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Abstract: Generative models have recently gained popularity in remote sensing, offering substantial
benefits for interpreting and utilizing satellite imagery across diverse applications such as climate
monitoring, urban planning, and wildfire detection. These models are particularly adept at address-
ing the challenges posed by satellite images, which often exhibit domain variability due to seasonal
changes, sensor characteristics, and, especially, variations in spectral bands. Such variability can sig-
nificantly impact model performance across various tasks. In response to these challenges, our work
introduces an adaptive approach that harnesses the capabilities of generative adversarial networks
(GANs), augmented with contrastive learning, to generate target domain images that account for
multispectral band variations effectively. By maximizing mutual information between corresponding
patches and leveraging the power of GANs, our model aims to generate realistic-looking images
across different multispectral domains. We present a comparative analysis of our model against other
well-established generative models, demonstrating its efficacy in generating high-quality satellite
images while effectively managing domain variations inherent to multispectral diversity.

Keywords: contrastive learning; domain variation; generative adversarial networks (GANs); genera-
tion; multispectral bands; remote sensing; satellite image

1. Introduction

Remote sensing is a focal area of research that profoundly impacts various positive
aspects of human life, including environmental monitoring, urban planning, and disaster
management. Advancements in remote sensing technologies, particularly satellite imagery,
have transformed our ability to observe and understand the Earth’s geographical features.
However, the effectiveness of remote sensing applications often depends on the quality
and consistency of satellite images, which can vary significantly across different spectral
bands and sensors. Satellite images captured under different environmental conditions or
with various sensors exhibit inherent feature variations, leading to domain differences [1].
These variations are particularly noticeable across different multispectral bands, where
each band captures specific wavelength ranges on the electromagnetic spectrum. Such
domain variability constitutes significant challenges for machine learning and deep learning
models in classification and semantic segmentation tasks. These models are sensitive
to variations in the input data distribution, which can lead to decreased performance
and generalizability [2]. Deep learning methods utilized for the detailed analysis and
interpretation of satellite images are particularly susceptible to performance degradation
due to domain variability. For instance, a semantic segmentation model trained on satellite
images from one spectral band or sensor configuration may underperform when applied
to images from a different spectral band or sensor, even if the underlying geographical
features and structures are similar [3]. Similarly, models trained on satellite images from
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one spectral configuration may perform poorly for classification tasks when applied to
data from a different spectral range, even if the essential geographical attributes remain
the same [4]. This issue manifests in the domain adaptation problem, which aims to adapt
models to perform well across varying domains [5–8].

The recent literature has explored various approaches to tackle the domain adaptation
challenge with generative adversarial networks (GANs), highlighting their growing sig-
nificance as a tool in this area [9–11]. In the field of remote sensing, the recent literature,
including Benjdira et al. [12] and Zhao et al. [13], has reported the implementation of GANs
to generate target domain images from source domain images, effectively bridging the
gap between different domains and enhancing model performance on tasks like semantic
segmentation. However, while many studies have concentrated on strengthening down-
stream tasks such as segmentation or classification, the essential initial step of generating
high-quality satellite images across multispectral bands or color channels has yet to be
sufficiently addressed.

Considering this, our present work takes a step back to emphasize the generation
aspect, which has implications for domain adaptation, a concept illustrated in Figure 1.
The diagram is divided into two segments, separated by dotted lines. The upper segment
conceptually explores the rationale behind generating satellite images across spectral bands.
This exploration envisions future initiatives to harness this capability, potentially enhancing
the adaptability and performance of deep learning models across various domains. This
segment does not delve into specific deep learning tasks but rather serves as a conceptual
reasoning of addressing domain variability challenges.

Figure 1. Framework overview for multispectral satellite image generation. This figure illustrates
our generative approach for transforming satellite images from a source spectral band A to a target
spectral band B, addressing domain variability. The upper segment conceptually explores potential
applications of this transformation in future work, such as improving deep learning model perfor-
mance across domains. The lower segment specifically details our model’s objective and mechanism,
highlighting the generation of satellite images in the target domain to bridge spectral discrepancies.

The lower segment of the figure directly addresses our primary objective, i.e., to
generate a satellite image s′2 in a target spectral band B from an original image s1 in a
source spectral band A. For illustrative clarity, in Figure 1, P denotes a hypothetical deep
learning model. Suppose P is trained with a dataset from S2 to convert satellite images
into expected images (Output 1). Considering that s1 and s2 share identical underlying
structures and classes, ideally, feeding s1 into model P should yield the same result as
s2. However, discrepancies in color or spectral composition may lead to divergent results
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(Output 2), as depicted by the red arrow in the figure. To prevent this divergence, the first
step would be generating image s′2 from s1 with a generative model. As shown in the figure,
a generator M integrated with an encoder–decoder architecture as shown in the figure can
be trained on the source domain S1 to generate images corresponding to the target domain
S2. Upon successful training, selecting an image s1 to perform a deep learning task, for
instance, allows the generation of s′2, mirroring the spectral band of s2. The resultant image
s′2 can then be processed with model P to achieve the desired outcome, as illustrated by
yellow-colored arrows in the diagram.

Continuing, we propose a GAN architecture integrated with contrastive learning,
specifically designed to generate realistic-looking satellite images across multispectral
bands, motivated by the work of Han et al. [14]. By focusing on generating high-quality,
cross-domain satellite images, our approach addresses the inherent channel variability and
lays a foundation for subsequent domain adaptation applications.

2. Related Work

Domain shift or variation has been an enduring problem in the remote sensing domain.
Various models have identified and addressed several related issues, yet some aspects of
domain variation still require further exploration and solutions. The domain variability
problem in satellite images can be traced back to the work of Sharma et al. [15] in 2014.
Sharma et al. tackled the challenge of land cover classification in multitemporal remotely
sensed images, mainly focusing on scenarios where labeled data are available only for the
source domain. This situation is complicated by variability arising from atmospheric and
ground reflectance differences. To address this, they employed an innovative approach
using ant colony optimization [16] for cross-domain cluster mapping. The target domain
data is overclustered in their method and then strategically matched to source domain
classes using algorithms inspired by ant movement behavior. In the same year, Yilun
Liu and Xia Li developed a method to address a similar challenge of insufficient labeled
data in land use classification due to domain variability in satellite images [17]. Using
the TrCbrBoost model, their approach harnessed old domain data and fuzzy case-based
reasoning for effective classifier training in the target domain. This technique demonstrated
significant improvement in classification accuracy, highlighting its effectiveness in overcom-
ing the constraints of domain variability. Similarly, Banerjee and Chaudhuri addressed the
problem of unsupervised domain adaptation in remote sensing [18], focusing on classifying
multitemporal remote sensing images with inherent data overlapping and variability in
semantic class properties. They introduced a hierarchical subspace learning approach,
organizing source domain samples in a binary tree and adapting target domain samples
at different tree levels. The method proposed by Banerjee and Chaudhuri demonstrated
enhanced cross-domain classification performance for remote sensing datasets, effectively
managing the challenges of data overlapping and semantic variability [18].

Building on previous advancements in domain adaptation to address domain vari-
ability for remote sensing, Postadjian et al.’s work addressed large-scale classification
challenges in very high resolution (VHR) satellite images, considering issues such as intra-
class variability, diachrony between surveys, and the emergence of new classes not included
in predefined labels [19]. Postadjian et al. [19] utilized deep convolutional neural networks
(DCNNs) and fine-tuning techniques to adapt to these complexities, effectively handling
geographic, temporal, and semantic variations. Following the innovative approaches in
domain adaptation to address domain variability, Hofman et al. uniquely applied the
CycleGAN [20] network technique to generate target domain images to bridge domain
gaps [21]. This approach, leveraging cycle-consistent adversarial networks, enhances the
adaptability of deep convolutional neural networks across varied environmental conditions
and sensor bands, facilitating effective domain adaptation in unsupervised adaptation
tasks, such as classification and semantic segmentation of roads, effectively overcoming
pixel-level and high-level domain shifts.
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Building on the momentum in addressing domain variability with generative adver-
sarial networks, Zhang et al.’s work addressed the challenge of adapting neural networks
to classify multiband SAR images [22]. This work by Zhang et al. [22] integrated adver-
sarial learning in their proposed MLADA method to align the features of images from
different frequency bands in a shared latent space. This approach effectively bridged the
gap between bands, demonstrating how adversarial learning can be strategically used to
enhance the adaptability and accuracy of neural networks in multiband SAR image classifi-
cation [22]. Similarly, a methodology proposed by Benjdira et al. focused on improving
the semantic segmentation of aerial images through domain adaptation [12]. This work
utilized a CycleGAN-inspired adversarial approach, similar to the method employed by
Hofman et al. [21]. However, the approach by Benjdira et al. is distinguished by integrating
a U-Net model [23] within the generator. This adaptation enables the generation of target
domain images that more closely resemble those of the source domain, effectively reducing
domain shift related to sensor variation and image quality. Their approach demonstrated
substantial improvement in segmentation accuracy across different domains, underscoring
the potential of GANs to address domain adaptation challenges in aerial imagery segmenta-
tion. Along with this, to address a similar kind of domain variability, Tasar et al. introduced
an innovative data augmentation approach, SemI2I, that employed generative adversarial
networks to transfer the style of test data to training data, utilizing adaptive instance nor-
malization and adversarial losses for style transfer [24]. The approach, highlighted by its
ability to generate semantically consistent target domain images, has outperformed existing
domain adaptation methods, paving the way for more accurate and robust segmentation
models with the generative adversarial mechanism in varied remote sensing environments.

Expanding on the work to address domain variability in remote sensing, another work
by Tasar et al. [25] effectively harnessed the power of GANs to mitigate the multispec-
tral band shifts between satellite images from different geographic locations. Through
ColorMapGANs, this work adeptly generated training images that were semantically
consistent with original images yet spectrally adapted to resemble the test domain, sub-
stantially enhancing the segmentation accuracy. This intelligent use of GANs demonstrates
their growing significance in addressing complex domain adaptation challenges in the
remote sensing field. Consequently, Zhao et al. introduced an advanced method to min-
imize the pixel-level domain gap in remote sensing [13]. The ResiDualGAN framework
incorporates a resizing module and residual connections into DualGAN [26] to address
scale discrepancies and stabilize the training process effectively. Demonstrating its efficacy,
the authors showcased significant improvements in segmentation accuracy on datasets
collected from the cities of Potsdam and Vaihingen, open-source remote sensing semantic
segmentation datasets [27], proving that their approach robustly handles the domain vari-
ability and improves cross-domain semantic segmentation with a generative adversarial
model. In the current literature on remote sensing, GANs and image-to-image translation
mechanisms [20,26,28,29] have been promising in solving the domain variation problem.
Since the translation of images from the source domain to the target domain is one of the
fundamental building blocks in solving the domain variability problem, we present a GAN
model inspired by the work of Han et al. [14]. Han et al. presented an interesting approach
for mapping two domains using generators within a GAN model, uniquely employing
an unpaired fashion without a cyclic procedure. This approach demonstrates that reverse
mapping between domains can be learned without relying on the generated images, lead-
ing to nonrestrictive mapping, in contrast to the restrictive mapping approach presented
by Zhu et al. [20]. Expanding on nonrestrictive mapping, our model integrates contrastive
learning in a GAN with two generators and aims to perform better than well-established
GAN models by generating realistic satellite images from one multispectral band to another.
This capability is applicable for image generation and potentially beneficial for domain
adaptation tasks.
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3. Materials and Methods

This study aims to generate satellite images from one multispectral band mode to
another, a process that can potentially help in domain adaptation within remote sensing.
For this purpose, we conducted a thorough review of available datasets and selected an
open-source dataset available from the ISPRS 2D Open-Source benchmark [27], which
has been frequently utilized in recent domain adaptation research [12,13]. This collected
dataset includes different multispectral bands. For our analysis, we focused on two subsets:
one from Potsdam City, with a pixel resolution of 5 cm and comprising the RGB (red,
green, blue) spectral bands, and another from Vaihingen City, characterized by a 9 cm pixel
resolution and including the IRRG (infrared, red, green) bands.

We consider two domains of satellite images, S1 and S2, where the underlying features
of an image s1 ∈ S1 and an image s2 ∈ S2 vary based on different multispectral bands.
This scenario is formalized as the input domain S1 ⊂ RH×W×C1 and the target domain
S2 ⊂ RH×W×C2 , where C1 and C2 represent the number of channels in each domain,
respectively. Given sets of unpaired satellite images from these domains, we aim to
generate a new image s′2 from an input image s1 in domain S1, such that s′2 closely follows
the true data distribution of domain S2. We aim to accomplish this by constructing two
mapping functions, M1 and M2, such that M1(S): S1 → S2 and M2(S): S2 → S1, where S
denotes a set of satellite images from the respective input domains. In this study, these two
mapping functions, M1 and M2, are demonstrated as two generators, to which there are
two corresponding discriminators, D1 and D2, as shown in Figure 2.

Figure 2. Overview of the proposed model’s architecture. This figure illustrates the process designed
to generate images in domain S2 from domain S1. The generation relies on two generators: M1 and
M2. M1 is trained to translate an input s1 to output s′2, while M2 is trained to translate an input s2 to
output s′1. Encoders M1enc and M2enc are involved in computing PatchNCEs1 and PatchNCEs2 losses,
depicted with yellow lines. These loss functions ensure that corresponding areas in the source and
target images (indicated by yellow and blue square patches, respectively) retain mutual information
in contrast to dissimilar areas (depicted with green square patches). Discriminators D1 and D2

validate the authenticity of generated images, facilitating the generation of realistic-looking images
via GAN losses represented by rectangles. Identity loss (shown in an ellipse) is calculated by passing
s1 to M2 instead of s2, as depicted with dotted arrows.
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3.1. Efficient Mapping with Generators

In the present work, each generator comprises an encoder-decoder architecture (as
shown in Figure 3), drawing inspiration from CUT [28] and DCLGAN [14] to generate
designated satellite images. For each mapping and to better utilize the features in satellite
images, we extract features from L = 4 encoder layers and propagate them to a two-layer
MLP network (H1 and H2), as performed in SimCLR [30].

Figure 3. Overview of the proposed model’s generators. The figure illustrates the architecture
of generators M1 and M2, integral to transforming input images across spectral domains. M1,
designated for translating images from S1 to S2, features an encoder (M1enc), a multilayer perceptron
(MLP) for processing the encoded features, and a decoder (M1dec) for generating the output image s′2.
Highlighted in purple, the core of M1 includes 9 residual blocks designed for deep feature refinement.
M2 operates in reverse, translating S2 to S1, and similarly incorporates an encoder (M2enc) and
decoder (M2dec). The dotted lines represent the process of contrastive learning, utilized to enhance
the fidelity of generated images by aligning features across the two domains. Key components such
as convolution layers, residual blocks, transposed convolution layers, and MLP layers are denoted by
distinct colors.

3.1.1. ResNet-Based Generator

The generators employed in this work are based on a ResNet architecture, as depicted
in Figure 3, which has been proven successful in various generative models [31]. This
choice is integral for synthesizing satellite images within our generative adversarial net-
work (GAN) framework. The generator is designed to capture and translate the complex
spatial and textural information in satellite images into corresponding images of different
multispectral band representations. Motivated by [20], each generator integrates nine
residual blocks to help the encoding and decoding processes. These blocks enable the
model to handle complex features essential for high-quality satellite images.

3.1.2. Encoder and Decoder Architecture

Building upon the initial framework, where the two mapping functions are represented
as generators M1 and M2, to which two corresponding discriminators, D1 and D2, are
assigned, we delve deeper into the architecture of these generators. Each generator consists
of an encoder and a decoder component. The encoders, M1enc and M2enc , are used to capture
and compress the spectral features of the satellite images from their respective domains.
This is achieved by extracting features from L = 4 layers of the encoder, as previously
mentioned, which are then propagated to a two-layer MLP network to enhance feature
utilization and facilitate effective domain translation.
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The decoders, M1dec and M2dec (illustrated in Figure 3), are responsible for reconstruct-
ing the image in the new domain while preserving spatial coherence and relevant features.
They take the encoded features and, through a series of transformations, generate the out-
put image that corresponds to the target domain. This process ensures that the translated
images maintain the target domain’s essential characteristics while reflecting the source
domain’s content.

With this procedure, the encoder and decoder collaborate within each generator to facil-
itate a robust and efficient translation between the multispectral bands of satellite images.

3.2. Discriminator Architecture

Discriminators are crucial for the adversarial training mechanism within the GAN
framework. Our model incorporates two discriminators, D1 and D2, each corresponding to
generators, M1 and M2, respectively. These discriminators distinguish between authentic
satellite images and those synthesized by their respective generators. Their primary role is
to provide critical feedback to the generators, driving them to produce more accurate and
realistic translations of satellite images.

Our architecture employs a PatchGAN [32] discriminator, chosen for its effectiveness
in generative tasks. The architecture of the discriminator is depicted in Figure 4. Unlike
traditional discriminators that assess the authenticity of an entire image, PatchGAN divides
the image into smaller p × p patches and evaluates the realism of each patch individually.
The size of each patch, p, is selected to be less than or equal to the height H of the image,
ensuring that each patch is reasonably sized to maintain a balance between training effi-
ciency and feature learning. All the patches are processed through various convolution
layers (depicted with blue-colored rectangles in Figure 4, with deeper layers having an
increasing number of filters. These convolution layers build up to a final convolution layer
that assigns scores, indicating whether each patch is real or fake. The scores assigned to
all patches by the discriminator are then aggregated to determine the overall authenticity
of the image. This approach guides the generator in refining its output and facilitates the
production of high-quality, realistic textures and patterns at the patch level.

Figure 4. Discriminator architecture in our model. The depicted architecture outlines a PatchGAN
discriminator, which operates on a patch-wise basis to evaluate the image’s authenticity.

Furthermore, we utilize instance normalization over batch normalization, as illus-
trated with purple-colored rounded rectangles in the diagram, a decision aligned with the
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best practices in image-to-image translation tasks [20,26,28]. The integration of instance
normalization contributes to the stability and performance of the model, particularly in the
context of diverse and variable satellite imagery.

3.3. Contrastive Learning in the Present Work

Recently, contrastive learning has significantly advanced unsupervised learning in
image processing, often outperforming conventional methods in scenarios with limited
data [30,33]. It identifies negative and positive pairs and maximizes the mutual information
relevant to the target objective.

3.3.1. Mutual Information Maximization

In our satellite image translation task, we devise an efficient method to maximize
the mutual correlation between corresponding segments of the input and generated im-
ages across different multispectral bands. Specifically, a patch representing a particular
land feature in the input image from domain S1 should be strongly associated with the
corresponding element in the generated image in domain S2, as shown in Figure 2, where
images s1 and s′2 display the same building roof structure, highlighted with yellow and
blue square patches, respectively. This approach ensures that relevant geographical and
textural information is preserved and accurately represented in the translated images.

In the general procedure of the contrastive learning mechanism, we strategically select
an anchor feature a ∈ RK, extracted from s2 (as shown in Figure 2, highlighted with a
blue-colored square), and a corresponding positive feature p ∈ RK, extracted from s1 (as
shown in Figure 2, depicted with a yellow-colored square), where K represents the feature
space dimensionality. Additionally, we sample a set of negative features {ni}N

i=1, with each
ni ∈ RK, from s1. These negative features are drawn from different locations within the
same image from which the corresponding p was specified (depicted with green-colored
squares in Figure 2). All these features are represented as vectors and normalized with L2-
normalization [34]. Subsequently, we construct an (N + 1)-way classification task. In this
task, the model evaluates the similarity between an anchor and various positive or negative
elements. We direct the model to adjust the scale of these similarities using a temperature
parameter, τ = 0.07, before converting them into probabilities [28]. This temperature scaling
fine-tunes the model’s confidence in its predictions, facilitating a more effective learning
process through the contrastive mechanism. After establishing this setup for normalization
and predictions, we compute the probability that the positive element is more aligned to
the anchor than any negative element. This probability is obtained using a cross-entropy
loss, expressed mathematically as

L(a, p, {ni}) = − log

(
exp(sim(a, p)/τ)

exp(sim(a, p)/τ) + ∑N
i=1 exp(sim(a, ni)/τ)

)
(1)

where sim(a, p) denotes the cosine similarity between a and p, calculated as a·p
∥a∥∥p∥ [30].

Through this loss equation, we effectively maximize the mutual correlation between match-
ing segments, ensuring that the translation between multispectral bands of satellite images
retains high fidelity and relevance.

3.3.2. PatchNCE Loss Mapping of Two Domains of Satellite Images

Utilizing the encoders M1enc and M2enc from the generators M1 and M2, we extract
features from the satellite images in domains S1 and S2, respectively. For each domain,
features are extracted from selected layers of the respective encoder and then propagated
through a two-layer MLP network. This process results in a stack of feature layers {zl}L,
where each zl represents the output of the l-th selected layer after processing through
the MLP network. Specifically, for an input image s1 from domain S1, the feature stack
can be represented as {zl}L = {Hl

1(M(l)
1enc

(s1))}L
l=1, where M(l)

1enc
denotes the output of the

l-th layer of encoder M1enc , and Hl
1 represents the corresponding MLP processing for that
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layer. Similarly, for domain S2, the feature stack is obtained using encoder M2enc and its
corresponding MLP layers, which is given by {ẑl}L = {Hl

2(M(l)
2enc

(s′2))}L
l=1, where s′2 is a

generated image.
Our framework defines spatial locations within a layer to refer to distinct areas in

the generated feature maps. Each spatial location is associated with a specific region of
the input image, as determined by the network’s convolutional operations. We denote
the layers by l ∈ {1, 2, ..., L} and the spatial locations within these layers by y ∈ {1, ..., Yl},
where Yl represents the total number of spatial locations in layer l. We then define an
anchor patch and its corresponding positive feature as z(y)l ∈ RCl and all other features

(the “negatives”) as z(Y\y)
l ∈ R(Yl−1)×Cl , where Cl denotes the number of feature channels

in each layer, and Y represents the conceptual set containing all possible indices of these
spatial locations within a layer.

By obtaining insights from CUT [28] and DCLGAN [14], the present work incorporates
patch-based PatchNCE loss that aims to align analogous patches of input and output
satellite images across multiple layers. For the mapping M1 : S1 → S2, the PatchNCE loss
is expressed as

LPatchNCES1
(M1, H1, H2, S1) = Es1∼S1

L

∑
l=1

Yl

∑
y=1

ℓ(ẑ(y)l , z(y)l , z(Y\y)
l ) (2)

Similarly, for the reverse mapping M2 : S2 → S1, we utilized similar PatchNCE loss:

LPatchNCES2
(M2, H1, H2, S2) = Es2∼S2

L

∑
l=1

Yl

∑
y=1

ℓ(ẑ(y)l , z(y)l , z(Y\y)
l ) (3)

Through these formulations, the PatchNCE losses effectively encourage the model to
learn translations that maintain the essential characteristics and patterns of the geographic
features in satellite images, ensuring that the translated images retain the contextual and
spectral integrity necessary for accurate interpretation and analysis.

3.4. Adversarial Loss

The present work utilizes an adversarial loss function to ensure the generation of
realistic-looking satellite images from one domain to another based on different multispec-
tral bands [35]. The objective is to maintain balanced training of the generator and the
discriminator to produce satellite images in the target domain that are indistinguishable
from ground-truth satellite images. The discriminator learns to differentiate between the
original and synthetic satellite images. The training is guided by the adversarial loss
function with backpropagation and iterative updates of the layers’ weights in the model.
Each generator, M1 and M2, has a corresponding discriminator, D1 and D2, respectively, en-
suring a targeted adversarial relationship. The GAN loss for each generator–discriminator
pair can be formulated as

LGAN(M1, D1, S1, S2) =Es2∼S2 [log D1(s2)]+

Es1∼S1 [log(1 − D1(M1(s1)))]
(4)

LGAN(M2, D2, S2, S1) =Es1∼S1 [log D2(s1)]+

Es2∼S2 [log(1 − D2(M2(s2)))]
(5)

In these equations, D1(s2) and D2(s1) represent the discriminator’s decision for
ground-truth satellite images, s2 and s1, respectively. M1(s1) and M2(s2) are the images
generated from the input satellite images s1 and s2 that should hypothetically correspond to
s2 and s1, respectively. Real satellite images form S1 and S2 distributions from each domain.
The generators M1 and M2 aim to minimize these losses, while the discriminators D1 and
D2 aim to maximize them [35]. Hence, the given loss function is termed adversarial, as the
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given generator and discriminator compete to get better and produce visually promising
satellite images.

3.5. Identity Loss

Identity loss with mean squared error (MSE) is implemented to preserve the essential
characteristics of the input image when it already belongs to the target domain. This
approach ensures the generator minimizes alterations when the input image exhibits the
target domain’s characteristics. Specifically, in our satellite image translation task, when
generator M1 is trained to convert an image s1 from domain S1 to an equivalent image in
domain S2, it should ideally introduce minimal changes if an image from S2 is provided as
input. This strategy encourages the generator to maintain the identity of the input when it
aligns with the target domain.

Mathematically, the identity loss for generator M1 when an image from S2 is fed as
input using MSE can be expressed as

LS2
identity-MSE(M1, S2) = Es2∼S2 [∥M1(s2)− s2∥2

2],

where ∥.∥2
2 denotes the squared L2 norm, representing the sum of the squared differences

between the generated and input images. A similar identity loss is applied for generator
M2 when an image from S1 is fed:

LS1
identity-MSE(M2, S1) = Es1∼S1 [∥M2(s1)− s1∥2

2].

Total identity loss, combining the contributions from both generators, is given as

Lidentity-MSE(M1, M2) = LS1
identity-MSE(M2, S1)

+ LS2
identity-MSE(M1, S2), (6)

Although we experimented with identity loss using the L1 norm, i.e., mean absolute
error (MAE), we found that the L2 norm provided better results in our model. Therefore, we
chose to utilize the L2 norm for identity loss. In practice, identity loss aids in stabilizing the
training of the generators by ensuring they do not introduce unnecessary changes to images
that already possess the desired characteristics of the target domain. This concept, inspired
by the work of Zhu et al. [20], is particularly beneficial in maintaining the structural and
spectral integrity of satellite images during the translation process.

3.6. Final Objective

Our satellite image generation framework is depicted in Figure 2. In our framework,
the objective is to generate images that are not only realistic but also maintain a correspon-
dence between patches in the input and output images. To achieve our goal, we integrate
the combination of the GAN loss, PatchNCE loss, and identity loss to have our final loss
function, which is given as

L(M1, M2, D1, D2, H1, H2) =λGAN(LGAN(M2, D2, S2, S1)

+ LGAN(M2, D1, S2, S1))

+ λNCE(LPatchNCES1
(M1, H1, H2, S1)

+ LPatchNCES2
(M2, H1, H2, S2))

+ λidtLidentity-MSE(M1, M2),

(7)

4. Results

This section is divided into two main parts. The first part details the experimental
setup, including metrics for evaluation and the experimental environment; the second part
discusses the results obtained from comparing our approach with baseline models.
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4.1. Evaluation Metrics

The present work utilizes a set of evaluation metrics to measure the quality and
accuracy of the generated satellite images. These metrics include the root mean square
error (RMSE), peak signal-to-noise ratio (PSNR), and structural similarity index measure
(SSIM).

4.1.1. Root Mean Square Error (RMSE)

The RMSE is a widely used metric that quantifies the differences between values
predicted by a model and the observed actual values [36]. It is beneficial in evaluating the
accuracy of generated or reconstructed images compared to the original images. Mathe-
matically, the RMSE is defined as

RMSE =

√√√√ 1
N

N

∑
i=1

(pi − p̂i)2

where N is the number of pixels in the image, pi is the actual value of the pixel, and p̂i is
the predicted or generated value for the same pixel.

4.1.2. Peak Signal-to-Noise Ratio (PSNR)

The PSNR is a metric that measures the quality of reconstruction of lossy compression
[37] and is widely utilized to assess the visual quality of generated or reconstructed images.
It compares the maximum potential power of a signal (in images, this corresponds to the
maximum possible pixel value) to the power of the noise that affects the fidelity of its
representation. Mathematically, the PSNR is defined as

PSNR = 10 · log10

(
Max2

s
MSE

)
where Maxs represents the maximum possible pixel value of the image s and MSE is the
mean squared error between the input image s and the reconstructed image. A higher
PSNR value indicates better quality of the generated image.

4.1.3. Structural Similarity Index (SSIM)

The SSIM assesses the perceived quality of digital images and videos by evaluat-
ing changes in luminance, contrast, and structure between the original image s and the
predicted image s′. Mathematically, the SSIM is defined as

SSIM(s, s′) =
(2µsµs′ + C)(2σss′ + C)

(µ2
s + µ2

s′ + C)(σ2
s + σ2

s′ + C)

In this equation, µs and µs′ are the average luminance values of images s and s′,
respectively; σ2

s and σ2
s′ are their variances, and σss′ is the covariance between the images.

C is a constant introduced to prevent the division of the SSIM’s numerator by zero, thus
ensuring a well-defined value for the SSIM. A higher SSIM value indicates better image
quality, with a value of 1 signifying perfectly identical images.

4.2. Experimental Environment and Baselines
4.2.1. Experiment Setting

We conducted our experiments in a Python 3.6.8 environment with the PyTorch frame-
work for all the training and testing tasks. The computational workload was executed on a
system equipped with dual NVIDIA TITAN RTX GPUs. Each of these GPUs features 24 GB
of GDDR6 memory with the power of the TU102 architecture. The system operated with
CUDA version 12.3 and NVIDIA driver version 545.23.08, ensuring high performance and
efficiency for our computational tasks. To maintain uniform training for all the models, we
selected 800 images for both the Potsdam and Vaihingen training datasets and 500 images
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for the te sting dataset. We resized all the images to dimensions of 256 × 256. We trained
all the models for 200 epochs with a learning rate of 0.0001. During the first half of these
epochs, we maintained a steady learning rate, whereas in the latter half, the learning rate
decayed linearly to have better convergence. We set the temperature parameter τ = 0.07.
Along with this, we set the loss functions’ parameters: λGAN = 1, λNCE = 1, and λidt = 1.

4.2.2. Baselines

We selected four well-established unsupervised generative adversarial network mod-
els and compared them to our model for qualitative and quantitative analysis. These
selected four methods are DualGAN [26], CUT [28], CycleGAN [20], and GcGAN [29].
These models were chosen due to their success in image generation tasks and effective uti-
lization to address domain variation problems [12,13,38], which is relevant to the objectives
of our study.

4.3. Comparison and Results

Our model’s comparative performance against other generative adversarial network
models is detailed in Table 1 and visually illustrated in Figure 5. These results demonstrate
the better performance of our model in generating satellite images across multispectral
bands. Specifically, our model achieved an RMSE of 23.9320, a PSNR of 20.5512, and an
SSIM of 0.7888, as highlighted in bold in Table 1. In comparison, the CUT model [28]
recorded slightly lower metrics with an RMSE of 28.2995, PSNR of 19.0952, and SSIM of
0.7082. It is worth mentioning that a lower RMSE value indicates better quality of the
generated image [39]. Furthermore, compared to our model and CUT, CycleGAN [26]
achieved marginally lower values in PSNR, at 18.6886, and in RMSE, at 29.6556. However,
it achieved a higher SSIM value of 0.7461 compared to CUT, yet this value remained lower
than that of our model. The DualGAN model scored slightly lower than our model, CUT,
and CycleGAN on all metrics, except that it performed slightly better than CUT in SSIM
with 0.7145. Subsequently, the GcGAN model [29] recorded the lowest values among all
models, including ours, with a PSNR of 17.2172, SSIM of 0.5786, and RMSE of 35.1302.

Table 1. Performance Comparison: Our Model vs. Other GANs.

Models RMSE PSNR SSIM Training Time (h:min)

Our model 23.9320 20.5512 0.7888 10 h:52 min
CUT 28.2995 19.0952 0.7082 10 h:13 min
CycleGAN 29.6556 18.6886 0.7461 10 h:43 min
DualGAN 31.7752 18.0890 0.7145 10 h:48 min
GcGAN 35.1302 17.2172 0.5786 9 h:01 min

Similarly, the total training time for each model was recorded and is presented in
Table 1. Under the experimental setup mentioned, our model required approximately
11 h for 200 epochs of training, which is comparable to the time taken by DualGAN and
CycleGAN but longer than that required for CUT and GcGAN. The relatively shorter
training time for CUT and GcGAN can be attributed to their simplified architectures,
utilizing only one generator and discriminator for image generation. However, despite
GcGAN being faster to train by approximately 2 h, the substantial difference in SSIM
values (0.5786 compared to our 0.7888) establishes our model as the preferable choice for
generating higher-quality images.

Further insights into our model’s training behavior are illustrated in Figure 6, which
presents the average losses obtained by our model’s generators and discriminators over
200 epochs. The figure reveals a balanced learning trajectory between generator M2 (illus-
trated in red) and discriminator D2 (illustrated in green). Consequently, discriminator D1
(illustrated in blue) demonstrates effective learning across epochs. Although generator
M1 appears to exhibit a slight upward trend in the curve towards the latter epochs, its
loss stabilizes around a value of 0.6, demonstrating continuous learning over time. This
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coherent convergence of loss curves illustrates a well-regulated learning process between
the discriminators and generators, reinforcing the efficacy of our GAN framework.

Input Our Model CUT GAN DualGAN CycleGAN GcGAN

Figure 5. Comparative results of satellite image generation via visualization. Green-colored arrows
(rows 3, 5, 6, 8) illustrate areas where our model preserves structural details on roofs more accurately
than other models. Red-colored arrows (rows 3, 4, 7) denote the effective retention of white road
markings, showcasing our model’s strengths. Blue-colored arrows (rows 1, 6) highlight the successful
prevention of inappropriate color generation on vehicles and roofs. However, yellow-colored arrows
(rows 3, 8) reveal our model’s deficiencies, such as incorrect color generation and merging issues,
which are also observed in comparative models. These results highlight the intricate balance of
successes and challenges in satellite image synthesis across multispectral bands.
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Figure 6. Training loss curves across epochs for our model. The figure illustrates the training
dynamics over 200 epochs observed in our model. The blue and green curves represent the losses
for discriminators D1 and D2, respectively. The generator M1 and M2 losses, depicted in orange
and red, respectively, reflect the generators’ performance in creating images that are increasingly
indistinguishable from real images.

5. Discussion

In selecting datasets available from [27], our goal was to generate satellite images with
IRRG color composition similar to those collected from Vaihingen City (example images are
shown in Figure 7) by training the model on satellite images with RGB color composition
collected from Potsdam City (images are shown in Figure 5 in the first column, i.e., Input).
These two datasets generally have similar underlying features, such as buildings and roads,
but the images in the input and target domains do not have one-to-one correspondence
as they are taken from two different locations. During this, our training approach yielded
promising results in image generation, as demonstrated in Figure 5.

Figure 7. Ground-truth IRRG images from Vaihingen City’s dataset.

For the evaluation metrics SSIM, PSNR, and RMSE, it is generally necessary to have
the exact generated image corresponding to the input image and the exact ground-truth
image for the input image. Since the Potsdam and Vaihingen datasets are collected from
two different cities, if the input image A is from Potsdam and the target image B is from
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Vaihingen, the ground truth image should maintain the underlying structure of A but adopt
the color composition of B to align with our work of transferring between two different
multispectral bands. The Potsdam dataset provides corresponding IRRG images for each
RGB image; hence, during the calculation of SSIM, PSNR, and RMSE, we used related
Potsdam IRRG color composition images (as shown in Figure 8) as ground truth for each
corresponding generated image.

Figure 8. Ground truth IRRG images from Potsdam City’s dataset.

Similarly, as observed in Figure 5, the generated images exhibit a color composition
similar to the target dataset, i.e., IRRG color composition satellite images from Vaihingen
City, as shown in Figure 7, aligning with our primary objective of replicating the target
spectral characteristics. The presence of diverse objects such as buildings, cars, houses, and
roads complicates the clear differentiation between the successes and failures of our model,
especially in focusing on specific details. Upon detailed examination, we identified certain
areas where our model outperforms or falls short compared to other models, as indicated
by arrows in various colors. Specifically, as seen in Figure 5 in rows 3, 5, 6, and 8, our model
exhibits marginally better performance in preserving the structural details of certain parts
of the roofs on houses and buildings, depicted with green-colored arrows. Furthermore, our
model more effectively retains white-colored road markings, another underlying structure,
as indicated by red-colored arrows in rows 3, 4, and 7. Additionally, in rows 1 and 6,
our model effectively prevents inappropriate color generation, such as on cars and roofs,
as highlighted by blue-colored arrows. Although these improvements are subtle, they
underline the model’s enhanced capability to prevent inaccurate color generation.

There are, however, some deficiencies in our model, such as the incorrect generation of
red color on roads, particularly in row 3, as indicated by a yellow-colored arrow. It is worth
mentioning that all comparative models exhibit this same misrepresentation, suggesting
that the flaw may be attributed to an imbalance in the dataset. Similarly, our model
incorrectly merges black-colored cars with shadows, as depicted by yellow-colored arrows
in row 8, a problem also common among the other models. This issue may be attributed to
either dataset imbalance or the presence of shadows in the input images. Again, the same
observation can be seen with all other models, showing the same performance of blending
those cars into the shadow. This failure may also be attributable to the imbalanced dataset
or shadows in the input images. An interesting observation was made on GcGAN [29]
regarding the retainment of specific structures. Despite inaccurately generating red color
on roofs of buildings and houses, it successfully retained white-colored road markings
similar to our results, where other models failed.

6. Conclusions

Satellite imagery, characterized by its diverse spectral bands, inherently exhibits do-
main variability that significantly impacts the performance of various analytical models.
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In response to this challenge, our work introduced an approach that leverages the capa-
bilities of generative adversarial networks (GANs) combined with contrastive learning.
Specifically, the present work incorporates a dual translating strategy, ensuring that each
translation direction uses original images from the respective domains (S1 and S2) rather
than relying on previously generated images, maintaining the integrity and quality of the
translation process. Our model effectively translates images across multispectral bands
by integrating adversarial mechanisms between generators and discriminators, maximiz-
ing mutual information among important patches and utilizing identity loss with mean
squared error (MSE). The quantitative results, as evidenced by metrics such as SSIM, PSNR,
and RMSE, alongside qualitative visualization, demonstrate that our model performs better
than well-established methods, including CycleGAN, CUT, DualGAN, and GcGAN. Fur-
thermore, for training over 200 epochs, our model requires a comparable amount of time,
around eleven hours, similar to that of the other models except for GcGAN, which took
only nine hours to train but obtained a significantly lower SSIM value of 0.5786 compared
to our model’s 0.7888. These findings highlight the practicability of our model in gener-
ating high-quality satellite images. These images accurately reflect the desired spectral
characteristics while retaining important underlying structures, highlighting advancements
in remote sensing applications.

It is important to note that the present work integrates a GAN model to generate
satellite images across different multispectral bands. While our current work focuses
on image generation, the natural progression is to extend these capabilities to domain
adaptation applications in several subdomains of remote sensing. We aim to explore
various fields within and beyond remote sensing, applying our model to generate images
that can then be used with developed models like U-Net for semantic segmentation and
other tasks where domain variability is a significant challenge. By continuing to refine and
apply our model, we hope to contribute to advancing remote sensing techniques and the
broader field of image processing.
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