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Abstract: In the past few years, there have been
many research studies conducted in the field of
Satellite Image Classification. The purposes of
these studies included flood identification, forest
fire monitoring, greenery land identification, and
land-usage identification. In this field, finding
suitable data is often considered problematic, and
some research has also been done to identify and
extract suitable datasets for classification.
Although satellite data can be challenging to deal
with, Convolutional Neural Networks (CNNs), which
consist of multiple interconnected neurons, have
shown promising results when applied to satellite
imagery data. In the present work, first we have
manually downloaded satellite images of four
different classes in Florida locations using the
TerraFly Mapping System, developed and managed
by the High Performance Database Research Center
at Florida International University. We then develop
a CNN architecture suitable for extracting features
and capable of multi-class classification in our
dataset. We discuss the shortcomings in the
classification due to the limited size of the dataset.
To address this issue, we first employ data
augmentation and then utilize transfer learning
methodology for feature extraction with VGG16 and
ResNet50 pretrained models. We use these features
to classify satellite imagery of Florida. We analyze
the misclassification in our model and, to address
this issue, we introduce a location-based CNN
model. We convert coordinates to geohash codes,
use these codes as an additional feature vector and
feed them into the CNN model. We believe that the
new CNN model combined with geohash codes as
location features provides a better accuracy for our
dataset.

Index Terms: CNN (Convolutional Neural
Network), Data Augmentation, Geohash Code,
Satellite Image, Transfer Learning

1. INTRODUCTION

THE classification of remotely sensed data has
numerous practical applications, including
forest fire detection, landslide detection, and
environmental monitoring. In recent years, several

Manuscript received March 24, 2023.
Arpan Mahara is at the Knight Foundation School of Computing
and Information Sciences, Florida International University, Miami,

FL, USA (e-mail: amaha038(@cs.fiu.edu)

Naphtali Rishe is at the Knight Foundation School of
Computing and Information Sciences, Florida International
University, Miami, FL, USA (e-mail: rishe@cs.fiu.edu)

Correspondence email is amaha038@gcs.fiu.edu

24

machine learning and deep learning algorithms,
including but not limited to K-Nearest Neighbor
(KNN), Random Forest (RF), Support Vector
Machine (SVM), and Neural Networks (NNs), have
been applied to the classification of remotely
sensed data. In the Deep Learning field, CNNs
have demonstrated the capability to learn complex
models [1]. One of the key reasons for CNNs’
success is their ability to extract features
automatically, which greatly benefits researchers
in  achieving generalized and efficient
classification. Comprehensive reviews of various
models, architectures, and classifications related
to CNNs can be found in references [1]-[3].

In general, image classification is performed
based on pixel-wise feature extraction and
assigning them to certain classes. Mnih proposed
a CNN architecture for aerial image classification
using a patch-based framework[4]. In that paper,
the CNN network outputs a dense classification
patch rather than a single categorical value. As a
result, the patch-based CNN architecture
increases the number of unproductive trainable
parameters, potentially leading to inefficiencies in
classification. To provide a solution to this issue,
Maggiori et al. [5] proposed a fully convolutional
architecture that only incorporates the convolution
and deconvolution norms of CNN, producing
classification maps that can be used for satellite
image classification. In [5], the authors have
created a more efficient CNN architecture, but
their focus was on binary classification with only
one class, i.e., buildings. The authors have not
addressed the importance of using image location
to enhance classification accuracy. The CNN
architecture we use in this paper is based on the
architectures described in [4] and [5], and we
focus on multi-class image classification by
integrating the location concept. In [6], coordinates
were integrated into CNN to enhance remote
sensing image classification. During the training
phase, they directly fed spatial information, such
as longitude and latitude, as an additional feature
to the CNN for feature extraction. Similarly, Tang
et al. [7] proposed a GPS encoding idea that
incorporates location information into CNN for
extracting features and improved image
classification. They represented location as a



binary code, with each bit corresponding to a
specific geographic location. They devised a
method for creating a set of grid cells covering the
Earth’s geographical area, primarily focusing on
regions within the United States.

In the present work, we first downloaded
satellite images of Florida using TerraFly Map’s
raster API, which incorporates a predefined tile
system utilizing the Microsoft Bing projection. The
images are all 256 * 256 pixels and have three
color channels (Red, Green, and Blue). We have
grouped the images into four different classes:
Building, GreenerylLand, House, and
WaterResource. Here, by a “house” we mean a
structure of 1-2 stories, and by a “building” we
mean a structure of 3 or more stories. We have
developed our CNN architecture based on the
idea mentioned in [4] and [5]. However, CNNs
require large datasets to learn features and make
efficient predictions, and our CNN may not be able
to generalize efficient classification from manually-
collected datasets due to the lack of a large
number of images. To improve the efficiency of our
classification, we first use data augmentation
presented in [8]. Then, we adopt transfer learning
strategies presented in [9] to extract features using
pre-trained models, such as VGG16 and
ResNet50. Finally, we enhance the CNN’s feature
set by converting each longitude and latitude to
geohash codes and feeding them as extra
features. Geohash is a process that converts
coordinates into strings of data, which are easy to
handle; more information on geohash codes can
be found in [10]-[12]. We then evaluate the
accuracy of our model with these additional
features.

The paper is structured as follows. In Section 2,
we describe the mechanism of CNN and how we
have prepared the dataset. In Section 3, we
propose a CNN architecture and analyze the
shortcomings of the lack of a large dataset. In
Subsection 3.1, we set up a transfer learning
architecture to obtain an efficient classification
model. In addition, we integrate coordinates as
geohash codes into our model. Section 4 presents
the computational results achieved from all the
models, including the results obtained after the
integration of location information. Finally, we
summarize our findings and outline future
research directions in Section 5.

2. CNN INTRODUCTION AND DATASET

CNNs are a special type of neural networks that
have been invented to mimic the mechanism of
human brain for identifying or recognizing objects.
They contain numerous interconnected neurons,
each of which responds only to their own receptive
field. The interesting part of the neurons in CNNs
is that they possess the ability to automatically
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extract features from an image. In a CNN, each
neuron undergoes input and output procedures to
learn the pattern of the model. The common
mathematical interpretation of the neural
operation to obtain an output ‘o’ can be expressed
as follows:

0=0 (k=1 Wk - X + D) (1)
where o is an activation function that helps the
CNN to learn an intricate pattern by encompassing
non-linearity in the output. Similarly, xxand wgare
k" input and k" weight, respectively, and b denotes
a scalar parameter added to each output, which
helps the CNN to extract complicated patterns
from data. Biases should be carefully addressed;
otherwise, they may lead to overfitting or
underfitting in the model.

In general, the CNN architecture has three
different layers: a convolutional layer, a pooling
layer, and a connected layer. In the convolutional
layer, the dot product between the kernel and the
input image is calculated by sliding a filter over the
image. This aids the architecture in extracting
features from the images in the dataset. The
sliding of the filter around the image can be
controlled with a specific stride size. Let's say we
have an image of dimension D*D with C channels.
We define the size of the stride as S, the size of
the kernel or filter as K, and X as the amount of
padding to maintain the same size of images in
both the input and output sectors. The output of
the convolutional layer can be stated as follows:

D—-K+2X
2)

Cout= T+1
Once the output is calculated, it is passed through
an activation function. A pooling layer is applied in
the CNN in order to deduct trainable parameters
and balance the computation, which serves as an
efficient feature extraction by reducing the size of
the output map obtained from the convolutional
layer. A fully connected layer simply flattens the
output obtained from the previous layer, which
helps to connect the obtained features to the
labels in the given model.

As mentioned above, we used the TerraFly
Map’s raster API (which uses the Microsoft Bing
projection) to download the images. We use the
TerraFly Map to determine the XY tile coordinates
for specific regions within Florida, keeping the
zoom level constant at 19. After determining those
coordinates, we pass the values to the Raster
API's URL, and then we use web scraping to
download the images. Since we aim to integrate
the location feature into our CNN model, we need
to prepare a dataset of satellite images that also
have associated coordinates. To achieve this, we
converted each XY tile coordinates obtained from
the map to longitude and latitude by using the
following procedure:

A = Xtile, B =Y tile coordinates (i)



pixelA = A * 256 + 128

pixelB = B * 256 + 128

sizeofMap = 256 * 2zcom

normA = (pixelA / (sizeofMap)) — 0.5

normB = 0.5 — (pixelB / (sizeofMap)) (vi)

Latitude=90 — (ﬂ) * tan "(exp(-21m*normB) (vii)

T

Longitude = 360 * normA (viii)

In our model, we use a specific zoom value of
19. To calculate the geohash code, we use the
values of the latitude and longitude obtained from
equations (vii) and (viii), as described in [12]. We
use the Python Geohash Library to convert the
latitude and longitude to geohash codes. In our
final step of dataset preparation, we map each
geohash code to the right images by using a
Python dictionary. The keys of the dictionary are
the filenames, and the values are the
corresponding geohash codes.

3. THE PROPOSED ARCHITECTURE

Our CNN architecture utilizes ideas from [4]
and [5]. We apply convolutional layers that
incorporate both convolutional and deconvolution
operations, as described in [5]. We flatten the
multi-dimensional tensor into a single-dimensional
tensor output and apply the dense layer principle
the output, as suggested by Mnih [4]. We feed the
fully connected layer of the images into the CNN
to extract the feature map, which is used for
classifying the images according to their given
labels. Our CNN architecture differs from the one
presented in [6], as we focus on extraction that is
capable of detecting features in the images, rather
than extracting the spatial features of pixels in the
images. As we can observe in Figure 1, the CNN
architecture has three convolutional layers and
three max pooling layers. In each max pooling
layer, we downsample the dimension of each input
map by a factor of 2, resulting in a feature map of
size 32*32. Downsampling is a common approach
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in neural networks to reduce memory usage
during computation and to enable high-level
feature extraction [13]. We flatten the resulting
feature map by applying a flatten layer, which
transforms it into a one-dimensional array of size
65,536. We then apply two separate dense layers
followed by a Softmax activation function. The final
dense layer has 4 units, as our model has 4
classes of satellite images and the probability
distribution is over those 4 classes.

In the first stage of our image classification
procedure, we use a satellite image dataset that
excludes geohash codes. We split the dataset into
a training set, a testing set, and a validation set,
with 80%, 10%, and 10% of the full dataset,
respectively. We have experimented with our
model using various numbers of epochs and batch
sizes, and have determined that using 60 epochs
with a batch size of 32 produces the best results.
In general, researchers tend to choose an optimal
number of epochs to achieve good accuracy in
complex models and prevent the model from
overfitting. A lower accuracy in the testing set
indicates that the model is overfitting. One reason
for this overfitting is the lack of a large amount of
data in our model, as we only had 300 images in
each class, with a total of 1200 images. CNNs
require a large dataset to extract complex features
and provide better accuracy in image classification
[13].

To address this problem, we have used data
augmentation strategies of deep learning, as
presented in [8], [14], and [15]. In terms of images,
data augmentation involves increasing the size of
the dataset by applying variations, such as rotating
images, changing the visual effects, etc., to the
existing images [14]. To increase the size of the
dataset, we have applied random horizontal
flipping, random rotation with approximately 8.62
degrees, and random zooming of 20% scale. The
data augmentation has helped to address the
problem of overfitting, but we have concluded that
we can further increase the overall accuracy of our
dataset by training our model using a pretrained
model, such as VGG16 and ResNet50, with the
concept of transfer learning. In the following
Subsection 3.1, we provide details on how we use
transfer learning in our model to improve overall
accuracy.
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Figure 1: An illustration of the architecture of the CNN used. The template of the image has been obtained via
https://alexlenail.me/NN-SVG/LeNet.html.
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3.1 Applying Transfer Learning

Transfer learning is a way to use a pretrained
model in a different but related model to solve the
problem of the lack of abundant data to extract
effective features and reduce the time required for
training the dataset [16]. Our idea on integrating
Transfer Learning is based on [9] and [17], and we
have selected VGG16 and ResNet50 as the two
pretrained models for our experiment. VGG16 is
one of the most widely used deep neural network
architectures; it consists of 13 convolutional layers
and 3 dense layers, and the model has been
trained on the ImageNet dataset [18]. Similarly,
ResNet50 is another widely used deep neural
network trained on the ImageNet dataset,
consisting of 50 layers in total; it enables the
network to assimilate residual functions rather
than underlying mappings [19].

To set up the model using the transfer learning
idea, we first remove the final connected layer of
the VGG16 model. Then, we use the pretrained
weights, and we set up the desired input shape to
256*256*3, the same shape that matches the input
shape of the images in our original dataset. We
freeze all the pre-trained layers and use only pre-
trained weights to extract features, training the two
new dense layers to predict new images in the
dataset. The output of the flatten layer obtained
from the pretrained model is passed to the first
dense layer with 256 neurons, followed by the
Relu activation function. In addition to this, we
apply the Dropout function to the output from the
dense layer to prevent overfitting in our model.
Thereafter, we apply the final fully connected layer
with 4 output nodes to obtain the probability
distribution among 4 classes to predict the images
followed by the Softmax activation function. We
follow the same procedure when using the
ResNet50 model. Once both models were ready,
we experimented with them in our dataset.
However, we have found misclassification in some
of our data, which was further hindering the
accuracy. To improve the accuracy, we integrate
location coordinates in our image classification
model in Subsection 3.2.

3.2 Integration of Location as Geohash Codes

Our goal is to increase the accuracy of satellite
image classification in the downloaded dataset by
integrating location information. We have decided
to use geohash codes obtained from the
conversion of latitude and longitude values.
Geohash is a type of data structure used with
spatial data that provide an encoding of latitude
and longitude [20]. We are motivated to use
geohash codes because locations with long
common geohash prefixes are generally located
nearby each other [20]. Our dataset contains
satellite images downloaded within Florida, and
there is a correlation between geographical
location and image content. Images of houses and
buildings are in two different classes, and some of
these images might be misclassified if the model
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only considers visual characteristics because
building images and house images captured from
satellites have some visual similarity. In our
dataset, two images of houses or buildings tend to
be nearby each other as they have been
downloaded by specifying the tiles coordinates.
We believe that we can exploit this idea in our
model by using geohash codes and prevent the
misclassification of data.

We have experimented with the location
concept by incorporating geohash codes into the
VGG16 pretrained model. We have converted
each geohash code into a floating-point value
since neural networks typically deal with numerical
values rather than strings. Next, we add a new
input layer for the geohash code and concatenate
the flattened layer containing the weight features
of VGG16 with the geohash codes, as shown in
Figure 2. We then apply the same dense layers
noted in Subsection 3.1 to extract the features that
assist in the prediction of new images. We follow
the same procedure of concatenation geohash
code with the output layer in ResNet50.

Finally, we integrate location information, i.e.,
geohash codes, into our CNN architecture. We
concatenate the feature map induced by applying
3 convolutional and 3 pooling layers with geohash
codes to obtain a combined feature vector. We
then follow the same procedure as noted above
and apply a flatten layer and a dense layer,
respectively, to the combined feature vector. We
have experimented with our models using 60
epochs and a batch size of 32 to obtain accuracy.

4. COMPUTATIONAL RESULTS

We have sequentially tested all the models,
starting from the CNN architecture that only
extracts features from the image without
concatenating the geohash codes. Our intent is
not just to check the accuracy in the dataset but
also to analyze whether the model is overfitting by
checking how well it performs on unseen image
data. We use the Top-1 accuracy metric to check
accuracies on all the models. Our CNN
architecture yields an accuracy of 0.9244 on the
training set but only 0.8842 on the testing set,
indicating overfitting due to the limited size of the
dataset. To address this issue, we apply data
augmentation to the dataset, and our CNN
architecture can generate approximately 0.9185
accuracy on the testing dataset and 0.9253 on the
training set. Even though data augmentation helps
to increase the dataset, it still lacks the power to
generalize efficient feature extraction. So, we
utilize transfer learning by using pretrained
models, VGG16 and ResNet50, for efficient
feature extraction that could be used to obtain
better accuracy in our dataset. Having tested
these models on all the datasets, we achieve an
accuracy of approximately 0.9456 on the testing
set and 0.9529 on the
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Figure 2: An illustration of the architecture obtained by integrating geohash codes into the CNN (including pretrained models)
architecture.

training set for VGG16, as well as approximately
0.9516 on the testing set and 0.9576 on the
training set for ResNet50, respectively.

Similarly, as mentioned in Subsection 3.2
above, to integrate location as an additional
feature, we initially integrate the geohash codes
with VGG 16 and ResNet50 pretrained models. We
achieve top-1 accuracies of 0.9789 on the testing
set and 0.9769 on the training set using the
combined VGG16 and geohash feature
architecture, and top-1 accuracies of 0.9812 on
the testing set and 0.9795 on the training set using
the combined ResNet50 and geohash feature
architecture. Finally, we experimented with
integrating location information into our CNN
architecture by concatenating the geohash codes
with the image features. By doing so, we are able
to increase the top-1 accuracy on the testing set
from 0.9185 to 0.9542 and on the training set from
0.9253 to 0.9512 by incorporating location as a
feature.

From the results mentioned above, we can see
that incorporating the geohash coding feature has

led to an improvement in our classification
accuracy. In each model, after integrating
geohash as a location feature, there is an increase
of top-1 accuracy by 2 to 3 percentage points. The
reason for the small increases in the accuracies is
because of the small size of the dataset. We have
observed misclassifications mainly among house
and building images, as they have a resemblance,
but the number of misclassifications is relatively
small due to our small dataset size. However, we
can mitigate these misclassifications by utilizing
geohash codes to differentiate between these
images with similar features.

We present the results and comparisons of all
the models mentioned above in Table 1. The
notations used in Table 1 are as follows:

o Acc. — accuracy in the testing set
(general accuracy of the model);

o Accr—accuracy in the training set;

o Loss — categorical cross-entropy loss in
our multi-class classification model;

Table 1. Results and comparisons among our models based on the accuracy

Method Acc. Accr Loss

CNN (only) 0.8842 0.9244 0.8272
CNN + Data Augmentation 0.9185 0.9253 0.4380
VGG16 (CNN) 0.9456 0.9529 0.2549
RestNet50 (CNN) 0.9516 0.9576 0.1590
CNN + Data Augmentation + Geohash Code 0.9542 0.9512 0.0954
VGG16 (CNN) + Geohash Code 0.9789 0.9769 0.0443
ResNet50 (CNN) + Geohash Code 0.9812 0.9795 0.0394

As shown in Table 1, the proposed CNN model,
as well as the VGG16 and ResNet50 models,
show improved accuracy after the integration of
geohash codes. As shown in the table, the
categorical cross-entropy loss decreases after the
geohash codes have been applied, indicating that
the models are able to make predictions that are
closer to the true class membership probabilities.
The lower loss value and similar accuracy on both
the training and testing datasets suggest that the
model is not overfitting to the training data.

5. CONCLUSION

This paper analyzes the limitations of using only
image features in multi-class satellite image
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classification using CNNs. In multi-class satellite
image classification, CNN architectures tend to
make false predictions when there is a high
degree of visual similarity between images from
different classes. This issue is addressed by
integrating geohash codes as an additional feature
in the CNN model. With the additional geohash
code feature map, the CNN model is able to make
more accurate predictions.

According to the results presented in this paper,
we can deduce that geohash codes can be used
as an additional feature vector in the CNN
architecture to make correct predictions and
increase accuracy in satellite image classification.
However, this may not apply in scenarios where




there is no correlation between geographical
location and image content. To build a robust
model for satellite image classification, it is
important to take into account a range of factors,
such as the size and preprocessing of the dataset,
integrating additional feature vectors, the risk of
overfitting, and the CNN architecture itself. This is
because even a well-designed architecture may
produce poor results if there is insufficient data or
if the data has not been efficiently preprocessed.

In the future, we plan to explore the use of
hybrid models in satellite image classification. The
K-NN machine learning algorithm will be one of
our focuses to identify the K-number of images
that are most similar to each other based on their
geohash codes, and then to automatically classify
them into their respective classes. This approach
has the prospect of increasing the accuracy of
classifying images that are difficult to distinguish
based on visual features alone, and may enable
real-time classification of satellite imagery for
applications such as disaster management and
environmental monitoring.
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