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Denjoy–Wolff Points on the Bidisk via
Models

Michael T. Jury and Georgios Tsikalas

Abstract. Let F = (φ, ψ) : D2 → D
2 denote a holomorphic self-map of

the bidisk without interior fixed points. It is well-known that, unlike the
case with self-maps of the disk, the sequence of iterates

{F n := F ◦ F ◦ · · · ◦ F}
needn’t converge. The cluster set of {F n} was described in a classical
1954 paper of Hervé. Motivated by Hervé’s work and the Hilbert space
perspective of Agler, McCarthy and Young on boundary regularity, we
propose a new approach to boundary points of Denjoy–Wolff type for
the coordinate maps φ, ψ. We establish several equivalent descriptions
of our Denjoy–Wolff points, some of which only involve checking specific
directional derivatives and are particularly convenient for applications.
Using these tools, we are able to refine Hervé’s theorem and show that,
under the extra assumption of φ and ψ possessing Denjoy–Wolff points
with certain regularity properties, one can draw much stronger conclu-
sions regarding the behavior of {F n}.

Mathematics Subject Classification. Primary 32H50; Secondary 32A40,
32S05.

Keywords. Denjoy–Wolff points, Iteration, Bidisk, Carathéodory condi-
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1. Introduction

Let D denote the open unit disk. Given a holomorphic map f : D → D without
fixed points, a theorem of Wolff [38] states that there exists a boundary point
τ ∈ ∂D such that every closed disk internally tangent to D at τ (in other
words, every horocycle containing τ) is invariant under f . From this, one
can deduce the classical Denjoy–Wolff Theorem [18,36,37]: the sequence of
iterates
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fn := f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n times

converges to τ uniformly on compact subset of D. In this setting, the (unique)
point τ is termed the Denjoy–Wolff point of f . See [14] for a nice exposition
of the details and many historical remarks.

A lot of work has been devoted to obtaining higher-dimensional gener-
alizations of the Denjoy–Wolff Theorem. The first such result is due to Hervé
[24], who proved an exact analogue of the Denjoy–Wolff Theorem for fixed-
point-free self-maps of the unit ball Bn ⊂ C

n (see also [27]). Later, Abate
[1] (see also the excellent survey [2]) achieved a generalization of this result
to all smoothly bounded strongly convex domains in C

n, paving the way
for further extensions to smoothly bounded pseudoconvex domains of both
finite and infinite type (see [26] and the references therein). More recently,
Budzyńska [12] (see also [11,13]) showed that the smoothness assumption can
be dropped if one restricts to strictly convex domains.

Unfortunately, the situation becomes considerably more complicated in
general bounded domains. The proofs of the above results utilize certain f -
invariant domains (usually termed horospheres, as they generalize Wolff’s
horocycles) which may have too large intersections with the boundary of the
domain in the general case, making it difficult to control the behavior of the
iterates. Indeed, even though several different types of horospheres have been
considered in the literature with varying degrees of generality (see e.g. [2,4,12,
16,20,29], where the focus is either on bounded convex or bounded symmetric
domains), boundary smoothness or extra convexity assumptions (or a mixture
of both) are generally required to control the size of the intersection with the
boundary. This is true even in very simple finite-dimensional domains, such
the unit polydisk D

n, where the presence (for n ≥ 2) of large “flat” boundary
components prevents the iterates from converging. In such a case, one seeks
to understand the cluster points of {fn}. Although holomorphic dynamics
on D

n (for general n) have been studied by a number of authors (see e.g.
[3,4,10,17,20,30]), progress on iteration-theoretic questions remains limited.

Somewhat stronger conclusions can be drawn if one restricts their at-
tention to the bidisk. Let F = (φ, ψ) : D2 → D

2 be holomorphic and without
fixed points. The best known general results regarding the behavior of the
iterates {Fn} in this setting can be found in the classical paper [23] of Hervé
(see also [20,22,31,34] for more recent work concerning the bidisk). Hervé ob-
served that all holomorphic maps φ : D2 → D (that are not coordinate projec-
tions) can be classified into two separate categories (see Definition 2.6) based
on the location of the Denjoy–Wolff points of the slice functions φμ : D → D,
where φμ(λ) = φ(λ, μ) for all λ, μ ∈ D. He then gave a description of the
cluster points of {Fn} by considering three distinct cases (see Theorem 2.7),
depending on the categories that the coordinate functions φ and ψ belong
to. [23] also contains numerous examples demonstrating that, from a certain
viewpoint, these results are optimal.
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In the present work, motivated by the model-theoretic techniques of
[7,32], we propose new definitions for Denjoy–Wolff-type points of holomor-
phic functions φ : D2 → D (see Definition 2.8). These will be boundary points
where φ satisfies a mild regularity condition (termed B-points following [7],
see Sect. 2 for definitions) and appropriate contractivity assumptions stated
in terms of the model function. We prove several equivalent characterizations
of our Denjoy–Wolff points, some of which are particularly easy to verify in
practice and involve certain directional derivatives of φ at the points in ques-
tion (see Theorems 2.9, 2.10 and 2.11). This constitutes a departure from the
usual criteria for Denjoy–Wolff points used in the setting of D2, which depend
on the existence of invariant horospheres. With these tools in our disposal,
we are able to refine Hervé’s theorem. Among several results, we show that
if the coordinate functions φ and ψ of F possess certain Denjoy–Wolff points
but don’t have angular gradients there (i.e. the points in question are B-
but not C-points), then one gains much tighter control over the behavior of
the iterates {Fn}(see Theorems 2.12 and 2.13). Roughly, this is because the
structure of the model function at Denjoy–Wolff points that are not C-points
allows one to deduce many different (contractive) versions of Julia’s inequal-
ity there, thus increasing the supply of invariant horospheres available (see
Corollaries 4.5 and 4.9). We also provide examples to illustrate the different
cases contained in our theorems.

The paper is arranged as follows. Section 2 contains the necessary back-
ground on the notions of a model of a function, B-points and C-points and
the main result of [23]. It also presents our new definitions of Denjoy–Wolff
points and the main results of this paper. In Sect. 3, we prove general results
concerning the relation between the model function and certain directional
derivatives at B-points, as well as a refined version of Julia’s inequality for
the bidisk (see Theorem 3.10). These will be much needed in the sequel but
are also of independent interest. In Sect. 4, we prove several equivalent char-
acterizations of our Denjoy–Wolff points (see Theorems 2.9, 2.10 and 2.11),
uniqueness results (Propositions 4.4 and 4.8) and useful corollaries involv-
ing weighted Julia inequalities (Corollaries 4.5 and 4.9). Next, in Sect. 5, we
revisit Hervé’s Theorem and establish several partial refinements using our
tools from the previous sections. These refinements include Theorems 2.12,
2.13 and 5.2. We also provide relevant examples (see Examples 5.6 and 5.9).
Finally, in Sect. 6, we discuss Frosini’s work on Denjoy–Wolff-type points on
the bidisk and show how our main results can be used to recover a theorem
from [20] on the classification of a certain type of these points.

2. Background and Main Results

2.1. Models

Let S and S2 denote the one- and two-variable Schur classes, i.e. the sets
of analytic functions on D and D

2 respectively that are bounded by 1 in
modulus. We require the notion of a model of a Schur-class function, as seen
in [7]. It is well known that every function in S2 possesses such a model,
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however this ceases to be the case in higher-dimensional polydisks (this is a
consequence of the fact that von Neumann’s inequality fails in more than two
variables, see also [9, Section 9.7]).

Definition 2.1. Let φ ∈ S2. We say that (M,u) is a model for φ if M = M1 ⊕
M2 is an orthogonally decomposed separable Hilbert space and u : D2 → M
is an analytic map such that, for all λ = (λ1, λ2), μ = (μ1, μ2) ∈ D

2,

1 − φ(λ)φ(μ) = (1 − λ1μ1)〈u1
λ, u1

μ〉 + (1 − λ2μ2)〈u2
λ, u2

μ〉. (2.1)

In equation (2.1) we have written uλ for u(λ), u1(λ) = PM1u(λ), and
u2(λ) = PM2u(λ). In general, given v ∈ M, we will write v1 for PM1v and
v2 for PM2v. Note that we may suppose, without loss of generality, that
{uj(λ) : λ ∈ D

2} spans a dense subspace of M j , since otherwise we may
replace M j by this span. However, it needn’t be true that {u(λ) : λ ∈ D

2}
spans a dense subspace of M (these observations can be found in [7, Section
3]).

2.2. B-points and C-points

If S ⊂ D
2 and τ ∈ ∂D2, we say that S approaches τ nontangentially if

τ ∈ cl(S) (where cl(S) denotes the topological closure of S) and there exists
a constant c > 0 such that

||τ − λ|| ≤ c(1 − ||λ||), (2.2)

for all λ ∈ S, where ||(λ1, λ2)|| = max{|λ1|, |λ2|}.
Now, let φ ∈ S2 and τ ∈ ∂D2. τ is said to be a B-point for φ if the

Carathéodory condition

lim inf
λ→τ

1 − ||φ(λ)||
1 − ||λ|| < ∞ (2.3)

holds. The nontangential limit of φ at any such τ always exists [3] and will
be denoted by φ(τ).

While in one variable the Julia-Carathéodory Theorem [15] tells us that
a function in S has an angular derivative at any B-point τ, a function φ ∈
S2 does not necessarily have an angular gradient at all of its B-points. If
φ does have an angular gradient at τ , we will say that τ is a C-point for
φ. In any case, φ will always have a directional derivative at a B-point in
any direction pointing into the bidisk. Moreover, as was shown in [7], the
directional derivatives in question will vary holomorphically with respect to
direction (actually, the derivatives can be described in terms of certain one-
variable Pick functions [5], though we won’t be needing this result here).

To state the relevant theorems, we need some notation. Let (M,u) be a
model for φ ∈ S2 and define the nontangential cluster set Xτ of the model at
a B-point τ of φ to be the set of weak limits of weakly convergent sequences
{uλn

} over all sequences {λn} that converge nontangentially to τ in D
2. Xτ

turns out to be a subset of the cluster set of (M,u) at τ , which is defined
as the set of limits in M of the weakly convergent sequences {uλn

} as {λn}
ranges over all sequences in D

2 that tend to τ in such a way that
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1 − |φ(λn)|
1 − ||λn|| (2.4)

remains bounded. The cluster set at τ will be denoted by Yτ . Also, let H =
{z ∈ C : �z > 0},T = ∂D and define, for every τ ∈ ∂D2,

H(τ) =

⎧

⎪
⎨

⎪
⎩

τ1
H × τ2

H if τ ∈ T
2,

τ1
H × C if τ ∈ T × D,

C × τ2
H if τ ∈ D × T.

For the remainder of this subsection, fix a function φ ∈ S2 with model
(M,u) and a B-point τ ∈ ∂D2. The next lemma can be easily obtained from
(2.1).

Lemma 2.2. (see [7], Proposition 4.2) We have Xτ 
= ∅. Moreover, for all
x ∈ Yτ and λ ∈ D

2,

1 − φ(λ)φ(τ) =
∑

|τj |=1

(1 − λjτ j)〈uj
λ, xj〉. (2.5)

As a consequence, we obtain:

Lemma 2.3. (see [7], Lemma 8.10) If |τ j | < 1 for j = 1 or 2, then

Yτ = {uτ}, where uj
τ = 0.

A consequence of the following theorem is that facial B-points are always
C-points (see [8] for more results in that direction).

Theorem 2.4. (see [7], Corollary 8.11) τ is a C-point for φ if and only if Xτ

is a singleton set.

Now, since τ is a B-point for φ, we know that for every δ ∈ H(τ) the
directional derivative

D−δφ(τ) = lim
t→0+

φ(τ − tδ) − φ(τ)
t

exists. Much more can be said.

Theorem 2.5. (see [7], Theorems 7.1, 7.8) For any δ ∈ H(τ), the nontangen-
tial limit (in the norm of M)

xτ (δ) = lim
τ−zδ

nt−→τ

uτ−zδ

exists in M . In addition,
(1) xτ (·) is a holomorphic M -valued function on H(τ);
(2) xτ (δ) ∈ Xτ for all δ ∈ H(τ);
(3) xτ (zδ) = xτ (δ) for all z ∈ C such that δ, zδ ∈ H(τ) (i.e. xτ (·) is homo-

geneous of degree 0 in δ);
(4) D−δφ(τ) is analytic, homogeneous of degree 1 in δ and satisfies

D−δφ(τ) = −φ(τ)
∑

|τj |=1

τ jδj ||xj
τ (δ)||2.
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2.3. Horocycles and Horospheres

The language of horospheres and horocycles will be required for our iteration-
theoretic results. Recall that a horocycle in D is a set of the form E(τ,R) for
some τ ∈ cl(D) and R > 0, where

E(τ,R) =
{

λ ∈ D :
|λ − τ |2
1 − |λ|2 < R

}

for τ ∈ T, while E(τ,R) = D otherwise. Letting D(z, r) denote the Euclidean
disk in C with centre z and radius r > 0, it is not hard to see that, given any
τ ∈ T, we always have

E(τ,R) = D

(

τ

R + 1
,

R

R + 1

)

.

Also, for τ = (τ1, τ2) ∈ ∂D2 and R1, R2 > 0, we define the (weighted)
horosphere E(τ,R1, R2) to be the set E(τ1, R1) × E(τ2, R2).

Now, given φ ∈ S and a B-point τ ∈ T, it is known that

α := lim
λ

nt−→τ

1 − |φ(λ)|
1 − |λ| ≥ 0

exists. Julia’s inequality [15,25] (see also the more modern [33]) then states
that

φ
(

E(τ,R)
) ⊂ E(φ(τ), αR), (2.6)

for all R > 0. Generalizations of this result to the bidisk are contained in
[2,35] (see also [7, Section 4] for a model-theoretic proof). In particular, given
φ ∈ S2 and a B-point τ ∈ ∂D2, it is known that, for any α ≥ 0, we have

lim inf
λ→τ

1 − |φ(λ)|
1 − ||λ|| ≤ α

if and only if
φ(E(τ,R,R)) ⊂ E(φ(τ), αR), (2.7)

for all R > 0 (if α = 0, then φ is constant). In Sect. 3, we use ideas from [7] to
establish a refined version of the previous equivalence, one that is expressed
in terms of weighted horospheres (see Theorem 3.10).

Lastly, we will occasionally be making use of the horospheric topology
on cl(D2), which is the topology with base consisting of all open sets of D2

together with all sets of the form {τ} ∪ E(τ,R1, R2), where τ ∈ ∂D2 and
R1, R2 > 0 (see [7, Section 4] for more details). Note that (2.7) tells us that
φ(λ) → φ(τ) whenever τ is a B-point and λ → τ horospherically.

2.4. Hervé’s Result

For i ∈ {1, 2}, define the coordinate projections πi : D2 → D, πi(λ) = λi.
Given φ ∈ S2 and μ ∈ D, we will denote by φμ ∈ S the slice function

φμ(λ) = φ(λ, μ) (λ ∈ D).

Also, we let ˜φ ∈ S2 denote the function ˜φ(λ) = φ(λ2, λ1), for obtained from
φ by interchanging the arguments.

Holomorphic functions φ : D2 → D can be classified according to the
Denjoy–Wolff points of their slices.
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Definition 2.6. Assume φ ∈ S2. φ is said to be a:
(i) left Type I function if φ 
= π1 and there exists τ1 ∈ T such that τ1 is

the common Denjoy–Wolff point of the maps φμ ∈ S, for all μ ∈ D;
(ii) right Type I function if ˜φ is a left Type I function;
(iii) left Type II function if φ 
= π1 and there exists a holomorphic map

ξ : D → D such that, for all λ, μ ∈ D, we have φμ(λ) = λ if and only if
ξ(μ) = λ;

(iv) right Type II function if ˜φ is a left Type II function.

Surprisingly, it turns out that any φ ∈ S2 that is not a coordinate
projection will either be a left Type I or a left Type II function (respectively,
either a right Type I or a right Type II function), a result originally proved
by Hervé in [23]. In Sect. 4, we give a new proof of this using purely model-
theoretic methods (see Theorem 4.3).

Using the Type I/Type II terminology, the main result of [23] can be
stated as follows.

Theorem 2.7. [Hervé] Let F = (φ, ψ) : D2 → D
2 be a holomorphic self-map

of the bidisk without fixed points. Then, one and only one of the following
cases occurs:

(i) if ψ ≡ π2 (respectively, φ ≡ π1), then {Fn} converges uniformly on
compact sets to (τ1, π2), where τ1 ∈ T (respectively, to (π1, τ2), where
τ2 ∈ T);

(ii) if φ is a left Type I and ψ is right Type I function, then there exist
τ1, τ2 ∈ T such that
(a) either every cluster point of {Fn} has the form (τ1, h), where h is

either a holomorphic function D
2 → D or the constant τ2,

(b) or every cluster point of {Fn} has the form (g, τ2), where g is
either a holomorphic function D

2 → D or the constant τ1;
(iii) if φ is a left Type I function and ψ is a right Type II function (respec-

tively, φ is a left Type II function and ψ is a right Type I function),
there exists τ1 ∈ T such that every cluster point of {Fn} has the form
(τ1, h), where h ∈ S2 (respectively, there exists τ2 ∈ T such that every
cluster point of {Fn} has the form (g, τ2), where g ∈ S2);

(iv) if φ is a left Type II and ψ is a right Type II function, then there
exist τ1, τ2 ∈ T such that {Fn} converges uniformly on compact sets
to (τ1, τ2).

2.5. Principal Results

We begin with our model-theoretic definitions of Denjoy–Wolff-type points.

Definition 2.8. Let φ ∈ S2 with model (M,u). Assume first that φ 
= π1.
(i) A point (τ1, σ) ∈ T × cl(D) will be called a left Type I DW point for φ

if it is a B-point, φ(τ1, σ) = τ1 and there exists u(τ1,σ) ∈ Y(τ1,σ) such
that ||u1

(τ1,σ)|| ≤ 1 and u2
(τ1,σ) = 0.

(ii) A point τ = (τ1, τ2) ∈ T
2 will be called a left Type II DW point for φ

if it is a B-point, φ(τ) = τ1, there exists uτ ∈ Yτ such that ||u1
τ || < 1
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and τ is not a left Type I DW point for φ. In particular, if K > 0 is any
constant such that

||u1
τ ||2 + K||u2

τ ||2 ≤ 1,

we will say that τ is a left Type II DW point with constant K.

Now, assume instead that φ 
= π2.

(iii) A point (σ, τ2) ∈ cl(D) ×T will be called a right Type I DW point for φ

if (τ2, σ) is a left Type I DW point for ˜φ.
(iv) A point τ = (τ1, τ2) ∈ T

2 will be called a right Type II DW point for φ

(with constant K > 0) if τ̃ = (τ2, τ1) is a left Type II DW point for ˜φ
(with constant K > 0).

An immediate consequence of Definition 2.8 is that every left (resp.,
right) Type II DW point is a left (resp., right) Type II DW point with
constant K, for some K > 0.

The following characterizations are proved in Sect. 4 (notice that the
property of being a Type I/Type II point turns out not to depend on the
model of the function).

Theorem 2.9. Let φ ∈ S2 with model (M,u) and τ1 ∈ T. Assume also that
φ 
= π1. The following assertions are equivalent:

(i) there exists σ ∈ cl(D) such that (τ1, σ) is a left Type I DW point for φ;
(ii) every point in {τ1} × cl(D) is a left Type I DW point for φ;
(iii) φ is a left Type I function and the common Denjoy–Wolff point of all

slice functions φμ ∈ S is τ1;
(iv) there exists σ ∈ cl(D) such that (τ1, σ) is a B-point, φ(τ1, σ) = τ1 and

D−(τ1,σM)φ(τ1, σ)
−τ1

≤ 1, ∀M > 0;

(v) for every σ ∈ cl(D), (τ1, σ) is a B-point, φ(τ1, σ) = τ1 and

D−(τ1,σM)φ(τ1, σ)
−τ1

≤ 1, ∀M > 0.

Moreover, assuming that any of the above statements holds and letting φ′
μ(τ1)

denote the angular derivative of φμ at τ1, we obtain

lim
M→∞

D−(τ1,σM)φ(τ1, σ) = −τ1φ′
μ(τ1),

for all μ ∈ D and all |σ| ≤ 1. There is an analogous statement for right Type
I DW points (we need to assume that φ 
= π2).

Theorem 2.10. Let φ : D2 → D be holomorphic with model (M,u). Also, let
τ = (τ1, τ2) ∈ T

2, K > 0 and assume that φ 
= π1. The following assertions
are equivalent:

(i) τ is a left Type II DW point for φ with constant K;
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(ii) φ is a left Type II function. Also, letting ξ : D → D denote the holomor-
phic function such that φ(ξ(μ), μ) = ξ(μ), for all μ ∈ D, we have that
τ2 is a B-point for ξ, ξ(τ2) = τ1 and

lim inf
z→τ2

1 − |ξ(z)|
1 − |z| ≤ 1

K
;

(iii) τ is a B-point for φ, φ(τ) = τ1, the quantity D−(τ1,τ2M)φ(τ) is not
constant with respect to M > 0 and also there exists A ≥ K such that

D−(τ1,τ2A)φ(τ)
−τ1

= 1.

Moreover, assuming that any of the above statements holds,

A =
[

lim inf
z→τ2

1 − |ξ(z)|
1 − |z|

]−1

will be the maximum among all constants K > 0 such that τ is a left Type II
DW point for φ with constant K. It will also be the unique positive number
such that D−(τ1,τ2A)φ(τ)/(−τ1) = 1.

There is an analogous statement for right Type II DW points (we need
to assume that φ 
= π2).

A consequence of Theorem 2.10 is that not all Type II functions have
Type II DW points (just choose e.g. any left Type II function such that
ξ has no B-points). However, Type II DW points do appear naturally when
investigating iteration-theoretic questions. In particular, if F = (φ, ψ) : D2 →
D

2 has no fixed points, φ is left Type II and ψ is right Type II, then both φ
and ψ will have Type II DW points (see Theorem 5.1 for details).

Theorems 2.9–2.10 allow us to give a simple, unified characterization of
Type I/II DW points, one that is expressed in terms of directional derivatives
and is easier to verify in practice than checking for invariant horospheres. To
state it, set (for any function φ ∈ S2 such that τ ∈ ∂D2 is a B-point)

Kτ (M) =
D−(τ1,τ2M)φ(τ)

−φ(τ)
(M > 0).

It can be shown (see Proposition 3.5) that Kτ (M) is nonnegative and increas-
ing with respect to M . This observation, combined with Theorems 2.9–2.10,
leads to:

Theorem 2.11. Let φ ∈ S2 and assume τ = (τ1, τ2) ∈ ∂D2 is a B-point for φ
such that φ(τ) = τ1. Assume also that φ 
= π1.

(a) If |τ2| < 1, then τ is a left Type I DW point that is also a C-point for
φ if and only if

Kτ (M) = α ≤ 1, ∀M > 0.

In any other case, τ will be neither a left Type I nor a left Type II DW
point.

(b) If |τ2| = 1, then τ is a:
(i) left Type I DW point that is also a C-point if and only if

Kτ (M) = α ≤ 1, ∀M > 0;
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(ii) left Type I DW point that is not a C-point if and only if {Kτ (M)}M

is non-constant and

Kτ (M) < 1, ∀M > 0;

(iii) left Type II DW point if and only if {Kτ (M)}M is non-constant
and there exists A > 0 such that

Kτ (A) = 1;

(iv) neither a left Type I nor a left Type II DW point if and only if

Kτ (M) > 1, ∀M > 0.

There is an analogous statement for right Type I/II DW points (we need to
assume that φ 
= π2).

Using our work on DW points, we are able to offer the following refine-
ments of Theorem 2.7.

Theorem 2.12. Assume F = (φ, ψ) : D2 → D
2 is holomorphic, φ is left Type

I and ψ is right Type II. Let τ1 denote the common Denjoy–Wolff point of
all slice functions φμ. If there exists σ ∈ T such that (τ1, σ) is a right Type
II DW point for ψ but not a C-point for φ, then Fn → (τ1, σ) uniformly on
compact subsets of D2.

Theorem 2.13. Assume F = (φ, ψ) : D2 → D
2 is holomorphic, φ is left Type

I and ψ is right Type I. Let τ1 and τ2 denote the common Denjoy–Wolff
points of all slice functions φ(·, μ) and ψ(λ, ·), respectively. If τ = (τ1, τ2)
is not a C-point for φ, then every cluster point of {Fn} will have the form
(τ1, h), where h is either a holomorphic function D

2 → D or the constant τ2.
An analogous conclusion can be reached if τ is not a C-point for ψ.

Applications are contained in Examples 5.6 and 5.9. A further refine-
ment can be found in Theorem 5.2.

3. B-Points and Directional Derivatives Along (τ 1, τ 2M)

This section contains several technical results that build upon the model
theory of [7,8], the highlights being Theorems 3.3 and 3.9–3.10. These will
be critical for our work in Sects. 4, 5, but are also interesting in their own
right.

Now, choose an arbitrary φ ∈ S2 with model (M,u) and a B-point
τ = (τ1, τ2) ∈ ∂D2. These will be fixed for the remainder of this section.
Recall that we can define

xτ (δ) = lim
τ−zδ

nt−→τ

uτ−zδ,

for any δ ∈ H(τ), where the limit is with respect to the norm of M . The
following easy consequence of (2.5) will be used repeatedly throughout the
paper.



IEOT Denjoy–Wolff Points on the Bidisk via Models Page 11 of 42 30

Lemma 3.1. Assume τ ∈ T
2. Then, for any uτ ∈ Yτ we have

〈x1
τ (δ), u1

τ 〉 +
τ2δ2

τ1δ1
〈x2

τ (δ), u2
τ 〉 = ||x1

τ (δ)||2 +
τ2δ2

τ1δ1
||x2

τ (δ)||2,

for all δ ∈ H(τ).

Proof. Applying (2.5) twice gives us

〈u1
λ, u1

τ 〉 +
1 − λ2τ2

1 − λ1τ1
〈u2

λ, u2
τ 〉 = 〈u1

λ, x1
τ (δ)〉 +

1 − λ2τ2

1 − λ1τ1
〈u2

λ, x2
τ (δ)〉,

for all λ ∈ D
2 and δ ∈ H(τ). Setting λ = τ − rδ and letting r → 0+ then

finishes off the proof. �

We also require the following lemma.

Lemma 3.2. Assume τ ∈ T
2. If uτ , vτ ∈ Yτ are such that ui

τ = vi
τ = 0 for

some i ∈ {1, 2}, we must have uτ = vτ .

Proof. Without loss of generality, assume i = 2. Applying (2.5) twice, we
obtain

1 − φ(λ)φ(τ) = (1 − λ1τ1)〈u1
λ, u1

τ 〉,
= (1 − λ1τ1)〈u1

λ, v1
τ 〉,

for all λ ∈ D
2. Thus, 〈u1

λ, u1
τ − v1

τ 〉 = 0 for all λ. This equality, combined
with the fact that both v1

τ and v1
τ are weak limits of vectors in the span of

{u1
λ : λ ∈ D

2} implies that

||u1
τ ||2 = ||v1

τ ||2 = 〈u1
τ , v1

τ 〉.
Thus, v1

τ = u1
τ and we are done. �

Our next result shows that the presence of vectors with null compo-
nents in Xτ has a surprisingly strong impact on the boundary regularity of
the function. We exclude facial B-points from our theorem, since they are
automatically C-points.

Theorem 3.3. Assume τ ∈ T
2 and also that there exists xτ (δ) ∈ Xτ with

xi
τ (δ) = 0 for some i ∈ {1, 2}. Then, τ is a C-point for φ.

Proof. Without loss of generality, assume that there exists xτ (δ0) ∈ Xτ with
x2

τ (δ0) = 0. We may assume that x1
τ (δ0) 
= 0, else φ would be a unimodular

constant. In view of Lemma 3.1, we obtain

〈x1
τ (δ), x1

τ (δ0)〉 = ||x1
τ (δ)||2 +

τ2δ2

τ1δ1
||x2

τ (δ)||2, (3.1)

for all δ ∈ H(τ). Choose any open subset Ω of H(τ) with the property that
τ2δ2

τ1δ1 has positive real part for all δ ∈ Ω. (3.1) then implies that

||x1
τ (δ)|| ≤ ||x1

τ (δ0)||
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for all δ ∈ Ω. Indeed, if this were not the case, we would be able to write

�〈x1
τ (δ), x1

τ (δ0)〉 ≤ ||x1
τ (δ)|| · ||x1

τ (δ0)||
< ||x1

τ (δ)||2

≤ ||x1
τ (δ)||2 + �

(

τ2δ2

τ1δ1

)

||x2
τ (δ)||2

whenever δ ∈ Ω, a contradiction.
Now, assume ||x1

τ (δ)|| = ||x1
τ (δ0)|| for all δ ∈ Ω. The previous chain of

inequalities then implies that

〈x1
τ (δ), x1

τ (δ0)〉 = ||x1
τ (δ)||2 = ||x1

τ (δ0)||2,
for all δ ∈ Ω. This gives us x1

τ (δ) = x1
τ (δ0) on Ω, and hence also on H(τ).

In view of (3.1), we obtain that x2
τ (·) must be identically zero. Hence, Xτ =

{(x1
τ (δ0), 0)} and we obtain (by Lemma 2.4) that τ is a C-point.

Assume, on the other hand, that we can find δ1 ∈ H(τ) such that
||x1

τ (δ1)|| < ||x1
τ (δ0)||. Applying 2.5 again, with δ = δ0 and uτ = xτ (δ1),

we deduce that

〈x1
τ (δ0), x1

τ (δ1)〉 = ||x1
τ (δ0)||2,

a contradiction. This concludes the proof. �

Remark 3.4. If we merely assume the existence of uτ ∈ Yτ such that ui
τ = 0

for some i ∈ {1, 2}, τ will not necessarily be a C-point; see Example 5.6.

Next, we show that the directional derivatives of φ along (τ1, τ2M) can
be naturally associated with an increasing (with respect to M) sequence of
positive numbers. Indeed, put δM = (τ1, τ2M) and define

Kτ (M) :=
D−δM

φ(τ)
−φ(τ)

= ||x1
τ (δM )||2 + M ||x2

τ (δM )||2,

for all M > 0.

Proposition 3.5. For any uτ ∈ Yτ we have

Kτ (M) ≤ ||u1
τ ||2 + M ||u2

τ ||2, ∀M > 0,

with equality if and only if xτ (δM ) = uτ . In particular, Kτ (M) is increasing
with respect to M. It will be strictly increasing if and only if Xτ 
= {(x1

τ , 0)}.
Proof. First, assume τ is a facial B-point. If |τ2| < 1, then Lemma 2.3 tells
us that Yτ = Xτ = {(x1

τ , 0)}, hence Kτ (M) is constant and there is nothing
to prove. If |τ1| < 1, then Yτ = Xτ = {(0, x2

τ )}, Kτ (M) is strictly increasing
with respect to M and the theorem obviously holds.

Now, assume τ ∈ T
2 and fix uτ ∈ Yτ , M > 0. In view of Lemma 3.1, we

can apply Cauchy-Schwarz to obtain

Kτ (M) = 〈x1
τ (δM ), u1

τ 〉 + M〈x2
τ (δM ), u2

τ 〉
≤ ||x1

τ (δM )|| · ||u1
τ || +

(√
M ||x2

τ (δM )||)(
√

M ||u2
τ ||) (3.2)

≤
√

Kτ (M)
√

||u1
τ ||2 + M ||u2

τ ||2. (3.3)

Thus, Kτ (M) ≤ ||u1
τ ||2 + M ||u2

τ ||2.
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When does equality hold? For (3.2) to hold as an equality, we must have
ci ∈ R

+ ∪ {0} such that cixi
τ (δM ) = ui

τ , for i ∈ {1, 2}. For (3.3), we need

||x1
τ (δM )|| · ||u2

τ || = ||x2
τ (δM )|| · ||u1

τ ||. (3.4)

Now, assume that either xi
τ (δM ) = 0 or ui

τ = 0 for some i. For definite-
ness, let us assume u2

τ = 0 (the other cases are proved in an identical way). In
view of (3.4), we must have either x2

τ (δM ) = 0 or u1
τ = 0. If the latter holds,

we obtain uτ = 0, hence φ is a unimodular constant and there is nothing to
prove. Thus, we may assume x2

τ (δM ) = 0. In this case, we may replace u1
τ by

c1x1
τ (δ) in the equality

||x1
τ (δM )||2 = Kτ (M) = 〈x1

τ (δM ), u1
τ 〉 + M〈x2

τ (δM ), u2
τ 〉 = 〈x1

τ (δM ), u1
τ 〉

to obtain ||x1
τ (δM )||2 = c1||x1

τ (δM )||2. If x1
τ (δM ) = 0, we again obtain that φ is

a unimodular constant, while x1
τ (δM ) 
= 0 implies c1 = 1, hence xτ (δM ) = uτ .

On the other hand, assume x1
τ (δM ), x2

τ (δM ), u1
τ , u2

τ are all nonzero. (3.4)
then gives us c1 = c2 = c. Replacing ui

τ by cxi
τ (δM ) in the equality

Kτ (M) = 〈x1
τ (δM ), u1

τ 〉 + M〈x2
τ (δM ), u2

τ 〉,
we obtain c = 1, hence xτ (δM ) = uτ .

Now, we show that Kτ (M) is increasing with respect to M. Indeed, let
N > M > 0. Setting uτ = xτ (δN ) in our previous result implies

Kτ (M) ≤ ||x1
τ (δN )|| + M ||x2

τ (δN )|| ≤ Kτ (N),

as desired.
Now, if Xτ = {(x1

τ , 0)}, it is evident that Kτ (M) will be constant (and
equal to ||x1

τ ||2 for all M). On the other hand, assume Xτ is not a singleton
of the form {(x1

τ , 0)} but that we can also find positive numbers M < N such
that Kτ (M) = Kτ (N). As we have already seen, this implies that xτ (δM ) =
xτ (δN ), which, combined with Kτ (M) = Kτ (N), allows us to deduce that
x2

τ (δM ) = x2
τ (δN ) = 0. Theorem 3.3 then tells us that Xτ =

{(

x1
τ (δM ), 0

)}

,
a contradiction. �

We now explore some consequences of Proposition 3.5.

Corollary 3.6. Given any M > 0 and uτ ∈ Yτ , we must either have ||x1
τ (δM )|| ≤

||u1
τ || or ||x2

τ (δM )|| ≤ ||u2
τ ||. Moreover, if

(i) ||x1
τ (δM )|| = ||u1

τ || (resp., ||x2
τ (δM )|| = ||u2

τ ||), then ||x2
τ (δM )|| ≤ ||u2

τ ||
(resp., ||x1

τ (δM )|| ≤ ||u1
τ ||);

(ii) ||xτ (δM )|| = ||uτ ||, then xτ (δM ) = uτ .

Proof. Assume that ||xi
τ (δM )|| > |ui

τ || for all i ∈ {1, 2}. Thus, Kτ (M) >
||u1

τ ||2+M ||u2
τ ||2, which contradicts Proposition 3.5. The rest of the corollary

is proved by applying Proposition 3.5 in an analogous manner. �

Corollary 3.7. Given any M,N > 0, one and only one of the following cases
can occur:

(i) ||x1
τ (δM )|| < ||x1

τ (δN )|| (resp., ||x2
τ (δM )|| < ||x2

τ (δN )|| ) and ||x2
τ (δM )|| >

||x2
τ (δN )|| (resp., ||x1

τ (δM )|| > ||x1
τ (δN )||);

(ii) xτ (δM ) = xτ (δN ).
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Proof. Suppose first that ||x1
τ (δM )|| < ||x1

τ (δN )||. If ||x2
τ (δM )|| ≤ ||x2

τ (δN )||,
one obtains

Kτ (N) > ||x1
τ (δM )||2 + N ||x2

τ (δM )||2,
which contradicts Proposition 3.5. Thus, ||x2

τ (δM )|| > ||x2
τ (δN )||. The proof

in the case that ||x2
τ (δM )|| < ||x2

τ (δN )|| proceeds in an entirely analogous
manner.

Now, assume ||x1
τ (δM )|| = ||x1

τ (δN )||. If ||x2
τ (δM )|| < ||x2

τ (δN )||, then
we again obtain Kτ (N) > ||x1

τ (δM )||2 + N ||x2
τ (δM )||2, a contradiction (the

inequality ||x2
τ (δM )|| > ||x2

τ (δN )|| can be ruled out in an analogous way).
Thus, we must have ||xτ (δM )|| = ||xτ (δN )||, which, by Proposition 3.5, gives
us xτ (δM ) = xτ (δN ). �

Our next proposition (while fitting the theme of this section) will not be
used in the sequel, so we record it without a proof (one can use Proposition
3.5 in combination with the previous two lemmas).

Proposition 3.8. Assume τ ∈ T
2. Then,

lim
M→0+

||x1
τ (δM )|| = lim

M→0+

√

Kτ (M) = inf
M>0

{||x1
τ (δM )||}

(resp., limM→+∞ ||x2
τ (δM )|| = limM→+∞

√

Kτ (M) = infM>0

{||x2
τ (δM )||}).

Moreover, if there exist u ∈ Yτ and a sequence {Mk} of positive numbers
such that Mk → 0 (resp. Mk → ∞) and ||u1

τ || ≤ ||x1
τ (δMk

)|| (resp., ||u2
τ || ≤

||x2
τ (δMk

)||) for all k, then

lim
k

x1
τ (δMk

) = u1
τ in norm

(resp., limk x2
τ (δMk

) = u2
τ in norm).

We now prove a theorem that describes those vectors in Yτ with null
components (recall that, by Lemma 3.2, these vectors, if they exist, must be
unique).

Theorem 3.9. Assume the B-point τ ∈ T
2 is such that there exists uτ ∈ Yτ

with u2
τ = 0. Then,

lim
M→+∞

Kτ (M) = ||u1
τ ||2

and also

lim
M→+∞

xτ (δM ) = uτ

in norm.
Moreover, τ is a C-point for φ if and only if Xτ = {uτ}. In this case,

every vτ ∈ Yτ such that vτ 
= uτ must satisfy ||v1
τ || > ||u1

τ || and v2
τ 
= 0.

Proof. We prove the C-point portion of the theorem first. If Xτ = {uτ},
Theorem 2.4 implies that τ is a C-point. Conversely, assume that τ is a
C-point. Write Xτ = {xτ}. Proposition 3.5 then implies that

||x1
τ ||2 + M ||x2

τ ||2 ≤ ||u1
τ ||2,
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for all M > 0. Thus, x2
τ = 0. Lemma 3.2 then gives us xτ = uτ and we can

also write
1 − φ(λ)φ(τ) = (1 − λ1τ1)〈u1

λ, x1
τ 〉 (λ ∈ D

2). (3.5)
Assume x1

τ 
= 0 (else the result will be be trivial) and let vτ ∈ Yτ . Lemma
3.1 implies that

〈x1
τ , v1

τ 〉 = ||x1
τ ||2.

Thus, either ||v1
τ || > ||x1

τ ||, or ||v1
τ ||2 = ||x1

τ ||2 = 〈x1
τ , v1

τ 〉, which leads to
v1

τ = x1
τ . But then, comparing

1 − φ(λ)φ(τ) = (1 − λ1τ1)〈u1
λ, v1

τ 〉 + (1 − λ2τ2)〈u2
λ, v2

τ 〉
with (3.5) gives us v2

τ = 0, thus vτ = xτ as desired. Finally, if v2
τ = 0, we can

apply Lemma 3.2 to conclude that vτ = xτ .
Now, we prove the first part of the theorem. If τ is a C-point, the

theorem follows by our previous result. So, assume that τ is not a C-point,
in which case Proposition 3.5 implies that Kτ (M) is strictly increasing. The
bound Kτ (M) ≤ ||u1

τ ||2, for every M > 0, implies that limM→+∞ x2
τ (δM ) = 0

in norm and also that
{||x1

τ (δM )||} is bounded with respect to M .
Now, let {Mk} be any sequence converging to +∞ such that x1

τ (δMk
)

converges to some x1 ∈ M1 weakly. Also, fix a decreasing null sequence {εk}.
In view of Theorem 2.5, we can find {λk} ⊂ D

2 that converges to τ and such
that |φ(λk) − φ(τ)| < εk and also ||xτ (δMk

) − uλk
|| < εk, for all k. Thus,

limk φ(λk) = φ(τ), u1
λk

converges weakly to x1 and u2
λk

converges to 0 in
norm. Now, the model formula (2.1) implies that

1 − φ(λ)φ(λk) = (1 − λ1λ1
k)〈u1

λ, u1
λk

〉 + (1 − λ2λ2
k)〈u2

λ, u2
λk

〉,
for all k and λ ∈ D

2. Letting k → ∞ then gives us,

1 − φ(λ)φ(τ) = (1 − λ1τ1)〈u1
λ, x1〉, (3.6)

for all λ. However, since uτ ∈ Yτ we can also write (in view of (2.5))

1 − φ(λ)φ(τ) = (1 − λ1τ1)〈u1
λ, u1

τ 〉,
for all λ. Comparing this equality with (3.6) then gives us 〈u1

λ, u1
τ 〉 = 〈u1

λ, x1〉
for all λ. Since both vectors u1

τ , x1 are weak limits of elements from {u1
λ : λ ∈

D
2}, we may conclude that u1

τ = x1. But then, observe that (by a standard
property of weak limits)

||u1
τ ||2 = ||x1||2
≤ lim inf

k
||x1

τ (δMk
)||2

≤ lim sup
k

||x1
τ (δMk

)||2

≤ lim sup
k

Kτ (Mk)

≤ ||u1
τ ||2,

which implies that limk x1
τ (δMk

) = x1 in norm and also that limk Kτ (Mk) =
||u1

τ ||2. We conclude that x1
τ (δM ) converges to u1

τ in norm and also that
limM→+∞ Kτ (M) = ||u1

τ ||2, as desired. �
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We end this section with a weighted version of Julia’s inequality for
the bidisk, which will be of critical importance in Sect. 5. Our methods are
motivated by the proof of [7, Theorem 4.9].

Theorem 3.10. Let φ ∈ S2 and τ = (τ1, τ2) ∈ T
2. Assume also that α and

M are positive numbers. The following assertions are equivalent:

(i) τ is a B-point for φ and

D−(τ1,τ2M)φ(τ)
−φ(τ)

≤ α;

(ii) There exists a sequence {λn} ⊂ D
2 such that λn → τ, limn

1−|λ2
n|

1−|λ1
n| = M

and

lim
n

1 − |φ(λn)|
1 − ||λn|| ≤

{

α if M ≥ 1;
α
M if M < 1;

(iii) There exists ω ∈ T such that

φ(E(τ,R1, R2)) ⊂ E(ω,max{aR1, aR2/M}), ∀R1, R2 > 0.

If (iii) holds, ω will necessarily be equal to φ(τ).

Proof. Let (M,u) be a model for φ.

First, we show that (i) implies (ii). Assuming (i) holds, set δM =
(τ1, τ2M) and fix a decreasing null sequence {rn}. Since τ is a B-point,
Theorem 2.5 allows us to deduce that

||x1
τ (δM )||2 + M ||x2

τ (δM )||2 ≤ α, (3.7)

and also limn uτ−rnδM
= xτ (δM ) (in norm). Now, assume M ≥ 1 and put

λn = τ − rnδM . (2.1) allows us to write:

lim
n

1 − |φ(λn)|
1 − ||λn|| = lim

n

1 − |φ(λn)|2
1 − ||λn||2

= lim
n

1 − |φ(λn)|2
1 − |λ1

n|2

= lim
n

(

||u1
λn

||2 +
1 − |λ2

n|2
1 − |λ1

n|2 ||u2
λn

||2
)

= ||x1
τ (δM )||2 + M ||x2

τ (δM )||2,
which, combined with (3.7), gives us (ii). The proof for M < 1 is entirely
analogous and is omitted.

Next, we show that (ii) implies (iii). The assumptions in (ii) clearly
imply that τ is a B-point for φ. But then, we can argue as above to deduce
that (3.7) holds. Thus, we can use (2.5) to obtain

|1 − φ(λ)φ(τ)| ≤ |1 − λ1τ1| · ||x1(δM )|| · ||u1
λ|| + |1 − λ2τ2| · ||x2(δM )|| · ||u2

λ||,
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for all λ ∈ D
2. Setting Rj = |τj−λj |2

1−|λj |2 (j = 1, 2) and applying Cauchy-Schwarz
then gives us

|φ(τ) − φ(λ)|2 ≤ (||x1(δM )||2 + M ||x2(δM )||2)

×
(

|τ1 − λ1|2||u1
λ||2 +

|τ2 − λ2|2
M

||u2
λ||2

)

≤ α max{R1, R2/M}((1 − |λ1|2)||u1
λ||2 + (1 − |λ2|2)||u2

λ||2)

= max{αR1, αR2/M}(1 − |φ(λ)|2),
which implies

|φ(τ) − φ(λ)|2
1 − |φ(λ)|2 ≤ max{αR1, αR2/M} (λ ∈ D

2)

and our proof is complete.
Lastly, we show that (iii) implies (i). Set λn = τ − rnδM , where {rn} is

a decreasing null sequence. Assuming (iii) holds, we obtain

|ω − φ(λn)|2
1 − |φ(λn)|2 ≤ α max

{ |τ1 − λ1
n|2

1 − |λ1
n|2 ,

1
M

|τ2 − λ2
n|2

1 − |λ2
n|2

}

= α max
{

rn

2 − rn
,

rn

2 − Mrn

}

= Rn.

Thus, we can write

φ(λn) ∈ cl
(

E(ω,Rn)) = cl
(

D

(

ω

Rn + 1
,

Rn

Rn + 1

))

,

for all n ≥ 1.
Now, assume M ≥ 1 (the proof in the case where M < 1 will be entirely

analogous). Then, Rn = αrn

2−Mrn
, ||λn|| = 1 − rn and we can compute

1 − |φ(λn)|
1 − ||λn|| =

1 − |φ(λn)|
rn

≤ |φ(λn) − ω|
rn

≤ 2
rn

Rn

Rn + 1

=
2α

2 + (α − M)rn
→ α,

as n → ∞. This implies that τ is a B-point for φ and ω = φ(τ). Also, since

lim
n

1 − |φ(λn)|
1 − ||λn|| = ||x1

τ (δM )||2 + M ||x2
τ (δM )||2,

we obtain that (3.7) holds. Theorem 2.5 then finishes off the proof. �

Remark 3.11. In this theorem, we only considered points τ in the distin-
guished boundary. For facial B-points, the situation is more straightforward;
see [8, Theorem 3.2].
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Remark 3.12. Observe that if we assume

lim
r→1−

1 − |φ(rτ)|
1 − ||rτ || = lim inf

λ→τ

1 − |φ(λ)|
1 − ||λ|| ≤ α,

we obtain that (ii) holds with M = 1. Hence,

φ(E(τ,R,R)) ⊂ E(φ(τ), α max{R,R}) = E(φ(τ), αR),

for all R > 0, which is the usual statement of Julia’s inequality over the
bidisk.

Remark 3.13. Julia-type inequalities like the one in Theorem 3.10(iii) were
also considered by Frosini in [20], where she used Busemann sublevel sets to
obtain analogous statements. Specifically, her Julia-type lemma [20, Theo-
rem 1] depends on the behavior of φ along chosen complex geodesics that
approach the boundary point τ . Theorem 3.10 can then be viewed as a re-
finement of that result, as it essentially says that every “weighted” version of
Julia’s inequality is equivalent to an inequality involving certain directional
derivatives of φ at the corresponding boundary B-point.

4. Criteria for Denjoy–Wolff Points

We will now use our work from Sect. 3 to study Type I/II DW points, as
defined in subsection 2.5.

We start with two lemmas.

Lemma 4.1. Let φ ∈ S2 with model (M,u) and assume ξ(μ), μ are points in
D such that φ(ξ(μ), μ) = ξ(μ). Then, ||u1

(ξ(μ),μ)|| ≤ 1. Also, ||u1
(ξ(μ),μ)|| = 1 if

and only if u2
(ξ(μ),μ) = 0.

Proof. In (2.1), set (λ1, λ2) = (μ1, μ2) = (ξ(μ), μ) to obtain

1 − |ξ(μ)|2 = 1 − |φ(ξ(μ), μ)|2 = (1 − |ξ(μ)|2)||u1
(ξ(μ),μ)||2 + (1 − |μ|2)||u2

(ξ(μ),μ)||2.
Since |ξ(μ)|, |μ| < 1, the conclusions of the lemma follow easily. �

The next lemma is well-known (e.g. it appears as Theorem 2 in [23]).
We include a proof for the sake of completeness.

Lemma 4.2. Assume φ ∈ S2 and that there exists μ0 ∈ D such that the slice
function φμ0 is the identity on D. Then, φ ≡ π1.

Proof. Let (M,u) be a model for φ. We can use (2.1) to obtain

1 =
1 − |φ(λ, μ0)|2

1 − |λ|2 = ||u1
(λ,μ0)

||2 +
1 − |μ0|2
1 − |λ2| ||u2

(λ,μ0)
||2, (4.1)

for all λ ∈ D. Thus, ||u1
(λ,μ0)

|| ≤ 1, for all λ ∈ D, with equality if and only if
u2

(λ,μ0)
= 0.

Now, fix τ1 ∈ T and let λ → τ1 in (4.1) to obtain that (τ1, μ0) is a
B-point for φ, φ(τ1, μ0) = τ1 and also that there exists u(τ1,μ0) ∈ Y(τ1,μ0)

such that ||u1
(τ1,μ0)

|| ≤ 1 and u2
(τ1,μ0)

= 0. (2.5) then implies that

1 − φ(λ, μ)τ1 = (1 − λτ1)〈u1
(λ,μ), u

1
(τ1,μ0)

〉, (4.2)
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for all λ, μ ∈ D. Setting μ = μ0 then gives us

1 − λτ1 = (1 − λτ1)〈u1
(λ,μ0)

, u1
(τ1,μ0)

〉,
hence

〈u1
(λ,μ0)

, u1
(τ1,μ0)

〉 = 1 ≥ ||u1
(λ,μ0)

||2, ||u1
(τ1,μ0)

||2.
This implies that u1

(λ,μ0)
= u1

(τ1,μ0)
(and both have to be unit vectors) and

also u2
(λ,μ0)

= 0, for all λ ∈ D. Hence,

1 − φ(λ, μ)λ′ = 1 − φ(λ, μ)φ(λ′, μ0)

= (1 − λλ′)〈u1
(λ,μ), u

1
(λ′,μ0)

〉
= (1 − λλ′)〈u1

(λ,μ), u
1
(τ1,μ0)

〉,
for all λ, μ, λ′ ∈ D. Since both sides are affine functions of λ′, we obtain
φ(λ, μ) = λ, for all λ, μ ∈ D, as desired. �

Now, we use model theory to give a new proof of the fact that every
φ ∈ S2 (that is not a coordinate projection) must either be a Type I or a
Type II function, a result originally due to Hervé (see [23, Theorem 1]).

Theorem 4.3. Every φ ∈ S2 such that φ 
= π1 (resp., φ 
= π2) is either a left
Type I (resp. right Type I) or a left Type II (resp. right Type II) function.

Proof. First, we prove the left Type I/II version of the theorem. Note that,
since φ 
= π1, Lemma 4.2 implies that φμ is not the identity on D, for any
μ ∈ D. Thus, every such slice function will have a unique Denjoy–Wolff point
(either on the interior of the disk or on the boundary).

To begin, assume that there exists some μ0 ∈ D such that the slice
φμ0 has its Denjoy–Wolff point τ1 on T. Let λn = ρnτ1, where {ρn} is an
increasing sequence of positive numbers tending to 1. By the single-variable
theory of Denjoy–Wolff points, we have limn φμ0(λn) = τ1 and

1 − |φ(λn, μ0)|2
1 − ||(λn, μ0)||2 =

1 − |φμ0(λn)|2
1 − |λn|2 → αμ0 ≤ 1,

as n → ∞. Thus, (τ1, μ0) is a B-point for φ. Using the model formula for φ,
we also see that

||u1
(λn,μ0)

||2 +
1 − |μ0|2
1 − |λn|2 ||u2

(λn,μ0)
||2 =

1 − |φμ0(λn)|2
1 − |λn|2 , ∀n ≥ 1.

Letting n → ∞ and taking into account that 1−|μ0|2
1−|λn|2 → ∞, we obtain the

existence of u(τ1,μ0) ∈ Y(τ1,μ0) satisfying ||u1
(τ1,μ0)

|| ≤ αμ0 ≤ 1 and u2
(τ1,μ0)

=
0. In view of (2.5), we can write

1 − φ(λ, μ)τ1 = (1 − λτ1)〈u1
(λ,μ), u

1
(τ1,μ0)

〉, (4.3)

for all λ, μ ∈ D.
Now, assume there exists some slice φμ1 such that μ1 
= μ0 and φμ1 has

an interior fixed point p ∈ D. Set (λ, μ) = (p, μ1) in (4.3) to obtain

1 − pτ1 = (1 − pτ1)〈u1
(p,μ1)

, u1
(τ1,μ0)

〉,
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hence 〈u1
(p,μ1)

, u1
(τ1,μ0)

〉 = 1. Lemma (4.1) then implies that u1
(p,μ1)

= u1
(τ1,μ0)

(and both will be unit vectors) and u2
(p,μ1)

= 0. Thus, we may substitute
(μ1, μ2) = (p, μ1) in (2.1) to obtain

1 − φ(λ, μ)p = (1 − λp)〈u1
(λ,μ), u

1
(p,μ1)

〉 = (1 − λp)〈u1
(λ,μ), u

1
(τ1,μ0)

〉, (4.4)

for all λ, μ ∈ D. Comparing (4.4) with (4.3) then allows us to deduce that φ
is equal to the identity, a contradiction.

So far, we have proved that every slice function φμ must have its Denjoy–
Wolff point on the boundary of D (under the assumption that at least one of
them does). We now show that τ1 (the Denjoy–Wolff point of the slice φμ0

we started with) is actually the Denjoy–Wolff point of all slices φμ. Indeed,
suppose we can find a slice φμ1 with a different Denjoy–Wolff point σ1 ∈ T.
Arguing as in the beginning of the proof, we obtain that (σ1, μ1) is a B-
point for φ, its value at (σ1, μ1) is σ1 and also there exists u(σ1,μ1) ∈ Y(σ1,μ1)

satisfying ||u1
(σ1,μ1)

|| ≤ 1 and u2
(σ1,μ1)

= 0. (2.5) implies that

1 − φ(λ, μ)σ1 = (1 − λσ1)〈u1
(λ,μ), u

1
(σ1,μ1)

〉, ∀λ, μ ∈ D. (4.5)

If in (4.5) we let (λ, μ) → (τ1, μ0) in such a way that u1
(λ,μ) converges weakly

to u1
(τ1,μ0)

, we obtain (since φ(τ1, μ0) = τ1 and σ1 
= τ1)

〈u1
(σ1,μ1)

, u1
(τ1,μ0)

〉 = 1 ≥ ||u1
(σ1,μ1)

||2, ||u1
(τ1,μ0)

||2,
hence u1

(σ1,μ1)
= u1

(τ1,μ0)
. Comparing (4.3) with (4.5) then gives us that φ is

equal to the identity, a contradiction.
On the other hand, assume that every slice φμ has a (necessarily unique)

interior fixed point ξ(μ). To show that φ is a left Type II function, it suffices
to prove that ξ : D → D is actually a holomorphic function. First, note that
putting (λ1, λ2) = (ξ(μ), μ) and (μ1, μ2) = (ξ(μ′), μ′) in (2.1) gives us

1 − ξ(μ)ξ(μ′)

= (1 − ξ(μ)ξ(μ′))〈u1
(ξ(μ),μ), u

1
(ξ(μ′),μ′)〉 + (1 − μμ′)〈u2

(ξ(μ),μ), u
2
(ξ(μ′),μ′)〉,

(4.6)

for all μ, μ′ ∈ D.
Now, if ||u1

(ξ(μ′),μ′)|| = 1 for some μ′ ∈ D, the model formula for φ yields
(since u2

(ξ(μ′),μ′) = 0 in view of Lemma 4.1)

1 − φ(λ, μ)ξ(μ′) = (1 − λξ(μ′))〈u1
(λ,μ), u

1
(ξ(μ′),μ′)〉, (4.7)

for all λ, μ. Plugging in (λ, μ) = (ξ(μ), μ) gives us 〈u1
(ξ(μ),μ), u

1
(ξ(μ′),μ′)〉 = 1,

for all μ, hence u1
(ξ(μ),μ) = u1

ξ =constant (of norm 1) and u2
(ξ(μ),μ) = 0 for all

μ. Thus, we obtain

1 − φ(λ, μ)ξ(σ) = (1 − λξ(σ))〈u1
(λ,μ), u

1
ξ〉, (4.8)

for all λ, μ, σ ∈ D.
There are now two separate cases to examine. Either φ(λ, μ) =

λ〈u1
(λ,μ), u

1
ξ〉 for all λ, μ, in which case (4.8) implies that 〈u1

(λ,μ), u
1
ξ〉 = 1
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(for all λ, μ), hence φ = π1, a contradiction, or we can find λ0, μ0 ∈ D such
that φ(λ0, μ0) 
= λ0〈u1

(λ0,μ0)
, u1

ξ〉. Then, (4.8) implies that

ξ(σ) =
〈u1

(λ0,μ0)
, u1

ξ〉 − 1

λ0〈u1
(λ0,μ0)

, u1
ξ〉 − φ(λ0, μ0)

,

for all σ ∈ D. Thus, ξ is constant (and trivialy holomorphic).
There is one more possibility to consider: suppose that ||u1

(ξ(μ′),μ′)|| < 1
for all μ′. (4.6) then becomes

1 − ξ(μ)ξ(μ′) = (1 − μμ′)
〈u2

(ξ(μ),μ), u
2
(ξ(μ′),μ′)〉

1 − 〈u1
(ξ(μ),μ), u

1
(ξ(μ′),μ′)〉

, (4.9)

for all μ, μ′ ∈ D. In other words,

1 − ξ(μ)ξ(μ′)
1 − μμ′

is the Schur product of the positive-semidefinite kernels

〈u2
(ξ(μ),μ), u

2
(ξ(μ′),μ′)〉

and
1

1 − 〈u1
(ξ(μ),μ), u

1
(ξ(μ′),μ′)〉

(the latter is actually a complete Pick kernel, see [6, Chapter 8]), hence it
must be positive semi-definite as well. Automatic holomorphy of models (see
[9, Proposition 2.32]) then implies that ξ is a holomorphic function on D,
concluding the proof.

The right Type I/II version of the theorem follows by applying the left
Type I/II version to the function ˜φ : D2 → D defined by ˜φ(λ) = φ(λ2, λ1),
for all λ ∈ D

2. �

Next, we provide criteria for Type I DW points, as stated in Sect. 2.5.
Recall that, given φ ∈ S2 with model (M,u) and a B-point τ ∈ T

2, we have
defined δM = (τ1, τ2M) and

Kτ (M) = ||x1
τ (δM )||2 + M ||x2

τ (δM )||2,
for all M > 0.

Proof of Theorem 2.9. First, we show that (iii) implies (ii). Indeed, assume
that τ1 is the common Denjoy–Wolff point of all slice functions φμ and let
|σ| ≤ 1. We will show that (τ1, σ) is a left Type I DW point for φ.

Fix a sequence {μn} ⊂ D tending to σ. Now, since τ1 is the Denjoy–
Wolff point of φμ, we obtain that τ1 is a B-point for φμ, φμ(τ1) = τ1 and
also

lim
λ

nt−→τ1

1 − |φμ(λ)|2
1 − |λ|2 ≤ 1,
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for all μ ∈ D. Thus, it is possible to choose a sequence {λn} ⊂ D converging to
τ1 nontangentially, and sufficiently fast, so that we obtain limn φμn

(λn) = τ1,
limn

1−|λn|2
1−|μn|2 = 0 and also

lim sup
n

1 − |φ(λn, μn)|2
1 − ||(λn, μn)||2 = lim sup

n

1 − |φμn
(λn)|2

1 − |λn|2 ≤ 1, (4.10)

which implies that (τ1, σ) is a B-point for φ and also φ(τ1, σ) = τ1. Moreover,
the model formula for φ tells us

||u1
(λn,μn)||2 +

1 − |μn|2
1 − |λn|2 ||u2

(λn,μn)||2 =
1 − |φ(λn, μn)|2

1 − |λn|2 ,

for all n. Letting n → ∞ and taking into account the limits limn
1−|λn|2
1−|μn|2 =

0 and (4.10), we can deduce the existence of u(τ1,σ) ∈ Y(τ1,σ) such that
||u1

(τ1,σ)|| ≤ 1 and u2
(τ1,σ) = 0. This implies that (τ1, σ) is a left Type I DW

point for φ. Since σ was arbitrary, (ii) has been established.
That (ii) implies (i) is obvious.
Now, we prove that (i) implies (iii). So, assume that there exists |σ| ≤ 1

such that (τ1, σ) is a B-point for φ, φ(τ1, σ) = τ1 and also there exists
u(τ1,σ) ∈ Y(τ1,σ) such that ||u1

(τ1,σ)|| ≤ 1 and u2
(τ1,σ) = 0. We obtain

1 − φμ(λ)τ1 = 1 − φ(λ, μ)τ1 = (1 − λτ1)〈u1
(λ,μ), u

1
(τ1,σ)〉, (4.11)

for all λ, μ ∈ D. If we fix μ, we may repeat the proof of “(ii) implies (iii)”
from Theorem 3.10 to obtain

|τ1 − φμ(λ)|2
1 − |φμ(λ)|2 =

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ ασ

|τ1 − λ|2
1 − |λ|2 ,

for all λ, μ ∈ D, where ασ = ||u1
(τ1,σ)||2. Such an equality is then known to

imply (see Sect. 2.2) that τ1 is a B-point for φμ, φμ(τ1) = τ1 and also that
the angular derivative of φμ at τ1 is equal to ασ ≤ 1, for all μ ∈ D. Since
we also know (in view of Lemma 4.2) that φμ 
= IdD, for all μ ∈ D, we can
conclude that τ1 is the common Denjoy–Wolff point of every slice function,
i.e. (iii) holds.

Before we proceed, a few important observations are in order. Our pre-
vious arguments show that, if at least one point in the closed face {τ1}×cl(D)
is a left Type I DW point for φ, then for every |σ| ≤ 1 there exists u(τ1,σ) =
(u1

(τ1,σ), 0) ∈ Y(τ1,σ) such that ||u1
(τ1,σ)|| ≤ 1 and also (4.11) holds, for all

λ, μ ∈ D. Since σ was arbitrary, (4.11) implies that the vectors u1
(τ1,σ) do

not actually depend on σ, thus u(τ1,σ) = uτ1 = (u1
τ1 , 0) for all σ ∈ cl(D). In

particular, letting φ′
μ(τ1) denote the angular derivative of φμ at τ1, we obtain

φ′
μ(τ1) = ||uτ1 ||2 ≤ 1, (4.12)

for all |μ| < 1. Also, notice that, in view of Lemma 3.2, uτ1 will be the unique
vector in Y(τ1,σ) with M2-component equal to 0, for all |σ| ≤ 1.

Next, we show that (iii) implies (v). Fix an arbitrary σ ∈ cl(D). By our
previous results, (τ1, σ) is a B-point for φ, φ(τ1, σ) = τ1 and also there exists
uτ1 = (u1

τ1 , 0) ∈ Y(τ1,σ) (not depending on σ) such that ||uτ1 || ≤ 1. If we also
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assume |σ| < 1, then (τ1, σ) is a facial B-point, so [8, Theorem 3.2] implies
that Y(τ1,σ) = {uτ1} and also

D−(τ1,σM)φ(τ1, σ)
−τ1

=
D−(τ1,σM)φ(τ1, σ)

−φ(τ1, σ)
= ||uτ1 ||2 ≤ 1,

for all M > 0, as desired. On the other hand, assume that |σ| = 1. We may
apply Theorems 2.5 and 3.9 to obtain that

D−(τ1,σM)φ(τ1, σ)
−τ1

= K(τ1,σ)(M) ≤ ||uτ1 ||2 ≤ 1,

for all M > 0. Actually, one can deduce the even stronger statement

lim
M→∞

D−(τ1,σM)φ(τ1, σ)
−τ1

= lim
M→∞

K(τ1,σ)(M) = ||uτ1 ||2 = φ′
μ(τ1),

for all μ ∈ D. Since σ was arbitrary, we have established (v).
That (v) implies (iv) is evident, so all that remains is to show that

(iv) implies (iii). So, assume there exists (τ1, σ) ∈ T × cl(D) such that the
assumptions of (iv) are satisfied. If |σ| < 1, then Y(τ1,σ) = {(u1

(τ1,σ), 0)} and
for any M > 0 we have

||u(τ1,σ)||2 =
D−(τ1,σM)φ(τ1, σ)

−τ1
≤ 1.

This shows that (τ1, σ) is a left Type I DW point for φ, which gives us
(i), hence (iii) holds. On the other hand, assume |σ| = 1. Fix an increasing
sequence {Mk} tending to ∞. Since, by assumption, we have

D−(τ1,σMk)φ(τ1, σ)
−τ1

≤ 1,

for all k, Theorem 3.10 implies that

φ
(

E((τ1, σ), R1, R2)
) ⊂ E(τ1,max{R1, R2/Mk}),

for all k ≥ 1 and R1, R2 > 0. Letting k → ∞ yields

φ
(

E((τ1, σ), R1, R2)
) ⊂ E(τ1, R1}),

for all R1, R2 > 0, which translates into the inequality

|τ1 − φμ(λ)|2
1 − |φμ(λ)|2 ≤ |τ1 − λ|2

1 − |λ|2 ,

for all λ, μ ∈ D. As already mentioned during the proof of “(i) implies (iii)”,
this implies that τ1 is the Denjoy–Wolff point of φμ, for all μ, hence (iii)
holds.

Finally, to prove the right Type I-version of the theorem, notice that
the function ˜φ : D2 → D defined by ˜φ(λ) = φ(λ2, λ1) (λ ∈ D

2) has (˜M, ũ) as
a model, where ũ : D2 → ˜M = M2 ⊕ M1 is defined as

ũ(λ) = 〈ũ1
λ, ũ2

λ, 〉 = 〈u2
(λ2,λ1), u

1
(λ2,λ1)〉,

for all λ ∈ D
2. By definition, (σ, τ2) is a right Type I DW point for φ if and

only if (τ2, σ) is a left Type I DW point for ˜φ. Thus, to obtain the right Type
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I-version of Theorem 2.9, one simply has to apply the left Type I-version of
that same theorem to ˜φ.

We also establish a uniqueness result for Type I DW points.

Proposition 4.4. Let φ ∈ S2 be a left Type I function with model (M,u) such
that φ 
= π1 and τ1 ∈ T is the common Denjoy–Wolff point of all maps φμ.
Then, there exists uτ1 = (u1

τ1 , 0) ∈ M such that ||uτ1 ||2 = φ′
μ(τ1) ≤ 1, for all

μ. Moreover, given any σ = (σ1, σ2) ∈ T × cl(D), if
(i) σ1 = τ1 and |σ2| = 1, we have uτ1 ∈ Yσ. Also, given any vσ ∈ Yσ, we

have v2
σ = 0 if and only if vσ = uτ1 . If, in addition, we assume that σ

is a C-point, we obtain that every vσ ∈ Yσ that is not equal to uτ1 must
satisfy ||v1

σ|| > ||uτ1 || and v2
σ 
= 0;

(ii) σ1 = τ1 and |σ2| < 1, we have Yσ = {uτ1};
(iii) σ1 
= τ1, σ is a B-point for φ and φ(σ) = σ1, then every vσ ∈ Yσ must

satisfy either ||v1
σ|| > 1 or ||v1

σ|| = 1 and v2
σ 
= 0.

Consequently, if σ = (σ1, σ2) ∈ T × cl(D), then σ is a left Type I DW point
for φ if and only if σ1 = τ1. Also, no point in T× cl(D) can be a left Type II
DW point for φ.

There is an analogous statement for right Type I DW points (we need
to assume that φ 
= π2).

Proof. Let φ be a left Type I function satisfying our assumptions and denote
by uτ1 ∈ Y(τ1,σ) (for all |σ| ≤ 1) the vector described after the “(i) implies
(iii)” part of the proof of Theorem 2.9. Also, let σ = (σ1, σ2) ∈ T × cl(D).

First, assume σ1 = τ1 and |σ2| = 1. The conclusions of (i) then follow
by invoking Lemma 3.2 and Theorem 3.9.

On the other hand, if σ1 = τ1 and |σ2| < 1, an application of Theorem
2.4 does the job.

Now, assume σ1 
= τ1, σ is a B-point for φ and φ(σ) = σ1. Let vσ ∈ Yσ

be such that ||v1
σ|| ≤ 1 and choose {(λn, μn)} ⊂ D

2 that converges to σ
and also satisfies limn φ(λn, μn) = σ1 and u(λn,μn) → vσ weakly as n → ∞.
Setting (λ, μ) = (λn, μn) in (4.11) and letting n → ∞ then allows us to
obtain

1 − σ1τ1 = (1 − σ1τ1)〈v1
σ, u1

τ1〉.
Since σ1 
= τ1, we obtain

〈v1
σ, u1

τ1〉 = 1 ≥ ||v1
σ||2, ||u1

τ1 ||2,
which implies that v1

σ = u1
τ1 and both have to be unit vectors. However, if we

also assume that v2
σ = 0, we obtain that σ is a left Type I DW point for φ.

In view of Theorem 2.9, this implies that the common Denjoy–Wolff point of
all maps φμ is σ1 
= τ1, a contradiction (since φ 
= π1). Thus, we must have
v2

σ 
= 0 and the proof of (iii) is complete.
Finally, to prove the right Type I-version of the theorem, apply the left

Type I-version to ˜φ. �
Note also the following consequence of Theorem 2.9, which (especially

the second part) will be instrumental in Sect. 5.
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Corollary 4.5. Let φ : D2 → D, φ 
= π1, be holomorphic. Then, φ has a left
Type I DW point of the form (τ1, σ) ∈ T × cl(D) if and only if

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ |τ1 − λ2|2

1 − |λ|2 , ∀(λ, μ) ∈ D
2.

If, in addition, we assume that τ = (τ1, τ2) is not a C-point for some
τ2 ∈ T, then for any increasing sequence {Mk} ⊂ R

+ tending to ∞ one can
find a sequence {rk} such that rk > 1, rk → 1 and

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{

1
rk

|τ1 − λ|2
1 − |λ|2 ,

1
Mk

|τ1 − λ|2
1 − |λ|2

}

,

for all λ, μ ∈ D and k ≥ 1.
There is an analogous statement for right Type I DW points.

Proof. We only prove the left Type I-version. Since τ1 will be the Denjoy–
Wolff point of every map φμ, to obtain the first part of the theorem it suffices
(in view of Theorem 2.9) to apply the one-variable Julia’s inequality to every
φμ.

To prove the second part, assume that there exists τ2 ∈ T such that
τ = (τ1, τ2) is not a C-point (it will necessarily be a B-point). In view of
Proposition 3.5 and Theorem 3.9, {Kτ (Mk)}k will be strictly increasing,
hence

||x1
τ (δMk

)||2 + Mk||x2
τ (δMk

)||2 < 1,

for all k ≥ 1. In particular, we can find rk > 1 such that

Kτ

(

Mk

rk

)

≤ 1
rk

for all k ≥ 1. Theorems 2.5 and 3.10 then allows us to deduce the desired
inequality. �

Next, we turn to Type II DW points.

Proof of Theorem 2.10. Let (M,u) be a model for φ.
First, we show that (i) implies (ii). By assumption, τ is a B-point for φ

that is not a left Type I DW point, φ(τ) = τ1 and also there exists uτ ∈ Yτ

such that ||u1
τ || < 1 and

||u1
τ ||2 + K||u2

τ ||2 ≤ 1. (4.13)

To begin, we show that φ has to be a left Type II function. Indeed,
assume instead that φ is a left Type I function, σ1 ∈ T being the common
Denjoy–Wolff point of all maps φμ. We cannot have σ1 = τ1, since then τ
would be (in view of Theorem 2.9) a left Type I DW point, contradicting
the definition of a left Type II DW point. On the other hand, if σ1 
= τ1, we
obtain a contradiction in view of Proposition 4.4(iii). Thus, φ cannot be a
left Type I function and we conclude (by Theorem 4.3) that φ is a left Type
II function.

Now, let ξ : D → D denote the holomorphic function that keeps track
of the unique (interior) fixed point of each slice φμ, i.e. we have φ(ξ(μ), μ) =
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ξ(μ), for all μ ∈ D. Let 0 < K ′ < K. Since (4.13) holds and u2
τ 
= 0, we must

have r||u1
τ ||2 + K ′||u2

τ ||2 ≤ 1 whenever r > 1 is sufficiently close to 1, hence

||u1
τ ||2 +

K ′

r
||u2

τ ||2 ≤ 1
r
.

Proposition 3.5 then implies that
D−(τ1,τ2K′/r)φ(τ)

−τ1
= Kτ (K ′/r) ≤ 1/r.

In view of Theorem 3.10, we obtain

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{

1
r

|τ1 − λ|2
1 − |λ|2 ,

1
K ′

|τ2 − μ|2
1 − |μ|2

}

, (4.14)

for all λ, μ ∈ D. Plugging in λ = ξ(μ) in (4.14) then gives us

|τ1 − ξ(μ)|2
1 − |ξ(μ)|2 ≤ max

{

1
r

|τ1 − ξ(μ)|2
1 − |ξ(μ)|2 ,

1
K ′

|τ2 − μ|2
1 − |μ|2

}

,

for all μ ∈ D. Since 1/r < 1, this last inequality implies

1
r

|τ1 − ξ(μ)|2
1 − |ξ(μ)|2 ≤ 1

K ′
|τ2 − μ|2
1 − |μ|2

whenever r > 1 is sufficiently close to 1. Letting r → 1 first and K ′ → K
afterwards yields

|τ1 − ξ(μ)|2
1 − |ξ(μ)|2 ≤ 1

K

|τ2 − μ|2
1 − |μ|2 ,

for all μ ∈ D. The one-variable Julia’s inequality (see Sect. 2) then allows us
to deduce that τ2 is a B-point for ξ, ξ(τ2) = τ1 and also

A :=
(

lim inf
μ→τ1

1 − |ξ(μ)|
1 − |μ|

)−1

≥ K. (4.15)

To show that (ii) implies (i), assume that φ is a left Type II function
and ξ satisfies the given hypotheses. Substituting λ = ξ(μ) into the model
formula

1 − |φ(λ, μ)|2 = (1 − |λ|2)||u1
(λ,μ)||2 + (1 − |μ|2)||u2

(λ,μ)||2
yields

1 − |φ(ξ(μ), μ)|2
1 − |μ|2 =

1 − |ξ(μ)|2
1 − |μ|2

=
1 − |ξ(μ)|2
1 − |μ|2 ||u1

(ξ(μ),μ)||2 + ||u2
(ξ(μ),μ)||2, (4.16)

for all μ ∈ D. By assumption, we can find a (radial) sequence {μn} ⊂ D such
that limn μn = τ2, limn ξ(μn) = limn φ(ξ(μn), μn) = τ1 and

lim
n

1 − |ξ(μn)|
1 − |μn| = lim

n

1 − |ξ(μn)|2
1 − |μn|2 ≤ 1

K
.

Note also that limn
1−|ξ(μn)|
1−|μn| > 0, else the single-variable Julia’s inequality

would imply that ξ is a unimodular constant, a contradiction. Thus, plugging
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in μ = μn in (4.16) and letting n → ∞ allows us to conclude that τ is a B-
point for φ, φ(τ) = τ1 and also there exists uτ ∈ Yτ such that

||u1
τ ||2 + K||u2

τ ||2 ≤ 1.

Moreover, since φ is a left Type II function, Theorem 2.9 implies that τ
cannot be a left Type I DW point and u2

τ 
= 0, hence ||u1
τ || < 1 and we are

done.
Note that the previous argument actually shows that A (as defined in

(4.15)) is the maximum among all constants K > 0 such that τ is a left Type
II DW point for φ with constant K.

Next, we show that (i) implies (iii). So, assume that all relevant assump-
tions are satisfied. Note that we cannot have

D−(τ1,τ2M)φ(τ)
−τ1

= Kτ (M) ≤ 1

for all M > 0, as in such a case Theorem 2.9 would imply that τ is a left
Type I DW point, a contradiction. Since Kτ (M) is continuous, increasing
and Kτ (K) ≤ 1, there must exist C ≥ K such that Kτ (C) = 1. Moreover,
Kτ (M) cannot be constant (again by Theorem 2.9), hence (iii) holds.

We now prove the converse. Assume τ is a B-point for φ, φ(τ) = τ1,
Kτ (M) is not constant with respect to M and also there exists C ≥ K such
that Kτ (C) = 1, hence

||x1
τ (δC)||2 + C||x2

τ (δC)||2 = 1.

We cannot have x2
τ (δC) = 0 (else, Theorem 3.3 would imply that Kτ (M) is

constant), thus ||x1
τ (δC)|| < 1. Moreover, τ cannot be a left Type I DW point,

as, in view of Theorem 2.9 and the equality Kτ (C) = 1, the only way for this
to be possible would be having Kτ (M) = 1, for all M > 0, a contradiction.
Thus, τ is a left Type II DW point with constant C ≥ K and we are done.

We can say more about the constant C (which is uniquely determined,
as Kτ (M) is strictly increasing). Indeed, our previous argument shows that
τ is a left Type II DW point with constant C. Now, if C ′ > C, then

1 = Kτ (C) < Kτ (C ′),

and thus, in view of “(i) implies (iii)”, we obtain that τ cannot be a left Type
II DW point with costant C ′. This means that C is the largest constant with
this property, hence C = A, as defined in (4.15).

Finally, as seen in the end of the proof of Theorem 2.9, to show the right
Type II-version of the theorem we only need apply the left Type II-version
to ˜φ.

Proof of Theorem 2.11. Combine Theorems 2.9–2.10 with Lemma 2.3, The-
orem 3.3 and Proposition 3.5.

Remark 4.6. Let ξ : D → D be holomorphic. Then, one can always find φ ∈ S2

(that will necessarily be a left Type II function) such that φ(ξ(μ), μ) = ξ(μ)
for all μ ∈ D. Indeed, it can be easily verified that the function

φ(λ, μ) :=
λ + ξ(μ)

2
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has the property in question.

Remark 4.7. As already mentioned in Sect. 2.5, there exist left Type II func-
tions that do not have left Type II DW points. Indeed, if e.g. φ is any left
Type II function such that the map ξ satisfies ξ(D) ⊂ rD for some r ∈ (0, 1),
then Theorem 2.10 implies that φ does not have any left Type II DW points
(on account of ξ not having any B-points).

We can also prove certain uniqueness results for Type II DW points.

Proposition 4.8. Let φ : D2 → D with model (M,u) be such that τ = (τ1, τ2) ∈
T

2 is a left Type II DW point, with ξ : D → D satisfying φ(ξ(μ), μ) = ξ(μ),
for all μ ∈ D, and A > 0 defined as in (4.15). Then, the following assertions
all hold.

(i) xτ (δA) is the unique vector uτ ∈ Yτ such that

||u1
τ ||2 + A||u2

τ ||2 ≤ 1. (4.17)

(ii) No point in T × cl(D) can be a left Type I DW point for φ.
(iii) If σ ∈ T and σ 
= τ1, then (σ, τ2) is not a left Type II DW point for φ.

There is an analogous result for right Type II DW points.

Proof. First, we prove (i). Note that xτ (δA) certainly satifies

||x1
τ (δA)||2 + A||x2

τ (δA)||2 = 1,

as Kτ (A) = 1. Also, if uτ ∈ Yτ is such that (4.17) holds, Proposition 3.5
implies that ||u1

τ ||2 + A||u2
τ ||2 = 1 and xτ (δA) = uτ , as desired.

(ii) is an immediate consequence of Proposition 4.4.
Finally, (iii) is a simple application of Theorem 2.10, since ξ cannot have

two distinct values (at least not in the sense of nontangential limits) at its
B-point τ2. �

The following Julia-type inequalities are obtained as a consequence of
Theorem 2.10. The significance of parts (ii) and (iii) will be made apparent
in Sect. 5.

Corollary 4.9. Assume φ : D2 → D has a left Type II DW point τ = (τ1, τ2) ∈
T

2 and let A > 0 be defined as in (4.15). Also, fix A− < A and r1 < 1.

(i) For all (λ, μ) ∈ D
2, we have

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{ |τ1 − λ|2
1 − |λ|2 ,

1
A

|τ2 − μ|2
1 − |μ|2

}

;

(ii) Moreover, if r2 > 1 is sufficiently close to 1, then

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{

1
r2

|τ1 − λ|2
1 − |λ|2 ,

1
A−

|τ2 − μ|2
1 − |μ|2

}

,

for all (λ, μ) ∈ D
2;

(iii) Finally, if x1
τ (δA) 
= 0 and A < A+ is sufficiently close to A, then

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{

1
r1

|τ1 − λ|2
1 − |λ|2 ,

1
A+

|τ2 − μ|2
1 − |μ|2

}

,

for all (λ, μ) ∈ D
2.
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There is an analogous result for right Type II DW points.

Proof. To prove (i), combine Theorems 3.10 and 2.10.
For (ii), note that, since ||x1

τ (δA)||2 + A||x2
τ (δA)||2 = 1, A− < A and

x2
τ (δA) 
= 0 (by definition of a left Type II DW point), one obtains that

r2||x1
τ (δA)||2 + A−||x2

τ (δA)||2 ≤ 1,

for all r2 > 1 sufficiently close to 1, hence Kτ (A−/r2) ≤ 1/r2. An application
of Theorem 3.10 then finishes the job.

(iii) is proved in an analogous manner (note that we have to assume
x1

τ (δA) 
= 0, since not all left Type II DW points have this property). �

5. Refining Hervé’s Theorem

Let F = (φ, ψ) denote a holomorphic self-map of D2 without interior fixed
points. We use

Fn = (φn, ψn) = F ◦ F ◦ · · · ◦ F
︸ ︷︷ ︸

ntimes

to denote the sequence of iterates of F. Note that φ◦Fn = φn+1 and ψ◦Fn =
ψn+1, for all n ≥ 1.

Hervé analysed the behavior of {Fn} by looking at three separate cases,
depending on the Type of φ and ψ. In this section, we study the connection
between Hervé’s results from [23] and the DW points we defined in Sect. 4. In
particular, we will show how the conclusions of Theorem 2.7 can be strength-
ened if one assumes that the DW points of φ and/or ψ are not C-points (i.e.
the functions do not possess angular gradients there).

5.1. The (Type II, Type II) Case

We begin with the case where φ and ψ are left Type II and right Type
II functions, respectively. Even though not every Type II function will, in
general, have Type II DW points (see Remark 4.7), F having no interior fixed
points changes the situation dramatically, as seen in the following theorem.
A proof of it (without the model terminology) is essentially contained in [21,
Theorem 2] (see also [23, Section 16]). We give an alternative proof by using
the results we have developed so far.

Theorem 5.1. Assume F = (φ, ψ) : D2 → D
2 is holomorphic and φ, ψ are left

Type II and right Type II functions, respectively. Also, let ξ, η : D → D denote
the (unique) functions such that φ(ξ(μ), μ) = ξ(μ) and ψ(λ, η(λ)) = η(λ), for
all λ, μ ∈ D. Then, F has no interior fixed points if and only if

(i) there exist τ ∈ T
2 and K > 0 such that τ is simultaneously a left Type

II DW point for φ with constant K and a right Type II DW point for ψ
with constant 1/K and also

(ii) φ ◦ η 
= IdD and η ◦ φ 
= IdD.
Moreover, assuming F has no interior fixed points, the point τ = (τ1, τ2) ∈ T

2

above is uniquely determined: τ1 is the Denjoy–Wolff point of ξ ◦ η, while τ2

is the Denjoy–Wolff point of η ◦ ξ.
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Proof. Let (M,u), (N, v) be models for φ and ψ, respectively. Also, for τ ∈
∂D2, we will denote the corresponding cluster sets by Y φ

τ and Y ψ
τ .

First, assume F has no interior fixed points. Let 0 < rn ↑ 1 and consider
the functions rn ·F . Since cl(rnF (D2)) ⊂ D

2, for every n, the Earle-Hamilton
Theorem [19] implies that each rnF has a fixed point (λn, μn) ∈ D

2. Since F
has no fixed points in D

2, we obtain that (λn, μn) → ∂D2. There are three
possible cases to examine.

If limn
1−|λn|2
1−|μn|2 = 0, then (λn, μn) → τ = (τ1, σ) ∈ T × cl(D). We can

use the model formula for φ to write

1 − |λn|2 ≥ 1 − 1
r2
n

|λn|2 = 1 − |φ(λn, μn)|2

= (1 − |λn|2)||u1
(λn,μn)||2 + (1 − |μn|2)||u2

(λn,μn)||2.
Thus, for n large enough, we deduce

1 ≥ 1 − |φ(λn, μn)|2
1 − ||(λn, μn)||2 =

1 − |φ(λn, μn)|2
1 − |λn|2

= ||u1
(λn,μn)||2 +

1 − |μn|2
1 − |λn|2 ||u2

(λn,μn)||2. (5.1)

Letting n → ∞, we obtain (in view of limn
1−|λn|2
1−|μn|2 = 0 and limn φ(λn, μn) =

τ1) that τ = (τ1, σ) is a B-point for φ, φ(τ) = τ1 and also there exists a weak
limit uτ ∈ Y φ

τ such that ||u1
τ || ≤ 1, u2

τ = 0. This implies that τ is a left Type
I DW point for φ, contradicting the fact that φ is a left Type II function.

If limn
1−|λn|2
1−|μn|2 = ∞, one can argue in a manner analogous to the pre-

vious case to deduce that ψ has a right Type I DW point, which is again a
contradiction.

Finally, assume that limn
1−|λn|2
1−|μn|2 = 1

K ∈ (0,∞). Hence, (λn, μn) → τ =
(τ1, τ2) ∈ T

2. Letting n → ∞ in (5.1) then yields that τ is a B-point for φ,
φ(τ) = τ1 and also there exists uτ ∈ Y φ

τ such that ||u1
τ ||2 + K||u2

τ ||2 ≤ 1.
Note that u2

τ 
= 0, else τ would be a left Type I DW point. Thus, since φ is a
left Type II function, τ must be a left Type II DW point for φ with constant
K. Further, an analogous argument involving the model formula for ψ shows
that τ is a B-point for ψ, φ(τ) = τ2 and also there exists vτ ∈ Y ψ

τ such that
(1/K)||v1

τ ||2 + ||v2
τ ||2 ≤ 1. Also, v1

τ 
= 0, since ψ is not a right Type I function.
Thus, τ must be a right Type II DW point for ψ with constant 1/K, which
proves (i). To show that (ii) holds, note that if e.g. ξ(η(λ)) = λ for some
λ ∈ D, then

F (ξ(η(λ)), η(λ)) =
(

φ(ξ(η(λ)), η(λ)), ψ(ξ(η(λ)), η(λ))
)

= (ξ(η(λ)), η(λ)),

a contradiction. In particular, we obtain the even stronger conclusion that
neither ξ ◦ η nor η ◦ ξ can have interior fixed points.

Conversely, assume that (i) and (ii) both hold. In view of Theorem 2.10,
(i) implies that τ1 and τ2 are B-points for η and ξ respectively, ξ(τ2) = τ1,
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η(τ1) = τ2 and also (by the single-variable Julia’s inequality)

ξ(E(τ2, R)) ⊂ E(τ1, R/K) and η(E(τ1, R)) ⊂ E(τ2,KR),

for all R > 0. Thus, (ξ ◦ η)(E(τ1, R)) ⊂ ξ(E(τ2,KR)) ⊂ E(τ1, R), for all
R > 0, which (combined with the fact that ξ ◦ η 
= IdD must have a unique
Denjoy–Wolff point) allows us to deduce that τ1 is the Denjoy–Wolff point
of ξ ◦ η. An analogous argument shows that τ2 is the Denjoy–Wolff point
of η ◦ ξ. Thus, the point τ is indeed uniquely determined. Also, notice that,
in view of these observations, neither ξ ◦ η nor η ◦ ξ can have interior fixed
points. Now, let (λ0, μ0) be an interior fixed point of F . We obtain

φ(λ0, μ0) = λ0 and ψ(λ0, μ0) = μ0.

Thus, ξ(μ0) = λ0 and η(λ0) = μ0, which implies that ξ(η(λ0)) = λ0, a
contradiction. �

Now, let F = (φ, ψ) : D2 → D
2, τ ∈ T

2 and K > 0 be as in Theorem
5.1, with F having no interior fixed points. Recall that, in this setting, one
obtains a perfect analogue of the one-variable Denjoy–Wolff Theorem, i.e. the
sequence of iterates {Fn} converges uniformly on compact sets to τ (Theorem
2.7(iv)). A crucial ingredient for Hervé’s proof of this fact is given by the
invariant horospheres

F (E(τ,R,KR)) ⊂ E(τ,R,KR), (5.2)

obtained as an application of Corollary 4.9.
So, we know that the entire sequence {Fn} has to converge to τ , but can

we use (5.2) to say more? Our main result in this subsection is a refinement
of [23, Lemme 2], which concerns the location of the orbits {Fn(λ, μ)}n with
respect to the boundary of the invariant horospheres (5.2). To set up the
statement, fix (λ0, μ0) ∈ D

2. For convenience, we will write Fn = (φn, ψn) in
place of Fn(λ0, μ0) = (φn(λ0, μ0), ψn(λ0, μ0)). We also define:

An =
|τ1 − φn|2
1 − |φn|2 and Bn =

|τ2 − ψn|2
1 − |ψn|2 .

Theorem 5.2. Let F = (φ, ψ) : D
2 → D

2, τ ∈ T
2 and K > 0 be as in

Theorem 5.1, with F having no interior fixed points. Then, either Fn → τ
in the horospheric topology or there exist ρ0, ρ1 ≥ 0 (depending on (λ0, μ0))
that are not both 0 such that

A2n → ρ0, A2n+1 → ρ1, B2n+1 → Kρ0, B2n → Kρ1.

Moreover, if τ is not a C-point for either φ or ψ, we can take ρ0 = ρ1.

Proof. For every n ≥ 1, let Rn denote the smallest radius such that Fn ∈
En := cl

(

E(τ,Rn,KRn)
)

. In view of (5.2), the sequence {Rn} is non-increasing.
{An}, {Bn} needn’t also be non-increasing, however they have to satisfy (by
definition of Rn) max{KAn, Bn} = KRn, for all n.

Now, if Rn → 0, then An, Bn → 0 and we conclude that Fn → τ in the
horospheric topology. So, assume Rn converges to ρ > 0.

First, consider the case where τ is not a C-point for either φ or ψ.
Without loss of generality, we may suppose that τ is not a C-point for φ. Let
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uτ denote any vector in Y φ
τ such that ||u1

τ ||2 + K||u2
τ ||2 ≤ 1 (its existence is

guaranteed by Theorem 2.10). In view of Theorem 3.3, it must be true that
u1

τ 
= 0. We will show that An → ρ and Bn → Kρ.
Indeed, aiming towards a contradiction, assume Bn 
→ Kρ (the case

where An 
→ ρ can be treated in an analogous manner). In view of the equality
max{KAn, Bn} = KRn, there exists a subsequence {nk} and r ∈ (0, ρ) such
that Bnk

≤ Kr for all k. This implies that Ank
= Rnk

for all k. Now, given
0 < K− < K sufficiently close to K, we can choose r2 > 1 sufficiently close
to 1 such that Kr/K− < ρ/r2 and also, in view of Corollary 4.9(ii),

|τ1 − φ(λ, μ)|2
1 − |φ(λ, μ)|2 ≤ max

{

1
r2

|τ1 − λ|2
1 − |λ|2 ,

1
K−

|τ2 − μ|2
1 − |μ|2

}

,

for all λ, μ ∈ D. In particular, we have

Ank+1 =
|τ1 − φnk+1|2
1 − |φnk+1|2

≤ max
{

1
r2

Ank
,

1
K−

Bnk

}

≤ max
{

1
r2

Rnk
,

1
K−

Kr

}

=
Rnk

r2
, (5.3)

as Kr
K−

< ρ
r2

≤ Rnk

r2
, for all k. Now, let vτ denote any vector in Y ψ

τ such that

K̃||v1
τ ||2 + ||v2

τ ||2 ≤ 1, where K̃ = 1/K (as in the case of uτ , we obtain the
existence of this vector by Theorem 2.10). We look at two separate cases,
depending on whether v2

τ 
= 0.
So, assume v2

τ 
= 0. In this case, given r1 < 1 sufficiently close to 1, we
can find K̃ < K̃+ sufficiently close to K̃ such that K̃+r

r1
< K̃ρ and also, in

view of the right Type II version of Corollary 4.9(iii),

|τ2 − ψ(λ, μ)|2
1 − |ψ(λ, μ)|2 ≤ max

{

1
K̃+

|τ1 − λ|2
1 − |λ|2 ,

1
r1

|τ2 − μ|2
1 − |μ|2

}

,

for all λ, μ ∈ D. In particular, we have

Bnk+1 ≤ max
{

Ank

K̃+

,
Bnk

r1

}

≤ max
{

Rnk

K̃+

,
r

K̃r1

}

=
Rnk

K̃+

, (5.4)

as r
K̃r1

< ρ

K̃+
≤ Rnk

K̃+
, for all k. Combining (5.3) with (5.4), we obtain

KRnk+1 = max{KAnk+1, Bnk+1} < cKRnk
,

for some c ∈ (0, 1) and all k large enough. Letting k → ∞ then leads to a
contradiction.
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Now, assume v2
τ = 0. In view of (5.3), we can find r′ < ρ such that for

all k large enough we have Ank+1 ≤ r′ < ρ. Also, since v1
τ 
= 0, we can mimic

the proof of (5.3) (with ψ in place of φ) to obtain Bnk+2 < c1KRnk+1 for
some c1 ∈ (0, 1) and all k large enough. Similarly, since u1

τ 
= 0, we can mimic
the proof of (5.4) (with φ in place of ψ) to obtain the existence of c2 ∈ (0, 1)
such that Ank+2 ≤ c2Rnk+1, for all k large enough. Thus, we arrive at the
conclusion KRnk+2 = max{KAnk+2, Bnk+2} < max{c1, c2}KRnk+1, for all
k large enough, which yields a contradiction when we let k → ∞.

The only case left to examine is when Rn → ρ > 0 and u1
τ = v2

τ =
0. Mimicking the proof of “(ii) implies (iii)” from Theorem 3.10, we may
conclude that

An+1 ≤ Bn

K
and Bn+1 ≤ KAn,

for all n ≥ 1. Thus,

An+2 ≤ An and Bn+2 ≤ Bn,

which means that the sequences {A2n}, {A2n+1}, {B2n} and {B2n+1} are all
non-increasing. Thus, there exist nonnegative numbers ρ0, ρ1, ρ

′
0, ρ

′
1 such that

A2n → ρ0, A2n+1 → ρ1, B2n+1 → ρ′
1 and B2n → ρ′

0. The inequalities A2n+1 ≤
B2n

K and B2n ≤ KA2n−1 give us ρ1 ≤ ρ′
0/K and ρ′

0 ≤ Kρ1, respectively.
Thus, ρ′

0 = Kρ1 and an entirely analogous argument shows that ρ′
1 = Kρ0.

We conclude that

A2n → ρ0, A2n+1 → ρ1, B2n+1 → Kρ0, B2n → Kρ1,

where max{ρ0, ρ1} = ρ (by definition of ρ) and so ρ0, ρ1 cannot be zero at
the same time. This concludes the proof. �
5.2. The (Type I, Type II) Case

Assume now that φ and ψ are left Type I and right Type II functions, respec-
tively. This immediately implies that F = (φ, ψ) does not have any interior
fixed points. In this setting, Hervé proved that any cluster point of the se-
quence of iterates {Fn} must be of the form (τ1, h), where h is either a holo-
morphic function D

2 → D or a unimodular constant and τ1 is the common
Denjoy–Wolff point of all slices φμ (Theorem 2.7(iii)). Examples showing that
this conclusion cannot, in general, be improved, are contained in [23, Section
11].

Now, if we, in addition, assume the existence of σ ∈ T such that (τ1, σ)
is a right Type II DW point for ψ, stronger conclusions can be drawn about
the cluster set of {Fn}.

Proposition 5.3. Assume F = (φ, ψ) : D2 → D
2 is such that φ is a left Type I

function (with τ1 being the common Denjoy–Wolff point of all slices φμ) and
ψ has a right Type II DW point of the form τ = (τ1, σ) ∈ T

2. Then, there
exists K > 0 such that

F (E(τ,R,KR)) ⊂ E(τ,R,KR),

for all R > 0. Thus, any cluster point of the sequence of iterates {Fn} must
be of the form (τ1, h), where h is either a holomorphic function D

2 → D or
the constant σ.
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Proof. Assuming ψ has a right Type II DW point of the form τ = (τ1, σ),
one can combine Corollary 4.5 with Corollary 4.9 to conclude that

F (E(τ,AR,R)) ⊂ E(τ,AR,R),

for all R > 0, where A =
(

lim infλ→τ1
1−|η(λ)
1−|λ|

)−1

> 0 and η : D → D is the
holomorphic function satisfying ψ(λ, η(λ)) = η(λ) for all λ ∈ D.

To obtain the conclusion regarding the behavior of the iterates, combine
the previous result with Theorem 2.7(iii) and the observation that, for any
R > 0, cl(E(τ,AR,R)) ∩ T

2 = τ. �

Remark 5.4. In the absence of a right Type II DW of the form (τ1, σ) for
ψ, the behavior of {Fn} could be considerably more complicated. Indeed, it
could even happen that infinitely many unimodular constants {σ(i) | i ∈ I}
exist such that the constant (τ1, σ(i)) is a cluster point of {Fn}, for every
i ∈ I; see the 2nd example in [23, Section 11].

In the setting of Proposition 5.3, it is clear (in view of Theorem 2.9)
that (τ1, σ) will always be a left Type I DW point for φ, no matter the value
of σ. Surprisingly, having (τ1, σ) not be a C-point for φ will force the entire
sequence {Fn} to converge to (τ1, σ). This is the content of Theorem 2.12,
the proof of which does not make use of Hervé’s results.

Proof of Theorem 2.12. Assume τ = (τ1, σ) ∈ T
2 satisfies the hypotheses of

the theorem. Clearly, φ and ψ will be left Type I and right Type II functions,
respectively, with the common Denjoy–Wolff point of all slices φμ being τ1.
By Proposition 5.3, there exists K > 0 such that

F (E(τ,KR,R)) ⊂ E(τ,KR,R), (5.5)

for all R > 0. Now, fix (λ0, μ0) ∈ D
2. For convenience, we will write Fn =

(φn, ψn) in place of Fn(λ0, μ0) = (φn(λ0, μ0), ψn(λ0, μ0)). We also define:

An =
|τ1 − φn|2
1 − |φn|2 and Bn =

|σ − ψn|2
1 − |ψn|2 ,

for all n ≥ 1. Corollary 4.5 then yields that {An} is non-increasing.
First, we show that An → 0. Indeed, assume instead that An → ρ > 0.

(5.5) implies that there exists B > 0 such that Bn < B, for all n ≥ 1. Also, let
{Mk} ⊂ R

+ be any increasing sequence tending to ∞. Corollary 4.5 implies
that we can find a decreasing sequence {rk}, rk → 1 such that

An+1 ≤ max
{

An

rk
,
Bn

Mk

}

, (5.6)

for all n, k ≥ 1. Let ε > 0 and choose k = k0 to be such that B/Mk0 < ρ.
Also, since rk0 > 1, we can find N ≥ 1 such that AN/rk0 < ρ. Thus, (5.6)
yields

AN+1 ≤ max
{

AN

rk0

,
BN

Mk0

}

< ρ,

a contradiction. Hence, An → 0. We will show that Bn → 0 as well. Indeed,
assume that Bn 
→ 0. (5.5) combined with the fact that An → 0 implies that
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lim infn Bn = s > 0. Also, given 0 < K− < K, Corollary 4.9 yields that for
any t2 > 1 sufficiently close to 1 one obtains

Bn+1 ≤ max
{

An

K−
,
Bn

t2

}

, (5.7)

for all n ≥ 1. Now, choose n0 such that An0/K− < s/2 and also Bn0/t2 < s.
In view of (5.7), we obtain

Bn0+1 ≤ max
{

An0

K−
,
Bn0

t2

}

< s,

a contradiction. We conclude that An, Bn → 0, which gives us Fn = Fn(λ0, μ0) →
(τ1, σ). Since (λ0, μ0) was arbitrary, we are done.

Remark 5.5. We have actually reached the even stronger conclusion that, in
the setting of Theorem 2.12, the iterates Fn(λ) converge to (τ1, σ) in the
horospheric topology, for any λ ∈ D

2.

Example 5.6. Define φ, ψ : D2 → D by

φ(λ) =
1 − λ1λ2

2 − λ1 − λ2

and

ψ(λ) =

⎧

⎪
⎨

⎪
⎩

(λ2−λ1)−2(1−λ1)(1−λ2) log
(

1+λ2

1−λ2
1−λ1

1+λ1

)

(λ2−λ1)+2(1−λ1)(1−λ2) log
(

1+λ2

1−λ2
1−λ1

1+λ1

) if λ1 
= λ2,

−3+5λ1

5−3λ1 if λ1 = λ2,

for all λ ∈ D
2 (ψ has been taken from [28]).

Since the slice function φ0 has 1 as its Denjoy–Wolff point, Theorem
2.9 implies that the entire closed face {1} × cl(D) consists of B-points for φ
and also φ(1, σ) = 1, for all |σ| ≤ 1. Actually, it is easy to see that φ extends
analytically across (1, σ) whenever σ 
= 1. Now, for σ = 1, it can be verified
that

D−(1,M)φ(1, 1)
−φ(1, 1)

= −D−(1,M)φ(1, 1) =
M

M + 1
< 1,

for all M > 0. Thus, (1, 1) is not a C-point for φ and also, since limM→∞ M/(M+
1) = 1, the angular derivative of every slice function φμ at its Denjoy–Wolff
point 1 has to be equal to 1 (this can be also verified directly, as the slice
functions are easy to compute in this case).

Now, we look at ψ. Since ψ(0, 0) = 0, ψ is clearly a left (also a right)
Type II function. Also, as shown in [28], (1, 1) is a B-point for ψ that is not
a C-point and ψ(1, 1) = 1. We wish to determine whether (1, 1) is also a left
Type II DW point for ψ. However, computing the function ξ : D → D such
that ψ(ξ(μ), μ) = ξ(μ), for all μ ∈ D, seems impractical here. Instead, we will
look at the directional derivatives of ψ at (1, 1) along δM = (1,M) and then
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use Theorem 2.11. Indeed, in [28, Section 4] it was determined that

K(1,1)(M) =
D−(1,M)ψ(1, 1)

−ψ(1, 1)
= −D−(1,M)ψ(1, 1)

= 4M

∫ 1

−1

dt

(1 − t) + (1 + t)M

=

{

4M ln M
M−1 if M 
= 1,

4 if M = 1.

Since K(1,1)(1) > 1 and limM→0+ K(1,1)(M) = 0, there exists C > 0 such
that K(1,1)(C) = 1. Theorem 2.11 then implies that (1, 1) is a left Type II
DW point for ψ. Also, since ψ(λ1, λ2) = ψ(λ2, λ1), (1, 1) must also be a right
Type II DW point for ψ.

Now, define F = (φ, ψ) : D2 → D
2. In view of our previous observations,

we have that (1, 1) is a left Type I DW point for φ that is not a C-point and
it is also a right Type II DW point for ψ. Theorem 2.12 then allows us to
conclude that Fn → (1, 1) uniformly on compact subsets of D2.

Before ending this subsection, we remark that the (Type II, Type I)
case can be treated in an entirely analogous way.

5.3. The (Type I, Type I) Case

Finally, assume that φ and ψ are left Type I and right Type I functions,
respectively, hence F = (φ, ψ) does not have any interior fixed points. The
following characterization is an easy consequence of Theorem 2.9, so we omit
the proof.

Proposition 5.7. Let F = (φ, ψ) : D2 → D
2 be holomorphic. Then, φ and ψ

are left Type I and right Type I functions, respectively, if and only if there
exists τ = (τ1, τ2) ∈ T

2 that is a left Type I DW point for φ and a right Type
I DW point for ψ.

Now, let τ1 and τ2 be as in Proposition 5.7. In this setting, Hervé proved
that either every cluster point of {Fn} will be of the form (τ1, h), where h
is either a holomorphic function D

2 → D or the constant τ2, or every cluster
point will be of the form (g, τ2), where g is either a holomorphic function
D

2 → D or the constant τ1 (Theorem 2.7(ii)). Also, it is not hard to see that in
e.g. the former case, there exists a (parabolic) fractional linear transformation
T with Denjoy–Wolff point τ2 such that, whenever both (τ1, h1) and (τ1, h2)
appear as non-constant cluster points of {Fn}, it must be true that h1 =
T ◦ h2 (see the 2nd remark in [23, Section 14]). Examples showing that these
conclusions cannot, in general, be improved are contained in [23, Section 15].

Unfortunately, the proof of Theorem 2.7(ii) (to be found in [23, Sections
12–13]) does not make it clear whether it is possible to determine “before-
hand” which of the two constants (τ1 or τ2) will be the one that appears as
a coordinate in every cluster point of {Fn}. We will show that, under the
extra assumption of (τ1, τ2) not being a C-point for either φ or ψ, one can
draw stronger conclusions. Our proof is independent of Hervé’s result.
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Proof of Theorem 2.13. Assume τ = (τ1, τ2) ∈ T
2 satisfies the hypotheses of

the theorem. Clearly, φ and ψ will be left Type I and right Type I functions,
respectively. Also, Corollary 4.9 tells us that

F (E(τ,R1, R2)) ⊂ E(τ,R1, R2), (5.8)

for all R1, R2 > 0. For any fixed (λ0, μ0) ∈ D
2, define:

An =
|τ1 − φn(λ0, μ0)|2
1 − |φn(λ0, μ0)|2 and Bn =

|τ2 − ψn(λ0, μ0)|2
1 − |ψn(λ0, μ0)|2 ,

for all n ≥ 1. (5.8) then implies that both {An} and {Bn} are non-increasing.
We can then argue as in the proof of Theorem 2.12 to deduce that An → 0
(assuming τ is not a C-point for φ). Thus, every cluster point of {Fn} will
be of the form (τ1, h), where h is holomorphic on D

2 and bounded by 1.
Moreover, since {Bn} is bounded, one can deduce that h will have to be
either a holomorphic map D

2 → D or the constant τ2.

Remark 5.8. We have actually reached the even stronger conclusion that, in
the setting of Theorem 2.13 with e.g. τ not being a C-point for φ, the points
φn(λ) converge to τ1 in the horospheric topology of the unit disk, for any
λ ∈ D

2.

Example 5.9. Define φ : D2 → D by

φ(λ) = −3λ1λ2 − λ1 − λ2 − 1
3 − λ1 − λ2 − λ1λ2

,

for all λ ∈ D
2 (this example appears in [34]). It can be easily verified that the

Denjoy–Wolff point of the slice function φ0(z) = (z +1)/(3− z) is equal to 1.
Theorem 2.9 then implies that the closed face {1}×cl(D) consists of B-points
for φ and also φ(1, σ) = 1, for all |σ| ≤ 1. Moreover, we can compute

D−(1,M)φ(1, 1)
−φ(1, 1)

= −D−(1,M)φ(1, 1) =
M

M + 1
,

for all M > 0. Thus, (1, 1) is not a C-point for φ (and also φ′
μ(1) =

limM→∞ M/(M + 1) = 1, for all μ ∈ D).
Now, let F = (φ, ψ) : D

2 → D
2, where ψ is any (holomorphic) right

Type I function such that the Denjoy–Wolff point of all slice functions ψ(λ, ·)
is equal to 1. Theorem 2.13 then implies that every cluster point of {Fn} will
be of the form (1, h), where h is either a holomorphic function D

2 → D or
the constant 1. Now, if we take ψ to be e.g.

ψ(λ1, λ2) =
1 − λ1λ2

2 − λ1 − λ2
,

our observations from Example 5.6 (and the fact that ψ(λ1, λ2) = ψ(λ2, λ1))
show that (1, 1) will be a right Type I DW point for ψ that is not a C-point.
Applying Theorem 2.13 again then yields (for this particular choice of ψ)
that Fn → (1, 1) uniformly on compact subsets of D2.
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6. Connection with Frosini’s Work

Points of Denjoy–Wolff type for holomorphic maps F : D2 → D
2 have been

investigated by Frosini in [20–22]. She defined Denjoy–Wolff points for F
as those fixed boundary points where F -invariant horospheres are centered,
with the exact definition depending on the kind of horospheres in question.
In particular, motivated by the definition of “small” and “big” horospheres
found in [3], she defined (see [22, Definitions 3.2−3.3]) quasi-Wolff and Wolff
points for F as those fixed boundary points where small horospheres are
mapped into big ones and small horospheres are mapped into small ones,
respectively. Unfortunately, the existence of quasi-Wolff points is, in general,
not very helpful for describing the behavior of {Fn}, as big horospheres offer
very limited control over the iterates. On the other hand, while Wolff points
do offer much more restrictive Julia-type inequalities, they do not always exist
(see [22, Theorem 4.1] for a characterization of the set of Wolff points for any
self-map F of D2). Finally, in [20, Section 8], Frosini considered generalized
Wolff points, which motivate our next definition.

Definition 6.1. Let F = (φ, ψ) : D2 → D
2 be holomorphic with τ ∈ ∂D2. If

there exists M ∈ (0,∞) such that

F (E(τ,R,MR)) ⊂ E(τ,R,MR),

for all R > 0, τ will be called a generalized Denjoy–Wolff point for F.

As a consequence of Julia’s inequality for the bidisk, any generalized
Denjoy–Wolff point τ ∈ ∂D2 of F must be a B-point point for both φ and ψ
such that F (τ) = τ . Notice also that, in contrast to [20, Definition 33], we do
not assume the existence of any complex geodesics, instead relying only on
the existence of F -invariant “weighted” horospheres (although the definitions
turn out to be equivalent, see Remark 3.13).

Let W (F ) denote the set of all generalized Denjoy–Wolff points of F .
Our next result is a slight refinement of [20, Theorem 39], obtained as a
straightforward application of the results developed in this paper. Note that
τ1, τ2 will always denote points in T.

Theorem 6.2. Let F = (φ, ψ) : D2 → D
2 be holomorphic such that φ 
= π1,

ψ 
= π2 and without any interior fixed points. Then, one and only one of the
following three cases is possible:

(i) W (F ) = {(τ1, τ2)} if and only if φ is left Type II and ψ is right Type
II;

(ii) {τ1}×D ⊂ W (F ) ⊂ ({τ1}×D
)∪{(τ1, τ2)} (resp., D×{τ2} ⊂ W (F ) ⊂

(

D × {τ2}) ∪ {(τ1, τ2)}) if and only if φ is left Type I and ψ is right
Type II (resp., φ is left Type II and ψ is right Type I);

(iii) W (F ) =
({τ1} × D

) ∪ {(τ1, τ2)} ∪ (

D × {τ2})

if and only if φ is left
Type I and ψ is right Type I.

Proof. Theorem 4.3 implies that (i)-(iii) contain all possible cases.
First, assume φ is left Type II and ψ is right Type II. Theorem 5.1

and Corollary 4.9 imply that W (F ) ⊃ {(τ1, τ2)} for some τ1, τ2 ∈ T, where
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(τ1, τ2) is simultaneously a left Type II DW point for φ with constant M and
a right Type II DW point for ψ with constant 1/M. Now, assume (σ1, σ2) ∈
W (F ). If either σ1 ∈ D or σ2 ∈ D, Corollary 4.5 would imply that either ψ is
right Type I or φ is left Type I, respectively, a contradiction. Thus, (σ1, σ2) ∈
T

2. But then, Theorems 3.10 and 2.10 yield that (σ1, σ2) is simultaneously
a left Type II DW point for φ with constant M ′ > 0 and a right Type II
DW point for ψ with constant 1/M ′. In view of Theorem 5.1, we obtain
(σ1, σ2) = (τ1, τ2), hence W (F ) = {(τ1, τ2)}.

Conversely, if W (F ) = {(τ1, τ2)}, Corollary 4.5 implies that φ cannot
be a left Type I function and ψ cannot be a right Type I function (else, W (F )
would also have to contain facial boundary points). Theorem 4.3 then yields
that φ is left Type II and ψ is right Type II.

Next, we prove (ii). We will only deal with the (Type I, Type II) version.
First, assume that φ is left Type I and ψ is right Type II, with τ1 being the
common Denjoy–Wolff point of all functions φμ. Corollary 4.5 implies that
{τ1}×D ⊂ W (F ). If W (F ) = {τ1}×D, we are done. Otherwise, assume that
we can find a different point (σ1, σ2) ∈ W (F ). We must have σ1 ∈ T, else ψ
would be a right Type I function. Also, we may assume σ2 ∈ T (else we would
have σ1 = τ1, in view of Corollary 4.5). Now, Theorem 3.10 (specifically, the
fact that (iii) implies (i)) yields that (σ1, σ2) must be either a left Type I or
a left Type II DW point for φ. Proposition 4.4 then tells us that σ1 = τ1.
Note that (τ1, σ2) will have to be (in view of Theorem 3.10) a right Type
II DW point for ψ. Also, if (t1, t2) ∈ W (F ) is not contained in {τ1} × D,
our previous arguments show that t1 = τ1 and (t1, t2) is, in addition, a right
Type II DW point for ψ. Proposition 4.8 then implies σ2 = τ2. We conclude
that {τ1} × D ⊂ W (F ) ⊂ ({τ1} × D

) ∪ {(τ1, σ2)}, where σ2 ∈ T.

Conversely, assume {τ1} ×D ⊂ W (F ) ⊂ ({τ1} ×D
) ∪ {(τ1, τ2)}, where

τ1, τ2 ∈ T. Corollary 4.5 then implies that φ is a left Type I and ψ is a
right Type II function (else, W (F ) would have to contain a face of the form
D × {σ2}), as desired.

Finally, the proof of (iii) rests on Corollary 4.5, Proposition 4.4 and
Theorem 3.10; one can argue in a manner analogous to the proof of (ii). We
omit the details. �

Remark 6.3. As seen in the previous proof, the point (τ1, τ2) in (ii) will
belong to W(F) if and only if it is a right Type II DW point for ψ.
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