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Abstract. In a tight-binding model of AA-stacked bilayer graphene, it is demonstrated that a
bound defect state within the region of continuous spectrum can exist stably with respect to
variations in the strength of a perpendicular magnetic field. This is accomplished by creating a
defect that is compatible with the interlayer coupling, thereby shielding the bound state from the
effects of the continuous spectrum, which varies erratically in a pattern known as the Hofstadter
butterfly.
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1 Introduction

When a magnetic field is imposed perpendicular to a sheet of graphene or other 2D periodic electronic
structure, the energy spectrum is known to vary erratically with the strength of the magnetic field ϕ. In
an ideal model, when ϕ=2πα with α= p/q rational, there is a band-gap spectral pattern, which becomes
increasingly complex as q → ∞ and deteriorates to a Cantor set when α is irrational. There is order in this
erratic variation, depicted by the Hofstadter butterfly diagram of spectrum versus magnetic field in Fig. 1.
This phenomenon was noticed by Azbel [1] and Hofstadter [10] and has interesting physical ramifications [3].
The bulk spectrum has been proven to be of continuous type—absolute when the magnetic field is rational
and singular (a Cantor set) when irrational [2].

We are interested in the consequence of this erratic spectral behavior for defect states. As the magnetic
field strength is varied, a fixed energy E within the energy range of the butterfly passes in and out of the
spectrum. Suppose that a local defect in the graphene layer for some magnetic strength ϕ engenders a bound
state at an energy E in a spectral gap within the butterfly picture. As ϕ is varied, this resonant energy may
enter a spectral band where the bound state will dissolve as it couples to extended Bloch states (for rational
α), or else the localization will be poor when E is near a complicated part of a Cantor spectrum. Such a
bound state is therefore unstable under variation of the magnetic field.

The aim of our work is to use two interacting sheets of graphene to shield a defect state from the effects of
the continuous bulk spectrum so that it persists stably as the magnetic field is varied. By stability, we mean
analytic dependence E=Eϕ of the energy of a bound state on the strength ϕ of the magnetic field, with the
bound state decaying at an exponential rate that is uniform over ϕ. We accomplish this theoretically for
AA-stacked bilayer graphene (when the sheets are aligned), when the defect is compatible with the interlayer
coupling. Construction of embedded eigenvalues for nonmagnetic multi-layered structures is demonstrated
in [15], and even for AB-stacked graphene (when the sheets are relatively shifted) in [7]. At the conclusion,
we discuss the difficulties posed by AB-stacking with a magnetic field.

In this study, we use a tight-binding model. We first show how to obtain a bound state induced by a
local defect in a single graphene sheet, with energy depending analytically on the magnetic field, as long as
the energy remains sufficiently far from the butterfly region of spectrum. We then couple two layers. If the
layers are aligned one directly over the other (AA-stacking), then the states of the bilayer graphene structure
can be decomposed into two orthogonal spaces of hybrid states, each being an invariant space of the bilayer
Hamiltonian. Although the hybrid states in either of these invariant spaces are nonzero on both physical
layers of graphene, their amplitudes on the two sheets are related, so each space of hybrid states acts as if
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Figure 1: The “Hofstadter butterfly” depicts the spectrum (vertical axis) of the magnetic tight-binding model for
single-layer graphene as it depends on the magnetic field strength ϕ (horizontal axis). When α = ϕ/(2π) is irrational,
it is a Cantor set, and when α = p/q it consists of q bands.

it were the space of states of a single layer, but with shifted energy spectrum. Each space of hybrid states
contributes a Hofstadter butterfly to the E vs. ϕ spectral picture for the bilayer graphene structure (Fig. 5).

Then, we show that a local defect chosen to be compatible with the interlayer coupling will preserve the
decoupling of hybrid states, so that scattering by the defect will not couple hybrid states from one invariant
space with those of the other. The compatibility is expressed as the commuting of the interlayer operator
and the defect operator. Then we apply the analysis for a single layer to obtain a stable bound state in one
of the invariant spaces of hybrid states, lying outside its butterfly of continuous spectrum, but arranged so
that it lies over the butterfly of the other hybrid space (Fig. 5). As the two hybrid spaces are invariant spaces
of the Hamiltonian, and therefore dynamically decoupled, the bound states are oblivious to the presence of
continuous spectrum varying erratically with the magnetic field. The phenomena in this study apply to a
Harper-type tight-binding model. A careful discussion of tight-binding models with magnetic field and a
rigorous comparison to continuum models can be found in [14].

2 Single-layer model

This section introduces the single-layer graphene model with magnetic field and shows how to construct
defect states at energies in a spectral gap. The results will be used in the following section to construct
defect states for AA-stacked bilayer graphene that overlap with the continuous spectrum and are stable with
respect to variation of the magnetic field.

In the simplest tight-binding model of single-layer graphene (Fig. 3), there are two atoms per period cell
and one orbital per atom, resulting in two degrees of freedom per period for the quantum mechanical state,
or wave function, denoted by u1 and u2. When a perpendicular magnetic field with flux ϕ through each
hexagon is imposed, the Hamiltonian Hϕ is defined by

(Hϕu)1(n) = u2(n) + u2(n+ e1) + e−in1ϕu2(n+ e2)

(Hϕu)2(n) = u1(n) + u1(n− e1) + ein1ϕu1(n− e2),
(2.1)

in which n = (n1, n2), e1 = (1, 0), and e2 = (0, 1). The phasors e±in1ϕ follow the Harper model of magnetism
in tight binding [9]. They also arise from a reduction of a quantum-graph model to a tight-binding one [2].
We have chosen the Landau gauge for the magnetic potential.

Mathematically, Hϕ is a self-adjoint operator on the Hilbert state space x = ℓ2(Z2,C2), consisting of
square-summable functions on the two-dimensional lattice Z2 with values in C2. With reference to Fig. 2,
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let us describe it in more detail. Let v (red) and w (green) denote the two sites, or vertices, of a fixed
period of the graphene structure. These two sites are shifted by integer multiples of two vectors ξ1 and ξ2
(Fig. 2) to create the hexagonal lattice. An element u ∈ H denotes a state as follows: For n = (n1, n2) ∈ Z2,
u(n) is a complex vector (u1(n), u2(n)) in which u1(n) is the value of the state at the shifted red vertex at
v+n1ξ1+n2ξ2 and u2(n) is the value of the state at the shifted green vertex at w+n1ξ1+n2ξ2. The edges
between vertices indicate nonzero matrix elements of the Hamiltonian operator Hϕ.

Figure 2: Left: The n-th shift of a fundamental domain of the graphene tight-binding model, where the red and
green dots indicate the two orbitals associated with the two atoms in one period cell. The elementary shifts by
e1 = (1, 0) and e2 = (0, 1) are realized spatially as shifts by the vectors ξ1 and ξ2. Right: A quasi-periodic magnetic
potential on the edges that corresponds to a flux of ϕ through each hexagonal face, coming from a magnetic field
directed perpendicular to the layer (Fig. 3).

2.1 Preliminary analysis of the single layer

The discrete Fourier transform converts the system into quasi-momentum space. The components of the
quasi-momentum (k1, k2) are defined modulo 2π, and thus it is convenient to work with the “Floquet mul-
tipliers” (z1, z2) = (eik1 , eik2) instead. A state u(n) is transformed to û(z) by

û(z1, z2) =
∑
n∈Z2

u(n1, n2) z
−n1
1 z−n2

2 , z = (z1, z2) ∈ T2, (2.2)

in which T2 = {z = (z1, z2) : |z1| = |z2| = 1} is the compact torus. The Fourier transform is a unitary map
from ℓ2(Z2,C2) to L2(T2,C2), with the normalized area (Haar measure) dA(z)/(2π)2 = dk1dk2/(2π)

2 on T2;
and Fourier inversion gives

u(n1, n2) =
1

4π2

∫
T2

û(z1, z2) z
n1
1 zn2

2 dA(z). (2.3)

The Fourier transform converts Hϕ into an operator Ĥϕ by the rule Ĥϕû = (Hϕu)̂ . The utility of the
Fourier transform is that û(z) is defined on the compact set T2, and additionally that shifts of u(n) by e1 and
e2 in the definition (2.1) of Hϕ are converted into multiplication of û(z) by z1 and z2 and that multiplication
of u(n) by ein1ϕ in the definition of Hϕ is converted into a shift in momentum k1 7→ k1 − ϕ, or z1 7→ e−iϕz1,

in the argument of û(z). Thus, Ĥϕ is given by

(Ĥϕû)1(z1, z2) = û2(z1, z2) + z1û2(z1, z2) + z2û2(e
iϕz1, z2)

(Ĥϕû)2(z1, z2) = û1(z1, z2) + z−1
1 û1(z1, z2) + z−1

2 û1(e
−iϕz1, z2).

(2.4)

The operator Ĥϕ acts on L2(T2,C2), and it is unitarily equivalent to Hϕ acting on H. Using either (2.1) or
(2.4), one can see that Hϕ is bounded,

∥Hϕ∥ ≤ 3.
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The Fourier transform sum (2.2) extends analytically to a complex neighborhood of T2 when u(n) has
exponential decay, according to the Paley-Wiener theorems. Bounded analytic functions û(z) in the double
r-annulus

Ar =
{
(z1, z2) : r

−1 < |zi| < r, i ∈ {1, 2}
}

around the torus T2 correspond to functions u(n) that decay exponentially as |u(n1, n2)| < Cr−|n1|−|n2|.
For such functions, one has a uniform bound for Ĥϕ. More precisely, define the following norm on bounded
analytic functions on Ar:

∥û∥r = max
z∈Ar

|û1(z)|+ max
z∈Ar

|û2(z)| .

Then, with respect to this norm, ∥∥Ĥϕû
∥∥
r
≤ Mr ∥û∥r

with Mr=1 + 2r.
One can apply this bound to the equation (Hϕ−E)u(n)=f(n) when f(n) vanishes for sufficiently large n,

or, equivalently, when f̂(z) is a Laurent polynomial in (z1, z2), because in this case f̂(z) is bounded analytic

in any annulus Ar. For energies E such that |E|>Mr the Fourier-transformed equation (Ĥϕ−E)û(z) = f̂(z)
has a bounded analytic solution on Ar given by the Neumann series

û(z) = −E−1
∞∑
ℓ=0

[
(E−1Ĥϕ)

ℓf̂
]
(z).

The response u(n) is therefore exponentially decaying at least as Cr−|n|. It is also analytic in the magnetic
flux ϕ and energy E and can be expressed by Fourier inversion,

u[ϕ,E](n) =
1

4π2

∫
T2

û[ϕ,E](z)zn dA (2.5)

(zn = zn1
1 zn2

2 ), and it is asymptotic to −E−1f(n) as E → ∞.
The response u[ϕ,E](n) is actually analytic in E in the resolvent set of Hϕ, which, for each value of ϕ,

includes the set C \ [−3, 3] since ∥Hϕ∥H ≤ 3. Its exponential decay degrades as E approaches [−3, 3], as one
must take 1 + 2r < |E| in the bound |u[ϕ,E](n)| < Cr−|n|.

Figure 3: Left: A single graphene layer with a constant perpendicular magnetic field with flux ϕ through each
hexagon. Right: A localized defect is created by adding a self-adjoint matrix to the two-by-two submatrix of the
Hamiltonian corresponding to the interaction of two atoms.

2.2 Defect states in a single layer

A defect in the Hamiltonian Hϕ is described by adding a local defect operator V to Hϕ. By a local defect
operator, we mean a self-adjoint operator in H that satisfies V =PV P , where P is the orthogonal projection
onto the finite-dimensional space by H0 consisting of states that vanish off of a finite set S of sites of the
hexagonal graphene structure. We say that the defect operator V is localized at S.
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Theorem 1. Let ϕ0 ∈ R and E0 ∈ R such that |E0| > 3 be given, and let v and w be adjacent vertices of
the hexagonal graph of the single-layer graphene model. There exists a defect operator V = PV P localized
at the two-vertex set {v, w}; and real-analytic functions ϕ 7→ Eϕ ∈ R and ϕ 7→ uϕ ∈ H defined for ϕ in an
open interval containing ϕ0, with Eϕ0 =E0; and numbers γ > 0 and C > 0 such that

(Hϕ + V )uϕ = Eϕ uϕ and |uϕ(n)| < Ce−γ|n|. (2.6)

Proof. Let ϕ0 ∈ R and E0 ∈ R such that |E0| > 3 be given, and let v and w be adjacent vertices of the
hexagonal graph of the single-layer graphene model. Let f be a function of the vertices that equals 1 on v
and vanishes otherwise. Since E0 is in the resolvent set of Hϕ, there exists a unique u ∈ H such that

(Hϕ − E0)u = f. (2.7)

Let w′ be either of the two other vertices adjacent to v. We will show that |u(w)| = |u(w′)|. Let R denote
the rotation of the hexagonal graph about the vertex v that rotates w into w′, and let R also denote the
induced action on H, that is Ru(x) = u(R−1x) for all vertices x. The hexagonal graph associated with the
operator RHϕR

−1 is a rotation of that of Hϕ—all of the coefficients still have unit modulus, but the phases
change; particularly, it has magnetic flux ϕ through all hexagons. This means that the rotation merely effects
a change of magnetic potential, and thus there is a gauge transformation G such that RHϕR

−1 = GHϕG
−1;

see [13]. The gauge transformation is a unitary multiplication operator on H, meaning that, for each state
f and vertex x, Gf(x) = eiψxf(x) for some real number ψx. We obtain Υ(Hϕ − E0)Υ−1 = Hϕ − E0 with
Υ = G−1R. This, together with (2.7) implies (Hϕ −E0)Υu = Υf = e−iψvf . The uniqueness of the solution
to (2.7) yields Υu = e−iψvu, and therefore

Ru = e−iψvGu. (2.8)

This provides the relation

u(w) = u(R−1w′) = Ru(w′) = e−iψvGu(w′) = ei(ψw′−ψv)u(w′), (2.9)

and thus |u(w)| = |u(w′)|, as desired.
By the definition (2.1) of Hϕ, since f(v) ̸= 0, u cannot vanish simultaneously at v and all of the three

vertices adjacent to v. Thus either u(v) ̸=0 or u(w′) ̸=0 for some vertex w′ adjacent to v. In the latter case,
|u(w)| = |u(w′)| ̸= 0. In either case, the vector [u(v), u(w)]t is nonzero and [f(v), f(w)]t = [1, 0]t. Let P be
the orthogonal projection to the two-dimensional space H0 of states that are supported on the two vertices v
and w, and let V = PV P be a local defect operator such that its action in H0 is represented by a Hermitian
matrix Ṽ such that −Ṽ [u(v), u(w)]t = [f(v), f(w)]t. This is equivalent to −V u = f , and we obtain

(Hϕ + V − E0)u = 0. (2.10)

Since V is a compact perturbation of Hϕ and E0 is in the resolvent set of Hϕ, E
0 is an isolated eigenvalue

of the self-adjoint operator Hϕ + V in H. Analytic perturbation theory guarantees, for ϕ in an interval
about ϕ0, a local analytic function Eϕ with Eϕ0 = E0 and states uϕ ∈ H depending analytically on ϕ, such
that (Hϕ+V )uϕ=Eϕ uϕ. Since |E0| > 3, one can restrict ϕ to an interval about ϕ0 such that |Eϕ|> 1+2r>3
for some r > 1. As discussed above, one obtains the exponential decay with r = eγ .

We believe that, generically, the defect can be localized at one vertex only, as all that is required for this
is that, when a nonzero forcing f is applied at one vertex v, the response u is nonzero at v. One can prove
this when ϕ = 0, as Ĥ0 is a multiplication operator and the response can be computed explicitly.

3 Bilayer structures and spectrally embedded bound states

Consider now two identical layers in AA-stacking, that is, one placed one directly above the other as shown
in Fig. 4. The state space is now H ⊕ H, and a general state (u1, u2) consists of a component u1 residing
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on one layer and a component u2 on the other layer. When representing operators on this state space,
it is convenient to write it isomorphically as C2 ⊗ H. In this notation, a state (u1, u2) can be written as
(1, 0)⊗u1+(0, 1)⊗u2, or, for example, as (1, 1)⊗v1+(1,−1)⊗v2, where v1 = (u1+u2)/2 and v2 = (u1−u2)/2
are the even and odd components of (u1, u2). Block-form operators on H ⊕ H can be written in terms of
tensor products of operators on C2 ⊗H. If K = (κij)i,j∈{1,2} is a 2× 2 matrix and L is an operator on H,
then K ⊗ L written in block form is

K ⊗ L =

[
κ11L κ12L

κ21L κ22L

]
, (3.11)

and its action is given by (K ⊗L)(ξ⊗u) = Kξ⊗Lu. The matrix K is viewed as an interlayer operator, and
the operator L as an intralayer operator.

A bi-layer AA-stacked graphene Hamiltonian with perpendicular magnetic field strength ϕ is

Hb
ϕ = I ⊗Hϕ + K ⊗ I. (3.12)

The defective Hamiltonian is Hb
ϕ +D, where the defect operator has the form

D = M ⊗ V, (3.13)

with V being an intralayer local defect operator on H, as described in the previous section. In the first
term of (3.12), I is the 2 × 2 identity matrix, so this term realizes two uncoupled copies of the single-
layer Hamiltonian. The second term represents spatially uniform coupling of the two layers: I is the identity
operator in H, and the self-adjoint matrix K represents the interlayer coupling strengths. One could consider
a more general coupling operator K⊗L, where L is a periodic self-adjoint operator in H, but we will take
L=I, which corresponds to the simplest AA-stacked model, where each site of one layer interacts only with
the corresponding site of the other layer as depicted by vertical connecting edges in Fig. 4. The off-diagonal
entries of K represent reciprocal orbital coupling, and the difference between the diagonal entries achieves
a bias through the potential of a perpendicular electric field (this is called “gating”). The defect term of
(3.13) has self-adjoint interlayer coupling matrix M and is localized by V .

Figure 4: Left: AA-stacked graphene layers with a perpendicular magnetic field. Right: A local defect in bilayer
graphene with a perpendicular magnetic field.

Compatibility of the defect with the coupling, mentioned in the introduction, means that K and M
commute, so that they have common eigenvectors ξ(1) and ξ(2):

Kξ(i) = κiξ
(i), Mξ(i) = µiξ

(i), i ∈ {1, 2}. (3.14)

Thus, Hb
ϕ +D is decoupled by the decomposition of states into Hb

ϕ-invariant spaces of hybrid states,

C2 ⊗H = H(1) ⊕H(2), (3.15)
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with each hybrid space H(i) being isomorphic to H,

H(i) =
{
ξ(i)⊗u

∣∣ u ∈ H
}
. (3.16)

The action of Hb
ϕ +D on H(i) is

(Hb
ϕ +D)(ξ(i)⊗u) = ξ(i) ⊗ [Hϕ + κiI + µiV ]u. (3.17)

Let us denote the restrictions of Hb
ϕ +D to the subspaces H(i) by

H
(i)
ϕ = (Hb

ϕ +D)|H(i) = Hϕ + κiI + µiV, (3.18)

in which the second equality incurs a slight relaxation of notation, as we omit to write the prefactor “ξ(i)⊗”.
Note that, when K = aI + bσ1 in the Pauli matrix notation, the eigenvectors are ξ(1) = ⟨1, 1⟩ and

ξ(2)= ⟨1,−1⟩, and the hybrid states are the even and odd ones with respect to reflection about the parallel
plane between the two layers.

The hybrid-state operators H
(i)
ϕ are spectrally shifted versions of the single-layer defective operator

Hϕ + V , with relative energy shift κ2−κ1 and proportional defects V =µiD. Because the defect contributes
a compact perturbation of the underlying periodic operator, the continuous spectrum remains unchanged,
and we have

σc(H
(1)
ϕ ) = σc(Hϕ) + κ1, σc(H

(2)
ϕ ) = σc(Hϕ) + κ2. (3.19)

The spectrum of Hb
ϕ + D is the union of the spectra of H

(1)
ϕ and H

(2)
ϕ . Because of (3.19), each of these

includes a shifted copy of the continuous spectrum of the non-defective single-layer operator Hϕ, as depicted

in Fig. 5. We are interested in energies outside the spectrum of one of the operators, say H
(1)
ϕ , but within

the region of possible spectrum (depending on ϕ) of the other operator H
(2)
ϕ . Assuming 0 < κ2 − κ1 < 6,

this includes the interval
E ∈ [κ1, κ2] + 3. (3.20)

One can apply Theorem 1 to H
(1)
ϕ , choosing E to lie in the continuous spectrum of H

(2)
ϕ to obtain a bound

state of Hb
ϕ + D within its continuous spectrum. Theorem 2 states that, for any magnetic field strength

ϕ and any energy E outside the interval [−3, 3] + κ1, which contains σc(H
(1)
ϕ ), a defect operator D can

be constructed so that the defective AA-stacked bilayer graphene model Hb
ϕ + D admits an exponentially

decaying bound state at E, and that the energy and bound state vary analytically with perturbations of ϕ.

The point is that the eigenvalue can be chosen to lie within the continuous spectrum of H
(2)
ϕ and therefore

also within the continuous spectrum of Hb
ϕ +D.

Theorem 2. Let K and M be commuting Hermitian 2 × 2 matrices with common eigenvectors ξ(i) (i ∈
{1, 2}); and let K have corresponding eigenvalues κi (i ∈ {1, 2}) and let M have corresponding eigenvalues
µi (i ∈ {1, 2}) with µ1 ̸= 0. Let ϕ0 ∈ R and E0 ∈ R with E0 ̸∈ [−3, 3] + κ1 be given, and let v and w be
adjacent vertices of the single-layer graphene structure.

There exists an intralayer defect operator V = PV P localized at the two-vertex set {v, w}; and real-
analytic functions ϕ 7→ Eϕ ∈ R and ϕ 7→ uϕ ∈ C2 ⊗H defined for ϕ in an open interval containing ϕ0, with

Eϕ0 = E0; and numbers γ > 0 and C > 0 such that

(Hb
ϕ +D)uϕ = Eϕuϕ and |uϕ(n)| < Ce−γ|n|, (3.21)

in which Hb
ϕ = I ⊗Hϕ + K ⊗ I and D =M ⊗ V and Hϕ is defined by (2.1).

If κ1 ̸= κ2, then ϕ0 and E0 can be chosen such that E0 is contained in the continuous spectrum of
Hb
ϕ0 +D.
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Proof. Let 2×2 matrices K and M , numbers ϕ ∈ R and E0 ∈ R, and adjacent vertices v and w of the single
graphene layer be given as in the hypotheses of the theorem. Since |E0 − κ1| > 3, Theorem 1 provides a
defect operator W supported on {v, w}, an analytic relation Ẽϕ and states uϕ, for ϕ in a neighborhood of

ϕ0, such that Ẽϕ0 = E0 − κ1 and

(Hϕ +W )uϕ = Ẽϕ uϕ. (3.22)

Set Eϕ = Ẽϕ+κ1 and V =W/µ1. Then Eϕ0 = E0, and (3.22) implies [Hϕ+κ1I +µ1V ]uϕ = Eϕ uϕ, that is,

H
(1)
ϕ uϕ = Eϕ uϕ, (3.23)

and by putting uϕ = ξ(1) ⊗ uϕ, one obtains

(Hb
ϕ +D)uϕ = Eϕuϕ (3.24)

The exponential bound is also provided by Theorem 1.

When κ1 ̸= κ2 and ϕ = 0 one has σc(H
(1)
ϕ ) = [−3, 3] + κ1 and σc(H

(2)
ϕ ) = [−3, 3] + κ2, so E

0 can be

chosen such that E0 ̸∈ [−3, 3] + κ1 but E0 ∈ σc(H
(2)
ϕ ). The last statement of the theorem then follows,

considering that σc(H
b
ϕ +D) = σc(H

(1)
ϕ ) ∪ σc(H(2)

ϕ ).

�

E

�

defect states

Figure 5: The continuous spectrum of a tight-binging model for bilayer AA-stacked graphene with a magnetic field
exhibits two copies of the Hofstadter butterfly, which depicts energy E vs. magnetic field strength ϕ (right). The two
copies correspond to two decoupled spaces of layer-hybrid states, H(1) and H(2), with spectral shift κ2−κ1 = 0.65.
The red (lower) butterfly depicts the continuous spectrum for the space H(1), and the blue (upper) butterfly depicts
the continuous spectrum for the H(2). A defect is placed at four vertices, indicated with red stars (left). The curve
Eϕ (right top red) shows the relation between E and ϕ of a defect state in the space H(1) of hybrid states. The curve
passes through the continuous spectrum of the other hybrid space H(2).

We compute numerically a relation E=Eϕ in an example where the defect potential is localized at four

vertices of the bilayer graphene model (Fig. 5), so that the defect in each of the reduced operators H
(i)
ϕ is

localized at two adjacent vertices, as in Theorem 1. We compute a defect-state relation E = Eϕ for the

operator H
(1)
ϕ , which lies outside its butterfly region [−3, 3] + κ1 of spectrum. Then, one can independently

adjust the coupling K such that κ1 and κ2 will shift the butterfly region [−3, 3] + κ2 of H
(2)
ϕ so that it

overlaps the defect-state relation. Figure 5 shows how the energy E of the defect state varies periodically
with the magnetic field ϕ.
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We wish to mention an interesting phenomenon related to defect states in the continuum. In the proof
of Theorem 1, creating a defect state started with the equation (Hϕ − E)u = f with f ∈ H, and u being
exponentially decaying. In the context of Theorem 2, one obtains the equation

(I ⊗Hϕ + K ⊗ I − E)u = f.

This equation can hold for energies E within the region of continuous spectrum of the non-defective bi-layer
graphene model I ⊗ Hϕ + K ⊗ I. This means that a localized forcing f results in a response u that is
exponentially decaying even for energies within the continuum.

4 Conclusion and Discussion

The aim of this work is to create a defect in a planar graphene structure that engenders a bound state which
persists under the introduction of a perpendicular magnetic field, and furthermore whose energy lies within
the region of continuous spectrum described by the Hofstadter butterfly. The energy of the defect state should
vary smoothly with the strength of the magnetic field and have a controlled rate of exponential decay. Such
a defect state would act stably with respect to variations in the magnetic field, unaffected by the presence of
an erratically changing continuous spectrum. Conventional wisdom says that continuous spectrum around
the energy of a defect state should destroy its localization. In this work, we have demonstrated that a bound
state can be shielded from the effects of continuous spectrum when two layers are AA-stacked.

The analysis exploits a reduction of the bilayer Hamiltonian to invariant spaces of hybrid states, plus
compatibility of the coupling and defect Hamiltonians. When there is no gating provided by a perpendicular
electric field, the two hybrid spaces consist of even and odd states with respect to reflection about the center
plane between the layers. Compatibility of the coupling and defect ensures that the hybrid spaces remain
non-interacting when the defect is introduced, and this in turn allows a bound state outside the continuous
spectrum of one hybrid space to coincide with but not interact with the continuous spectrum of the other
hybrid space.

Analysis by reducibility of the Hamiltonian to invariant spaces is particular to AA-stacking, which is not
the energy-minimizing layering. Energy is lower in the stable AB-stacked configuration, in which one atom
of a layer sits above the center of a hexagon of the other layer, where there is no atom, as discussed, for
example, in [5] and [4]. Whether AB-stacked graphene admits defect states within the spectral continuum
that vary stably with a magnetic field remains an open question.

Interestingly, in the absence of a magnetic field, AB- and certain more general multi-layer periodic models
admit defect states embedded in the continuous spectrum—even when there are no Hamiltonian-invariant
hybrid spaces. This is due to a deeper, more general, kind of reducibility that is algebraic in nature, namely
the reducibility of the Fermi surface at all energies, which allows the construction of such states; this is
described in [7]. The Fermi surface for periodic graph operators is an algebraic set, and it is known that its
reducibility is necessary for the creation of spectrally embedded defect states [11] (except for certain peculiar
states supported at a finite number of sites, which are particular to graph models). The introduction of a
magnetic field, however, destroys the Fermi surface of the underlying periodic graph because the magnetic
potential in the Hamiltonian is generically not periodic, but quasi-periodic.

The analysis via reduction of the Hamiltonian to invariant spaces of hybrid states remains intact for
general periodic tight-binding configurations of the single layer, not just hexagonal structures, when the
layers are aligned. It is also extensible to multiple aligned layers, and the number of invariant hybrid state
spaces is equal to the number of layers [15].

It appears that multiple layers are typically necessary for defect states in the continuum. This is not
quite a rigorous mathematical statement; and deciding what counts as a single layer is not so well defined,
although it is clear in specific situations, such as graphene. In the absence of a magnetic potential, one can
make a few rigorous statements. As mentioned above, the reducibility of the Fermi surface is needed for
a local defect to produce a spectrally embedded bound state. This means that at a given energy E, the
dispersion function D(z1, z2, E) can be factored as a Laurent polynomial in (z1, z2), where D(z1, z2, E) is
the function whose zero set gives momentum-energy pairs for which the periodic operator admits a Floquet-
Bloch mode. The Fermi surface for single-layer graphene is irreducible. It is also known to be irreducible
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for the discrete (tight-binding) Laplace operator plus a periodic potential [8, 6] and for planar tight-binding
models with two vertices per period [12], and all these models certainly count as a single layer. Additionally,
known models with reducible Fermi surface involve multiple layers attached in particular ways [7], and the
layers are used deliberately to construct the irreducible components of the Fermi surface. Construction of
spectrally embedded defect states is then reduced to algebra through the Fourier transform, and this works
for very general stacking of graphene. As mentioned above, because a magnetic field destroys the periodicity
of the Hamiltonian, the algebraic Fermi surface and Fourier analysis is no longer directly applicable, and
thus the investigation of the existence of defect states stable under a varying magnetic field, particularly for
AB-stacked graphene, will require new techniques.
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