
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 5, MAY 2024 6923

A Low-Overhead Dynamic Formation Method for
LEO Satellite Swarm Using Imperfect CSI

Chia-Hung Lin , Member, IEEE, Shih-Chun Lin , Member, IEEE, and Liang C. Chu

Abstract—In 6G systems, non-terrestrial networks (NTNs) are
poised to address the limitations of terrestrial systems, particularly
in unserved or underserved areas, by providing infrastructure with
mobility that enhances reliability, availability, and responsiveness.
Among various types of mobile infrastructures, low earth orbit
(LEO) satellite communication (SATCOM) has the potential to
offer extended coverage that supports numerous devices simulta-
neously with low latency. Consequently, LEO SATCOM attracts
significant attention from academia, government, and industry. The
dynamic formation problem must be solved to form a swarm con-
necting to the ground station with the most appropriate satellites to
achieve LEO SATCOM systems with higher throughput. Existing
solutions use computationally demanding methods to solve the
NP-hard problem and cannot be employed for SATCOM systems
with short coherence time. Furthermore, precise channel state
information (CSI) between the ground station and all candidate
satellites is required for formation designs, resulting in significant
signaling overheads. To overcome these drawbacks, we propose a
learning-based dynamic formation method for real-time dynamic
formation capability. Specifically, motivated by the channel fea-
tures of LEO SATCOM, we develop a CSI estimation method
to provide coarse CSI (i.e., imperfect CSI) solely based on avail-
able geometrical information of LEO SATCOM and without any
signaling overhead. Then, our approach can utilize the obtained
coarse CSI as inputs and provide valuable guidelines as priorities
to access specific satellites for fine-grained CSI (i.e., precise CSI).
The prediction results are validated using a small-scale brute force
method to determine the final formation. Our intensive simulation
results suggest that the proposed method can aid current LEO
SATCOM by providing real-time formation results, particularly
in low-transmit power regions. Specifically, the proposed method
can achieve 90% of full capacity with only 32% signaling overhead
to build high-throughput LEO SATCOM.

Index Terms—Deep learning, dynamic formation, imperfect
channel state information (CSI), low Earth orbit (LEO) satellites,
multi-input multi-output (MIMO), satellite communications
(SATCOM).
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I. INTRODUCTION

T
O ENABLE novel information and communication tech-
nologies, the development of next-generation communica-

tion systems (i.e., 6G) is in full swing recently [1], [2], [3], [4],
[5]. Specifically, 6G systems aim to satisfy the ever-increasing
demand for the exponential growth of smart devices. Moreover,
6G systems also wish to provide the desired Quality of Service
(QoS) to the above users anytime and anywhere to fully eliminate
coverage blind spots. By doing so, a reliable communication
system can be offered as a strong backbone to support the
deployment of novel applications, such as super-smart society,
connected robotics, and autonomous systems [6]. To achieve
this ambitious goal, non-terrestrial networks (NTNs) are ex-
pected to provide cost-effective and high-capacity connectiv-
ity promises to complement current terrestrial networks in 6G
systems. Compared to traditionally fixed infrastructure, NTNs
bring infrastructure with mobility to aid the shortcomings of
terrestrial systems, especially in unserved (i.g., regions under
wars or severe disasters) or underserved regions (i.g., rural
areas) [6], [7], [8], [9], [10]. for improved reliability, availability,
and responsiveness. In light of this direction, unmanned aerial
vehicle (UAV) [11], [12], [13] and satellite-enabled wireless
communications [14], [15], [16], [17], [18], [19], supported by
Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geo-
stationary Equatorial Orbit (GEO) satellites, become research
hotspots in recent years.

When compared to UAV-enabled communications and their
MEO/GEO counterparts, LEO satellite communication (SAT-
COM) has the potential to provide extended coverage to support
numerous devices simultaneously and seamlessly with low la-
tency. Besides academia [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23], [24], [25], [26], this unique capability also
attracts the attention of government and industry recently. For
example, the United States Department of Defense is funding
a project to enable seamless communication between mili-
tary/government and commercial/civil satellite constellations,
which currently cannot communicate with each other. Similarly,
the European Union is also launching a project to build indepen-
dent LEO satellite broadband communication systems. Leading
companies in the SATCOM industry have also shown significant
interest in LEO SATCOM. Oneweb has already launched more
than 500 LEO satellites, while more than 3000 LEO satellites
were operated by SpaceX. Furthermore, SpaceX plans to launch
9,000 more LEO satellites for its Starlink internet broadband
constellation project, following permission from the United

0018-9545 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on June 21,2024 at 23:20:57 UTC from IEEE Xplore.  Restrictions apply. 



6924 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 5, MAY 2024

States Federal Communications Commission (FCC). To sum up,
LEO SATCOM will undoubtedly play an important and unique
role in future 6G systems.

Although LEO SATCOM offers an exciting prospect for the
realization of 6G systems, the unique features and requirements
of such systems also demand a re-design of communication
systems. Firstly, while multi-input multi-output (MIMO) sys-
tems have proven to enhance performance in modern mobile
communications, the strong line of sight (LoS) properties of
LEO satellite channels require the use of a satellite swarm
with multiple satellites to provide spatial diversity for MIMO.
This presents new challenges that need to be addressed. Sec-
ondly, acquiring precise channel state information (CSI) is even
more costly in LEO SATCOM due to the ultra-fast mobility
of LEO satellites [15], [16]. This requires a significant amount
of signaling overhead for CSI training (i.e., sending known
pilots [27], [28]) and feedback [29], [30], [31]. Furthermore, the
fast-changing CSI requires frequent CSI training and feedback,
making signaling overheads an important factor to consider
when designing LEO SATCOM.

In order to facilitate high throughput connectivity in LEO
satellite swarm-enabled distributed MIMO communications, it
is essential to address the dynamic formation problem. Specif-
ically, given a group of candidate satellites operating in the
LEO, the goal is to select a subgroup of satellites, forming a
satellite swarm with the most appropriate satellites to connect
to the ground station for maximized capacity. In the literature,
while there are optimization-based solutions that can be ap-
plied to solve this NP-hard problem, there are two drawbacks
to using them in LEO SATCOM scenarios. Firstly, existing
optimization-based solutions either provide sub-optimal results
or cannot provide real-time solutions, thus making it challenging
to achieve a desirable trade-off between computational complex-
ity and performance. Secondly and more importantly, acquiring
precise CSI of all candidate satellites is still required for ex-
isting optimization-based solutions, which implies a significant
amount of signaling overheads and is not practical for ultra-fast
LEO satellites with lower coherence times. As an alternative, this
work provides a practical dynamic formation solution powered
by learning-based achievements to address these issues. To
further elaborate, learning-based communication designs have
been adopted in different mobile communications operations
to address the shortcomings of traditional optimization-based
methods, including [32], [33], [34], [35], [36]. Generally speak-
ing, one motivation to introduce learning-based communication
designs is to overcome the model deficit, as discussed in [37],
[38], [39]. By doing so, the trained neural network can still
make useful decisions even when only imperfect observation
is provided as the model input. Another motivation to utilize
learning-based communication designs is to solve the algorithm
deficit by offloading computationally demanding operations to
the offline training phase, as demonstrated in [40], [41], [42],
[43]. By doing so, real-time communication operations can be
used and a better trade-off can be struck in addressing the consid-
ered problem. Following this logic, we introduce learning-based
communication designs to the considered problem, enabling

the proposed method to work with imperfect CSI and deliver
real-time capabilities to fulfill the needs of LEO SATCOM.

To do so, in the proposed method, utilizing the understand-
ing of LEO SATCOM channels, we develop a CSI estima-
tion method to provide coarse CSI (i.e., imperfect CSI) solely
based on available geometrical information of LEO SATCOM
and without any signaling overheads. Then, using the obtained
coarse CSI as inputs, our approach provides valuable guidelines
as priorities to access specific satellites for fine-grained CSI (i.e.,
precise CSI). Finally, the recommended formation results can
be further validated using a small-scale brute force searching
method to determine the final formation. A hyper-parameter
is provided to let system designers adjust the searching range
according to affordable signaling overheads and computational
complexity. Our intensive simulations demonstrate that the pro-
posed method can improve current LEO SATCOM by providing
real-time formation results with low signaling overheads, par-
ticularly in regions with low transmit power. Specifically, by uti-
lizing the developed geometrical CSI estimation, our proposed
formation method can achieve at least 90% of full capacity with
only 32% signaling overhead, enabling high-throughput LEO
SATCOM in practice. We further validate the generalization ca-
pability of our proposed method by working with other channel
estimation methods to generate coarse CSI. This approach also
resulted in 90% of full capacity when the pilot-and-noise ratio
(PNR) is only -20 dB, demonstrating the benefits of our proposed
solution in scenarios with limited signaling overheads.

We list our contributions below:
� We develop a realistic simulation platform that inves-

tigates LEO satellite swarm-enabled distributed MIMO
communications by studying the geometrical relationship
between the ground station and LEO satellites. Based on
the platform, we consider dynamic formation problems for
LEO satellite swarms with random topology. This work
represents the first attempt to determine the capacity upper
bound of subsequent communication system designs in this
context.

� To aid current LEO satellite swarm-enabled distributed
MIMO communications, we propose a learning-based dy-
namic formation method to solve the aforementioned op-
timization problem, enabling real-time dynamic forma-
tion capability. Moreover, only a subset of precise CSI is
needed, yielding significantly reduced signaling overhead
when performing formation in LEO SATCOM scenarios.

� Our intensive simulation results examine the achieved
performance and underlying overhead of the proposed
method with different numbers of candidating satellites and
different precision levels of imperfect CSI, demonstrating
the effectiveness and practicality of the proposed method,
particularly in regions with low transmit power and limited
signaling overhead scenarios.

The rest of the paper is organized as follows. Section II dis-
cusses the related works. Section III presents the system model.
Section IV formulates the dynamic LEO satellite formation
problem and introduces the considered imperfect CSI models.
Section V presents the proposed learning solutions. Section VI
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highlights the performances of the proposed mechanism and
discusses the obtained results. Finally, Section VII concludes
the paper.

II. RELATED WORKS

This work aims to investigate learning-based LEO SATCOM
designs, and in this section, related works in both optimization-
based and learning-based LEO SATCOM designs are reviewed.
In recent developments of optimization-based LEO SATCOM
designs, [14] investigates precoding design problems to maxi-
mize the ergodic sum rate in a scenario where one LEO satellite
is operating in the sky to serve several ground users. With a
similar scenario, [15] proposes a space angle-based user group-
ing algorithm to schedule served users into different groups,
allowing full-frequency reuse while maximizing the achievable
rate. Also focusing on applying multiple access techniques to
LEO SATCOM designs, [20] develops multicast communication
with rate-splitting multiple access, enabling LEO satellites to
serve a group of users using the same frequency band simul-
taneously. By introducing a security viewpoint, [21] and [22]
purpose beamforming design solutions to maximize secrecy en-
ergy efficiency and instantaneous rate, respectively, to improve
the quality of service of LEO SATCOM. To further increase
the practicality of the previous designs, [23] investigates the
robust beamforming designs under imperfect angles of depar-
ture assumptions, and develops low complexity algorithms to
fulfill the hybrid beamforming designs for LEO SATCOM.
Compared with the above works concentrating on single satellite
transceiver designs, this work considers an advanced scenario,
where a group of LEO satellites forms a swarm and connects
to a ground station (i.e., LEO satellite swarm-enabled dis-
tributed MIMO communications) for the following reason. To
explain, in the industry field, several projects of new-generation
large-scale LEO constellations, represented by Iridium II, Star-
link, OneWeb, Telesat, and Kuiper, are operating numerous
LEO satellites in the sky. By connecting those satellites as
a swarm, superior connectivity can be provided by utilizing
the swarm-enabled spatial diversity. Thus, there is an urgent
need to investigate LEO transceiver designs in such a scenario
and the developed method can be directly applied to current
LEO SATCOM scenarios. Moreover, the above existing works
can also be further extended to the swarm version to release
the full potential of current LEO SATCOM. In light of this
direction, [16] examines the relationship between inter-satellite
distance in the considered swarm and the achieved capacity to
provide a guideline for swarm formation. However, this work
only considers an ideal case where all satellites are equally
spaced in the orbit to obtain the formation conclusion. Addition-
ally, some practical imperfections such as CSI are not discussed,
limiting the direct usage to practical scenarios.

On the other hand, with these pioneering works to develop
learning-based mobile communication operations in [37], [38],
[40], [41], [42], researchers have investigated learning-based
LEO SATCOM designs recently. For example, [17] models
an interesting problem, utilizing the LEO satellite to act as

a relay for offloading the Internet of Remote Things (IoRT).
A reinforcement learning-based agent is placed in the LEO
satellite to decide whether to collect new IoRT data and the
transmission power to relay the previously received IoRT data.
Similarly, [18] also employs a reinforcement learning-based
agent to configure a space link from the LEO satellite to a ground
terminal for improved QoS. Furthermore, [19] investigates the
usage of learning-based algorithms to aid interference detec-
tion, flexible payload configuration, and congestion prediction
problems in SATCOM operations. While the proposed learning-
based approaches can effectively and efficiently solve the con-
sidered multi-dimensional problems, unique features of LEO
satellite swarm-enabled distributed MIMO communications are
not modeled and considered in these works. Moreover, practical
considerations, such as CSI imperfection and CSI training and
feedback overheads, are also ignored. Finally, several studies
have introduced learning-based methods for CSI prediction in
LEO SATCOM scenario [24], [25], [26]. While our work and
these previous studies all address CSI-related challenges in
LEO satellite transceiver designs, there are two fundamental
differences that distinguish our approach from theirs. Firstly,
from a system modeling perspective, prior works have primarily
employed conventional Rician fading channel models to simu-
late LEO channels. However, these models fail to adequately
capture the unique characteristics of LEO satellite channels. In
contrast, our approach utilizes a geometry-based LEO satel-
lite channel model with several unique LEO factors. Hence,
this model considers the distance between the satellite and the
ground station and other critical LEO channel phenomena, such
as atmospheric gas absorption and tropospheric scintillation.
By incorporating these elements, our model provides a more
realistic and practical representation of LEO satellite channels
in our work. Secondly, it’s worth noting that previous works
only focus on predicting future CSI based on historical perfect
CSI using time-series analysis. This approach implies that an
exhaustive CSI acquisition procedure is still necessary from time
to time to provide inputs to the developed prediction method. In
contrast, our primary interest lies in evaluating and comparing
the performance of using imperfect CSI directly, imperfect CSI
with the support of an offline learning mechanism, and precise
CSI. We aim to provide insight into the trade-off between CSI
acquisition overhead and the achieved performance, serving as
valuable guidance for satellite transceiver designers.

The summary of related works is presented in Table I. Based
on the above survey results, we conclude that LEO satellite
swarm-enabled distributed MIMO communications are not well
investigated yet, failing to provide mature algorithms for cur-
rent LEO SATCOM. Also, realistic considerations, such as the
imperfect CSI effect, are also neglected in the literature. Thus,
in this work, we start from an important topic of such systems
in practice, the dynamic formation problem, to enable efficient
and real-time LEO satellite swarm-enabled distributed MIMO
communications. Moreover, we further evaluate the overheads
of different formation methods and seek practical solutions to
work with CSI imperfection and reduced overheads. Thus, the
capacity of LEO satellite swarm-enabled distributed MIMO
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TABLE I
SUMMARY OF RELATED WORKS

communications can be increased and it is starting possible to
transfer the aforementioned works into the considered scenario
for improved transmission quality.

III. SYSTEM MODEL

In this section, we first introduce the unique channel behaviors
of the considered LEO SATCOM to bring the motivation of
utilizing satellite swarm to provide spatial diversity for MIMO
use. Then we discuss how the geometrical relationships between
the ground station and candidate satellites affect the channel
behaviors of LEO SATCOM.

A. Uplink SATCOM Propagation Model

We consider a wireless communication system between a
ground terminal with NT antennas and NS single-antenna can-
didate satellites. We further consider all candidate satellites are
following trailing formation pattern [44] and operating in the
same orbit (i.e., LEO). Let H = [h1,h2, . . .,hNS ] ∈ C

NS×NT

denotes the the communication channel and hl =∈ C
1×NT rep-

resents the wireless communication channel between the ground
station and l th satellite. The i th element of hl can be expressed
by

Hl,i = [hl]i = h
l
i =

1
√

Ll
i

e−j(2π(fc/c0+f l
D)dl,i+φl), (1)

wherefc is the carrier frequency,c0 is the light speed, f l
D is the

Doppler frequency shift of each satellite, dl,i is the distance from
the l-th satellite’s to the i-th ground station antenna, and φl ∈
[0, 2π] is a uniformly distributed phase shift of the l-th satellite
caused by the atmosphere. Note that the Doppler frequency shift
is caused by the high relative velocity between each satellite and
ground station, and thus can be further expressed as f l

D = fc
�vl

c0
,

where �vl represents the relative velocity between ground station
and l-th satellite. Moreover,Ll

i is the total attenuation loss, which
is given in decibel as

Ll
i | dB = 20log10(4πfcdl,i/c0) + Lsf,l + Lgas,l + Lts,l, (2)

where Lsf,l is the shadow fading, Lgas,l describes atmospheric
gas absorption, and Lts,l includes the losses due to tropospheric
scintillation.

The satellite channel model described earlier exhibits two
distinctive features that distinguish it from conventional mobile
communications. These features motivate the development of
specialized communication system designs that leverage these
characteristics. Firstly, the satellite channel utilizes a pure line-
of-sight (LoS) channel to propagate radio waves, as demon-
strated by (1), which is consistent with recent literature and

Fig. 1. Signal correlation from two ground stations with different ground
station distance in downlink SATCOM.

real-world measurement reports [16], [45], [46], [47], [48], [49].
To explain, due to the high signal attenuation in this type of
channel, the LoS signal component dominates the propagation
mechanism in a satellite radio channel. Additionally, a report by
the International Telecommunication Union (ITU) also confirms
this tendency in the SATCOM downlink channel. The report
highlights that maintaining an appropriate distance between two
ground stations is crucial to enable the correlation of received
signals from the same satellite, thus providing the necessary
spatial diversity for further use. This relationship is depicted in
Fig. 1, where the x-axis represents the distance between two
ground stations and the y-axis indicates the resulting receiver
spatial correlation coefficient. As shown in the figure, a spacing
of at least several tens of kilometers between two ground sta-
tions is necessary to ensure the existence of spatial diversity in
downlink SATCOM. If multiple antennas are configured within
the same ground station, no spatial diversity can be utilized
in such a communication system, as the received signals from
those antennas will be identical. Similar trends are observed
in uplink SATCOM scenarios described in (1), underscoring
the need for a swarm structure to generate the required spatial
diversity for MIMO use. In addition to the LoS channel discussed
above, the satellite channel model also presents an unparalleled
opportunity for system designers to utilize geo-information in
the development of SATCOM systems. Unlike conventional
mobile communications, which rely on statistical distribution to
model the multipath effect, the random variables in the wireless
communication channel between the ground station and the l th
satellite are the atmospheric effect φl and shadow fading effect
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Fig. 2. Geometric relationship between the ground station and candidate
satellites.

Lsf,l. The other terms are determined by the satellite’s trajectories
(i.e., distance to the ground stationdl,i and relative velocity to the
ground station �vl) and environment-defined constants (i.e., the
operated carrier frequency fc, atmospheric gas absorptionLgas,l,
and tropospheric scintillation Lts,l). While these environment-
defined constants can be known as prior knowledge, the trajecto-
ries of the satellites are also easy to determine since they operate
in a fixed orbit (i.e., LEO). Additionally, both the ground station
and satellite swarm sides must seamlessly monitor precise phys-
ical attributes, such as longitude, latitude, height, velocity, and
inter-satellite distance. Commercial satellite service providers,
such as SpaceX and Amazon, have implemented Application
Programming Interfaces (APIs) to facilitate this monitoring
process. Utilizing the available geometrical information in the
considered LEO SATCOM scenarios can aid in the design of
transceiver operations, which is one of the major goals of this
work.

B. Uplink SATCOM Using Swarm Structure

Furthermore, in this section, we aim to describe how geomet-
ric relationships between the ground station and candidate satel-
lites affect the above channel model. Specifically, we consider
an uplink SATCOM scenario as shown in Fig. 2. Following the
Earth-centered coordinate system, we assume all satellites are
operating in a LEO, where the distance to Earth center is fixed
as r0. However, in realistic cases, ground terminal will be built
on the Earth surface, thus, the distance between each satellite
and the ground station will be different. In this paper, we assume
that the inter-satellite distance between two adjacent satellites
lth satellite and l + 1th satellite is Ds;l,l+1 and the inter-satellite
communications can be performed perfectly using optic commu-
nications. Next, given the distance from lth satellite and ground
station as dl, we aim to discuss how the inter-satellite distance
Ds;l,l+1 affects the distance between l + 1th satellite and ground
station. To do so, we first analyze the geometric relationship
of the considered LEO SATCOM system. Specifically, using
the Earth-centered coordinate system, the polar coordinates of
satellite l can be denoted as rl = [r0, vl], where r0 is the orbital
radius and vl ∈ [0, 2π] is the polar angle. The ground station is

located at position rT = [rE, π/2], where rE = 6371 km is the
Earth’s radius, With the above setting, we aim to transfer the
whole communication system into ground station-centered co-
ordinate system to obtain geometry-based communication sys-
tems. Using the ground station-centered coordinate system, the
polar coordinates of satellite l can be expressed as dl = [dl, θl],
where dl is the distance between the ground station and satellite
l, and θl ∈ [0, π] is the angle of departure (AoD) from the ground
station to satellite l. In this setting, how geometric relationships
between the ground station and candidate satellites affect the up-
link SATCOM swarm channel model can be elegantly presented
in the following corollaries.

Lemma 3.1: The distancedl between satellite l and the ground
station is given as dl =

√

d2
0 + 2rEr0(1 − sin(vl)).

Proof: Given a triangle with satellite i, the Earth’s center, and
the ground station, we have (dl)

2 = r2
E + r2

0 − 2rEr0cos(π2 −
vl) via the law of cosines. Further, simplify this equation as
below:

(dl)
2 = r2

E + r2
0 − 2rEr0cos(

π

2
− vl)

= r2
E + r2

0 − 2rEr0sin(vl)

= (r0 − rE)
2 + 2rEr0 − 2rEr0sin(vl)

= d2
0 + 2rEr0(1 − sin(vl)). (3)

Thus, we obtain the result dl =
√

d2
0 + 2rEr0(1 − sin(vl)). �

Lemma 3.2: The relationship between d0 and dl+1 can
be characterized by Ds;l,l+1 and described as dl+1 =
√

d2
0 + 2rEr0(1 − sin(vl + arccos(1 −D2

s;l,l+1/2r2
0))).

Proof: We first consider a triangle with satellite l, satel-
lite l + 1, and the ground station, we have D2

s;l,l+1 =

r2
0 + r2

0 − 2r0r0cos(∆v) by denoting ∆v = vl+1 − vl by the
law of cosines. Through appropriate transpositions, we ob-
tain 2r0r0cos(∆v) = 2r2

0 −D2
s;l,l+1. Thus, cos(∆v) = 1 −

D2
s;l,l+1/2r2

0 holds. Finally, we can represent the angle differ-
ence∆v between two adjacent satellites as a function ofDs;l,l+1,
that is, ∆v = arccos(1 −D2

s;l,l+1/2r2
0) Then, following the

conclusion of Lemma III.1, we know that for satellite l + 1,
the equation dl+1 =

√

d2
0 + 2rEr0(1 − sin(vl+1)) also holds.

Further, simplify this equation and take the above conclusion
into the equation as below:

dl+1 =
√

d2
0 + 2rEr0(1 − sin(vl+1))

=
√

d2
0 + 2rEr0(1 − sin(vl +∆v))

=
√

d2
0+2rEr0(1 − sin(vl + arccos(1 −D2

s;l,l+1/2r2
0))).

(4)
�

Note that dl and θl are time variant, but r0 and rE are constant
over time. All these values can be easily acquired or known
as the priori at the ground station, since satellites are moving
on predefined orbits. Now, the geometric relationships between
the ground station and candidate satellites are clear and we
demonstrate that Ds;l,l+1 can affect the SATCOM system by
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influencing the distance from candidate satellites to the ground
station.

Lemma 3.3: Let dl be the distance from the ground station
to satellite l, we denote the distance from the m th antenna of
the ground station to satellite l as dl,m and the equation dl,m =
dl −DA ·m · cos(θl) holds, where DA = c0

2fc
is the antenna

spacing between two adjacent antennas in the ground station.
Proof: Given the distance from the ground station to satellite

i as dl, we now aim to analyze the distance from them th antenna
of the ground station to satellite l (i.e., dl,m). By doing so, the
transmitting signal difference between different antennas can be
studied. First, due to the extremely long transmission distance
nature of SATCOM, it is fair to assume the receive signal on the
satellite side will present as a plane wave. Then, one can notice
that, comparing with the first antenna (with reference distance
dl, i.e., m = 0), the signal traveling distance from m th antenna
of the ground station to satellite is reduced by DA ·m · cos(θl).
Thus, we obtain the result dl,m = dl −DA ·m · cos(θl). �

With the above lemmas, we can further express the channel
matrix between the ground station to satellite l as

hl = αlal, (5)

where al is the steering vector following

al = [e−j2π(fc/c0+fD)·DA·m·cos(θl)]NT−1
m=0 , (6)

and αl is the complex gain as αl =
1√
Ll
e−j(2π(fc/c0+fD)dl+φl)

described in (1).

IV. DYNAMIC LEO SATELLITE SWARM FORMATION

A. Problem Formulation

With the above system modeling, we introduce the interested
dynamic formation problems in this section. We consider a
SATCOM scenario, where a wireless communication system is
built between a ground terminal with NT antennas and a satellite
swarm consisting NS single-antenna satellites operating in the
same trail. Assuming that the inter-satellite distance between two
nearby satellites is a random variable following uniform distribu-
tion, our goal is to find out the most appropriate NR satellites out
of NS satellites to form a wireless communication system with
the highest communication capability. Mathematical speaking,
the interested problem can be expressed as

maximize
s∈{1,0}NS

C = log det(INT + λHHdiag(s)H)

subject to
NS
∑

i=1

si = NR, (7)

where H ∈ C
NS×NT is a channel matrix following the afore-

mentioned SATCOM structure, λ is the operating signal-to-
noise-ratio of the considered SATCOM system. Notably, the
considered linear programming question is a NP-hard problem
and our goal is to find the best formation result s by only
connecting to NR selected satellites for maximized capacity. s is
the optimal formation results, where involved satellites are set
as 1 and other satellites are set as 0.

B. Design Considerations

In this section, we introduce the procedures to utilize existing
formation solutions in LEO SATCOM to discuss the design
considerations of dynamic formation solutions. Given the con-
sidered scenario, where our goal is to find the best formation
result s by selectingNR satellites out ofNs candidating satellites
for maximized capacity. During the pilot phase, the ground
station transmits known pilots to all Ns candidating satellites for
channel estimation purposes. ThoseNs satellites then need to go
through an exhaustive channel estimation procedure and provide
feedback on the channel estimation results to the ground station,
after which the dynamic formation process can begin, selecting
a subset of satellites containing NR satellites for wireless data
connectivity (i.e., NR < Ns in a practical case.). While these
procedures may work well for conventional mobile communi-
cations, there are two drawbacks that hinder their direct use
in LEO SATCOM systems. Firstly, obtaining precise CSI in
LEO SATCOM scenarios is noticeably costly, particularly for
the CSI of all candidating satellites is required when only a
subset will be used in the data transmission phase. Secondly, due
to the high mobility of LEO satellites, the coherence time of the
system is much shorter than conventional mobile communica-
tions. This makes the aforementioned resource-demanding CSI
training procedures even more challenging, as they need to be
performed continuously to update time-varying CSI throughout
the transmission. Moreover, such a short coherence time also
prohibits the use of computationally demanding dynamic for-
mation methods. Based on the above reasons, we conclude that a
desirable and practical dynamic formation solution should (i) be
able to reduce the usage of precise CSI for the reduced signaling
overhead and (ii) be able to provide real-time capabilities to be
adopted in fast-moving LEO SATCOM scenarios. Thus, in the
rest of this paper, we will develop a learning-based dynamic
formation solution to achieve the aforementioned design con-
siderations and intensive simulation results demonstrate that the
proposed method can result in reduced signaling overhead and
provide real-time operations to practical LEO SATCOM.

C. Imperfect CSI Estimation Models

In this paper, to achieve our goal of addressing the challenges
of imperfect CSI in LEO SATCOM, we introduce two types of
imperfect CSI models: geometric CSI estimation and conven-
tional CSI estimation models. These models will be discussed
in detail in the following sections.

1) Geometrical CSI Estimation Model: In this section, we
propose a model to capture imperfect CSI solely based on
the available geo-information for LEO SATCOM. Due to the
strong LoS properties in LEO SATCOM channels, the resulting
channel is strongly connected to the geometry of satellites, such
as their location and speed. Additionally, for safety purposes,
geo-information from satellites is required to be periodically
reported to the ground station. Thus, with the understanding
of LEO SATCOM, we propose the following model to capture
imperfect CSI solely based on the available geo-information,
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that is,

Ĥl,i =
1

√

L̂l
i

e−j(2π(fc/c0+f l
D)dl,i), (8)

where Ll
i is the estimated total attenuation loss, which is given

in decibel as

L̂l
i|dB = 20log10(4πfcdl,i/c0) + Lgas,l + Lts,l. (9)

Comparing with the original channel model in (1) and (2),
one can notice that random terms, phase shift caused by the
atmosphere φl and shadow fading attenuation loss Lsf,l, are
disregarded in the model, as they are dynamic and cannot be
observed solely based on geo-information. Importantly, the pro-
posed model does not require any channel training or feedback
procedures, providing a practical solution to the challenges
of acquiring precise CSI in LEO SATCOM scenarios, where
acquiring precise CSI for all satellites can be costly and resource-
intensive.

2) Conventional CSI Estimation Model: In the second type
of imperfect CSI modeling, we consider the commonly used
pilot-based channel estimation methods. The estimated channel
obtained inevitably suffers from imprecision, which is related
to the pilot-to-noise-ratio (PNR) [50], [51], [52]. In this type of
imperfect CSI modeling, we define the imperfect channel matrix
as:

Ĥl,i = Hl,i +∆Hl,i;iCSI, (10)

where each element of ∆Hl,i;iCSI is an i.i.d. complex Gaussian
with both zero mean and variance σ2

iCSI. Different values of σ2
iCSI

represent different levels of severity of CSI imperfection and can
be simulated by considering different PNRs.

V. LEARNING-BASED DYNAMIC FORMATION

In this section, we present our proposed solution to address the
interested integer programming problem in (7), which aims to
enhance the current LEO SATCOM by generating recommended
formation results with low overheads.

A. Overview

As discussed in the introduction, our approach leverages
machine learning techniques to develop dedicated formation de-
signs that can address both the algorithm deficit and model deficit
challenges faced by LEO SATCOM. Our proposed method can
provide real-time formation capability by offloading computa-
tionally demanding operations to the offline training process,
which mitigates the algorithm deficit. More importantly, thanks
to the pure LoS channel structure of the LEO SATCOM, the pro-
posed method can work with imperfect CSI to mitigate signaling
overheads, which addresses the model deficit. In our framework,
we use coarse CSI generated by the geometrical CSI estima-
tion, rather than precise CSI, as inputs to provide formation
recommendations. Based on this input, the method can output
the priority (i.e., selection probability) of each candidate satellite
for further use. This recommendation (i.e., soft output) allows
a small-scale brute force method to be employed to validate

the formation results using only a portion of precise CSI and
compensate for the performance loss due to the imperfect CSI if
needed. A hyper-parameter (i.e., searching indicator) is provided
to strike an optimal trade-off between achieved performance
and acceptable signaling overhead. By doing so, the achieved
performance can be maintained, and the signaling overhead
of acquiring precise CSI can be significantly reduced. In the
following sections, we will describe the development of our
proposed method, discuss the specifics of the employed machine
learning techniques, and explain how to deploy the method in
real-world scenarios.

B. Dynamic Formation Based on Neural Network

To develop learning-based solutions for solving (7) in a su-
pervised learning manner, a neural network will be trained as
a classifier so that formation classification can be performed in
the online inferring phase. To do so, one possible approach is
to model the problem as a multi-class classification task with
all possible formation cases, resulting in CNS

NR
classes. However,

several drawbacks will be raised by doing so. First, the under-
lying assumption of this solution is that all formation classes
are mutually exclusive and independent, being not accurate to
the considered problem. For example, the correlation between
formation results with satellites {1, 2, 3, 4} and {1, 2, 3, 5} is ob-
viously higher than that between formation results with satellites
{1, 2, 3, 4} and {7, 8, 9, 10} since several satellites are selected
in common in the first case. The multi-class classification as-
sumption fails to account for the underlying correlation in the
problem. Secondly, implementing a multi-class classification
setting to the considered problem would require up to CNS

NR

neurons to be used in the final layer of the neural network for
outputting the classification results. In practical cases where
NS = 25 and NR = 4, this would result in a final layer with
12650 neurons, which is a huge number. Furthermore, deploy-
ing such a large neural network would require ample training
samples, making it challenging to use in real LEO SATCOM
scenarios.

As an alternative, we provide an innovative solution, multi-
label classification, to solve the considered question and avoid
the aforementioned drawbacks. Mathematical speaking, the pro-
posed method can be expressed as

f(Ĥ; Θ∗) = ŝ, (11)

where Ĥ ∈ C
NS×NT is a imperfect CSI sample, ŝ ∈ R

NS is the
formation recommendations, and Θ∗ is the optimal trainable
parameters of neural network. Note that the proposed method
differs from the traditional multi-class classification setting,
which aims to predict the probability of a specific formation
class. Instead, the proposed method predicts the probability of
each satellite being selected to achieve maximized capacity,
matching the original optimization problem in (7). By doing
so, this approach reduces the number of neurons required from
12,650 to 25 in the practical case with NS = 25 and NR = 4,
making it more feasible for deployment in real LEO SATCOM
scenarios. In light of this direction, to train the proposed neural
network by obtaining the optimal trainable parameters Θ∗, we
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define the loss function below:

minimize
Θ

d(ŝ, s) = d(f(Ĥ; Θ), s). (12)

where d(.) is the employed distance function so that the distance
between ground truth s and prediction ŝ can be minimized to
achieve our goal. Recalling our aim is to provide probability
meaning to the outputted formation recommendations ŝ, we
employ binary cross-entropy function as the distance function,
expressed as:

d(f(Ĥ; Θ), s) =
NS
∑

i=1

silog(ŝi) + (1 − si)log(1 − ŝi). (13)

By assigning binary cross-entropy function as the loss func-
tion to provide the probability meaning to the final output, note
that in the ground truth s, if ith satellite is selected, the formation
recommendations of ith satellite will need to be set as a larger
probability (i.e., close to 1) and vice versa to minimize the
employed binary cross-entropy function in (13). During this pro-
cess, the employed neural network starts to learn to predict the
formation results with the maximized capacity solely based on
the inputted imperfect CSI. To further explain, in our considered
channel modeling, various random fading factors, such as gas
absorption loss, tropospheric scintillation loss, and shadowing
fading loss, influence the behavior of satellite channels. While
these random fading terms cannot be precisely recovered from
an information theory perspective, a notable distinction from
conventional mobile communications becomes apparent. That
is, the dominant influence on satellite channel behavior stems
from the geometric relationships between satellites and ground
stations. This dominance arises due to the pure LoS channel
type and the ultra-long transmission distances between satellites
and ground stations. In essence, even solely considering these
geometric relationships yields the fundamental “structure” of
satellite communication channels. As a result, after training, the
predicted probability of each satellite provides the priority to
include this satellite in the final formation for the maximized
capacity. Simulation results confirm that with the aid of the
proposed neural network, certain performance improvements
can be expected compared with only utilizing an imperfect CSI
case.

C. Learning Specifics

Next, we provide details on the learning specifics of the
proposed method, including the network architecture and hyper-
parameter settings. The input of the proposed method is the
imperfect channel matrix Ĥ, which is a NT ×NS complex-
valued matrix. To feed the complex-valued matrix into the
neural network, we transform the channel matrix into the angle
and amplitude form to allow real-valued processing of neural
networks. Thus, the input layer of the proposed method is a
real-valued vector of size 2NSNT × 1. Then, three hidden layers
are employed to further process the given information, with the
number of neurons 128, 64, and 32, respectively. In each layer,
the ReLU function is employed as the activation function to
provide non-linearity. Finally, the sigmoid function is employed

TABLE II
IMPLEMENTATION DETAILS OF THE PROPOSED METHOD

Algorithm 1: Training Procedure of the Proposed Method.

Output: Optimal model weight Θ∗

1: Generate H ∈ C
NS×NT and corresponding

Ĥ ∈ C
NS×NT based on system model

2: Prepare CNS
NR

combinations denoted as {si}, compute
Ci = log det(INT + λHHdiag(si)H) for each
i = {1, . . ., CNR

NS
}

3: Find i∗ = argmaxiCi, setting s = si∗ as the label with
involved satellites 1, others as 0

4: Train the model via Θ∗ = minΘ d(f(Ĥ; Θ), s) in (11)

in the final layer to output probability predictions. Note that the
employed ReLu and sigmoid function can be expressed as:

ReLU(z) =

{

z , if z > 0,
0, if z ≤ 0,

(14)

and

sigmoid(z) =
1

1 + e−z
, (15)

where z is the input real value. The neural network architecture
is summarized in Table II for easy reference. As for other
hyper-parameter settings, we utilize commonly used Adam as
the optimizer with a learning rate of 0.001 to train the employed
neural network for 30 epochs. The training, validation, and
testing sets are with the size of 10000 non-overlapping samples.
The early stopping technique is utilized to monitor the training
process, ensuring the optimal trainable parameters are acquired.
Simulation results demonstrate the proposed simple architecture
is capable of providing the required learning capability and
offers an attractive trade-off between computational complexity
and achieved performance.

D. Deployment of the Proposed Method in Real Scenarios

Finally, we explain how to apply the proposed method to real
LEO SATCOM scenarios to conclude this section. In the offline
training stage, we collect precise CSI from the ground station to
all candidate satellites and utilize the geometrical CSI estimation
method to obtain imperfect CSI. Then the capacity of each
possible formation combination is computed using precise CSI
to generate a sample pair containing an imperfect CSI sample
and the optimal formation result (i.e., label). After gathering
sufficient samples, we utilize the proposed training framework
and the defined loss function in (13) to obtain the optimal
trainable parameters and complete the offline training stage.
The entire process is outlined in Algorithm 1. In the online
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Algorithm 2: Testing Procedure of the Proposed Method.

Input: Optimal model weight Θ∗, searching indicator k
Output: Recommended formation result s̃j∗
1: Given an imperfect CSI sample Ĥ ∈ C

NS×NT , generate
formation recommendations as f(Ĥ; Θ∗) = ŝ

2: Access the candidate satellites with the NR + k
highest probabilities based on ŝ to obtain precise CSI
partial matrix H̃ ∈ C

(NR+k)×NT

3: Prepare CNR+k
NR

combinations denoted as {s̃j},

compute Cj = log det(INT + λH̃
H

diag(s̃j)H̃) for each
j = {1, . . ., CNR+k

NR
}

4: Find j∗ = argmaxjCj , output corresponding
formation result s̃j∗

testing stage, it is worth considering that LEO satellites exhibit
high mobility and may swiftly move out of the coverage area
of a terrestrial ground station within minutes. To address this
challenge, we propose conducting the inference procedure on the
terrestrial ground station side. By doing so, LEO satellites can
passively participate in the proposed framework upon request,
thus relieving them of the computational burden. To do so, firstly,
the ground station will send out a connection request to all LEO
satellites in the sky, and then those satellites will reply with
their geometrical information if they have the capacity to build
wireless connectivity with the ground station. By feeding an
imperfect CSI based on the geometrical CSI estimation into the
trained model with the optimal weight, the probability of select-
ing each satellite is predicted. Based on this recommendation
and the given searching indicator, we only access the candidate
satellites with the NR + k highest probabilities, conducting a
conventional CSI estimation procedure to obtain precise CSI.
Then, a small-scale brute force method is performed to validate
the capacity of all CNR+k

NR
combinations, and the formation with

the highest capacity during this validation process is output
as the final formation recommendation. The entire process is
outlined in Algorithm 2. Note that instead of accessing the full
precise CSI matrix as in existing formation methods, we only
access a partial matrix, thereby reducing the signaling overhead.
Furthermore, instead of computing CNS

NR
combinations as with

conventional brute force methods, we only validate CNR+k
NR

combinations thanks to the recommendations of the proposed
neural network, which reduces the computational complexity.
Simulation results suggest that considerable signaling overhead
and computational complexity can be saved while maintaining
satisfactory performance by using an appropriate setting for the
search indicator k.

VI. PERFORMANCE EVALUATION

In this section, we provide simulation results to demonstrate
the superiority of the proposed formation method and the adapt-
ability to realistic SATCOM scenarios. We consider three differ-
ent scenarios to evaluate the effectiveness of our method. In the
first scenario, we utilize geometrical CSI information to provide
imperfect CSI for formation purposes. In the second scenario,

we use imperfect CSI obtained from conventional estimation
methods to validate the generalization capability of our proposed
learning formation method. Finally, in the third scenario, we
consider a normal case where perfect CSI is available to inves-
tigate the behavior of our proposed method. These scenarios
enable us to thoroughly evaluate the performance of our method
in different contexts and demonstrate its versatility. In different
scenarios, we compare our results with four different formation
methods as below:
� Brute force using CSI: In this formation method, it is

assumed that the ground station has access to precise CSI
information. As a result, the capacity of each potential
formation can be computed, and the one with the highest
performance metric can be chosen as the swarm formation.
This method provides optimal performance and serves as
an upper bound for the problem being considered.

� Brute force using iCSI: In this formation method, we as-
sume that only imperfect CSI is available at the ground
station. An exhaustive search is still performed to obtain
formation results, but due to the imperfect CSI, a perfor-
mance loss compared to Brute Force CSI can be observed.
This formation method provides an upper bound for the
considered problem when only using imperfect CSI.

� Equal spacing: In this formation method, we adopt the
approach proposed in [16] and aim to determine an optimal
swarm formation based on inter-satellite distance alone. To
do so, a swarm formation is created by selecting satellites
with specific orders to achieve the largest inter-satellite
distance statistically.

� Random: In this formation method, formation results will
be chosen randomly to present the achieved performance
without any designs.

As for the performance and overhead indicators, we employ
the indicators below:
� Normalized spectrum efficiency: Given a group of candi-

date satellites operating in the LEO, we use the brute force
method with precise CSI to obtain the optimal result with
the highest capacity. The normalized spectrum efficiency
of a method is defined as the ratio of the achieved spectrum
efficiency of the method to the optimal spectrum efficiency.
A higher normalized spectrum efficiency implies that the
method can achieve a higher throughput connectivity.

� Computation formation overhead: We measure the com-
putation formation overhead of each method by recording
their running time in milliseconds (ms). A method with
a shorter running time implies lower computational com-
plexity and allows for longer data transmission phases,
which can potentially improve the throughput of LEO
SATCOM.

� Communication formation overhead: Given the high cost
of acquiring precise CSI in LEO SATCOM, we measure the
efficiency of each formation method by computing the ratio
of utilized precise CSI to total precise CSI. For example, in
a scenario with NS = 20 candidate satellites, if a method
can generate formation results by only utilizing precise
CSI for 5 of these satellites, its communication formation
overhead will be defined as 25%. This metric quantifies
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TABLE III
PARAMETER SETTINGS FOR LEO SATCOM SCENARIO USING LINK 16 BAND

the amount of signaling overhead that can be saved by
not utilizing precise CSI for the remaining candidate satel-
lites. A lower communication formation overhead implies
greater savings in signaling overhead during CSI training
and feedback.

A. Dynamic Formation Using Imperfect CSI (Geometric CSI

Estimation)

In this simulation, we consider LEO satellite swarm-enabled
distributed MIMO communications in the Link-16 band, using
the system model and detailed settings outlined in Table III.
To study the behavior of different formation methods, we set
the number of candidate satellites as NS = 15, 20, 25. It’s worth
noting that we employ geometrical CSI estimation, which allows
us to generate coarse CSI without any signaling overheads. The
x-axis of Fig. 3 represents the transmit power of the ground
terminal in dBW units, while the y-axis reports the normal-
ized spectrum efficiency of different methods. In Fig. 3(a), we
observe that random formation can only achieve 63.94% of
full capacity in low transmit power regions. However, it can
provide 91.66% of full capacity in high transmit power regions.
This phenomenon reflects the fact that the considered dynamic
formation problem is particularly important in low transmit
power regions, where power resources are limited and need
to be carefully allocated. We also notice that the brute force
method, which uses imperfect CSI, can only result in 78.36% of
full capacity in low transmit power regions. This suggests that
imperfect CSI significantly affects the performance of formation
methods.

Using only imperfect CSI, our proposed method can provide
74.28% of full capacity in low transmit power regions, which is
comparable to the brute force method using imperfect CSI and
outperforms equal spacing and random formation methods. By
accessing the CSI from the ground station and satellites with
top-6 probabilities (i.e., learning-based iCSI (k=2)), a small-
scale brute force method can be applied, resulting in 85.74%
achieved performance and a significant improvement of 10.46%
compared to the brute force method. The hyper-parameter k can
be flexibly adjusted according to the desired performance and

Fig. 3. Achieved normalized spectrum efficiency using different formation
methods with geometrical CSI estimation scenario, (a) NS = 15, (b) NS = 20,
(c) NS = 25.

allowable signaling overheads and computational complexity.
For example, with k = 4, our proposed method achieves an
additional 5.68% performance gain compared to the k = 2 case,
providing 91.41% of full capacity in the considered scenario.
While the performance of using imperfect CSI may not satisfy all
SATCOM applications, and the overheads of using perfect CSI
are too costly in the considered scenario, our proposed method
strikes a better trade-off between these two methods to provide
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Fig. 4. Achieved normalized spectrum efficiency using different formation
methods with conventional CSI estimation scenario, (a) NS = 25 and PNR =

0 dB, (b) NS = 25 and PNR = 10 dB, (c) NS = 25 and PNR = 20 dB.

benefits. We also note that the equal spacing formation method
can only provide similar performance to the random formation
method, as it only utilizes inter-satellite distance to obtain the
formation result, failing to consider the complex nature of LEO
SATCOM. Similar tendencies and conclusions can be observed
in Fig. 3(b) and (c), demonstrating the superiority and adapt-
ability of our proposed formation method to realistic SATCOM
scenarios. As a result, a consistent additional performance gain
of about 10.5% and 5.6% can be achieved across different NS

Fig. 5. Achieved normalized spectrum efficiency using different formation
methods with perfect CSI estimation scenario, (a) NS = 15, (b) NS = 20, (c)
NS = 25.

scenarios. Furthermore, the gap between our proposed method
and random formation increases with NS, suggesting that our
proposed formation will be even more beneficial when more
candidate LEO satellites can be chosen to form a swarm.

B. Dynamic Formation Using Imperfect CSI (Conventional

CSI Estimation)

In this section, we compare the performance of the pro-
posed method and other formation methods in scenarios where
conventional CSI estimation methods are used. The number of
candidate satellites is set to 25. The results shown in Fig. 4 reveal
that the behavior of different formation methods is similar to
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TABLE IV
FORMATION OVERHEADS OF DIFFERENT FORMATION METHODS WITH DIFFERENT NS

that observed in the previous simulations using geometrical CSI
estimation, even with different PNRs. In low PNR cases (i.e.,
Fig. 4(a)), the gap between the brute force method using imper-
fect CSI and the proposed method is negligible. The proposed
method can learn the mapping from imperfect CSI to precise
CSI to aid the formation decision, making it especially useful
when the CSI estimation quality is poor. However, in scenarios
where the CSI estimation quality is good, the brute force method
using imperfect CSI can still provide a slight performance gain
since the correction capability of the proposed method still has
its limitations, as shown in Fig. 4(b) and (c). We also observe that
the behaviors of the proposed method are similar in Figs. 3(c) and
4(a), suggesting that the developed geometrical CSI estimation
can provide similar CSI estimation results with PNR = 0 dB for
formation purposes. Therefore, the geometrical CSI estimation
can be employed in the considered dynamic formation problem
to provide useful coarse CSI to trigger the proposed method
without any signaling overheads. Finally, in Fig. 4(c), we demon-
strate the capability of the proposed method in scenarios where
highly precise CSI is available, achieving 94.03% of full capac-
ity. Overall, the proposed method outperforms other formation
methods in various scenarios, demonstrating its adaptability and
superiority in LEO satellite swarm-enabled distributed MIMO
communications.

C. Dynamic Formation Using Perfect CSI

In addition, we also considered a scenario where precise CSI is
available at the ground station. This scenario is equivalent to the
case where the PNR approaches infinity PNR → ∞. As shown
in Fig. 5(a), the proposed method outperforms existing methods
by 35.27%, achieving 99.06% of full capacity. Even in the more
challenging scenarios depicted in Fig. 5(b) and (c), where the
number of candidate satellites increases, the gap between the
proposed method and existing methods continues to grow. This
finding highlights the advantages of using the proposed method
when more candidate LEO satellites are available to form a
swarm.

D. Formation Overhead Discussions

Finally, we consider the formation overheads for different for-
mation methods, and provide a detailed comparison of commu-
nication and computation overheads in Table IV. In Table IV, we
can see that no communication overhead is needed for the brute

force using iCSI, equal spacing, and random formation methods
for different NS cases. This is because these algorithms can take
imperfect CSI obtained by geometrical CSI estimation without
the need for CSI training and feedback procedures as inputs.
However, the brute force using CSI method requires demand-
ing communication overhead in the considered scenarios since
precise CSI from the ground station to all candidate satellites is
needed. While the brute force using iCSI method cannot deliver
satisfying performance, and the communication overhead of
brute force using CSI method is too demanding for LEO satellite
swarm-enabled distributed MIMO communications scenarios,
the proposed method can fit different communication overhead
requirements by adjusting the hyper-parameter k, and provide
superior performance compared to existing formation methods.
Using the proposed method with k = 2 in the NS = 15 case,
only 40% communication overhead of the brute force using
CSI method is needed since only the precise CSI of selected
candidate satellites with higher priorities is needed, rather than
the precise CSI of all candidate satellites. Furthermore, for a
larger number of candidate satellites (i.e., NS = 25), the needed
communication overhead can be decreased to 24% compared to
the brute force method. This is because the proposed method
can always select potential candidate satellites and assign them
higher priorities, making it even more efficient when serving
large-scale swarms.

Regarding the computation overhead, we provide a detailed
comparison in Table IV. The brute force methods, both using
iCSI and CSI, require 31.972 ms to obtain the formation results
in the NS = 15 case, which violates the real-time processing
requirements in the considered LEO satellite swarm-enabled dis-
tributed MIMO communications scenarios. Additionally, when
the number of candidate satellites increases, the computation
time increases exponentially, reaching 112.918 ms (NS = 20
case) and 294.617 ms (NS = 25 case). Recent literature re-
ports that the coherence time of the considered LEO satellite
swarm-enabled distributed MIMO communications scenarios
is only 300 ms, making the execution of such methods im-
practical in real scenarios. In contrast, even considering the
proposed method withk = 6, the most complicated but superior-
performing method, the computation overhead is still less than
5 ms, satisfying the real-time processing requirements in most
communication systems. Moreover, even with a larger number of
candidate satellites, the computation overhead will not increase,
as the number of selected candidate satellites remains the same,
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resulting in a reduced ratio compared to the computation over-
head of the brute force (CSI) method (i.e., from 15.46% with
NS = 15 to 1.66% with NS = 25). This phenomenon suggests
that the proposed method becomes more efficient when serving
large-scale swarms. In conclusion, considering the trade-off
between performance and needed overheads, the simulation
results demonstrate the effectiveness of the proposed method,
especially when serving large-scale swarms with strict overhead
requirements.

VII. CONCLUSION

To address the deficits in both model and algorithm in existing
methods for LEO satellite swarm-enabled distributed MIMO
communications, we propose a novel learning-based formation
method. Our approach utilizes geometrical CSI estimation to
provide effective coarse CSI for formation purposes without
incurring any signaling overheads, thanks to the geometri-
cal relationship understanding between the ground station and
candidate satellites. Using the recommendations produced by
our method, we only require a portion of precise CSI for the
validation process, which significantly reduces the signaling
overheads in LEO satellite swarm-enabled distributed MIMO
communications. Our simulation results demonstrate that our
real-time formation method can help maintain performance and
reduce formation overheads in LEO satellite swarm-enabled
distributed MIMO communications, especially in low-transmit
power regions and large-swarm scenarios. As for future work,
we aim to introduce unsupervised or self-supervised training
methods to avoid the labeling costs of our proposed formation
method in the offline training stage. Additionally, we will refine
our proposed geometrical CSI estimation approach to further
expand its usage in LEO satellite swarm-enabled distributed
MIMO communications.
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