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ABSTRACT

Low earth orbit (LEO) mega-constellations, integrating government space systems and commercial practices, become enabling technologies
for the sixth generation (6G) networks due to their excellent merits of global coverage and ubiquitous services for military and civilian use
cases. However, convergent LEO-based satellite networking infrastructures lack leveraging the synergy of space and terrestrial systems. This
paper extends conventional cloud platforms with serverless edge learning architectures for 6G satellite swarm ecosystems and provides a
new distributed training design from a networking perspective. The proposed method dynamically orchestrates communications, compu-
tation functionalities, and resources among heterogeneous physical units to efficiently fulfill multi-agent deep reinforcement learning for
service-level agreements. Innovative ecosystem enhancements, including ultra-broadband access, antijamming transmissions, resilient net-
working, and related open challenges, are investigated for end-to-end connectivity, communications, and learning performance.

INTRODUCTION

Low earth orbit (LEO) mega-constellations [1-3] with govern-
ment and commercial satellites have been regarded as the most
promising remedy to provide global coverage and ubiquitous
wireless services, bridging the ever-existent digital divide via
their global footprints. These satellite swarms, comprising small
distributed satellites in lower orbits via optical inter-satellite
links, provide less latency and overlapping coverage for broad-
band connectivity without suffering geographical limitations [1].
Satellite swarm networks can leverage ground station control
and autonomous multi-satellite operations to form different
flying patterns (e.g., trailing, cluster, or constellation) and enable
resilient access equality, depending on separating satellites
and intended applications. Meanwhile, emerging distributed
machine learning (ML) brings attention to decentralized data
sources. This learning technology will likely address multi-di-
mensional resource allocations for integrated satellite swarms
and the sixth generation (6G) networks. However, existing
multi-satellite solutions mainly assume their system feasibility
and directly work on enabling applications (e.g., [2]). There is
little investigation into the redundancy and tradeoff between
computations and communications and the dedicated resource
orchestrations to realize timely edge learners with efficient data
processing. Few solutions exist to comprehensively evaluate
distributed training performance concerning the peculiarities
of satellite swarm networks (e.g., satellite access and multi-tier
connected infrastructure). Architectural, operational, and man-
agement changes are a must for such ecosystems.

Recent studies focus on integrating satellite swarms with
ground communications and reveal the spectral efficiency of
non-terrestrial coexistence via ML-based resource allocation. An
automatic network slicing platform for the Internet of space things
is presented in [1], which carries out service-level agreements
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(SLAs) over the space-ground integrated infrastructure. In [2],
beamspace MIMO (multiple-input multiple-output) is exploited
for downlink satellite swarms, requiring only position information
for distributed linear precoders and a ground equalizer. In [3],
optimal network control structures are studied to improve the
temporal control effectiveness with the least number of control-
lers. Authors in [4] consider three-dimensional terrain surface cov-
erage by designing hierarchical unmanned aerial vehicles (UAVs)
swarms via deep reinforcement learning (DRL) algorithms. A
multi-tier collaborative DRL scheme is proposed in [5] to empow-
er resource allocation in satellite-aided vehicular networks.
Regarding edge applications, function as a service (FaaS)
models emerge to decompose the application into functions
invoked individually or in a chain [6]. FaaS$ is suited to the prac-
tical interest of the event-based programming model (micro-
services or serverless), efficient resource (at the device- and
edge-level) utilization, and high system scalability. In [7], a survey
of ML-enabled microservices is provided to leverage heteroge-
neous, distributed, and resource-constrained edge computations
for secure Internet of Things (loT) networks. In [8], serverless
computing implementation is integrated into edge computing
scenarios, and comprehensive overviews of architecture designs
and challenges are given. Resilient edge access and coexistence
and resource management developments for 6G satellite swarms
are in their infancy and require innovations and new approaches.
This article presents a serverless software-defined networking
(SDN) architecture that dynamically orchestrates communica-
tions and computation resources for a diverse set of 6G SLAs.
A serverless edge platform is established that orchestrates func-
tion containers among (geographically distributed) ML-SDN
control engines in space and ground tiers for highly flexible, vir-
tualizable SDN infrastructure. The above applications only need
to care about function implementation without managing any
underlying resources. This unified control platform can alleviate
the disturbance to physical infrastructure units giving time-vary-
ing resource availability and heterogeneity. It also allows a
multi-tier ML framework to optimize networking and resource
configurations according to each tier’s practical constraints,
such as heterogeneous computing capabilities of SWaP (size,
weight, and power)-limited satellites and ground stations, fre-
quently-handover satellite access, and coverage-limited ground
tier. Remarkably, the intelligence within multiple ML-SDN
control engines (e.g., ground stations and satellites with com-
puting capabilities) can realize efficient broadband access for
ground users concerning software-reconfigurable LEO satellites,
data-driven approaches for unknown environments, and differ-
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FIGURE 1. A serverless edge architecture with ML-SDN engines and

ent decision timescales of each unit. As a result, the designed

multi-tier ML models create high-throughput, reliable end-to-end

transmissions for global connectivity. The proposed architecture
and solutions bring many benefits to 6G satellite swarm ecosys-
tems, as listed below:

1. We provide a serverless SDN edge architecture that intro-
duces a serverless computing layer based on an abstraction of
the ground-space ecosystem. Both application programming
interfaces (APIs) and network resource management tools are
developed to manage applications on-demand through dynam-
ically instantiated containers and effectively utilize computing
resources from distributed satellites and ground stations.

2. We improve the end-to-end learning performance by dynami-
cally adjusting workloads among ML-SDN control engines. For
example, ground stations with powerful computing capabili-
ties can assist satellites” resource allocation tasks. The satellite
learning model can also be transferred to its successor, pre-
venting always training from scratch for SWaP-limited devices.

3. We enable data-driven multi-user access control for the
ground-space eco-network. Serverless computing architec-
tures provide infrastructure controllability to the multi-tier ML
models, establishing efficient ultra-broadband sensing and
communications to satisfy 6G requirements.

4. We achieve reliable software-defined internetworking
through spectrum harmonization and hyper-connectivity.
New networking designs are realized to address heterogene-
ity, scalability, performance, and reliability fully.

Therefore, our innovations significantly enhance end-to-end
performance and impact future human society in isolated or
remote communities and landlocked areas with limited infrastruc-
ture investments. Our designs facilitate distributed deep training
development with fast adaptiveness and efficient multi-tier process-
ing while tackling non-terrestrial system heterogeneity and dynam-
ics. It is noteworthy that this work tightly aligns with the latest
industry specifications. For instance, 3GPP Release 17 considers
satellite mobility at different orbital heights to support non-terres-
trial networks with 3GPP NR (new radio) on the ground. Release
18 creates 5G Advanced, including new intelligent, ML-enabled
solutions to boost mobile broadband and verticals performance.

The rest of this article is organized as follows. The following
section gives our serverless edge architecture. We then investi-
gate LEO-based ultra-broadband access and resilient network-
ing. Following that, open research problems are discussed. The
final section concludes the article.

enabling technologies for 6G LEO swarm networks.

SERVERLESS EDGE ARCHITECTURE WITH
MULTI-TIER ML-SDN CONTROL ENGINES

Figure 1 shows the proposed serverless edge architecture in
ground and space tiers for 6G satellite swarm networks. The
ground tier consists of several terrestrial systems, such as the
loT, UAVs, and cellular vehicle-to-everything (C-V2X); each
system has a dedicated ML-SDN control engine. The control
engines integrate SDN controllers with ML algorithms and
manage computing, storage, and communications resources.
They receive resource and service requests and training data
from the serving systems and, in turn, assign tasks and control
decisions back. The space tier includes satellite swarms from
operators, such as SpaceX, Amazon, Telesat, and the space
development agency (SDA), in orbits and operating systems.
A serverless edge platform is built for a scalable and unified
control plane to coordinate multi-tier engines and constitutes
a shared resource pool for virtualization and network slicing.
As shown in Fig. 1, this platform gives policy-based guidance
for ML workflows and effectively manages resources via two
crucial modules to meet diverse SLAs simultaneously for an
intelligent networking architecture.

First, the service management module enables emerging
satellite and ML applications to request SLA portfolios (e.g.,
link throughput, end-to-end latency, etc.) from the lower man-
agement module. Each application is decomposed into func-
tions (e.g., service discovery, deployment, scheduling, caching,
etc.) and defines a dedicated service function chain upon the
infrastructure. Second, the network and resource management
module collects global network status, allocates multi-dimen-
sional resources, and regulates multiple control engines with
the ML deployments. Specifically, network management main-
tains the topology, decides the best routes, and schedules and
monitors the upper function chains. Resource orchestration
allocates and controls underlying resources from distributed
infrastructure. Hence, the platform can efficiently explore net-
work adaptiveness and realize optimal space-ground policies at
the edges through network automation.

The 6G serverless edge platform pushes the controllabili-
ty to network edges via local control engines with edge and
serverless computing. A single centralized control with huge
decision parameters for 6G satellite swarm networks to cover
an ultra-wide geographical and spatial area is not feasible.
Table 1 summarizes three control plane implementations, cor-
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ML-SDN infrastructure

Attribute

Challenge

Learning deployment/use case

Distributed control

Multi-domain control (flat)

Multi-layer hierarchical
control

Each ML-SDN control engine regu-
lates its domain

Engines can cooperate with others

Software-defined hierarchy & load
balancing

No cooperation, no centralized control
Signaling overheads among engines

More sophisticated control policies

TABLE 1. Edge networking infrastructures and multi-agent learning deployments.

Individual structure [2-4, 9. 10]

Federated/global structures [1, 5]

Federated/hierarchical/global
structures [4]

sub-6GHz mmWave THz trum soon. How to sense and identify spectrum

[9] [10] 9] [10] 9] [10] usages in such uItrg—broadband is cruual. and

necessary for enabling LEO-based access in an

Mean square error 0.003 0.069 0.002 0.022 0.001 0.019 integrated terrestrial and non-terrestrial envi-
. ronment. A frequency-agile ultra-broadband
Cosine similarity 0.995 0.337 0.996 0.646 0.991 0.439 reconfigurable frontend is envisioned to realize
Structure similarity ~ 0.852 0303 0931 0739 0939 0629 fullspectrum (1 GHz to 10 THz) sensing and
communications that meet data rate, reliability,

Detection rate 90% = 97% 1.6% 94.5% 6.2% and scalability requirements. Spectrum innova-
P cxeis 94.7% _ 98.5% 3.29% 97.1%  11.79%  ton technology and sensing-informed dynamic

TABLE 2. ML-enabled ultra-broadband sensing schemes (i.e., ours [9] versus GAN

[10]) for the ground tier's C-V2X.

responding attributes, challenges/costs, and learning deploy-
ments for multi-tier ML-SDN engines. These multiple engines
can be organized in a fully distributed, multi-domain flat, or
multi-layer hierarchical manner to provide control scalability
and boost learning efficiency. The multi-domain and multi-layer
control can realize optimal global learning by splitting enor-
mous optimization dimensions into collaborative engines’ tasks.
Such collaboration can be revamped from SDN’s east-bound
and west-bound APIs. The south-band APIs are expanded to
help ML-SDN engines communicate and control the underlying
physical resources. The developed designs are dedicated to
systems’ functions, such as satellite beam steering, UAV move-
ment control, and resource block allocation in base stations.
For example, our multi-domain control realization [5] facilitates
resource allocation decision-making concerning different com-
puting capabilities of ground vehicles and satellites and con-
firms its effectiveness via comprehensive V2X simulations.

ENABLING TECHNOLOGIES: LEO-BASED ACCESS,
NETWORKING, AND MULTI-AGENT DEEP LEARNERS

This section investigates enabling technologies for serverless
satellite swarm networks. These include sensing-enabled coexis-
tence on ML-SDN engines, resilient beyond-line-of-sight access
for resource orchestration, novel space corridor via service and
network management, and multi-agent DRL deployment for
multi-tier ML-SDN engine coordination.

AUTOMATIC ULTRA-BROADBAND SPECTRUM SENSING

Conventional software-defined satellite networks allow beam
transmissions via certain bands, e.g., DVB-T (174 MHz to 786
MHz) in most satellite systems. Recent beyond-line-of-sight
communications also advance in higher frequency bands, such
as C-band (4 GHz to 8 GHz), Ku-band (12 GHz to 18 GHz),
and Ka-band (27 GHz to 40 GHz), concerning their higher data
rate transmissions. For example, in NASA’s remote sensing and
earth exploration services, their Aura satellites collect radiomet-
ric data on 118 GHz, 190 GHz, and 2.5 THz. For ground trans-
missions, 5G NR considers frequency ranges 1 (sub-6GHz) and
2 (millimeter wave, mmWave) in Release 17 to support C-V2X
communications for wide-area coverage. Hence, given that
all these transmissions can happen concurrently and the latest
transceiver hardware advances, it is assumed that next-gen-
eration terrestrial base stations should be able to recognize
these spectrum usage behaviors over the ultra-broadband spec-

access to all-spectral resources will harmonize
the 6G satellite swarm network spectrum.

In serverless edge architectures, the network

infrastructure and ground terminals can utilize
ML-SDN control engines and end-to-end learn-
ing algorithms to
* Recognize all-spectral usage
* Exploit radio resources for communications efficiency.
First, evolving from MHz to GHz spectrum characterization,
wireless learning features (e.g., signal waveforms, cyclic spec-
trums, complex correntropy) can be extracted from raw sen-
sory input. Learning-based wideband sensing techniques (e.g.,
wavelet detection, compressed sensing) can be designed to
identify available spectrums effectively. Under practical wire-
less channels (e.g., fast fading for highly mobile vehicles), real-
time learning variants (e.g., real-time inference, fast spectrum
analytics) can be further investigated for timely sensory pro-
cessing. We evaluate a C-V2X system with co-existing sub-6
GHz, mmWave, and THz communications in the ground tier
by setting up a realistic environment from downtown Raleigh
via SUMO (Simulation of Urban MObility). The transportation
parameters are 600 m? area, 5 x 1.8 m?2 vehicle size, 2.5/s
vehicle arrival rate, and 55.56 m/s maximum vehicle speed.
All-spectral communications parameters are set as sub-6GHz
(0-2 GHz operating frequency, 2 GHz bandwidth, 100 m
coverage, 0 dBi antenna gain), mmWave (26.5-29.5 GHz
frequency, 3 GHz bandwidth, 15 m coverage, 20 dBi gain),
THz (100-550 GHz, 450 GHz, 15 m, 50 dBi), 256 subcarri-
ers, eight maximum connections, one subcarrier guardband
size, 30 dB signal-to-noise ratio (SNR), and 0.125 Nyquist
rate. Upon this setup, Table 2 shows the performance of
ultra-broadband spectrum recognition and sensing for our
work [9] and a recent generative adversarial network (GAN)-
based solution [10]. The results imply that our scheme can
effectively learn multiple simultaneous connections and out-
performs the GAN realization for all bands by jointly designing
spectrum compression and reconstruction.

Based on the time series of ultra-broadband sensing resuilts,
the ML-SDN engines can further employ deep recurrent learn-
ing (e.g., long short-term memory, gate recurrent unit) and
DRL algorithms to develop dynamic all-spectral access. The
corresponding spectrum decision, sharing, and mobility can
be proposed to avoid radio interference between ground and
space tiers. The sensing-enabled coexistence can optimize
shared spectrum allocation by considering delayed sensing
data. Accordingly, ML-SDN control engines can devise an
autonomous frontend that tunes optimal configurations (e.g.,
analog electronics, bandwidth sensitivity, position) to harmonize
ultra-broadband spectrum access in real-time.
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ADAPTIVE BEYOND-LINE-OF-SIGHT COMMUNICATIONS

Since LEO satellites provide less uplink/downlink latency, opti-
mizing beyond-line-of-sight communications become feasi-
ble. Resource orchestration in the serverless platform can
develop adaptive modulation and coding and power control
mechanisms in higher bands to realize efficient ground-LEO
access, particularly for uplink communications as 6G back-
haul or integrated access and backhaul. Ka-band systems (cur-
rently applied by Starlink Gen. 2) deliver substantially greater
throughput than previous Ku-band offerings. ML-SDN control
engines can operate adaptive communications parameters by
employing satellite channel estimation and a feedback con-
trol loop. Figure 2 shows downlink packet error rates for an
LEO satellite to a beyond-line-of-sight ground station. Ten sta-
tions share the channel via direct sequence spread spectrum
(DSSS) with 240 (i.e., 23 dB) spreading factor, Raised Cosine
pulse shape with 0.35 roll-off factor, 16 Mbps data rates, and
1,500 bits packet size. The results imply that a 12 dB gain
can be obtained with Turbo Codes and nominal equivalent
isotropically radiated power (EIRP). Similar evaluations can
be conducted following the given specifications. For exam-
ple, SDA optical communications terminals use on-off-key-
ing non-return-to-zero and M-ary pulse position modulations
with radio resources at 193.1 and 195.1 THz. Based on the
obtained performance portfolios, uplink channel estimation
can enable adaptive modulation, coding, and power control
schemes based on physical-layer specifications and downlink
performance. For instance, an auto-regressive moving-aver-
age model generally describes the dynamics of rain fading in
Ka-bands. The transmit scheme can then vary per the fading
gain to keep the SNR level while maintaining the requested
power outage probability.

SATELLITE SWARM HYPER-CONNECTIVITY

Service and network management in the serverless platform
has an end-to-end system view and can enable satellite swarms’
hyper-connections to enhance global transmission capacities.
To demonstrate the architectural effectiveness, we consider
many stations in the ground tier as an extensive ad hoc net-
work and characterize it with a geometric random graph. These
ground stations can use Zigbee (802.15.4) technology for multi-
hop transmissions with a 100 kb/s average data rate. The space
tier consists of m x m satellites in a two-dimensional lattice
structure, following a small-world swarm topology [11]. These
LEO satellites can support Mynaric inter-satellite links with a 10
Gbps average data rate and Starlink ground-satellite transmis-
sions with 100 Mbps. When applying the LEO swarm network
in the (reinforcement learning) algorithm designs, swarm infra-
structure factors should be considered together, such as the
satellite connectivity over different orbits, ISL connections, and
handover transitions. Accordingly, adopting the enhancements
of deep learning realization via Section™\ref{sec3d} or graph
modeling for LEO swarm topologies can facilitate algorithm
convergence concerning different service requirements and
space mission applications.

Given 1 Mb of data from a ground source station to a des-
tination station, Fig. 3 shows the worst-case transmission delay
by sole ground transmissions with long multihop routes and sat-
ellite-assisted hyper-connections with different swarm sizes. The
results indicate that end-to-end delay can be reduced by at least
50% via a 2 x 2 satellite swarm’s hyper-connections and up to
around 90% with a larger swarm (e.g., 5 x 5). The improve-
ment is because ground stations now can use the space tier
for ultra-fast data delivery rather than conventional very-long
ground routes. By adding a few satellites and tailoring their
swarm structure, satellite swarm networks can resolve unde-
pendable end-to-end transmission delay and thus facilitate resil-
ient ultra-broadband networking with SLA provisioning.
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MULTIFAGENT DEEP REINFORCEMENT LEARNERS

One primary objective of the designed serverless platform is to
dynamically adjust ML workloads among heterogeneous com-
puting units while considering their real-time capabilities. ML-SDN
control engines can equip multi-agent DRL; different Table 1
deployments can be implemented to ensure effective engine
coordination for superior system performance. Notably, a multi-
agent DRL algorithm has three design components: observation
processors, action predictors, and deep learners. An agent inter-
acts with the environment (e.g., satellite swarm networks) and
obtains local observations and models (e.g., current state, action,
reward, and next state). An action predictor can characterize
agent collaboration by predicting other agents’ actions. A deep
learner can derive the optimum policies based on the observa-
tion and prediction results. Furthermore, each agent/engine can
upload its local parameters to the serverless platform, training
neural networks with global information. Thus, our serverless
edge platform can configure four learning deployments listed
below for different coordination among ML-SDN control engines.
+ Individual/competitive structure: each control engine imple-

ments its learner from its observation processor and inactivates

its action predictor by considering other engines as part of the

environment. Control engines can obtain rewards and new

observations stored as training experiences by interacting with

IEEE Internet of Things Magazine * September 2023

41



the entire environment. Such historical expe-
riences can facilitate engines to carry out ML
workloads with real-time capabilities.

+ Federated/collaborative structure: control
engines with larger time granularity require
long periods of environment observation,
which degrades model training and updating
performances. Collaborative deployment can
significantly reduce such processing latency,
particularly for larger control cycles. Specifically,
recently emerging federated learning can be
applied, where each engine trains its learner
and reports local parameters to the serverless
platform. The platform then aggregates the
collected parameters for a global model and
disseminates the results to engines for their
subsequent training. Also, this federated struc-
ture can quickly realize centralized training and
decentralized execution of multi-agent DRL.

+ Hierarchical/leader-follower structure:
leveraging hierarchical ML-SDN infrastruc-
tures, upper/leader control engines with
larger control cycles enable learners to observe and pre-
dict lower/follower actions. Then, the followers can follow
the leaders” actions and environment and implement their
learning. Hierarchical structures can also be extended with
multiple layers to address scalability issues, e.g., leaders,
sub-leaders, and followers.

+ Global/joint structure: lastly, all control engines can upload
their observations and rewards to the serverless platform
for training a fully centralized learner. Then, the platform
provides the results to engines to perform corresponding
actions. In addition, historical experience storage and usage
to enhance multi-agent DRL can be handled by only local
engines, engines with the platform, or the sole platform,
depending on learning deployments.

A compact total solution, the hardware-in-the-loop testbed,
and practical experimentation are being built; the proof-of-con-
cept results are promptly posted on our iWN lab website.

OPEN RESFARCH PROBLEMS

We summarize open research issues that should be investigated
further to fully assess the merits of the proposed serverless sat-
ellite swarm networks.

UNSUPERVISED BEYOND-LINE-OF-SIGHT MIMO BEAMFORMING

Two crucial challenges exist when supporting timely beam-
forming and high bandwidth in multi-antenna ultra-broadband
satellite swarm networks. First, hybrid beamformers need low-la-
tency beam management to provide good transmission quality
in fast time-varying beyond-line-of-sight channels constantly.
Such channel conditions are due to peculiar LEO satellite move-
ment and communications band in possible all-spectral (e.g.,
mmWave’s blockage sensitivity, THz's pronounced molecular
absorption, and spreading losses). Second, supervised deep
learning (i.e., conventional ML-based solutions) can address
complicated beamformers with large antenna arrays (e.g., per-
fect channel state information via channel estimation). How-
ever, this learning technique is limited by the performance of
labeling algorithms, which must label vast input data (especially
in multi-user scenarios) during offline training.

Unsupervised reinforcement learning-based beamforming is
one enabling technology to cope with these challenges and
provide fast beam tracking for the net multi-antenna gain. In
serverless edge architectures, satellite swarms can coordinate
for joint operations to act as a distributed antenna system. The
time-varying MIMO fading channel on space-ground commu-
nications can be modeled by extending the K-user interfer-
ence channel. Average downlink data rates can be obtained
via medium access control (e.g., asynchronous direct-sequence

A satellite swarm can utilize

beyondHine-ofsight channels
and ultra-wide coverage for
more robust communica-

tions with higher through-

put. These MIMO LEO
satellites can adopt MIMO
and spread spectrum tech-
nologies to prevent active
jamming attacks or harmful

co-channel interference.

code-division multiple access). Accordingly,
a user sum-rate maximization can meet the
unsupervised learning need of “differentiable”
objective functions. For example, one can
formulate a constrained optimization to find
optimal beamformer matrices and power and
spectrum allocations, subject to maximum
available power, spectrum constraints, and sto-
chastic computation delay requirements.

Based on the unsupervised formulation, the
remaining task is introducing computation-effi-
cient algorithms that consistently provide good
beam tracking adaptive to timely environmen-
tal changes. Deep unfolding techniques are
candidates for efficient unsupervised beam-
formers, leveraging residual neural networks
and optimization. In [12], a coarse estimator
module addresses the constrained sum-rate
maximization; gradient descent beamforming
is then empowered with a deep unfolding
module for fast convergence. Finally, unsuper-
vised beamformers should be upgraded with
reinforcement learning-enabled tracking to balance system
resilience and rapid beam alignment/steering. For example,
multi-agent DRL on ML-SDN control engines can use received
power levels to ensure up-to-date beam tracking while satisfying
computation delay requirements.

ANTIHAMMING MIMO SATELLITE SWARMS

A satellite swarm can utilize beyond-line-of-sight channels and
ultra-wide coverage for more robust communications with higher
throughput. These MIMO LEO satellites can adopt MIMO and
spread spectrum technologies to prevent active jamming attacks
or harmful co-channel interference. For example, antenna beam-
forming can eliminate interference by directing a null toward a
jammer. In [13], a DSSS system is revamped and tested experi-
mentally for above 100 GHz and secure spectrum sharing, ensur-
ing coexistence between ground THz active users and THz earth
exploration satellite services. More importantly, the anti-jamming
capability of MIMO satellite swarms can increase to the next level
by exploiting their spatial dimension with MIMO beamforming
and frequency hopping spread spectrum. In particular, uplink/
downlink transmissions can smartly allocate specific “virtual” rays
among total available rays through swarm coordination to avoid
jamming signals. Larger-scale swarm coordination can be accom-
plished via hardware synchronization, timing protocol designs, or
the proposed serverless SDN edges. Hence, massively networked
MIMO techniques can be established to assure SLAs (e.g., vari-
able-rate MIMO links, robust and bandwidth-efficient communi-
cations) in secure satellite swarm networks.

CYBER-HARDEN OPPORTUNISTIC MULTIPATH ROUTING

For connectivity robustness and resilience, defensive and
self-healing algorithms should be designed to tackle possible
cyber-attacks and provide ceaseless connections in node fail-
ures, deep fades, and malicious behaviors. A straightforward
solution is to create backup paths, but it is resource prohibitive
to assign wireless backup capacity. Hence, one possible solu-
tion is to revamp opportunistic multipath routing algorithms
to provide cyber-harden satellite swarm communications. In
[14], a cognitive and opportunistic relay solution is designed for
reliable communications and connections in a machine swarm.
This design enables machines to cognize and adapt to envi-
ronments for mitigating inter-system interference with existing
networks and realizes opportunistic selections of cooperative
relay machines based on link qualities. Similarly, satellite swarms
can distributedly concatenate their link transmissions for end-
to-end resiliency. Also, in [15], “virtual” MIMO at the session
level is established, and probabilistic network-coded routing
is developed for large-scale cognitive machine swarms. This
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work enables spatial multiplexing and diversity with session-lev-
el traffic and ensures end-to-end delay by employing network
coding techniques with underlaid routing algorithms. Thus, such
dynamic cooperation via multihop multipath transmissions can
be exploited for the fault tolerance of satellite swarm networks,
robust to a node or link failures.

CROSS-CONSTELLATION DELAY-OPTIMAL MULTIPATH TCP

Owing to serverless edge architectures, heterogeneous satellite
constellations from different operators can now integrate into a
hybrid space architecture through space-based adaptive com-
munications node (SBACN) and API development for cross-con-
stellation communications command and control. As shown
in Fig. 4, a hierarchical structure can be established where an
SBACN center connects to multiple SBACN terminals. These
terminals integrate existing satellite operators’ constellations by
acting as their gateways. SBACN terminals only need to update
the resource information and service requests to the SBACN
center via serverless edges and enable Faa$S for connectivity
and SLA satisfaction without configuring or managing resourc-
es. On the other hand, the SBACN center coordinates reliable
inter-constellation-level connectivity while each operator han-
dles its intra-constellation-level management. The SBACN center
hosts on-demand applications through dynamically instantiated
containers and effectively computes optimal routing-path plan-
ning and resource allocation designs, avoiding underutilization
while maintaining high throughput. Iteratively software upgrading
efforts for the APIs and underlying algorithms are negligible.
Based on scalable cross-constellation architectures, a central-
ized delay-optimal multipath TCP (MPTCP) can be developed to
minimize the end-to-end delay while eliminating frequent control
message signaling from distributed algorithms. Satellite-assisted
communications suffer long delays and regular ground-satellite
handovers (both problematic for TCP connections). MPTCP
protocols address these challenges by exploiting multiple Inter-
net paths between a pair of hosts while presenting a single TCP
connection to the upper layer. Thus, the upper-layer applica-
tions only need a single logical master TCP connection. Multi-
ple sub-flows are then running underneath, each of which is a
conventional TCP connection. Specifically, one can formulate a
nonlinear optimization to find end-to-end routes with minimum
average delay and no congestion concerning cross-constellation
network topology and traffic to provide delay-optimal end-to-
end networking. Then, fast algorithms can be exploited to give
the optimal MPTCP solutions within a few milliseconds. As a
result, centralized SBACN controllers implement
+ Topology and traffic monitoring/prediction
* MPTCP awareness
* Multiple disjoint path discoveries, thus achieving timely and
reliable cross-constellation systems.

CONCLUSIONS

Satellite swarm networks have promised to serve isolated or
remote communities and fulfill the needs of landlocked areas
with limited infrastructure investments. However, there is little
work that simultaneously addresses satellite access and inter-ti-
er networking within the 6G context and provides a coherent
serverless architecture for such ecosystems. This article intro-
duces unique serverless edge architectures with multi-tier deep
reinforcement learners and emphasizes necessary architectural,
management, and operational advances, thus bringing a new
frontier for resilient access equality.
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