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ENABLING RESILIENT ACCESS EQUALITY 
FOR 6G LEO SATELLITE SWARM NETWORKS

INTRODUCTION
Low earth orbit (LEO) mega-constellations [1–3] with govern-
ment and commercial satellites have been regarded as the most 
promising remedy to provide global coverage and ubiquitous 
wireless services, bridging the ever-existent digital divide via 
their global footprints. These satellite swarms, comprising small 
distributed satellites in lower orbits via optical inter-satellite 
links, provide less latency and overlapping coverage for broad-
band connectivity without suffering geographical limitations [1]. 
Satellite swarm networks can leverage ground station control 
and autonomous multi-satellite operations to form different 
flying patterns (e.g., trailing, cluster, or constellation) and enable 
resilient access equality, depending on separating satellites 
and intended applications. Meanwhile, emerging distributed 
machine learning (ML) brings attention to decentralized data 
sources. This learning technology will likely address multi-di-
mensional resource allocations for integrated satellite swarms 
and the sixth generation (6G) networks. However, existing 
multi-satellite solutions mainly assume their system feasibility 
and directly work on enabling applications (e.g., [2]). There is 
little investigation into the redundancy and tradeoff between 
computations and communications and the dedicated resource 
orchestrations to realize timely edge learners with efficient data 
processing. Few solutions exist to comprehensively evaluate 
distributed training performance concerning the peculiarities 
of satellite swarm networks (e.g., satellite access and multi-tier 
connected infrastructure). Architectural, operational, and man-
agement changes are a must for such ecosystems.

Recent studies focus on integrating satellite swarms with 
ground communications and reveal the spectral efficiency of 
non-terrestrial coexistence via ML-based resource allocation. An 
automatic network slicing platform for the Internet of space things 
is presented in [1], which carries out service-level agreements 

(SLAs) over the space-ground integrated infrastructure. In [2], 
beamspace MIMO (multiple-input multiple-output) is exploited 
for downlink satellite swarms, requiring only position information 
for distributed linear precoders and a ground equalizer. In [3], 
optimal network control structures are studied to improve the 
temporal control effectiveness with the least number of control-
lers. Authors in [4] consider three-dimensional terrain surface cov-
erage by designing hierarchical unmanned aerial vehicles (UAVs) 
swarms via deep reinforcement learning (DRL) algorithms. A 
multi-tier collaborative DRL scheme is proposed in [5] to empow-
er resource allocation in satellite-aided vehicular networks.

Regarding edge applications, function as a service (FaaS) 
models emerge to decompose the application into functions 
invoked individually or in a chain [6]. FaaS is suited to the prac-
tical interest of the event-based programming model (micro-
services or serverless), efficient resource (at the device- and 
edge-level) utilization, and high system scalability. In [7], a survey 
of ML-enabled microservices is provided to leverage heteroge-
neous, distributed, and resource-constrained edge computations 
for secure Internet of Things (IoT) networks. In [8], serverless 
computing implementation is integrated into edge computing 
scenarios, and comprehensive overviews of architecture designs 
and challenges are given. Resilient edge access and coexistence 
and resource management developments for 6G satellite swarms 
are in their infancy and require innovations and new approaches.

This article presents a serverless software-defined networking 
(SDN) architecture that dynamically orchestrates communica-
tions and computation resources for a diverse set of 6G SLAs. 
A serverless edge platform is established that orchestrates func-
tion containers among (geographically distributed) ML-SDN 
control engines in space and ground tiers for highly flexible, vir-
tualizable SDN infrastructure. The above applications only need 
to care about function implementation without managing any 
underlying resources. This unified control platform can alleviate 
the disturbance to physical infrastructure units giving time-vary-
ing resource availability and heterogeneity. It also allows a 
multi-tier ML framework to optimize networking and resource 
configurations according to each tier’s practical constraints, 
such as heterogeneous computing capabilities of SWaP (size, 
weight, and power)-limited satellites and ground stations, fre-
quently-handover satellite access, and coverage-limited ground 
tier. Remarkably, the intelligence within multiple ML-SDN 
control engines (e.g., ground stations and satellites with com-
puting capabilities) can realize efficient broadband access for 
ground users concerning software-reconfigurable LEO satellites, 
data-driven approaches for unknown environments, and differ-
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ent decision timescales of each unit. As a result, the designed 
multi-tier ML models create high-throughput, reliable end-to-end 
transmissions for global connectivity. The proposed architecture 
and solutions bring many benefits to 6G satellite swarm ecosys-
tems, as listed below:
1. We provide a serverless SDN edge architecture that intro-

duces a serverless computing layer based on an abstraction of 
the ground-space ecosystem. Both application programming 
interfaces (APIs) and network resource management tools are 
developed to manage applications on-demand through dynam-
ically instantiated containers and effectively utilize computing 
resources from distributed satellites and ground stations.

2. We improve the end-to-end learning performance by dynami-
cally adjusting workloads among ML-SDN control engines. For 
example, ground stations with powerful computing capabili-
ties can assist satellites’ resource allocation tasks. The satellite 
learning model can also be transferred to its successor, pre-
venting always training from scratch for SWaP-limited devices.

3. We enable data-driven multi-user access control for the 
ground-space eco-network. Serverless computing architec-
tures provide infrastructure controllability to the multi-tier ML 
models, establishing efficient ultra-broadband sensing and 
communications to satisfy 6G requirements.

4. We achieve reliable software-defined internetworking 
through spectrum harmonization and hyper-connectivity. 
New networking designs are realized to address heterogene-
ity, scalability, performance, and reliability fully. 
Therefore, our innovations significantly enhance end-to-end 

performance and impact future human society in isolated or 
remote communities and landlocked areas with limited infrastruc-
ture investments. Our designs facilitate distributed deep training 
development with fast adaptiveness and efficient multi-tier process-
ing while tackling non-terrestrial system heterogeneity and dynam-
ics. It is noteworthy that this work tightly aligns with the latest 
industry specifications. For instance, 3GPP Release 17 considers 
satellite mobility at different orbital heights to support non-terres-
trial networks with 3GPP NR (new radio) on the ground. Release 
18 creates 5G Advanced, including new intelligent, ML-enabled 
solutions to boost mobile broadband and verticals performance.

The rest of this article is organized as follows. The following 
section gives our serverless edge architecture. We then investi-
gate LEO-based ultra-broadband access and resilient network-
ing. Following that, open research problems are discussed. The 
final section concludes the article.

SERVERLESS EDGE ARCHITECTURE WITH 
MULTI-TIER ML-SDN CONTROL ENGINES

Figure 1 shows the proposed serverless edge architecture in 
ground and space tiers for 6G satellite swarm networks. The 
ground tier consists of several terrestrial systems, such as the 
IoT, UAVs, and cellular vehicle-to-everything (C-V2X); each 
system has a dedicated ML-SDN control engine. The control 
engines integrate SDN controllers with ML algorithms and 
manage computing, storage, and communications resources. 
They receive resource and service requests and training data 
from the serving systems and, in turn, assign tasks and control 
decisions back. The space tier includes satellite swarms from 
operators, such as SpaceX, Amazon, Telesat, and the space 
development agency (SDA), in orbits and operating systems. 
A serverless edge platform is built for a scalable and unified 
control plane to coordinate multi-tier engines and constitutes 
a shared resource pool for virtualization and network slicing. 
As shown in Fig. 1, this platform gives policy-based guidance 
for ML workflows and effectively manages resources via two 
crucial modules to meet diverse SLAs simultaneously for an 
intelligent networking architecture.

First, the service management module enables emerging 
satellite and ML applications to request SLA portfolios (e.g., 
link throughput, end-to-end latency, etc.) from the lower man-
agement module. Each application is decomposed into func-
tions (e.g., service discovery, deployment, scheduling, caching, 
etc.) and defines a dedicated service function chain upon the 
infrastructure. Second, the network and resource management 
module collects global network status, allocates multi-dimen-
sional resources, and regulates multiple control engines with 
the ML deployments. Specifically, network management main-
tains the topology, decides the best routes, and schedules and 
monitors the upper function chains. Resource orchestration 
allocates and controls underlying resources from distributed 
infrastructure. Hence, the platform can efficiently explore net-
work adaptiveness and realize optimal space-ground policies at 
the edges through network automation.

The 6G serverless edge platform pushes the controllabili-
ty to network edges via local control engines with edge and 
serverless computing. A single centralized control with huge 
decision parameters for 6G satellite swarm networks to cover 
an ultra-wide geographical and spatial area is not feasible. 
Table 1 summarizes three control plane implementations, cor-

Figure 1. A serverless edge architecture with ML-SDN engines and enabling technologies for 6G LEO swarm networks.
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responding attributes, challenges/costs, and learning deploy-
ments for multi-tier ML-SDN engines. These multiple engines 
can be organized in a fully distributed, multi-domain flat, or 
multi-layer hierarchical manner to provide control scalability 
and boost learning efficiency. The multi-domain and multi-layer 
control can realize optimal global learning by splitting enor-
mous optimization dimensions into collaborative engines’ tasks. 
Such collaboration can be revamped from SDN’s east-bound 
and west-bound APIs. The south-band APIs are expanded to 
help ML-SDN engines communicate and control the underlying 
physical resources. The developed designs are dedicated to 
systems’ functions, such as satellite beam steering, UAV move-
ment control, and resource block allocation in base stations. 
For example, our multi-domain control realization [5] facilitates 
resource allocation decision-making concerning different com-
puting capabilities of ground vehicles and satellites and con-
firms its effectiveness via comprehensive V2X simulations.

ENABLING TECHNOLOGIES: LEO-BASED ACCESS, 
NETWORKING, AND MULTI-AGENT DEEP LEARNERS

This section investigates enabling technologies for serverless 
satellite swarm networks. These include sensing-enabled coexis-
tence on ML-SDN engines, resilient beyond-line-of-sight access 
for resource orchestration, novel space corridor via service and 
network management, and multi-agent DRL deployment for 
multi-tier ML-SDN engine coordination.

AUTOMATIC ULTRA-BROADBAND SPECTRUM SENSING

Conventional software-defined satellite networks allow beam 
transmissions via certain bands, e.g., DVB-T (174 MHz to 786 
MHz) in most satellite systems. Recent beyond-line-of-sight 
communications also advance in higher frequency bands, such 
as C-band (4 GHz to 8 GHz), Ku-band (12 GHz to 18 GHz), 
and Ka-band (27 GHz to 40 GHz), concerning their higher data 
rate transmissions. For example, in NASA’s remote sensing and 
earth exploration services, their Aura satellites collect radiomet-
ric data on 118 GHz, 190 GHz, and 2.5 THz. For ground trans-
missions, 5G NR considers frequency ranges 1 (sub-6GHz) and 
2 (millimeter wave, mmWave) in Release 17 to support C-V2X 
communications for wide-area coverage. Hence, given that 
all these transmissions can happen concurrently and the latest 
transceiver hardware advances, it is assumed that next-gen-
eration terrestrial base stations should be able to recognize 
these spectrum usage behaviors over the ultra-broadband spec-

trum soon. How to sense and identify spectrum 
usages in such ultra-broadband is crucial and 
necessary for enabling LEO-based access in an 
integrated terrestrial and non-terrestrial envi-
ronment. A frequency-agile ultra-broadband 
reconfigurable frontend is envisioned to realize 
full-spectrum (1 GHz to 10 THz) sensing and 
communications that meet data rate, reliability, 
and scalability requirements. Spectrum innova-
tion technology and sensing-informed dynamic 
access to all-spectral resources will harmonize 
the 6G satellite swarm network spectrum.

In serverless edge architectures, the network 
infrastructure and ground terminals can utilize 
ML-SDN control engines and end-to-end learn-

ing algorithms to
• Recognize all-spectral usage 
• Exploit radio resources for communications efficiency.
First, evolving from MHz to GHz spectrum characterization, 
wireless learning features (e.g., signal waveforms, cyclic spec-
trums, complex correntropy) can be extracted from raw sen-
sory input. Learning-based wideband sensing techniques (e.g., 
wavelet detection, compressed sensing) can be designed to 
identify available spectrums effectively. Under practical wire-
less channels (e.g., fast fading for highly mobile vehicles), real-
time learning variants (e.g., real-time inference, fast spectrum 
analytics) can be further investigated for timely sensory pro-
cessing. We evaluate a C-V2X system with co-existing sub-6 
GHz, mmWave, and THz communications in the ground tier 
by setting up a realistic environment from downtown Raleigh 
via SUMO (Simulation of Urban MObility). The transportation 
parameters are 600 m2 area, 5  1.8 m2 vehicle size, 2.5/s 
vehicle arrival rate, and 55.56 m/s maximum vehicle speed. 
All-spectral communications parameters are set as sub-6GHz 
(0–2 GHz operating frequency, 2 GHz bandwidth, 100 m 
coverage, 0 dBi antenna gain), mmWave (26.5–29.5 GHz 
frequency, 3 GHz bandwidth, 15 m coverage, 20 dBi gain), 
THz (100–550 GHz, 450 GHz, 15 m, 50 dBi), 256 subcarri-
ers, eight maximum connections, one subcarrier guardband 
size, 30 dB signal-to-noise ratio (SNR), and 0.125 Nyquist 
rate. Upon this setup, Table 2 shows the performance of 
ultra-broadband spectrum recognition and sensing for our 
work [9] and a recent generative adversarial network (GAN)-
based solution [10]. The results imply that our scheme can 
effectively learn multiple simultaneous connections and out-
performs the GAN realization for all bands by jointly designing 
spectrum compression and reconstruction.

Based on the time series of ultra-broadband sensing results, 
the ML-SDN engines can further employ deep recurrent learn-
ing (e.g., long short-term memory, gate recurrent unit) and 
DRL algorithms to develop dynamic all-spectral access. The 
corresponding spectrum decision, sharing, and mobility can 
be proposed to avoid radio interference between ground and 
space tiers. The sensing-enabled coexistence can optimize 
shared spectrum allocation by considering delayed sensing 
data. Accordingly, ML-SDN control engines can devise an 
autonomous frontend that tunes optimal configurations (e.g., 
analog electronics, bandwidth sensitivity, position) to harmonize 
ultra-broadband spectrum access in real-time.

Table 1. Edge networking infrastructures and multi-agent learning deployments.

ML-SDN infrastructure Attribute Challenge Learning deployment/use case

Distributed control
Each ML-SDN control engine regu-
lates its domain

No cooperation, no centralized control Individual structure [2–4, 9. 10]

Multi-domain control (flat) Engines can cooperate with others Signaling overheads among engines Federated/global structures [1, 5]

Multi-layer hierarchical 
control

Software-defined hierarchy & load 
balancing

More sophisticated control policies
Federated/hierarchical/global 
structures [4]

Table 2. ML-enabled ultra-broadband sensing schemes (i.e., ours [9] versus GAN 
[10]) for the ground tier’s C-V2X.

sub-6GHz mmWave THz

[9] [10] [9] [10] [9] [10]

Mean square error 0.003 0.069 0.002 0.022 0.001 0.019

Cosine similarity 0.995 0.337 0.996 0.646 0.991 0.439

Structure similarity 0.852 0.303 0.931 0.739 0.939 0.629

Detection rate 90% — 97% 1.6% 94.5% 6.2%

F1 score 94.7% — 98.5% 3.2% 97.1% 11.7%
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ADAPTIVE BEYOND-LINE-OF-SIGHT COMMUNICATIONS

Since LEO satellites provide less uplink/downlink latency, opti-
mizing beyond-line-of-sight communications become feasi-
ble. Resource orchestration in the serverless platform can 
develop adaptive modulation and coding and power control 
mechanisms in higher bands to realize efficient ground-LEO 
access, particularly for uplink communications as 6G back-
haul or integrated access and backhaul. Ka-band systems (cur-
rently applied by Starlink Gen. 2) deliver substantially greater 
throughput than previous Ku-band offerings. ML-SDN control 
engines can operate adaptive communications parameters by 
employing satellite channel estimation and a feedback con-
trol loop. Figure 2 shows downlink packet error rates for an 
LEO satellite to a beyond-line-of-sight ground station. Ten sta-
tions share the channel via direct sequence spread spectrum 
(DSSS) with 240 (i.e., 23 dB) spreading factor, Raised Cosine 
pulse shape with 0.35 roll-off factor, 16 Mbps data rates, and 
1,500 bits packet size. The results imply that a 12 dB gain 
can be obtained with Turbo Codes and nominal equivalent 
isotropically radiated power (EIRP). Similar evaluations can 
be conducted following the given specifications. For exam-
ple, SDA optical communications terminals use on-off-key-
ing non-return-to-zero and M-ary pulse position modulations 
with radio resources at 193.1 and 195.1 THz. Based on the 
obtained performance portfolios, uplink channel estimation 
can enable adaptive modulation, coding, and power control 
schemes based on physical-layer specifications and downlink 
performance. For instance, an auto-regressive moving-aver-
age model generally describes the dynamics of rain fading in 
Ka-bands. The transmit scheme can then vary per the fading 
gain to keep the SNR level while maintaining the requested 
power outage probability.

SATELLITE SWARM HYPER-CONNECTIVITY

Service and network management in the serverless platform 
has an end-to-end system view and can enable satellite swarms’ 
hyper-connections to enhance global transmission capacities. 
To demonstrate the architectural effectiveness, we consider 
many stations in the ground tier as an extensive ad hoc net-
work and characterize it with a geometric random graph. These 
ground stations can use Zigbee (802.15.4) technology for multi-
hop transmissions with a 100 kb/s average data rate. The space 
tier consists of m  m satellites in a two-dimensional lattice 
structure, following a small-world swarm topology [11]. These 
LEO satellites can support Mynaric inter-satellite links with a 10 
Gbps average data rate and Starlink ground-satellite transmis-
sions with 100 Mbps. When applying the LEO swarm network 
in the (reinforcement learning) algorithm designs, swarm infra-
structure factors should be considered together, such as the 
satellite connectivity over different orbits, ISL connections, and 
handover transitions. Accordingly, adopting the enhancements 
of deep learning realization via Section~\ref{sec3d} or graph 
modeling for LEO swarm topologies can facilitate algorithm 
convergence concerning different service requirements and 
space mission applications.

Given 1 Mb of data from a ground source station to a des-
tination station, Fig. 3 shows the worst-case transmission delay 
by sole ground transmissions with long multihop routes and sat-
ellite-assisted hyper-connections with different swarm sizes. The 
results indicate that end-to-end delay can be reduced by at least 
50% via a 2  2 satellite swarm’s hyper-connections and up to 
around 90% with a larger swarm (e.g., 5  5). The improve-
ment is because ground stations now can use the space tier 
for ultra-fast data delivery rather than conventional very-long 
ground routes. By adding a few satellites and tailoring their 
swarm structure, satellite swarm networks can resolve unde-
pendable end-to-end transmission delay and thus facilitate resil-
ient ultra-broadband networking with SLA provisioning.

MULTI-AGENT DEEP REINFORCEMENT LEARNERS

One primary objective of the designed serverless platform is to 
dynamically adjust ML workloads among heterogeneous com-
puting units while considering their real-time capabilities. ML-SDN 
control engines can equip multi-agent DRL; different Table 1 
deployments can be implemented to ensure effective engine 
coordination for superior system performance. Notably, a multi-
agent DRL algorithm has three design components: observation 
processors, action predictors, and deep learners. An agent inter-
acts with the environment (e.g., satellite swarm networks) and 
obtains local observations and models (e.g., current state, action, 
reward, and next state). An action predictor can characterize 
agent collaboration by predicting other agents’ actions. A deep 
learner can derive the optimum policies based on the observa-
tion and prediction results. Furthermore, each agent/engine can 
upload its local parameters to the serverless platform, training 
neural networks with global information. Thus, our serverless 
edge platform can configure four learning deployments listed 
below for different coordination among ML-SDN control engines.
• Individual/competitive structure: each control engine imple-

ments its learner from its observation processor and inactivates 
its action predictor by considering other engines as part of the 
environment. Control engines can obtain rewards and new 
observations stored as training experiences by interacting with 

Figure 2. A LEO’s downlink Ka-band (27.5 GHz) performance 
portfolios to enable adaptive ground-space communications.

Figure 3. End-to-end delay of ground multihop routes versus LEO 
satellite hyper-connections with swarm size m  m. 

Fig. 3: End-to-end delay of ground multihop routes versus
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the entire environment. Such historical expe-
riences can facilitate engines to carry out ML 
workloads with real-time capabilities.

• Federated/collaborative structure: control 
engines with larger time granularity require 
long periods of environment observation, 
which degrades model training and updating 
performances. Collaborative deployment can 
significantly reduce such processing latency, 
particularly for larger control cycles. Specifically, 
recently emerging federated learning can be 
applied, where each engine trains its learner 
and reports local parameters to the serverless 
platform. The platform then aggregates the 
collected parameters for a global model and 
disseminates the results to engines for their 
subsequent training. Also, this federated struc-
ture can quickly realize centralized training and 
decentralized execution of multi-agent DRL.

• Hierarchical/leader-follower structure: 
leveraging hierarchical ML-SDN infrastruc-
tures, upper/leader control engines with 
larger control cycles enable learners to observe and pre-
dict lower/follower actions. Then, the followers can follow 
the leaders’ actions and environment and implement their 
learning. Hierarchical structures can also be extended with 
multiple layers to address scalability issues, e.g., leaders, 
sub-leaders, and followers.

• Global/joint structure: lastly, all control engines can upload 
their observations and rewards to the serverless platform 
for training a fully centralized learner. Then, the platform 
provides the results to engines to perform corresponding 
actions. In addition, historical experience storage and usage 
to enhance multi-agent DRL can be handled by only local 
engines, engines with the platform, or the sole platform, 
depending on learning deployments.
A compact total solution, the hardware-in-the-loop testbed, 

and practical experimentation are being built; the proof-of-con-
cept results are promptly posted on our iWN lab website.

OPEN RESEARCH PROBLEMS
We summarize open research issues that should be investigated 
further to fully assess the merits of the proposed serverless sat-
ellite swarm networks.

UNSUPERVISED BEYOND-LINE-OF-SIGHT MIMO BEAMFORMING

Two crucial challenges exist when supporting timely beam-
forming and high bandwidth in multi-antenna ultra-broadband 
satellite swarm networks. First, hybrid beamformers need low-la-
tency beam management to provide good transmission quality 
in fast time-varying beyond-line-of-sight channels constantly. 
Such channel conditions are due to peculiar LEO satellite move-
ment and communications band in possible all-spectral (e.g., 
mmWave’s blockage sensitivity, THz’s pronounced molecular 
absorption, and spreading losses). Second, supervised deep 
learning (i.e., conventional ML-based solutions) can address 
complicated beamformers with large antenna arrays (e.g., per-
fect channel state information via channel estimation). How-
ever, this learning technique is limited by the performance of 
labeling algorithms, which must label vast input data (especially 
in multi-user scenarios) during offline training.

Unsupervised reinforcement learning-based beamforming is 
one enabling technology to cope with these challenges and 
provide fast beam tracking for the net multi-antenna gain. In 
serverless edge architectures, satellite swarms can coordinate 
for joint operations to act as a distributed antenna system. The 
time-varying MIMO fading channel on space-ground commu-
nications can be modeled by extending the K-user interfer-
ence channel. Average downlink data rates can be obtained 
via medium access control (e.g., asynchronous direct-sequence 

code-division multiple access). Accordingly, 
a user sum-rate maximization can meet the 
unsupervised learning need of “differentiable” 
objective functions. For example, one can 
formulate a constrained optimization to find 
optimal beamformer matrices and power and 
spectrum allocations, subject to maximum 
available power, spectrum constraints, and sto-
chastic computation delay requirements.

Based on the unsupervised formulation, the 
remaining task is introducing computation-effi-
cient algorithms that consistently provide good 
beam tracking adaptive to timely environmen-
tal changes. Deep unfolding techniques are 
candidates for efficient unsupervised beam-
formers, leveraging residual neural networks 
and optimization. In [12], a coarse estimator 
module addresses the constrained sum-rate 
maximization; gradient descent beamforming 
is then empowered with a deep unfolding 
module for fast convergence. Finally, unsuper-
vised beamformers should be upgraded with 

reinforcement learning-enabled tracking to balance system 
resilience and rapid beam alignment/steering. For example, 
multi-agent DRL on ML-SDN control engines can use received 
power levels to ensure up-to-date beam tracking while satisfying 
computation delay requirements.

ANTI-JAMMING MIMO SATELLITE SWARMS

A satellite swarm can utilize beyond-line-of-sight channels and 
ultra-wide coverage for more robust communications with higher 
throughput. These MIMO LEO satellites can adopt MIMO and 
spread spectrum technologies to prevent active jamming attacks 
or harmful co-channel interference. For example, antenna beam-
forming can eliminate interference by directing a null toward a 
jammer. In [13], a DSSS system is revamped and tested experi-
mentally for above 100 GHz and secure spectrum sharing, ensur-
ing coexistence between ground THz active users and THz earth 
exploration satellite services. More importantly, the anti-jamming 
capability of MIMO satellite swarms can increase to the next level 
by exploiting their spatial dimension with MIMO beamforming 
and frequency hopping spread spectrum. In particular, uplink/
downlink transmissions can smartly allocate specific “virtual” rays 
among total available rays through swarm coordination to avoid 
jamming signals. Larger-scale swarm coordination can be accom-
plished via hardware synchronization, timing protocol designs, or 
the proposed serverless SDN edges. Hence, massively networked 
MIMO techniques can be established to assure SLAs (e.g., vari-
able-rate MIMO links, robust and bandwidth-efficient communi-
cations) in secure satellite swarm networks.

CYBER-HARDEN OPPORTUNISTIC MULTIPATH ROUTING

For connectivity robustness and resilience, defensive and 
self-healing algorithms should be designed to tackle possible 
cyber-attacks and provide ceaseless connections in node fail-
ures, deep fades, and malicious behaviors. A straightforward 
solution is to create backup paths, but it is resource prohibitive 
to assign wireless backup capacity. Hence, one possible solu-
tion is to revamp opportunistic multipath routing algorithms 
to provide cyber-harden satellite swarm communications. In 
[14], a cognitive and opportunistic relay solution is designed for 
reliable communications and connections in a machine swarm. 
This design enables machines to cognize and adapt to envi-
ronments for mitigating inter-system interference with existing 
networks and realizes opportunistic selections of cooperative 
relay machines based on link qualities. Similarly, satellite swarms 
can distributedly concatenate their link transmissions for end-
to-end resiliency. Also, in [15], “virtual” MIMO at the session 
level is established, and probabilistic network-coded routing 
is developed for large-scale cognitive machine swarms. This 
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work enables spatial multiplexing and diversity with session-lev-
el traffi  c and ensures end-to-end delay by employing network 
coding techniques with underlaid routing algorithms. Thus, such 
dynamic cooperation via multihop multipath transmissions can 
be exploited for the fault tolerance of satellite swarm networks, 
robust to a node or link failures.

CROSS-CONSTELLATION DELAY-OPTIMAL MULTIPATH TCP
Owing to serverless edge architectures, heterogeneous satellite 
constellations from diff erent operators can now integrate into a 
hybrid space architecture through space-based adaptive com-
munications node (SBACN) and API development for cross-con-
stellation communications command and control. As shown 
in Fig. 4, a hierarchical structure can be established where an 
SBACN center connects to multiple SBACN terminals. These 
terminals integrate existing satellite operators’ constellations by 
acting as their gateways. SBACN terminals only need to update 
the resource information and service requests to the SBACN 
center via serverless edges and enable FaaS for connectivity 
and SLA satisfaction without configuring or managing resourc-
es. On the other hand, the SBACN center coordinates reliable 
inter-constellation-level connectivity while each operator han-
dles its intra-constellation-level management. The SBACN center 
hosts on-demand applications through dynamically instantiated 
containers and eff ectively computes optimal routing-path plan-
ning and resource allocation designs, avoiding underutilization 
while maintaining high throughput. Iteratively software upgrading 
eff orts for the APIs and underlying algorithms are negligible.

Based on scalable cross-constellation architectures, a central-
ized delay-optimal multipath TCP (MPTCP) can be developed to 
minimize the end-to-end delay while eliminating frequent control 
message signaling from distributed algorithms. Satellite-assisted 
communications suff er long delays and regular ground-satellite 
handovers (both problematic for TCP connections). MPTCP 
protocols address these challenges by exploiting multiple Inter-
net paths between a pair of hosts while presenting a single TCP 
connection to the upper layer. Thus, the upper-layer applica-
tions only need a single logical master TCP connection. Multi-
ple sub-fl ows are then running underneath, each of which is a 
conventional TCP connection. Specifi cally, one can formulate a 
nonlinear optimization to fi nd end-to-end routes with minimum 
average delay and no congestion concerning cross-constellation 
network topology and traffic to provide delay-optimal end-to-
end networking. Then, fast algorithms can be exploited to give 
the optimal MPTCP solutions within a few milliseconds. As a 
result, centralized SBACN controllers implement
• Topology and traffi  c monitoring/prediction
• MPTCP awareness
• Multiple disjoint path discoveries, thus achieving timely and 

reliable cross-constellation systems.

CONCLUSIONS
Satellite swarm networks have promised to serve isolated or 
remote communities and fulfi ll the needs of landlocked areas 
with limited infrastructure investments. However, there is little 
work that simultaneously addresses satellite access and inter-ti-
er networking within the 6G context and provides a coherent 
serverless architecture for such ecosystems. This article intro-
duces unique serverless edge architectures with multi-tier deep 
reinforcement learners and emphasizes necessary architectural, 
management, and operational advances, thus bringing a new 
frontier for resilient access equality.
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Figure 4. Cross-constellation SBACN swarm architecture.


