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Trading and wealth evolution in the Proof
of Stake protocol
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A blockchain is a digit ledger allowing the secure transfer of assets in a distributed
network without an intermediary, hence, achieving decentralisation. As the Internet is
a technology to facilitate the digit flow of information, the blockchain is a technology
to facilitate the digit exchange of value. Blockchain technology has shown great
potential, with a wide range of applications including cryptocurrency [1,2], healthcare
[3,4], supply chain [5,6], and non-fungible tokens [7,8]. See Part 2 of this book for
other applications of the blockchain. Recently, a large number of financial institutions
seek to launch crypto exchanges in the stock market [9].

The core of a blockchain is the consensus protocol, which specifies a set of rules
for the participants (miners or validators) to agree on an ever-growing log of trans-
actions so as to form a distributed ledger. There are two major blockchain protocols,
Proof of Work (PoW [1]) and Proof of Stake (PoS [2,10]):

● In the PoW protocol, miners compete with each other by solving a hashing puzzle.
The miner who solves the puzzle first receives a reward (a number of coins) and
whose work validates a new block’s addition to the blockchain. Hence, while
the competition is open to everyone, the chance of winning is proportional to a
miner’s computing power. The PoW coins include Bitcoin and Dogecoin.

● In the PoS protocol, there is a bidding mechanism to select a miner to do the
work of validating a new block. Participants who choose to join the bidding are
required to commit some stakes (coins they own), and the winning probability is
proportional to the number of stakes committed. The PoS coins include Ethereum
and BNB.

As of July 15, 2023, Cryptoslate lists 326 PoW coins with a total $628B
(51%) market capitalisation, and 248 PoS coins with a total $321B (26%) market
capitalisation. One major pitfall of the PoW protocol is that competition among the
miners has led to exploding levels of energy consumption, and hence raised the issue
of sustainability [11,12]. Refs. [13–15] also discussed the drawbacks of the PoW
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blockchain from economic perspectives. These concerns have created a strong incen-
tive among blockchain practitioners to switch from the PoW to the PoS ecosystem,
as was pioneered by Ethereum 2.0 in September 2022 [16].

In this chapter, we present recent research on the PoS protocol, with a focus on
its wealth evolution. There are three major components in the PoS ecosystem:

(a) User–miner interface: The users seek to get their transactions settled and pub-
lished on the blockchain by the miners. Since each block has a maximum
capacity, most blockchains adopt a ‘pay your bid’ auction, in which the users
bid to have the miners include their transactions in the blockchain. (In general,
the more a user bids, the more likely her transaction will be settled shortly.) The
activity of the user–miner interface relies on the blockchain adoption, and the
problem is to design a good transaction fee mechanism, e.g., satisfying some
incentive-compatible conditions.

(b) Built-in PoS protocol: Each miner selects a set of transactions from the mempool
(according to the bids mentioned in (a)) and includes them into a block. As
explained earlier, the miners then commit their stakes in a PoS election, and
the elected miner gains the right to add the new block to the blockchain. In
return, the elected miner will receive transaction fees from the users, and block
rewards from the blockchain. The PoS protocol may have additional hard-coded
rules, e.g., the longest chain. The key issue is the security level facing to various
attacks.

(c) Speculation and trading: As the blockchain is a digit exchange vehicle, there is
a cryptocurrency (crypto) attached to it. Along with the increasing blockchain
adoption, crypto has become a new financial instrument. This leads to the crypto
trading. The trading parties are the miners and the investors (i.e., the crypto mar-
ket). The investors may be the blockchain users who trade the crypto for use, or
the speculators who seek profit from crypto holdings. The problem is to under-
stand the trading strategy and wealth evolution of the participants in the crypto
market.

See Figure 7.1 for an illustration of the aforementioned components in the PoS ecosys-
tem. Here we concentrate on part (c). Refer to [17–19] for discussions related to part
(a), and [20–23] for developments in part (b).

As the readers may have observed, the miners play a particularly important role
in the blockchain ecosystem: they manage the user–miner interface (in part (a)); they
maintain the blockchain (in part (b)); they provide liquidity in the crypto trading (in
part (c)). For the miners, they can commit their stakes to participate in the PoS mining
process, trade their stakes on the crypto market for instantaneous profit, or a combi-
nation of the two. The most obvious questions are how the miner allocates her stakes
between PoS mining and trading (called a strategy), and what is her wealth evolution.
The former question is concerned with the miner’s optimal strategy, while the latter
studies the level of decentralisation in the PoS economy. Being more specific, we ask:

1. Does the PoS protocol lead to centralisation or the rich-get-richer phenomenon
(assuming no trading)? This question is related to the PoS protocol design.
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Figure 7.1 Miner–user–investor activities in the PoS protocol

2. For each individual miner, what is her best strategy? This question asks for a
miner’s trading incentive in the PoS protocol.

3. What is the wealth evolution of the whole (miner) population if each miner
follows the best response to the others? This question is concerned with the
miner’s collective behaviour in a PoS trading environment.

We will answer these questions in the following sections. The remainder of the
paper is organized as follows. In Section 7.1, we study the question (1), which hinges
on a Pólya urn representation of the PoS election/protocol. Our main finding is that
a large miner’s shares are stable over the time, while those of a small miner can be
much more fluctuated. As a consequence, the PoS protocol alone will lead to neither
centralisation, nor decentralisation. In Section 7.2, we allow for trading in the PoS
protocol, and provide a sufficient condition under which the miners have no incentive
to trade. To address the question (2), we formulate and solve an optimal control
problem in Section 7.3. The optimal control framework also allows us to analyse the
question (3) via a mean field model in Section 7.4. Numerical experiments show that
allowing trading in the PoS protocol does lead to decentralisation, which manifests
the market power. In Section 7.5, we conclude with a few open problems and future
directions. We emphasise that each PoS blockchain may have specific rules (e.g.,
block validity, the longest chain rule, etc.), and we will not take these blockchain-
specific rules into account. Our analysis applies to the generic PoS protocol which
will be defined accordingly.

7.1 Stability of the PoS protocol

We consider the question (1) in this section. Recall that the miners who choose to join
the PoS election are required to commit their coins, and the winning probability is
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proportional to the number of coins committed. To study the PoS protocol itself, we
assume in this section that no trading is allowed, and all the miners will participate in
the PoS mining process. Hence, the number of coins committed by each miner is equal
to that she owns. At first glance, the miner who owns the largest number of coins is
more likely to win the PoS election, which will in turn generate more and more coins
for her. This is called the rich-get-richer phenomenon, which fundamentally violates
the decentralised nature of any blockchain. We will show that the wealth evolution of
a PoS miner depends on the reward type and her coin possession level.

Now we describe formally the PoS protocol without trading. Time is discrete,
indexed by t ∈ {0, 1, . . .}. Let K be the number of miners, and N ∈ R+ be the number
of initial coins in the PoS blockchain. The miners are indexed by [K] := {1, . . . , K},
and miner k’s initial coins are nk ,0 with

∑K
k=1 nk ,0 = N . We define the share as the

fraction of coins each miner owns. So the initial shares (πk ,0, k ∈ [K]) are given by

πk ,0 := nk ,0

N
, k ∈ [K]. (7.1)

Similarly, denote by nk ,t the number of coins owned by miner k at time t, and the
corresponding share is

πk ,t := nk ,t

Nt
, k ∈ [K], with Nt :=

K∑

k=1

nk ,t . (7.2)

Here Nt is the total number of coins at time t, with N0 = N . We shall often refer to
Nt as the ‘volume of coins’, or simply ‘volume’.

At time t, miner k is selected at random with probability πk ,t−1. Once selected, the
miner receives a deterministic reward of Rt ∈ R+ coins (which may include transaction
fees and block rewards). Denote by Sk ,t the random event that miner k is selected at
time t. So the number of coins owned by each miner evolves as

nk ,t = nk ,t−1 + Rt1Sk ,t , k ∈ [K]. (7.3)

Note that the volume satisfies Nt = Nt−1 + Rt . Combining (7.2) and (7.3) yields a
recursion of the shares:

πk ,t = Nt−1

Nt
πk ,t−1 + Rt

Nt
1Sk ,t , k ∈ [K]. (7.4)

which is a (time-dependent) Pólya urn model [24].
We consider the long-time evolution of the shares (πk ,t , k ∈ [K]). Let Ft be the

filtration generated by the random events (Sk ,r : k ∈ [K], r ≤ t). Observe that for each
k ∈ [K], the process (πk ,t , t ≥ 0) is an Ft-martingale. By the martingale convergence
theorem (see [25, Theorem 4.2.11]),

(π1,t , . . . , πK ,t) −→ (π1,∞, . . . , πK ,∞) as t→∞ with probability 1, (7.5)

where (π1,∞, . . . , πK ,∞) is some random probability distribution on [K].
To quantify the wealth evolution of miner k , there are two obvious metrics:

|πk ,t − πk ,0| (difference) and
πk ,t

πk ,0
(ratio). (7.6)
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If |πk ,t − πk ,0| is close to 0, or πk ,t
πk ,0

is close to 1 (as t is large), we say that the share πk ,t is
stable or concentrated. This is the desired case as it implies that the PoS protocol will
not lead to centralisation. Note that if πk ,t is of constant order, there is no difference in
considering |πk ,t − πk ,0| or πk ,t/πk ,0. However, when πk ,t is small, the two metrics may
exhibit different results: |πk ,t − πk ,0| is (trivially) close to 0 (0− 0), while πk ,t/πk ,0 is
indeterminate (0/0).

First, assume that Rt ≡ R (constant reward), where the limiting (π1,∞, . . . , πK ,∞)
can be identified. Let �(z) := ∫∞0 xz−1e−xdx be the Gamma function. Recall
that the Dirichlet distribution with parameters (a1, . . . , aK ), which we denote by
Dir(a1, . . . , aK ), has support on the standard simplex {(x1, . . . , xK ) ∈ R

K
+ :

∑K
k=1 xk =

1} and has density:

f (x1, . . . , xK ) =
�
(∑K

k=1 ak

)

∏K
k=1 �(ak )

K∏

k=1

xak−1
k . (7.7)

The following theorem elucidates the wealth evolution of a PoS miner with a constant
reward.

Theorem 1. [26,27] Assume that the coin reward is Rt ≡ R > 0. Then the miner
shares have a limiting distribution

(π1,∞, . . . , πK ,∞)
d= Dir

(n1,0

R
, . . . ,

nK ,0

R

)
. (7.8)

Moreover,

(i) For nk ,0 = f (N ) such that f (N )→∞ as N →∞, we have for each ε > 0 and
for each t ≥ 1 or t = ∞:

P(|πk ,t − πk ,0| > ε)→ 0 and P

(∣
∣
∣
∣
πk ,t

πk ,0
− 1

∣
∣
∣
∣ > ε

)

→ 0, as N →∞.

(7.9)

(ii) For nk ,0 = �(1), we have for each ε > 0, P(|πk ,∞ − πk ,0| > ε)→ 0 as N →∞,
and the convergence in distribution:

πk ,∞
πk ,0

d−→ R

nk ,0
γ
(nk ,0

R

)
, as N →∞, (7.10)

where γ
( nk ,0

R

)
is a Gamma random variable with density x

nk ,0
R −1e−x1x>0/�

( nk ,0
R

)
.

Let us make a few comments. The theorem reveals a phase transition of shares
in the long run between large and small miners. Part (i) shows that for large miners,
their shares are stable (which holds not only for extremely large miners with initial
coins nk ,0 = �(N ) but for less rich large miners with nk ,0 � 1, nk ,0 = o(N )). Con-
sequently, the PoS protocol with constant reward will lead to neither centralisation,
nor decentralisation. On the other hand, the evolution of shares for small miners has
a different limiting behaviour. Part (ii) shows that a small miner’s share is volatile in
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Figure 7.2 Constant reward: instability of πk ,t/πk ,0 for small miners. Blue curve:
histogram of πk ,50,000/πk ,0 with nk ,0 = R = 1 and N = 100. Orange
curve: Gamma distribution.

such a way that the ratio πk ,∞/πk ,0 is close to a gamma distribution independent of the
initial coin offerings, and hence Var(πk ,∞/πk ,0) ≈ 1

nk ,0
. For instance, if nk ,0 = R = 1

the limiting distribution of the ratio πk ,∞/πk ,0 reduces to the exponential distribution
with parameter 1. (See Figure 7.2 for an illustration of this approximation.) In this
case, we have

P

(
πk ,∞
πk ,0

> θ

)

≈ e−θ as N →∞.

Thus, with probability e−2 ≈ 0.135 a small miner’s share will double, and with
probability 1− e−0.5 ≈ 0.393, this miner’s share will be halved.

Next we consider the wealth evolution of a PoS miner with a decreasing reward.
Though the limiting (π1,∞, . . . , πK ,∞) is not explicit, we can still characterise a miner’s
share stability in terms of her coin possession level.

Theorem 2. [27] Assume that the coin reward is Rt with Rt ≥ Rt+1 for each t ≥ 0.

1. If Rt is bounded away from 0, i.e., limt≥0 Rt = R > 0, then
(i) For nk ,0 = f (N ) such that f (N )→∞ as N →∞, we have for each ε > 0

and each t ≥ 1 or t = ∞:

P

(∣
∣
∣
∣
πk ,t

πk ,0
− 1

∣
∣
∣
∣ > ε

)

→ 0, as N →∞. (7.11)

(ii) For nk ,0 = �(1), we have Var
(

πk ,∞
πk ,0

)
= �(1). Moreover, there is c > 0

independent of N such that for ε > 0 sufficiently small:

P

(∣
∣
∣
∣
πk ,∞
πk ,0
− 1

∣
∣
∣
∣ > ε

)

≥ c. (7.12)

2. If Rt = �(t−α) for α > 0, then for each ε > 0 and each t ≥ 1 or t = ∞:

P

(∣
∣
∣
∣
πk ,t

πk ,0
− 1

∣
∣
∣
∣ > ε

)

→ 0, as N →∞. (7.13)
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The theorem distinguishes two ways that the reward function decreases, leading to
different phase transition results. Part (1) assumes that the reward function decreases
to a nonzero value. In this case, the threshold to identify large and small miners is
nk ,0 = �(1), which is the same as that of the PoS protocol with a constant reward.
This may not be surprising, since the underlying dynamics is not much different from
the one with a constant reward. For large miners, the ratio πk ,∞/πk ,0 is close to 1;
while for small miners there is the anti-concentration bound (7.12), indicating that
the evolution of a small miner’s share is no longer stable, and may be volatile. Part
(2) considers a fast decreasing reward Rt = �(t−α) for α > 0. In this case, there is
no phase transition, and the ratio πk ,∞/πk ,0 concentrates at 1 for every miner.

To conclude this section, we present the results of the wealth evolution of a PoS
miner with an increasing reward.

Theorem 3. [27] Assume that the coin reward Rt = ρN γ

t−1 for some ρ > 0 and
γ > 0.

1. If γ > 1, then πk ,∞ ∈ {0, 1} almost surely with

P(πk ,∞ = 1) = πk ,0, P(πk ,∞ = 0) = 1− πk ,0 (7.14)

2. If γ < 1, then
(i) For nk ,0 = f (N ) such that f (N )/N γ →∞ as N →∞, we have for each

ε > 0 and each t ≥ 1 or t = ∞:

P

(∣
∣
∣
∣
πk ,t

πk ,0
− 1

∣
∣
∣
∣ > ε

)

→ 0 as N →∞. (7.15)

(ii) For nk ,0 = �(N γ ), we have Var
(

πk ,∞
πk ,0

)
= �(1). Moreover, there exists c >

0 independent of N such that for ε > 0 sufficiently small:

P

(∣
∣
∣
∣
πk ,∞
πk ,0
− 1

∣
∣
∣
∣ > ε

)

≥ c. (7.16)

For nk ,0 = o(N γ ), we have Var
(

πk ,∞
πk ,0

)
→∞ as N →∞.

The theorem considers two increasing reward schemes: a geometric reward and
a sub-geometric one. Part (1) assumes a geometric reward and shows that with
probability one, all the shares will eventually go to one miner in such a way that

P(πk = 1 and πj = 0 for all j 
= k) = πk ,0, k ∈ [K].

We call this chaotic centralisation because the underlying dynamics will lead to the
dictatorship, with the dictator being selected in a random manner. (See Figure 7.3
for an illustration of chaotic centralisation.) Part (2) considers a polynomial reward

Rt = �(t
1

1−γ ) for γ < 1. In this case, there is a phase transition in the stability of
πk ,t/πk ,0, with the threshold nk ,0 = �(N γ ).

We also mention that it is possible to study the wealth evolution in the PoS protocol
with infinite population (K = ∞), see [27, Section 3].
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P(pi_T = 1) = 0.4994, pi _0 = 1/2 P(pi_T = 1) = 0.2494, pi _0 = 1/4

P(pi_T = 1) = 0.1238, pi _0 = 1/8
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Figure 7.3 Increasing reward: chaotic centralisation. Histogram of πk ,5000 with
ρ = 0.001, γ = 1.1, N = 1,000 and πk ,0 ∈ {1/2, 1/4, 1/8}.

7.2 Participation and PoS trading

We consider the question (2) in this section and provide conditions under which no
miner will have incentive to trade (so Theorems 1– 3 continue to hold). So far, we
have not considered the possibility of allowing the miners to trade coins (among
themselves). In the new setting of allowing trading, we need to modify the problem
formulation presented in Section 7.1. First, for each k ∈ [K], let νk ,t be the number
of coins that miner k will trade at time t. Then, instead of (7.3), the number of coins
nk ,t evolves as

nk ,t = nk ,t−1 + Rt1Sk ,t︸ ︷︷ ︸
n′k ,t

+νk ,t , (7.17)

i.e., n′k ,t denotes the number of coins miner k owns in between time t − 1 and t,
excluding those traded in period t. Note that νk ,t will be up to miner k to decide, as
opposed to the random event Sk ,t which is exogenous; in particular, νk ,t can be negative
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(as well as positive or zero). We will elaborate more on this below, but note that νk ,t

will be constrained such that after the updating in (7.17) nk ,t will remain nonnegative.
Let {Pt , t ≥ 0} be the price process of each (unit of) coin, which is a stochastic

process assumed to be independent of the randomness induced by the PoS selection
(specifically, the process {Sk ,t}). Hence, we augment the filtration {Ft}t≥0 with that
of the exogenous price process {Pt , t ≥ 0} to a new filtration denoted {Gt}t≥0. This
assumption need not be so far off, as the crypto’s price tends to be affected by market
shocks (such as macroeconomics, geopolitics, and breaking news) much more than
by trading activities.

Let bk ,t denote (units of) the risk-free asset that miner k holds at time t, and
rfree > 0 the risk-free (interest) rate. As we are mainly concerned with the effect of
exchanging coins to each individual, we allow miners to trade coins only internally
among themselves, but not risk-free assets between them. Hence, each miner has to
trade risk-free asset with a third-party instead of trading that with another bidder.

The decision for each miner k at t is a tuple, (νk ,t , bk ,t). Moreover, there is a termi-
nal time, denoted Tk ≥ 1, by which time miner k has to sell all assets, including both
any risk-free asset and any coins owned at that time. Tk can either be deterministic or
random. In the latter case, assume it has a finite expectation and is either adapted to
{Gt}t≥0, or independent of all other randomness (in which case augment {Gt} accord-
ingly). We also allow miner k to liquidate prior to Tk at a stopping time τk relative to
{Gt}t≥0. Thus, miner k will also decide at which time τk to stop and exit. Abuse τk for
the minimum of τk and Tk .

Let ck ,t denote the (free) cash flow (or, ‘consumption’) of miner k at time t, i.e.,

ck ,t = (1+ rfree)bk ,t−1 − bk ,t − νk ,tPt , ∀1 ≤ t < τk ; (C1)

with

bk ,0 = 0, bk ,t ≥ 0, 0 ≤ nk ,t = n′k ,t + νk ,t ≤ Nt , ∀1 ≤ t < τk ; (C2)

and

ck ,τk = (1+ rfree)bk ,τk−1 + n′k ,τk
Pτk , and νk ,τk = bk ,τk = 0. (C3)

The equation in (C1) is a budget constraint, which defines what’s available for ‘con-
sumption’ in period t. The requirements in (C2) are all in the spirit of disallowing
shorting, on both the free asset bk ,t and the traded coins νk ,t . In particular, the latter
is constrained such that νk ,t ≥ −n′k ,t , i.e., miner k cannot sell more than what’s in
possession at t; it also ensures that no miner can own a number of coins beyond the
total volume (nk ,t ≤ Nt). (C3) specifies how the assets are liquidated at the exit time
τk : both νk ,τk and bk ,τk will be set at zero, and all remaining coins n′k ,τk

liquidated
(cashed out at Pτk per unit).
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Denote by τk and (ν, b) := {(νk ,t , bk ,t), 1 ≤ t ≤ τk}miner k’s decision (process) or
‘strategy’. The objective of miner k is to solve the consumption–investment problem:

U ∗k := max
τk ,(ν,b)

Uk := max
τk ,(ν,b)

E

(
τk∑

t=1

δt
k ck ,t

)

, subject to (C1), (C2), and (C3);

(7.18)

where δk ∈ (0, 1] is a discount factor, a given parameter measuring the risk sensitivity
of miner k .

We need to introduce two more processes that are related and central to under-
standing the PoS protocol in the presence of trading. The first one is {Mt , t ≥ 1},
where Mt := NtPt denotes the market value of the coins at time t. The second one is
{
k ,t , t ≥ 0}, for each bidder k , defined as follows:


k ,0 := nk ,0P0, and 
k ,t := δt
kn′k ,tPt −

t−1∑

j=1

δ
j
kνk ,jPj, t ≥ 1; (7.19)

where n′k ,t+1 follows (7.17). The process {
k ,t} connects to the utility Uk in (7.18). To
see this, summing up both sides of (C1) and (C3) over t (along with bk ,0 = 0 in (C2)),
we get

∑

t≤τk

δt
k ck ,t =

∑

t≤τk

δt
k ck ,t = δ

τk
k n′τk

Pτk −
τk−1∑

t=1

δt
kνk ,tPt +

τk−1∑

t=1

δt
k [(1+ rfree)δk − 1] bk ,t .

(7.20)

Observe that the first two terms on the right-hand side are equal to 
k ,τk , so we can
rewrite the above as follows, emphasizing the exit time τk and the strategy (ν, b),

Uk (τk , ν, b) = E
[

k ,τk (ν)

]+ E

(
τk−1∑

t=1

δt
k [(1+ rfree)δk − 1] bk ,t

)

; (7.21)

hence, the right-hand side above is separable: the first term depends on (ν) only while
the second term, the summation, on (b) only. Moreover, the second term is ≤ 0 pro-
vided (1+ rfree)δk ≤ 1, along with b being non-negative, part of the feasibility in (C2).
In this case, we will have Uk ≤ E(
k ,τk (ν)), which implies U ∗k ≤ maxτk ,ν E(
k ,τk (ν)),
with equality holding when bk ,t = 0 for all t = 1, . . . , τk .

We are ready to present the result of the utility maximisation problem in (7.18).
Two strategies are singled out: the ‘buy-out’ strategy, in which miner k buys up all
coins available at time 1, and then participate in the PoS mining process until the end;
and the ‘non-participation’ strategy, in which miner k turns all nk ,0 coins into cash,
and then never participates in either PoS mining or trading for all t ≥ 1. Note that the
non-participation strategy is executed at τk = 0; as such, it complements the feasible
class, which is for τk ≥ 1 and presumes participation. The buy-out strategy clearly
belongs to the feasible class.
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Theorem 4 (Buy-out strategy versus non-participation). [26,28] Assume the
following two conditions:

(a) δk (1+ rfree) ≤ 1 and (b) E(Mt+1 |Gt) = (1+ rcryp)Mt . (7.22)

Then with condition (a), the maximal utility U ∗k is achieved by setting bk ,t = 0 for all
t = 1, . . . , Tk; i.e., U ∗k = maxν E(
k ,Tk ). In addition, all three parts of the following
will hold.

(i) If δk (1+ rcryp) ≤ 1, then any feasible strategy will provide no greater utility for
miner k than the non-participation strategy, i.e., U ∗k ≤ nk ,0P0.

(ii) If δk (1+ rcryp) ≥ 1, then any feasible strategy will provide no greater utility for
miner k than the buy-out strategy. In this case, miner k will buy all available
coins at time 1, and participate in the PoS mining process until the terminal
time Tk .

(iii) If δk (1+ rcryp) = 1, then miner k is indifferent between the non-participation
and the buy-out strategy with any exit time, both of which will provide no less
utility than any feasible strategy. All strategies achieve the same utility (which
is 
k ,0 = n0Pk ,0).

Moreover, when δk = δ := (1+ rcryp)−1 for all k, no miner will have any incentive to
trade. Consequently, the long-term behaviour of πk ,t characterised in Theorems 1–3
will hold.

In what remains of this section, we make a few remarks on Theorem 4, in par-
ticular, to motivate and explain its required conditions. First, the rate rcryp, which is
determined by condition (b), is the (expected) rate of return of each coin, i.e., it is the
counterpart of rfree, the rate for the risk-free asset. For all practical purpose, we can
assume rcrpt ≥ rfree, even though this is not assumed in the theorem. When this relation
holds, condition (a) will become superfluous in cases (i) and (iii).

Second, the factor δk in the utility objective in (7.18) plays a key role in
characterizing phase transitions in terms of δk (1+ rcryp). In case (i), the inequality
δk ≤ 1/(1+ rcryp) implies miner k is seriously risk-averse; and this is reflected in k’s
non-participation strategy. In case (ii), the inequality holds in the opposite direction,
implying miner k is lightly risk-averse or even a risk taker. Accordingly, k’s strategy
is to aggressively sweep up all the available coins to reach monopoly and participate
(but not trade) until the terminal time. In case (iii), the inequality becomes an equal-
ity δk = 1/(1+ rcryp), and (
k ,t) becomes a martingale. Thus, miner k is indifferent
between non-participation and participation, and, in the latter case, indifferent to
all (feasible) strategies, including the buy-out (and the no-trading) strategy. Indeed,
the equality δk = 1/(1+ rcryp) is both necessary and sufficient for the no-trading
strategy.

Next, we emphasise that the two conditions in (7.22) play very different roles.
Condition (b) makes (
k ,t) a super- or sub-martingale or a martingale, according to
miner k’s risk sensitivity as specified by the inequalities and equality applied to δk

in the three cases. Yet, to solve the maximisation problem in (7.18), (
k ,t) needs
to be connected to the utility; and this is the role played by condition (a), under
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which, it is necessary (for optimality) to set bk ,t = 0 for all t ≥ 1, and applicable
to all three cases. In this sense, condition (a) alone solves half of the maximi-
sation problem, the bk ,t half of the strategy. In fact, it is more than half, as the
optimal ν strategy is only needed in the sub-martingale case; and, even there, con-
dition (a) pins down the fact that to participate (even without trading) is better than
non-participation.

Theorem 4 is easily extended to the case where the rates rcryp(t) and rfree(t) may
vary over the time. In this case, it suffices to modify the conditions in case (i) to(
1+ supt<Tk

rcryp(t)
)
δk ≤ 1 and

(
1+ supt<Tk

rfree(t)
)
δk ≤ 1; the conditions in case (ii)

to
(
1+ inf t<Tk rcryp(t)

)
δk ≥ 1 and

(
1+ supt<Tk

rfree(t)
)
δk ≤ 1; and the conditions in

case (iii) to δk = (1+ rcryp)−1 and supt<Tk
rfree(t) ≤ rcryp, with rcryp being constant. Then,

Theorem 4 will continue to hold.
Finally, the last part of the theorem considers the wealth evolution of a homoge-

nous miner population. It is also worth considering the wealth evolution of a
heterogeneous miner population (e.g., with different risk sensitivity, holding peri-
ods, etc.) See [29] for a study on the reward effect on the wealth distribution of the
miners with different coin holding horizons.

7.3 PoS trading with volume constraint – a continuous-time
control setup

We continue to consider the question (2) in this section. As shown in Theorem 4, the
miner’s strategy is either not to participate (in both PoS mining and trading) or to
sweep up all available coins immediately. The latter, being a market manipulation,
rarely occurs in practice due to regulation. One way to prohibit the ‘buy-out’ strategy
is to limit the number of coins that can be traded at a time. This motivates the study
of the PoS trading with volume constraint.

To simplify the analysis, we adopt a continuous-time control approach. Time is
continuous, indexed by t ∈ [0, T ], for a fixed T > 0 representing the length of a finite
horizon. Let {N (t), 0 ≤ t ≤ T } (with N (0) := N ) denote the process of the volume
of coins, which is increasing in time and sufficiently smooth. So the derivative N ′(t)
represents the instantaneous rate of ‘reward’ by the PoS protocol. For instance, we
will consider below, as a special case, the process N (t) of a polynomial form:

Nα(t) = (N
1
α + t)α , t ≥ 0. (7.23)

The parametric family (7.23) covers different rewarding schemes according to the
values of α: for 0 < α < 1, the process Nα(t) corresponds to a decreasing reward;
for α = 1, the process N1(t) = N + t gives a rate one constant reward; for α > 1, the
process Nα(t) amounts to an increasing reward.

Let K ≥ 2 be the number of miners, who are indexed by k ∈ [K] := {1, . . . , K}.
For each miner k , let {Xk (t), 0 ≤ t ≤ T } (with Xk (0) = xk ) denote the process of
the number of coins that miner k holds, with Xk (t) ≥ 0 and

∑K
k=1 Xk (t) = N (t) for

all t ∈ [0, T ]. For our continuous-time PoS model here, in which the time required
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for each round of voting is ‘infinitesimal’, imagine there are M rounds of election
during any given time interval [t, t +�t]. (Each round in Ethereum takes about 10 s,
corresponding to the block-generation time [30].) In each round miner k gets either
some coin(s) or nothing, so the average total number of coins k will get over the M
rounds is (by law of large numbers when M is large),

Xk (t)

N (t)

N ′(t)�t

M
︸ ︷︷ ︸

average number of coins in each round

× M︸︷︷︸
number of rounds

= Xk (t)

N (t)
N ′(t)�t.

Hence, replacing �t by the infinitesimal dt, we know miner k will receive (on average)
Xk (t)
N (t) N ′(t)dt coins, where Xk (t)

N (t) is k’s winning probability, and N ′(t)dt is the reward
issued by the blockchain in [t, t + dt].

The miners are allowed to trade (buy or sell) their coins. Miner k will buy νk (t)dt
coins in [t, t + dt] if νk (t) > 0, and sell −νk (t)dt coins if νk (t) < 0. This leads to the
following dynamics of miner k’s coins under trading:

X ′k (t) = νk (t)+ N ′(t)
N (t)

Xk (t) for 0 ≤ t ≤ τk ∧ T := Tk , (7.24)

where τk := inf {t > 0 : Xk (t) = 0} is the first time at which the process Xk (t) reaches
zero. It is reasonable to stop the trading process if a miner runs out of coins or gets
all available coins: if Tk = τk , then miner k liquidates all his coins by time τk , and
Xk (Tk ) = 0; if Tk = maxj 
=k τj, then miner k gets all issued coins by time maxj 
=k τj,
and, hence, Xk (Tk ) = N (Tk ). We set Xk (t) = Xk (Tk ) for t > Tk .

The problem is for each miner k to decide how to trade coins with others under
the PoS protocol. Similar to Section 7.2, let {P(t), 0 ≤ t ≤ T } be the price process of
each (unit of) coin, which is a stochastic process assumed to be independent of the
dynamics in (7.24). Let bk (t) denote the (units of) risk-free asset that miner k holds
at time t, and let r > 0 denote the risk-free (interest) rate. Recall that all K miners
are allowed to trade coins only internally among themselves, whereas each miner can
only exchange cash with an external source (say, a bank).

Let {ck (t), 0 ≤ t ≤ T } be the process of consumption, or cash flow of miner k ,
which follows the dynamics below:

dck (t) = rbk (t)dt − dbk (t)− P(t)νk (t)dt, 0 ≤ t ≤ Tk ; (C1)

with

bk (0) = 0, bk (t) ≥ 0 for 0 ≤ t ≤ Tk , 0 ≤ Xk (t) ≤ N (t) for 0 ≤ t ≤ Tk . (C2)

Set bk (t) = bk (Tk ) and νk (t) = 0 for t > Tk . The conditions (C1)–(C2) are the con-
tinuous analogue to those in Section 7.2. We also require that the trading strategy be
bounded: there is νk > 0 such that

|νk (t)| ≤ νk . (C3)
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The objective of miner k is:

sup
{(νk (t),bk (t))}

J (νk , bk ) := E

{ ∫ Tk

0
e−βk t [dck (t)+ �k (Xk (t))dt]

+ e−βk Tk [bk (Tk )+ hk (Xk (Tk )]
}

subject to (7.24), (C1), (C2), and (C3),

(7.25)

where βk > 0 is a discount factor; �k ( · ) and hk ( · ) are two utility functions
representing, respectively, the running profit and the terminal profit.

While generally following Merton’s consumption–investment framework, our
formulation takes into account some distinct features of the PoS blockchain. One
notable point is the utilities � and h are expressed as functions of the number of
coins Xk (t), as opposed to their value P(t)Xk (t). To the extent that P(t) is treated
as exogenous, this difference may seem to be trivial. Yet, it is a reflection of the
more substantial fact that crypto-participants tend to mentally decouple the utility of
holding coins from their monetary value at any given time.

Throughout below, the following conditions will be assumed:

Assumption 5.

(i) N : [0, T ]→ R+ is increasing with N (0) = N > 0, and N ∈ C 2([0, T ]).
(ii) � : R+ → R+ is increasing and � ∈ C 1(R+).

(iii) h : R+ → R+ is increasing and h ∈ C 1(R+).

To lighten notation, omit the subscript k , and write

U (x) := sup
{(ν(t),b(t))}

J (ν, b) := E

{ ∫ T

0
e−βt [dc(t)+ �(X (t))dt]

+ e−βT [b(T )+ h(X (T )]
}

(7.26)

subject to X ′(t) = ν(t)+ N ′(t)
N (t)

X (t), X (0) = x, (C0)

dc(t) = rb(t)dt − db(t)− P(t)ν(t)dt, (C1)

b(0) = 0, b(t) ≥ 0 and 0 ≤ X (t) ≤ N (t), (C2)

|ν(t)| ≤ ν. (C3)

Let

P̃β(t) := e−βt
EP(t), t ∈ [0, T ]. (7.27)
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Substituting the constraint (C1) into the objective function, and taking into account
rb(t)dt − db(t) = −ertd(e−rtb(t)), along with (7.42), we have

J (ν, b) = (r − β)
∫ T

0
e−βtb(t)dt

+
∫ T

0
[− P̃β(t)ν(t)+ e−βt�(X (t)]dt + e−βT h(X (T ))

:= J1(b)+ J2(ν).

(7.28)

Hence,

U (x) := sup
{(ν,b)}

J (ν, b) = sup
b

J1(b)+ sup
ν

J2(ν). (7.29)

Suppose β ≥ r, which is analogue to (7.22)(a) in the discrete setting. Then, from
the J1(b) expression in (7.28), and taking into account b(t) ≥ 0 as constrained in (C2),
we have supb J1(b) = 0 with the optimality binding at b∗(t) = 0 for all t. Therefore,
the problem in (7.26) reduces to

U (x) = sup
ν

J2(ν) subject to (C0), (C2’), and (C3), (7.30)

where (C2’) is (C2) without the constraints on b( · ). The problem (7.26) can then be
solved by dynamic programming and the Hamilton–Jacobi–Bellman (HJB) equations.
The result is stated as follows.

Theorem 5. [31] Assume that r ≤ β, and P̃β(t) in (7.42) satisfies the Lipschitz
condition:

|̃Pβ(t)− P̃β(s)| ≤ C|t − s| for some C > 0. (7.31)

Then, U (x) = v(0, x) where v(t, x) is the unique viscosity solution to the following
HJB equation, where Q := {(t, x) : 0 ≤ t < T , 0 < x < N (t)}:

⎧
⎨

⎩

∂tv + e−βt�(x)+ xN ′(t)
N (t) ∂xv + sup|ν|≤ν{ν(∂xv − P̃β(t))} = 0 in Q,

v(T , x) = e−βT h(x),
v(t, 0) = e−βth(0), v(t, N (t)) = e−βth(N (t)).

(7.32)

Moreover, the optimal strategy is b∗(t) = 0 and ν∗(t) = ν∗(t, X∗(t)) for 0 ≤ t ≤ T∗,
where ν∗(t, x) achieves the supremum in (7.32), and X∗(t) solves X ′∗(t) = ν∗(t, X∗(t))+
N ′(t)
N (t) X∗(t) with X∗(0) = x, and T∗ := inf {t > 0 : X∗(t) = 0 or N (t)} ∧ T .

Now specialise to linear utility �(x) = �x and h(x) = hx, for some given (positive)
constants � and h. In this case, we can derive a closed-form solution to the HJB
equation in (7.32), and then derive the optimal strategy ν∗(t) (in terms of P̃β(t)). Let

�(t) := 1

N (t)

(

he−βT N (T )+ �

∫ T

t
e−βsN (s)ds

)

. (7.33)

The following corollary classifies all possible optimal strategies (of the miner).
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Corollary 1. [31] Let �(x) = �x and h(x) = hx with �, h > 0, and N (t) satisfy
Assumption 5 (i). Assume that P̃β(t) satisfies the Lipschitz condition in (7.31) and
that ν satisfies:

ν

∫ T

0

dt

N (t)
≤ x

N
∧ N − x

N
. (7.34)

Then, the following results hold:

(i) Suppose P̃β(t) stays constant, i.e., for all t ∈ [0, T ], P̃(t) = P̃(0) = P(0).
(a) If P(0) ≥ �(0), then ν∗(t) = −ν for all 0 ≤ t ≤ T .

(b) If P(0) ≤ �(T ), then ν∗(t) = ν.

(c) If �(T ) < P(0) < �(0), then ν∗(t) = ν for t ≤ t0, and −ν for t > t0,
where t0 is the unique point in [0, T ] such that P(0) = �(t0) with �(t)
defined in (7.33).

(ii) Suppose that P̃β(t) is increasing in t ∈ [0, T ].
(a) If P(0) ≥ �(0), then ν∗(t) = −ν for all 0 ≤ t ≤ T .

(b) If P̃β(T ) ≤ �(T ), then ν∗(t) = ν.

(c) If P(0) < �(0) and P̃β(T ) > �(T ), then ν∗(t) = ν for t ≤ t0, and −ν for
t > t0, where t0 is the unique point of intersection of P̃β(t) and �(t) on
[0, T ].

(iii) Suppose that P̃β(t) is decreasing in t ∈ [0, T ].
(a) If P(0) ≥ �(0), then the miner first sells, and may then buy, etc., always

at full capacity, according to the crossings of P̃β(t) and �(t) in [0, T ].

(b) If P(0) < �(0), then the miner first buys, and may then sell, etc., always
at full capacity, according to the crossings of P̃β(t) and �(t) in [0, T ].

Several remarks are in order. First note that the condition in (7.34) is to guaran-
tee the constraint (C2’) not activated prior to T , that is, to exclude the possibility of
monopoly/dictatorship that will trigger a forced early exit. Second, the monotone prop-
erties of P̃β(t), which classify the three parts (i)–(iii) in the corollary naturally connect
to martingale pricing: P̃β(t) being a constant in (i) makes the process e−βtP(t) a mar-
tingale, whereas P̃β(t) increasing or decreasing, respectively in (ii) and (iii), makes
e−βtP(t) a sub-martingale or a super-martingale. On the other hand, the function �(t)
represents the rate of return of the miner’s utility (from holding of coins, x); and inter-
estingly, in the linear utility case, this return rate is independent of x while decreasing
in t. Thus, the trading strategy is completely determined by comparing this return
rate �(t) with the miner’s risk-adjusted coin price P̃β(t): if �(t) ≥ (resp. < )P̃β(t),
then the miner will buy (resp. sell) coins.

Specifically, following (i) and (ii) of Corollary 1, for a constant or an increasing
P̃β(t) (corresponding to a risk-neutral or risk-seeking miner), there are only three
possible optimal strategies: buy all the time, sell all the time, or first buy then sell.
(The first-buy-then-sell strategy echoes the general investment practice that an early
investment pays off in a later day.) See Figure 7.4 for an illustration.
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Figure 7.4 Optimal trading with linear �( · ), h( · ) when P̃β(t) is constant (left) and
P̃β(t) is increasing (right)

In part (iii) of Corollary 1, when P̃β(t) is decreasing in t, like �(t), the multiple
crossings between the two decreasing functions can be further pinned down when
there’s more model structure. Consider, for instance, when P(t) follows a geometric
Brownian motion (GBM):

dP(t)

P(t)
= μdt + σdBt , or P(t) = P(0)e(μ−σ 2/2)t+σBt ; t ∈ [0, T ], (7.35)

where {Bt} denotes the standard Brownian motion; and μ > 0 and σ > 0 are the two
parameters of the GBM model, representing the rate of return and the volatility of
{P(t)}. The following proposition gives the conditions under which �α(t)− P̃β(t) is
monotone in the regime N →∞, and optimal strategies are derived accordingly.

Proposition 1. [31] Suppose the assumptions in Proposition 1 hold, with N (t) =
Nα(t) and {P(t)} specified by (7.35) with β > μ. As N →∞, we have the following
results:

1. If for some ε > 0, P(0) > 1
β−μ

(
αhe−μT (N

1
α +T )α

N 1+ 1
α

+ α�β−1

N
1
α
+ �

)

+ ε

N
1
α

, then

�α(t)− P̃β(t) is increasing on [0, T ].

2. If for some ε > 0, P(0) < 1
β−μ

(
αhe−βT

N
1
α +T
+ �e−μT

)

− ε

N
1
α

, then �α(t)− P̃β(t) is

decreasing on [0, T ].

Consequently, we have:

(a) If P(0) > e(β−μ)T �α(T ) and (1) holds, or P(0) > �α(0) and (2) holds, then
ν∗(t) = −ν for all t.

(b) If �α(0) ≤ P(0) < e(β−μ)T �α(T ) and (1) holds, then ν∗(t) = −ν for t ≤ t0 and
ν∗(t) = ν for t > t0, where t0 is the unique point of intersection of P̃β(t) and
�α(t) on [0, T ].

(c) If e(β−μ)T �α(T ) ≤ P(0) < �α(0) and (2) holds, then ν∗(t) = ν for t ≤ t0 and
ν∗(t) = −ν for t > t0, where t0 is the unique point of intersection of P̃β(t) and
�α(t) on [0, T ].
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Figure 7.5 Optimal trading with linear �( · ), h( · ) when P̃β(t) = P(0)e(μ−β)t and
N (t) = Nα(t)

(d) If P(0) < e(β−μ)T �α(T ) and (2) holds, or P(0) < �α(0) and (1) holds, then
ν∗(t) = ν for all t.

See Figure 7.5 for an illustration of all four possible strategies.

7.4 PoS trading – a mean field model

We consider the question (3) in this section. In the previous sections, we study the
optimal strategy for each individual miner, assuming that all other miners will ‘coop-
erate’ with her (except that no shorting is allowed). This assumption seems to be too
optimistic. As mentioned in part (c) in the introduction, there are also investors or
speculators participating in the PoS trading.

● In Sections 7.2–7.3, the price process (of each coin) is assumed to be exogenous.
In the presence of investors and in view of their speculative nature, it is necessary
to incorporate the market impact into the price formation.

● Interaction and competition among the miners and investors should play a role in
each miner’s decision. Thus, it is natural to formulate the PoS trading as a game
building on the continuous-time control setting in Section 7.3.

With an exchange platform (e.g., Coinbase) for miner–investor tradings, we can define
a notion of equilibrium trading strategy for a typical miner. This leads to the wealth
evolution of the whole (miner) population from a mean field perspective. Refer to
[32–34] for discussions on the game theoretical analysis of the PoW protocol. We
would like to point out that the material in this section is preliminary (and novel), so
there are many research problems in modelling, theory, and applications.

Recall that {N (t), 0 ≤ t ≤ T } is the process of the volume of coins issued by
the PoS blockchain. There are K miners, indexed by k ∈ [K]. For each miner k ,
{Xk (t), 0 ≤ t ≤ T } (with Xk (0) = xk ) denotes the process of the number of coins that
miner k holds, and {νk (t), 0 ≤ t ≤ T } denotes miner k’s trading strategy.

Let {Z(t), t ≥ 0} (with Z(0) = z) be the process of the number of coins that
investors possess, with Xk (t), Z(t) ≥ 0 and

K∑

k=1

Xk (t)+ Z(t) = N (t), for 0 ≤ t ≤ T . (7.36)
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So there are only N (t)− Z(t) coins committed in the PoS election. The dynamics of
miner k’s coin under trading is:

X ′k (t) = νk (t)+ N ′(t)
N (t)− Z(t)

Xk (t) for 0 ≤ t ≤ τk ∧ T := Tk , (7.37)

where τk := inf {t > 0 : Xk (t) = 0}. We set Xk (t) = Xk (Tk ) for t > Tk . If we take
Z(t) ≡ 0 (no investors), the dynamics (7.37) reduces to (7.24). Equations (7.36)–
(7.37) imply that

∑K
k=1 νk (t)+ Z ′(t) = 0, which can be viewed as a clearing house

condition. It simply yields

Z(t) = Z(0)−
∫ t

0

K∑

k=1

νk (s)ds. (7.38)

Central to each miner’s decision is the price process {P(t), t ≥ 0} of each (unit)
of coin. The modern trading theory postulates a market impact structure underlying
the price. That is, the asset price is affected by the trading volume. For ease of
presentation, we adopt the linear price impact, i.e., the Almgren–Chriss model [35]:

P(t) = P(0)+ σB(t)− η(Z(t)− Z(0)), (7.39)

where {B(t), t ≥ 0} is the standard Brownian motion, σ > 0 is the volatility, and η > 0
is the market impact parameter. Refer to [36, Chapter 3] for background, and [37–39]
for other market impact models.

Recall that bk (t) is the (units of) risk-free asset that miner k holds at time t, and r
is the risk-free rate. Here, all K miners and investors can trade coins on the exchange
platform, whereas each miner can only exchange cash with an external source. For
each miner k , the process of consumption {ck (t), 0 ≤ t ≤ T } evolves as

dck (t) = rbk (t)dt − dbk (t)− P(t)νk (t)dt − N ′(t) L

(
νk (t)

N ′(t)

)

dt, 0 ≤ t ≤ Tk ,

(C1)

where L(·) is an even function, increasing on R+, strictly convex and asymptotically

super-linear. Compared to (C1) in Section 7.3, the additional term −N ′(t) L
(

νk (t)
N ′(t)

)

stands for the transaction cost which depends not only on the traded volume νk (t)dt but
also the total volume N ′(t)dt (see [36, p. 43, (3.3)]). The quadratic cost L(x) = ρ|x|2
with ρ > 0 corresponds to the original Almgren–Chriss model, which we will mostly
stick to. We also impose the no shorting constraint:

bk (0) = 0, bk (t) ≥ 0 for 0 ≤ t ≤ Tk , 0 ≤ Xk (t) ≤ N (t) for 0 ≤ t ≤ Tk . (C2)

Set bk (t) = bk (Tk ) and νk (t) = 0 for t > Tk .

Miner’s strategy if Z(·) is known. It is easy to see from (7.39) that the price
P(t) (up to noise) only depends on the investor holdings Z(t), or equivalently all the
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miners’ holdings
∑K

k=1 Xk (t). Here, suppose that each miner k ‘knows’ the number of
coins that the investors hold. As in (7.25), the objective of miner k is:

sup
{(νk (t),bk (t))}

J (νk , bk ) := E

{ ∫ Tk

0
e−βk t [dck (t)+ �k (Xk (t))dt]

+ e−βk Tk [bk (Tk )+ hk (Xk (Tk )]
}

subject to (7.37), (7.39), (C1), and (C2).

(7.40)

Assuming that all the miners are interchangeable (which assumes a homogenous
miner population), we drop the subscript ‘k’ in (7.40), and the objective of a typical
miner is:

U (x) := sup
{(ν(t),b(t))}

J (ν, b) := E

{ ∫ T

0
e−βt [dc(t)+ �(X (t))dt]

+ e−βT [b(T )+ h(X (T )]
}

(7.41)

subject to X ′(t) = ν(t)+ N ′(t)
N (t)− Z(t)

X (t), X (0) = x, (C0)

dc(t) = rb(t)dt − db(t)− P(t)ν(t)dt − N ′(t) L

(
ν(t)

N ′(t)

)

dt,

(C1)

b(0) = 0, b(t) ≥ 0 and 0 ≤ X (t) ≤ N (t), (C2)

P(t) = P(0)+ σB(t)− η(Z(t)− Z(0)), (C3)

where (C0) is a repeat of the state dynamics in (7.37), and (C3) is the price dynamics
in (7.39). Compared to (7.26), the volume constraint |ν(t)| ≤ ν for ν > 0 is removed;

instead the transaction cost −N ′(t) L
(

ν(t)
N ′(t)

)
dt is introduced in the budget constraint

(C1). This way, the miner’s strategy will no longer be a bang–bang control but depend
on the specific market impact mechanism.

Let

P̃β(t) := e−βt
EP(t) = e−βt [P(0)− η(Z(t)− Z(0))] and P̃(t) := P̃0(t).

(7.42)

The same argument as in (7.28) and (7.29) shows that the consumption–investment
problem (7.41) is separable:

U (x) := sup
{(ν,b)}

J (ν, b) = sup
b

J1(b)+ sup
ν

J2(ν),
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where J1(b) := (r − β)
∫ T

0 e−βtb(t)dt and

J2(ν) :=
∫ T

0

[

−P̃β(t)ν(t)− e−βtN ′(t)L
(

ν(t)

N ′(t)

)

+ e−βt�(X (t)
]

dt + e−βT h(X (T )).

Again suppose β ≥ r. Then supb J1(b) = 0 with the optimality binding at
b∗(t) = 0 for all t. So the problem (7.26) is reduced to

U (x) = sup
ν

J2(ν) subject to (C0), (C2’), (7.43)

where (C2’) is (C2) without the constraints on b( · ).
Next we argue by dynamic programming, and let

v(t, x) := sup
{ν(s),s≥t}

∫ T

t

[

−P̃β(s)ν(s)− e−βsN ′(s)L
(

ν(s)

N ′(s)

)

+ e−βs�(X (s)
]

dt

+ e−βT h(X (T ))

subject to X ′(s) = ν(s)+ N ′(s)

N (s)− Z(s)
X (s), X (t) = x,

0 ≤ X (s) ≤ N (s),

so U (x) = v(0, x). Let Q := {(t, x) : 0 ≤ t < T , 0 < x < N (t)}. Under some suitable
conditions, v is the unique viscosity solution to the HJB equation:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tv + e−βt�(x)+ xN ′(t)
N (t) ∂xv

+ supν

{
ν(∂xv − P̃β(t))− e−βtN ′(t)L

(
ν

N ′(t)

)}
= 0 in Q,

v(T , x) = e−βT h(x),
v(t, 0) = e−βth(0), v(t, N (t)) = e−βth(N (t)).

By optimizing ν → ν(∂xv − P̃β(t))− e−βtN ′(t)L
(

ν

N ′(t)

)
, we get

ν∗ = N ′(t)(L′)−1
(
eβt∂xv − P̃(t)

)
.

This yields the following nonlinear PDE:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tv + e−βt�(x)+ xN ′(t)
N (t)−Z(t)∂xv

+e−βtN ′(t)
{

(eβt∂xv − P̃(t))(L′)−1(eβt∂xv − P̃(t))

−L
(
(L′)−1(eβt∂xv − P̃(t))

) } = 0 in Q,

v(T , x) = e−βT h(x),
v(t, 0) = e−βth(0), v(t, N (t)) = e−βth(N (t)).

(7.44)
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When L(x) = ρx2, the PDE (7.44) specialises to
⎧
⎨

⎩

∂tv + e−βt�(x)+ xN ′(t)
N (t)−Z(t)∂xv + eβt N ′(t)

4ρ
(∂xv − P̃β(t))2 = 0 in Q,

v(T , x) = e−βT h(x),
v(t, 0) = e−βth(0), v(t, N (t)) = e−βth(N (t)),

(7.45)

with the optimal strategy ν∗(t, x) = N ′(t)
2ρ

(
eβt∂xv(t, x)− P̃(t)

)
. To simplify the presen-

tation, we assume the quadratic cost (and (7.45)) from now on.

Mean field strategy. Assume that the distribution of the miners by their coin
holdings is approximated by m0(x)dx at time t = 0. The goal is to find an equilibrium
trading strategy νeq(t |m0), or simply νeq(t), which can be viewed as the averaged
trading strategy among all the miners.

Now let us describe the mean field model.

1. Since there are K miners, by (7.38), the investors’ equilibrium holdings are:

Z eq(t) = Z(0)− K
∫ t

0
νeq(s)ds, (7.46)

2. Given Z eq( · ), the miner’s optimal strategy is

νeq
∗ (t, x) = N ′(t)

2ρ
(eβt∂xv(t, x)− P̃(t)), (7.47)

where v is the solution to (7.45) with Z(t) = Z eq(t).
3. The feedback control of a (typical) miner is X ′(t) = νeq

∗ (t, X (t))+ N ′(t)
N (t)−Zeq(t) X (t).

Hence, the density of the miners by their coin holdings solves the continuity
equation:

∂tm+ ∂x

((

νeq
∗ (t, x)+ xN ′(t)

N (t)− Z eq(t)

)

m

)

= 0, m(0, x) = m0(x). (7.48)

4. The equilibrium trading strategy νeq(t) satisfies the fixed point equation:
∫

νeq
∗ (t, x)m(t, x)dx = νeq(t). (7.49)

If the mean field model (7.46)–(7.49) is well-posed (i.e., has a unique solution),
then m(t, ·) represents the wealth distribution of the whole miner population at time t.
To illustrate, Figure 7.6 shows the wealth evolution of the miners with initial shares
uniformly distributed on x ∈ [20, 30]. Observe that the wealth distribution spreads out
and shifts to the left over the time, which implies decentralisation of the PoS protocol.
While the PoS protocol alone does not lead to decentralisation, allowing trading in
the PoS protocol yields decentralisation – this is a manifestation of the market power.

The problem now is to make rigorous such defined mean field model. By injecting
(7.47) into (7.49), and then into (7.46), (7.45), and (7.48), we get the mean field game
form:

⎧
⎨

⎩

∂tv + H (t, x, ∂xv, ∂xv(·, ·), m(·, ·)) = 0,
∂tm+ ∂pH (t, x, ∂xv, ∂xv(·, ·), m(·, ·)) = 0 = 0,
m(t, 0) = m0(x), v(T , x) = e−βT h(x),

(7.50)
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Figure 7.6 Wealth evolution of the whole miner population

with

H (t, x, p, Q, m) := e−βt�(x)++eβtN ′(t)
4ρ

(p− P̃β(t))2

+ 2ρxN ′(t)

2ρ(N (t)− Z(0))+ K
∫ t

0 N ′(s)
∫

(eβsQ(s, x)− P̃(s))m(s, x)dxds
p, (7.51)

where

P̃β(t) = e−βt

[

P(0)+ ηK
∫ t

0
νeq(s)ds

]

, (7.52)

and νeq( · ) satisfies

N ′(t)
2ρ

[

eβt

∫

∂xv(t, x)m(t, x)dx − P(0)− ηK
∫ t

0
νeq(s)ds

]

= νeq(t). (7.53)

Combining (7.52) and (7.53), we have that P̃β(t) (resp. P̃(t)) is a function of Q and
m (i.e., ∂xv(·, ·) and m(·, ·)).

The system of equations (7.50) is a first-order mean field game with non-local
and non-separable Hamiltonian. It does not seem to have been studied before. One
possible idea to prove the wellposedness of (7.50) is to (1) add viscosity terms (ε�v,
ε�m) to the equations and study the corresponding second-order mean field games
(see [40]); (2) pass to the limit ε→ 0 by vanishing viscosity (see [41,42]). The
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analysis of the equations (7.50) may (probably) be very involved, and we leave it
open.

7.5 Conclusion

This chapter presents and surveys recent progress on trading and wealth evolution
in the PoS protocol under various settings (discrete, continuous, volume constraint,
transaction cost, etc.) Below we provide a few open problems and future directions
of research.

1. In Section 7.4, we present a mean field model to study the wealth distribution of
the miners under the PoS protocol. This leads to a mean field game with non-local
and non-separable Hamiltonian. Prove that (7.50) have a (unique) solution.

2. We have seen from Figure 7.6 that the mean field model yields decentralisation.
Is it possible to prove a quantitative result to support this observation?

3. In Sections 7.2–7.4, we consider the optimal strategy of the miner assuming that
δk (1+ rfree) ≤ 1 or β ≥ r, i.e., risk-averse. What’s the miner’s optimal strategy if
she is more risk-seeking (such that δk (1+ rfree) > 1 or β < r)?

4. We assume a fixed miner population, i.e., K is fixed. In practice, some existing
miners may quit, and some new miners may join at random times. What happens
if there is a dynamic miner population (or K is varying over the time)?

5. We assume that the reward Rt is deterministic and is from the blockchain. But
in many PoS blockchains (e.g., Ethereum), revenue for the miners comes mostly
from the transaction fees. Thus, the ‘reward’ is from the user–miner interface
(part (a)), and the users can also be the investors. What will be the miner’s strategy,
and the wealth evolution if we take the user–miner connection into account?

6. In Sections 7.2 and 7.4, we consider the wealth evolution of a homogenous
population – that is, all the miners solve the same optimisation problem. What
are the corresponding results for a heterogeneous miner population (e.g., with
different risk sensitivity)?

7. We assume that the miners maximise some objective to find the best strategy. In
practice, when people make decisions, they will adopt ‘rational’ strategy rather
than the ‘optimal’ strategy. This leads to the idea of bounded rationality [43],
which can be formulated in Bayesian languages. What is the miner’s rational
strategy?
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