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Abstract: In the past few years, automatic building
detection in aerial images has become an
emerging field in computer vision. Detecting the
specific types of houses will provide information
in urbanization, change detection, and urban
monitoring that play increasingly important roles
in modern city planning and natural hazard
preparedness. In this paper, we demonstrate the
effectiveness of detecting various types of houses
in aerial imagery using Faster Region-based
Convolutional Neural Network (Faster-RCNN).
After formulating the dataset and extracting
bounding-box information, pre-trained ResNet50
is used to get the feature maps. The fully
convolutional Region Proposal Network (RPN)
first predicts the bounds and objectness score of
objects (in this case house) from the feature
maps. Then, the Region of Interest (Rol) pooling
layer extracts interested regions to detect objects
that are present in the images. To the best of our
knowledge, this is the first attempt at detecting
houses using Faster R-CNN that has achieved
satisfactory results. This experiment opens a new
path to conduct and extent the works not only for
civil and environmental domain but also other
applied science disciplines.

Index Terms: RCNN, Neural Network, Deep
Learning, Convolution, Mini batch

1. INTRODUCTION

In this section, we present the motivation for
the development of an application to detect
houses in aerial images. Subsequently, we
discuss the prior works that have recently been
published and explain how our proposed
framework can be beneficial in the modern
urbanized world. We also show the novelty of
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this paper, which is followed by a brief
description of the paper’s organization.

1.1 Motivation

House detection is an important problem in
computer vision and pattern recognition which
has gained considerable attention in the past few
decades [1]-[3]. Due to rapid urbanization,
detecting houses plays a salient role in modern
city planning, urban monitoring, change
detection, and population estimation. Moreover,
building shape related information can provide
valuable input in engineering and risk
applications related to natural hazards (e.g.
extreme wind events, flooding, etc.). Aerial
imagery is one of the prominent data sources for
urban monitoring because it extracts various
information such as roads, trees, buildings, etc.
Although aerial imagery provides valuable
insights, extracting appropriate features from
them is a challenging task.

On the other hand, in recent years, deep
learning models, especially Convolutional Neural
Network (CNN) based models, have become a
popular choice among the researchers for its
state-of-the-art success in image classification,
object detection, and localization tasks [4]-[7].
Faster-RCNN is a recently proposed object
detection algorithm that has achieved state of-
the-art results in ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) [8], [9]. In this
work, we have utilized a faster-RCNN algorithm
to detect buildings in aerial images.

1.2 Literature Review

In this section, we first talk about the history
the algorithm applied in this work followed by a
brief review of the prior works.

1.2.1 CNN and RCNN family of Algorithms:

Due to the rapid developments of science and
technology (e.g., advancements in automated
vehicles, robotic navigation, and object tracking),
object detection has become a prominent field of
study. The goal of object detection is to find the
location of an object from a given image and
mark the object in an appropriate category.
However, object detection is a challenging task.
The object’'s orientation, location, size, and



altitude can vary greatly in an image, making the
task more difficult to solve. In the human visual
system, we not only see and identify an object,
we can identify multiple overlapping objects in
diverse backgrounds. Moreover, we can classify
these different objects and identify their
boundaries, differences, and relationship to one
another. However, in the field of computer vision,
CNN-based architectures are applied
successfully to solve various detection related
tasks such as face detection, pedestrian
detection and vehicle detection [10]-[14].

The first successful CNN architecture was
developed by Yann Lecun in 1998 to recognize
handwritten digits on checks [15]. In 2012, more
than 12 vyears later, Alex Krizhevsky et al.
followed his path and built the famous AlexNet
algorithm that won the ImageNet challenge [16].
Since then, CNN architectures have become the
gold standard for solving computer vision tasks
and are now outperforming humans in some
scenarios.

In 2014 Girshick et al. proposed the Regions
with CNN features (R-CNN) algorithm for object
detection, which is the first algorithm of the R-
CNN family of algorithms [17]. RCNN achieved
the mean average precision (mAP) result of
53.3% in PASCAL VOC dataset. To capture all
possible objects’ locations from a given image,
authors applied the selective search algorithm
[18]. The selective search algorithm proposes 2k
regions for an image. In Figure 1, two examples
of selective search are given where different
sized scales are used to capture all possible
objects. Each proposed region is warped to a
compatible form of 227x227 pixels and forward
propagated through the CNN architecture to
compute feature maps. Next, the Support Vector
Machine (SVM) algorithm is utilized to compute
the classification score. In the RCNN
architecture the workflow is like: an input image
is given to detect possible objects; the selective
search algorithm proposes ~2k regions which
are forwarded to the CNN layers, and the CNN
architecture generates feature maps to detect
which objects are present in the image. To
compute the region proposal and features for
images, R-CNN requires 13 s/image on a GPU
integrated environment and 53 s/image on a
CPU based environment, which is a significantly
high computation time. Therefore, to minimize
the computation time required by RCNN, an
improved version of RCNN named Fast-RCNN
was proposed by the same author Ross Girshick
[19] in 2015.

The Fast-RCNN model requires an input
image and a set of object proposals for its
computation. Initially, it processes the whole
image with several convolutional (conv) layers
and max-pooling layers to produce the feature
maps. Then, a fixed(llength feature vector from
the feature map is extracted by the Rol pooling
layer to classify objects. Fast-RCNN is 25 times
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faster than R-CNN with the test time of 2
seconds per image. Even though Fast-RCNN
significantly improved the processing time and
model’s performance, the selective search was
still the bottleneck that slowed down the overall
process. Region proposals are dependent on the
feature maps and reusing the feature maps to
generate region proposals will be cost-free.
Taking this idea into consideration, Ren et al.
developed the faster R-CNN that exceptionally
improved the overall model performance [8]. In
Figure 2, we show a faster R-CNN algorithm
where conv layers compute the feature maps
and RPN layer extracts region proposals from
the feature maps for classification. The faster R-
CNN algorithm can detect objects in real time
with the computational time of 0.2 seconds per
image.

Figure 3 demonstrates the performance
comparison of the R-CNN architectures where
we can see that faster R-CNN reduced
processing time by 250x, whereas Fast-RCNN
had a reduction of 25x against the base case
processing time of x for R-CNN. Both faster and
Fast-RCNN maintained the same mean average
precision (mAP) score of 66.9%, where R-CNN
architecture’s mAP score was 66.0%. '

1.2.2 Recent Works on House Detection:

Buildings are the primary source of information
for urban planners and, many governmental and
non-governmental agencies as they provide the
holistic overview of a geographical area.
However, building detection is a challenging task
because of its complex appearance, variant
shapes, and surroundings. In the past few years,

researchers have proposed several building
extraction methods and followed various
approaches  [20]-[22].  Although  building

detection methods with good performance have
evolved significantly over the years, there are
still many aspects that have not been considered
and need improvements.

Stankov et al. [23], [24] exploited the
multispectral information and applied a grayscale
hit-or-miss transform (HMT) method for building
detection. In the paper, authors transformed the
multispectral images to grayscale images in
order to apply grayscale HMT. Sirmacek et al.
[25] extracted shadow information and areas of
interest using invariant color features and utilized
edge information building detection. In [26], Ziaei
et al. presented a comparison between three
object-based models for urban feature
classification from WorldView-2 images, where
they have shown that rule-based classification
outperformed support vector machines (SVM),
and nearest neighbour (NN) algorithms. Building
extraction from Quickbird images is presented by
Lefevre et al. [27] by using an adaptive ~ binary
HMT method. Authors also proposed a



Stanford lecture notes on CNN by Fei Fei Li and Andrej
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clustering-based approach to convert grayscale
image to binary image and to determine
operators parameters automatically. In [28],
Grinias et al. presented a novel segmentation

algorithm based on a Markov random field model
for building and road detection. To detect
changes of buildings from VHR imagery, Guo et
al. [29] presented a parameter mining approach
by introducing GIS data. For automatically
extracting and recognizing 2- D building shape
information, Sahar et al. [30] used vector parcel
geometries and their attributes to simplify the
building extraction task. Huang et al. [31]
introduced a framework for building extraction

@

from high-resolution imagery aiming to alleviate
Morphological Building Index (MBI) algorithm’s
limitations. Benarchid et al. [32] used shadow
information and object-based approach to
extract buildings where they first used object-
based classification to detect building and then
the invariant color features to extract shadow
information of the buildings. Based on shadow
detection, Chen et al. [33] proposed a superpixel
segmentation algorithm for splitting input image
into patches, and the Level Set segmentation
algorithms is leveraged to extract buildings for
detection.

In this paper, we present a Faster RCNN
based deep learning model that can detect
different houses in aerial images.

)

Figure 1: Two examples of selective search showing the necessity of different scales. On the left we find many objects at different
scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv [18].
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Figure 2: Faster-RCNN architecture.
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Figure 3: Performance compérison of R-CNN architectures:
R CNN, Fast-RCNN, Faster R-CNN. '

1.3 Contribution

Faster-RCNN is one of the promising
algorithms for object detection that has also
opened up the area of real time object detection.
In some situations, we need to extract the
building’s information in real time and our
proposed method can be a good fit for such
scenarios. It is our understanding that faster-
RCNN based house detection technique, which
paves the way for real time detection, has not
been considered in previous works. The  main
contributions of this paper are listed as follows:

e House detection in aerial images leveraging
faster R-CNN algorithm that paves the way
for real time detection.

e Bounding-box information extraction and
preprocessing of the dataset to remove
inconsistent data that may hamper the
overall performance of the model.

e Demonstrate the effectiveness of data
augmentation such as random rotation,
horizontal flip and shearing to im(iprove
performance and generalizability, and avoid
over-fitting.

e Demonstrate our model's performance by
considering average precision, loss function,
prediction scores and image precision.

1.4 Organization

The paper is organized as follows: Section Il
presents the methodology of the work including
data pre-processing, data augmentation and the
house detection technique. Section Il represents
experimental setup. Section IV is dedicated for
result analysis. Finally, Section V concludes the
paper.

2. PROPOSED METHOD

This section discusses data pre-processing, and
data augmentation techniques, and the
methodology used to detect houses. In Figure 4,
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we show the overall architecture of our proposed
model that includes dataset generation, data
preprocessing, data augmentation, object
detection, and results afterwards.

,wi
5 ——> Dataset generafion —— Data preprocessing ——> Data augmentation
Input Image A
X -
Object detection
«——  apdihm
(Faster R-CNN)

F-

Annotation tool Result

Figure 4: Overview of methodology adopted in this study

2.1 Data pre-processing

In our dataset, we have aerial images and
XML files containing the annotation information
of the images. XML file is an extensible markup
language file where components of the file are
described by tags, and texts in between the start
tag and end tag are the contents of the
component. From the XML files, we extract the
associated bounding-box information (for our
case its the aerial image file, xmin, ymin, xmax,
ymax and label) of each image. In the generated
dataset, we observed 37 different labels /
categories of houses where most of them are
redundant (e.g., typo and inconsistent labels).
For example the category of T shaped houses
were labelled as t shape, t-shaped, t type, type t
and t-shape which is inconsistent and it can be
minimized to one category. After analyzing 37
labels, we concluded that 37 different labels can
be minimized to only 5 categories (T shaped, L
shaped, C shaped, Rectangular shaped, and U
shaped). Moreover, we had some anomalies in
the extracted information such as xmin > xmax
or ymin > ymax. In such cases, if possible, we
exchanged min and max values without
changing the bounding-box information of an
object, otherwise we disregarded them due to
incorrect bounding boxes.

2.2 Data augmentation

Data augmentation is a technique to artificially
expand the dataset size by marginally modifying
the original data. Data augmentation helps to

avoid overfitting and improves model’s
performance. In images data augmentation
technique is performed by flipping, random

rotation, shifting, or shearing the original image.
Deep learning is a data-hungry technique that
yields better performance with larger dataset,
avoids over-fitting, and improves the model’s
generalizability. Therefore to improve model
performance and avoid overfitting, we
augmented our dataset using horizontal flip,
random rotation with the angle value of 10
degrees, shears with the value of 0.1, and



random rotation with randomly generated angle
the

value. In Figure 5, we demonstrated

(c) Shear- 0.1

augmented results after data
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applying the
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Figure 5: Data augmentation: 5a Horizontal flip; 5b Random rotation with 10°;5c Shear with 0.1;5d Random rotation with a random

2.3 House Detection using Faster-RCNN

The most widely used state-of-the-art object

detection technique of the R-CNN family is

Faster R-CNN that was first published in 2015

[8]. In the R-CNN family of papers, the evolution

among versions is usually in terms of

computational efficiency, processing time, and
performance improvement (i.e. mAP). These
networks usually consist of

1. A region proposal algorithm to generate
“bounding boxes” or locations of possible
objects in the image.

2. A feature generation stage to obtain features
of these objects (usually using a CNN).

3. A classification layer to predict which class
an object belongs to. 4) A regression layer to
make the coordinates of the object bounding
boxes more precise.

To generate feature maps (e.g., Figure 7),
ResNet50 is utilized in the initial stage where the
input image goes through a set of convolutional
layers, pooling layers and fully connected layers.
After generating feature maps, RPN layer which
is a small network, takes the feature map as an
input, slides over it, and outputs a set of
rectangular object proposals. Nine region
proposals (anchors) are predicted at each sliding
window location with respect to the center

value.
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(Figure 8) of the anchor associated with scales
of (128 x 128, 256 x 256, 512 x 512) and aspect
ratios of (1:1, 1:2 and 2:1) (Figure 6). A binary
class label of being an object or not an object is
assigned to each anchor for RPN training based
on the Intersection-over-Union (loU) overlap with
the ground-truth box. An anchor is considered
positive if it has the highest loU with any ground
truth box or is greater than 0.7. If the loU is less
than 0.3 it is labeled as negative. The anchors
which are neither positive nor negative (greater
than 0.3 and less than 0.7) are disregarded from
the RPN training. The loss function of RPN is
defined as:

o 200
Figure 6: An example of generating 9 anchors from a single
centroids with different scales and aspect ratios.
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Figure 7: Sample feature map
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Here, i is the index of an anchor in a mini-batch
and pi is the predicted probability of anchor i
being an object. The ground-truth label Pi * is 1 if
the anchor is positive and is 0 if the anchor is
negative. t is a vector representing the 4
parameterized coordinates of the predicted
bounding box and ti = is that of the ground-truth
box associated with a positive anchor. The
classification loss Las is log loss over two classes
(object vs. not object). For the regression loss,
we use Lreg(ti , ti x ) = R(t — ti * ) where R is the
robust loss function (smooth L1). The term Pi
*Las means the regression loss is activated only
for positive anchors Pi + = 1 and is disabled
otherwise (i.e. Pi * = 0). The outputs of the cls
and reg layers consist of pi and ti respectively.
The two terms are normalized by Nas and Nreg
and weighted by a balancing parameter A.

For the model training, the batch size is
defined to 16 and stochastic gradient descent
(SGD) optimizer is applied with the learning rate
of 0.005, momentum of 0.9 and weight decay of
0.005.

]
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Figure 8: Centriods of RPN.

3. EXPERIMENTAL SETUP

The entire experiment is carried out in Google
Colab environment developed by Google as a
simulation  environment. The  experiment
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leverages Colab environment utilizing GPU
runtime settings using python as the
programming language. The deep learning
object detection classifier has been implemented
using python version 3.7.3 and the PyTorch
framework.

4. EXPERIMENTAL EVALUATION

This section provides a brief description of the
dataset we have used for our experiments
followed by the performance evaluation of our
proposed work.

4.1 Dataset Description

In this experiment, we explored google earth
images to detect houses of different shapes. In
Figure 9, we demonstrate the process of

creating our dataset using LabelMe [34]
annotation tool where house objects are
manually annotated in each image. The

annotation tool then generates an XML file
containing the annotated information for each
image. (Figure 11) shows the structure of a
sample xml file after completing the annotation
process and in Figure 10 we show a sample

annotated image afterwards. Finally, the
annotation files along with the associated aerial
image dataset are downloaded from the
LabelMe application for carrying out the
experiment.
S—
Annotation tool
| SE—
A\
' 3
‘ Object Annotated file
Inputimage annotation (xml)
\ J

Figure 9: Flowchart for dataset annotation.
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Figure 10: Sample aerial image data annotated with
bounding box information. Here, r represents rectangular
shaped houses and | represents | shaped houses

—<annotation>
<filename=>17 jpg=/filename>
—<folder>
users WindEngineering//topics n wind_engineering_final/suml
<folder>
—<source=
<submitted By>Manuel Matus=/submittedBy>
<source>
—imagesize>
<nrows>945</nrows>
<ncols>1072</ncols>
</imagesize>
—<ghject>
<pame>building 1</name>
<deleted>(</deleted>
<verified=0</verified>
<occluded>no</occluded>
<attributes>c shaped=/attributes>
—<parts=
<hasparts/>
<ispartof/>
</parts>
<date>02-Dec-2019 03:32:24</date>
<id=0</id>
<type=bounding_box</type>
—polygon>
<username>anonymous</username:
—(pt}
<x169</x>
<yi3 1<y
</pt>
—{pf}
<x=284</x>
<yri3l<ly=
Figure 11: XML file: Annotation information of images such
as shape, number, bounding-box information

4.2 Experimental results

Object detectors performance is measured by
average precision (AP), image precision and
loss functions. In our experiment, we evaluated
our methods performance by average precision,
image precision and loss function. We defined
different number of epochs to observe the
model’s performance. In our observation, the
simulation performs better with twenty epochs. In
Figure 12, we demonstrate average precision in
different loU thresholds: 0.50, 0.55, 0.60, 0.65,
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0.70, 0.75. As the loU threshold increases the
average precision decreases naturally.
Moreover, in Figure 13, we show the average
image precision by comparing all loU thresholds.
From Figure 13, we can see that image precision
increases moderately for 20 epochs. In Figure
14, we show the loss function against the
number of iterations where we observe that after
400 iterations with twenty epochs the loss
function is converged. The equations for
calculating precision, average precision are
discussed in the followings where t, = True
positive; f, = False positive; tn = True negative; fn
= False negative.

- tp
Precis P) = 1
recision(P) P (1)
__tr
Recall(R) = b n (2)

4.2.1 Intersection over union (loU)

loU measures the overlap between 2
boundaries. We use that to measure how much
our predicted boundary overlaps with the ground
truth. In our dataset, we defined various loU
threshold r € {0.5, ..., 0.75} in classifying whether
the prediction is a true or a false positive.
Intersection over Union (loU) for comparing
similarity between the ground-truth and predicted
shapes A, B € S € Rn is attained by equation 3.

|AN B

IOU:m

(3)

4.2.2 Interpolated precision

The interpolated precision, pinterp, is calculated
at each recall level, r, by taking the maximum
precision measured for that r. The formula is
given as such:

pmte-.--;,(?‘) = H}g_)? P(T") @

In our experiment an average for the 6-point
interpolated  average precision (AP) s
calculated. And the formula to calculate the AP
is attained by:

ap- 1 Z AP,,:(—IS Z

re{0.5.....0.75} re{0.5,....0.75}

Pint er-p{ ?‘)

(5)

Pinterp(T) = max ‘u('rj}
rzr
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5. CONCLUSION AND FUTURE WORKS

House detection is a fundamental but
challenging issue in the field of aerial and
satellite image analysis. It provides valuable
information in different domains including civil
engineering, urbanization, and modern city
planning. During the last few years, considerable
efforts have been made to develop various
methods for detecting houses in aerial images.
In this paper, we present a Faster-RCNN based
house detection method that achieved a
satisfactory result. Our proposed method can be
utilized in real time object/house detection
scenarios. A wide range of ensembles of faster
RCNN is being utilized in various contexts such
as pedestrian detection, vehicle detection, and
face detection. In this experiment, we have
leveraged pretrained resnet-50 model to detect
houses in aerial images. A performance
comparison of various models, such as VGG19,
SeNet, GoogleNet, MobileNetV2, DenseNet201,
and InceptionResNetV2, is important for both
application and academic purposes and thus
remains an integral part of our future research.
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