fized points. Then, one and only one of the
following three cases is possible:
(i) W(F) = {(r*,72)} if and only if ¢ is left Type II and ¢ is right Type
II;
(ii) {7} xDcW(F) C ({r'} xD)u{(r',72)} (resp., Dx {r?} C W(F) C
(D x {r2}) U{(,7%)}) if and only if ¢ is left Type I and 1 is right
Type II (resp., ¢ is left Type II and 1 is right Type I);
(iii) W(F) = ({r'} x D) U {(r*,72)} U (D x {r2}) if and only if ¢ is left
Type I and v is right Type I

Proof. Theorem 4.3 implies that (i)-(iii) contain all possible cases.
First, assume ¢ is left Type II and v is right Type II. Theorem 5.1
and Corollary 4.9 imply that W (F) D {(7!,7%)} for some 71,72 € T, where
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(11, 72) is simultaneously a left Type I DW point for ¢ with constant M and
a right Type II DW point for + with constant 1/M. Now, assume (o', 0?) €
W (F). If either o' € D or 0 € D, Corollary 4.5 would imply that either v is
right Type I or ¢ is left Type I, respectively, a contradiction. Thus, (o1, 0?) €
T2. But then, Theorems 3.10 and 2.10 yield that (¢!, 0?) is simultaneously
a left Type II DW point for ¢ with constant M’ > 0 and a right Type II
DW point for ¢ with constant 1/M’. In view of Theorem 5.1, we obtain
(o1,0?) = (71,72), hence W(F) = {(,7%)}.

Conversely, if W(F) = {(r1,72)}, Corollary 4.5 implies that ¢ cannot
be a left Type I function and ¢ cannot be a right Type I function (else, W (F')
would also have to contain facial boundary points). Theorem 4.3 then yields
that ¢ is left Type II and ¢ is right Type II.

Next, we prove (ii). We will only deal with the (Type I, Type II) version.
First, assume that ¢ is left Type I and ® is right Type II, with 7! being the
common Denjoy—Wolff point of all functions ¢,. Corollary 4.5 implies that
{T1ixD Cc W(F). If W(F) = {r'} x D, we are done. Otherwise, assume that
we can find a different point (o1,0?) € W(F). We must have o' € T, else v
would be a right Type I function. Also, we may assume o2 € T (else we would
have 0! = 71, in view of Corollary 4.5). Now, Theorem 3.10 (specifically, the
fact that (iii) implies (i)) yields that (o', o) must be either a left Type I or
a left Type II DW point for ¢. Proposition 4.4 then tells us that o' = 71.
Note that (7!,02) will have to be (in view of Theorem 3.10) a right Type
IT DW point for . Also, if (t!,¢?) € W(F) is not contained in {r'} x D,
our previous arguments show that t! = 71 and (¢!,?) is, in addition, a right
Type II DW point for 1. Proposition 4.8 then implies 02 = 72. We conclude
that {r'} x D C W(F) C ({7'} x D) U{(r!,0?)}, where 2 € T.

Conversely, assume {71} x D C W(F) C ({r'} x D) U{(7*,72)}, where
71,72 € T. Corollary 4.5 then implies that ¢ is a left Type I and ¢ is a
right Type II function (else, W (F') would have to contain a face of the form
D x {0?}), as desired.

Finally, the proof of (iii) rests on Corollary 4.5, Proposition 4.4 and
Theorem 3.10; one can argue in a manner analogous to the proof of (ii). We
omit the details. 0

Remark 6.3. As seen in the previous proof, the point (71,72) in (ii) will
belong to W(F) if and only if it is a right Type II DW point for .
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